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1.1. Summary 

Intensive greenhouse vegetable crops are commonly associated with appreciable nitrate 

leaching. This situation may be due to the large amount of nitrogen fertilizer applications 

and the limited monitoring measures and management practices to improve the N 

management. Taking this problem into account, the general objective of this thesis was 

to evaluate the effect of different doses of N and management practices to optimize the 

use of this nutrient in greenhouse vegetable crops. Three manuscripts were proposed, the 

first one focused on the effect of increasing doses of N on the rooting of two pepper crops 

(Capsicum annuum) grown in soil. Yield, crop N uptake and the dry matter of the shoot 

were evaluated. The second manuscript dealt with the effect of tillage on sweet pepper 

(Capsicum annuum) grown in a greenhouse with soil. Soil parameters such as matric 

potential and penetration resistance, climatic variables, N and water consumption, N 

leaching and dry matter production were evaluated. In the last manuscript, the effect of N 

dose on fruit quality parameters and cultivar effect on muskmelon (Cucumis melo) and 

sweet pepper (Capsicum annuum) crops were addressed. In addition to internal quality 

parameters of the fruits, morphometric and commercial performance were measured. The 

main findings of the first manuscript were that the conventional and very excessive 

application of N maximized the biomass production of the shoot and crop yield, and 

decreased root length density in sweet pepper crop. In the second manuscript, tillage did 

not prove to be a practice that alone could increase dry matter or crop yields. On the other 

hand, this practice caused a significant decrease in irrigation, applied N, drainage, and 

nitrate leaching. With respect to the last manuscript, fruit responded to very poor N 

fertilization with the pulp being more orange in muskmelon and the skin being more 

reddish in sweet pepper. In contrast, ºBrix increased with very poor N fertilization in 
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muskmelon but ºBrix decreased with poor N fertilization in sweet pepper. In the 

succession of all three manuscripts, the various effects of N and management measures 

were demonstrated. It is concluded that application of N fertilizers above the level 

considered optimal generated losses of fertilizers, did not increase yields, delayed 

harvests and decreased the quality of the fruits. In this way, achieving a precise 

application of N and proposing management practices will be a necessary alternative to 

increase the efficiency of N. 
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1.2. Resumen 

La producción intensiva de hortalizas bajo invernadero se asocia comúnmente con una 

apreciable contaminación con nitratos de los acuíferos subyacentes. Esta situación puede 

deberse a la gran cantidad de fertilizantes nitrogenados aportados y a las escasas medidas 

de monitoreo y prácticas de manejo para evitar el lavado de este nutriente. Tomando en 

cuenta esta problemática, en esta tesis se planteó como objetivo general evaluar el efecto 

de diferentes dosis de N y prácticas de manejo para optimizar el uso de este nutriente en 

cultivos hortícolas bajo invernadero. Se plantearon tres manuscritos, el primero se enfocó 

en el efecto de dosis crecientes de N sobre el enraizamiento de dos cultivos de pimiento 

(Capsicum annuum) cultivados en suelo “enarenado”. Se evaluó el rendimiento, la 

absorción de N del cultivo y la materia seca de la parte aérea. El siguiente manuscrito 

trató del efecto del laboreo en pimiento (Capsicum annuum) cultivado en invernadero con 

suelo “enarenado”. En este manuscrito se evaluaron parámetros a nivel de suelo, como 

potencial matricial y resistencia a la penetración, variables climáticas, consumo de 

nitrógeno, consumo de agua, lixiviación de N y producción de materia seca. En el último 

manuscrito se abordó el efecto de distintas dosis de N sobre parámetros de calidad y efecto 

del cultivar en melón (Cucumis melo) y pimiento (Capsicum annuum). Se midieron 

parámetros de calidad interna de los frutos, morfométricos y rendimiento comercial. 

Como resultados del primer manuscrito, se encontró que el efecto del N sobre el 

desarrollo de las raíces sugiere que la aplicación convencional y muy excesiva de N 

maximizó el desarrollo de la parte aérea y el rendimiento del cultivo y disminuyó la 

densidad radicular en pimiento. En el segundo capítulo, el laboreo no demostró ser una 

práctica que por sí sola aumente la producción de materia seca o el rendimiento del 

cultivo. En cambio, esta práctica sí provocó una disminución significativa del riego, el N 
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aplicado, el drenaje y la lixiviación de N. Respecto al último manuscrito, en respuesta a 

una fertilización con N muy deficiente, la pulpa fue más anaranjada en el melón y la piel 

más rojiza en el pimiento. En contraste, los ºBrix con fertilización muy deficiente se 

incrementaron para el cultivo del melón y decayeron para el cultivo de pimiento. En el 

conjunto de los artículos elaborados han quedado demostrado los diversos efectos del N 

y medidas de manejo sobre melón y pimiento. Se llega a la conclusión de que las 

aplicaciones de N por encima del nivel considerado óptimo generan pérdidas de 

fertilizantes, no aumentan los rendimientos, retrasan las cosechas y disminuyen la calidad 

de los frutos.  De esta manera, realizar una aplicación precisa de N y proponer medidas 

de manejo durante el ciclo de cultivo, son alternativas necesarias para aumentar la 

eficiencia del uso de N.  
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Nitrogen (N) is one of the most important nutrients for plant growth, being 

classified as a main macronutrient (Azcón-Bieto and Talón, 2003). The most important 

functions in the plant is the manufacture of amino acids, proteins and other assimilates 

necessary for growth and the production of dry matter (Burns et al., 2010). Its importance 

is such that after water, N is the most limiting nutrient in plant growth; this conditions the 

management practices given by farmers and advisors (Azcón-Bieto and Talón, 2003).  In 

intensive production of vegetables, the cost of fertilizers is low compared to the rest of 

the production costs (Valera et al., 2014) and as a result, vegetable farmers do not feel 

strong economic pressure to reduce N fertilizer application (Sonneveld and Voogt, 2009). 

These situations together with the misconception that the more N the higher the yield, is 

a possible explanation for excess N applications in many areas of the world (Gallardo et 

al., 2006; R.B. Thompson et al., 2007b; Zotarelli et al., 2009). Excess N has several 

consequences such as groundwater contamination, delayed harvest, poor fruit quality, and 

increased susceptibility to diseases (Gianquinto et al., 2011). 

Soil N is present in four main forms: (a) organic matter, such as plant material, 

amino sugars, and humus; (b) soil organisms and microorganisms; (c) ammonium ions 

(NH4
+) retained by clay minerals and organic matter, and (d) forms of mineral N in the 

soil solution, including nitrate (NO3
-) and low concentrations of nitrite (NO2

-) (Cameron 

et al., 2013).  Losses due to leaching within production systems are basically due to NO3
- 

that washes out of the soil profile and is dragged to groundwater being a worldwide 

phenomenon (Padilla et al., 2018). The NO3
- can reach rivers and lakes causing serious 

eutrophication problems (Cameron et al., 2013). 
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For this reason, N management practices in vegetable crops in Europe are under 

increasing scrutiny for their potentially adverse environmental effects (Hartz, 2003). The 

implementation of the EU Nitrates Directive has imposed a requirement to restrict N 

application on EU farms to reduce nitrate losses to water  (Burns et al., 2010).  It has been 

found that over fertilization of vegetable crops is a widespread problem (Hartz, 2003).   

In particular in vegetable crops, there is information on the management of N for 

various crops, seeking a dynamic management that allows the administration of fertilizers 

when their use is crucial for the growth and yield of the plants (Gianquinto et al., 2011). 

There is technical capacity in these systems since high frequency fertigation systems are 

used, which could supply N in the irrigation water in small times and doses (Farneselli-

2015). Despite the accumulation of scientific information on N management, it has not 

been enough to reverse the current situation of increasing water bodies contamination 

(Lecompte et al., 2008).   

Several reports agree that crop yield increases as the concentration of N applied 

increases and decreases when the crop's N requirements are not met (Lima e Silva et al., 

2007). In general, in vegetable crops the application of N exceeds the crop demand, which 

has various consequences such as reduced N uptake efficiency, direct effects on crops, 

and contamination of water bodies with leached nitrate (NO3
-) (Rodríguez et al., 2020; 

Thompson et al., 2017). Indeed, it is estimated that only 30-40% of the N applied is 

absorbed by crops (Tilman et al., 2002a). N application in vegetable crops are commonly 

based on the experience of technical advisors and producers, in most cases without proper 

diagnosing and monitoring systems of crop N status that would allow adjustments of the 

N applied (Thompson et al., 2009). Intensive vegetable crops are grown in relatively 
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small-sized greenhouses, so the cost of N fertilizers is not significant even when applied 

in excess (Locascio et al., 1997). This problem is generalized in several regions of the 

world, such as the southeast of Spain (SE) (Thompson et al., 2007b), the southeast of 

United States (Zotarelli et al., 2009), and China (Ju et al., 2006). It is thus necessary to 

deepen the study of the various effects of increasing N fertilization on crops and the 

environment. 

In the particular case of Almeria (south-eastern Spain), specifically some areas of 

Campo de Dalías, Bajo Andarax and Campo de Níjar, N management in the form of NO3
- 

is a serious problem registered in those areas being declared as nitrate vulnerable zones  

to contamination by nitrates of agricultural origin (Rodrigo et al., 2007). In this area there 

is a high concentration of greenhouses with more than 30,000 ha (Thompson et al., 2009; 

Valera et al., 2014). The management of nutrients in greenhouse horticultural production 

systems in Almería is based on the experience of advisors and producers (Thompson et 

al., 2007b). Although this system has the technical capacity with fertigation systems for 

precise N and irrigation management, the greatest problem is not being considered 

(Thompson et al., 2007b). 

In this way, it is pertinent to continue deepening best N management practices at 

the farm level, whereby the [NO3
-] applied to the crops at each given moment of the crop 

cycle is adjusted, and improve cultural management practices that help minimize the 

impacts generated by the misuse of N fertilizers (Parks et al., 2012). 

One such field where our understanding needs to be improved is on the effects of 

increasing N fertilization on root growth and dynamics in vegetable crops. There are 

several factors that influence the root system, such as N availability, cultivar, soil 
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properties (physical, chemical and biological characteristics), agricultural practices (e.g. 

tillage), climate or competition with others roots (Primavesi, 1982). In terms of N 

availability, there is evidence that the root system has the ability to adapt to available 

mineral nutrients in the soil profile during the growing cycle (Nacry et al., 2013; Hodge, 

2010). This can be interpreted as a resource saving strategy to allocate the least amount 

of nutrients to the root system (Gallardo et al., 1996). 

Several reports agree that N fertilization affects the quantity and distribution of 

roots in the soil profile (Drew, 1975; Drew et al., 1973; Franco et al., 2011; Herrera et al., 

2007). In several crops, the common tendency is to reduce the root system in response to 

the high application of N, this behavior is differential in each stage of the crop cycle 

(Comfort et al., 1988; Lecompte et al., 2008). However, at low N fertilization, the root 

system tends to increase and explore more soil volume (Lecompte et al., 2008). The 

spatial location of the N fertilization application also had an effect on the root responses; 

deep location of N  caused an extension and deeper rooting of the crops (Kristensen and 

Thorup-Kristensen, 2007). By contrast, shallow location of N (i.e. application in the 

surface layer), led to concentration of the roots in the most superficial soil layers (Svoboda 

and Haberle, 2006).  

Root diameter is another important trait involved in the acquisition of mineral 

nutrients that can be affected by N fertilization (Kimberly et al., 2009; Gong and Zhao, 

2019). Roots of small diameter tend to be more efficient in nutrient absorption but there 

is no consistent evidence on the response of root diameter to N availability (Guo et al., 

2008; Noguchi et al., 2013). 
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Two of the strategies to increase N uptake efficiency are to increase the root length 

density (Herrera et al., 2007) and to develop deeper root systems that are capable of 

capturing N from deep soil layers (Rasmussen et al., 2015). However, in vegetable crops 

grown in greenhouses in south-east Spain, the tendency for root systems is to concentrate 

in the first 0.20-0.25 m of soil layers (Castilla, 1986; Raya Martinez, 1987a; Padilla et al., 

2017b). In tomato crops grown in open fields, the depth of the root system was similarly 

concentrated in shallow soil layers, particularly within the first 0.40 m depth (Peterson et 

al., 2016). 

In general, studies on the effect of N fertilization on growth of the aerial part of 

the plant and yield are very abundant, but much less is known on the effect of root 

development in soil (Primavesi, 1982; Thorup-Kristensen and Kirkegaard, 2016). This 

lack of knowledge is likely caused by the inherent difficulties in studying roots in soil 

(Mancuso, 2012). However, minirhizotron tubes can be used to monitor root growth 

throughout the crop cycle without destroying the root system (Hendrick and Pregitzer, 

1996; Machado and Oliveira, 2002; Mancuso, 2012). 

The first manuscript of this thesis aims to improve our knowledge on the effect of 

increasing N fertilization on crop growth and yield, focusing particularly on root 

dynamics. The study was conducted in sweet pepper (Capsicum annuum) grown in soil 

in a greenhouse in Almería (south-east Spain). Sweet pepper is one of the most important 

crops in Almería, with an annual area of 8,174 ha dedicated to its cultivation (Reche, 

2010). 

In Almeria vegetable crops are grown in “enarenado” soil, which is an artificial 

soil formation technique by superposition of different layers or horizons, generally three 
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layers (Jiménez and Lao, 2002). It is composed of the following layers from the base of 

the original soil, a first layer of glen soil of about 30-40cm is placed, above it a layer of 

manure of about 5-10cm and finally a layer of coarse sand of about 10-15cm (Valera et 

al., 2014).  The main objective is to reduce the evaporation of water from the soil, its use 

being indicated in areas of saline soils and in marginal lands (Jiménez and Lao, 2002). 

Tillage is a management practice conducted to alleviate soil compaction that could 

increase the use of soil N and water by crops. Tillage would improve the exploration of 

the soil by roots and therefore would increase the uptake of water and nutrients 

(Wortmann et al., 2008; Quincke et al., 2007).  

Soil structure is one of the main factors affecting the general development of roots 

(Passioura, 1991). A good soil structure is characterized by containing an adequate 

proportion of pores with water and air that optimizes the plant nutrition and the rooting 

process (Primavesi, 1982). Soil degradation processes such as erosion and compaction 

cause a degradation of soil structure, generating serious problems in several crops at the 

global scale (Batey, 2009; Hamza and Anderson, 2005).  

Soil compaction is one of the principal problems of modern agriculture. 

Commonly, it is mainly associated with the traffic of heavy machinery and of the 

operators, especially in intensive crops (Abu-Hamdeh, 2003; Iler and Stevenson, 1991). 

Soil compaction has various effects on the soil environment, such as decreasing the total 

soil porosity and consequently affecting the supply of water and air to the roots (Iler and 

Stevenson, 1991; Tracy et al., 2013). Another important problem underlying soil 

compaction is the difficulty of mechanical penetration of the roots in the soil, which limits 

roots to the most superficial soil layers (Kadžienž et al., 2011; Batey, 2009; Thorup-
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Kristensen, 2011) and restricts the absorption of nutrients and water to the soil surface 

layers (Franco et al., 2011b; Gregory et al., 2013). Soil compaction negative effects are 

aggravated in soils with a high moisture content and low organic matter content (Hamza 

and Anderson, 2005; Batey, 2009). Organic matter acts as a buffer for compaction 

processes, being one of the main agents responsible for the stability of soil aggregates 

(Primavesi, 1982). Therefore, it is necessary to promote management practices that tend 

to facilitate the exploration of the soil by the roots. 

Tillage has proven to be effective for alleviating soil compaction processes under 

certain conditions (Wortmann et al., 2008; Quincke et al., 2007). Several studies have 

reported a reduction in soil bulk density and decreased soil penetration resistance after 

tillage (Erbach et al., 1992). Consequently, the supply of available water and oxygen for 

the root has been shown to be increased (Lampurlanés et al., 2001; Mu et al., 2016).  

In vegetable crops grown in greenhouses in the Almeria province (south-east 

Spain), cultural practices with tractors have decreased because the spatial distribution of 

the crops within greenhouses makes it difficult for machinery to move (Valera et al., 

2014). However, there is a great transit of personnel in cultural practices such as 

transplantation, pruning, phytosanitary applications and multiple fruit harvests (López-

Gálvez and Naredo, 1996). The intensive use of soils, the absence of tillage, added to the 

high moisture content, exacerbate the compaction problem (Padilla et al., 2017). 

In several studies with vegetable crops such as pepper and tomato in an artificially-

stratified soil in SE Spain, it has been shown that most of the roots are found in the most 

superficial layers of the soil, but a consensus was not reached regarding the causes of this 

restriction (Castilla, 1986; Raya Martinez, 1987a; Padilla et al., 2017c) considering that 
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the potential rooting depth of tomato other horticultural crops such as melon growing in 

soil without restrictions reached a depth of at least 40cm (Peterson et al., 2016; Li et al., 

2016). Mechanical restrictions to deep rooting may exist in greenhouse-grown crops 

(Castilla, 1986). In addition, water and fertilizers applied by drip fertigation in low 

amounts but at high frequency may concentrate roots in the wet bulb (Padilla et al., 2017) 

(Thorup-Kristensen, 2011). However, there is currently little scientific work that 

evaluated the effect of tillage on root development in “enarenado” soils. The second 

manuscript of this thesis deals with this issue. 

Studying the impact of N fertilization and the cultivar effects of the fruit quality 

is a relevant aspect for vegetable crops. The fresh fruit markets have increased the 

demands regarding organoleptic quality and safety. In turn, these requirements must cope 

with an increase in yields, in order to maintain or increase the profit margin of farmers. 

To a large extent, the commercial success of the fresh fruit market is due to 

advances in fertilization management and the development of new cultivars adapted to 

different growing areas (Crisosto et al., 1995). In the particular case of N, it has been 

shown to have marked effects on fruits; N deficiency leads to small fruits with a bad taste 

and reduced productivity (Crisosto et al., 1995). Excessive N levels led to delayed fruit 

maturity, low percentage of red coloration and decreases fruit size compared to optimal 

levels of N in fruit trees (Daane et al., 1995). In apple crops, it has been shown that an 

excess of N led to an undesirable decrease in fruit firmness (Sams, 1999). Another very 

important factor is the effect of the cultivar. In tomato cultivation, it was shown that this 

effect contributed to explain the differences in internal quality of the fruits compared to 

the effect of N (Kaniszewski et al., 2019; Tilahun et al., 2018). Sams (1999) found in an 
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extensive review of fruit trees and vegetables that the quality of the fruits was affected 

both by fertilization and by genetic factors associated with each cultivar, and that there 

may be interactions depending on each species and levels of fertilization. 

In general, several reports have dealt with the effect of N, both in excess and with 

a deficient supply, on the internal and morphometric quality parameters of fruits. There 

is consensus that deficient N causes small fruits and low yield, whereas N excess delays 

fruit ripening and fruit growth is delayed (Lima et al., 2007; Locascio et al., 1997). In the 

case of muskmelon cultivation, there are studies reporting increases in °Brix with 

increasing values of N fertilization in the 0-300 kg N ha-1 range (Monteiro et al., 2003; 

De Faria et al., 2000a). In general, applications of almost 400 kg of N ha-1 resulted in 

fruits with a larger seed cavity and thicker skin pulp than applications of 0 to 150 kg of N 

ha-1 in melon (Castellanos et al., 2012; Monteiro et al., 2003). However, in sweet pepper, 

increasing N applications of 108, 498, 880 and 1343 kg N ha-1 did not affect the physical 

or chemical quality of the fruit, including the sugar content and acidity (Yasuor et al., 

2013). Local recommendation of N fertilization for greenhouse crops is of 175 kg N ha-

1, for muskmelon with an expected yield of 40,000-50,000 kg ha-1, and 350-450 kg N ha-

1, for sweet pepper with an expected yield of 50,000-60,000 kg ha-1 (Reche, 2010, 2008). 

Several reports have evaluated the effect of cultivar on yield, internal fruit quality 

and morphometrical parameters of the fruit (Warner et al., 2004; Ketelaere et al., 2004; 

Lado et al., 2012). In tomato crops, there were differences between cultivars in fruit 

quality parameters such as dry matter content, soluble solids content, firmness, colour or 

acidity (Warner et al., 2004; Kaniszewski et al., 2019). In strawberry, colour, firmness,  

soluble solids content and acidity were all affected by cultivar identity (Lado et al., 2012). 
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In sweet pepper, the cultivar effect on fruit quality involved differences in beta carotenes, 

ascorbic acid, total flavonoids and soluble phenols (Szafirowska and Elkner, 2008). 

The third manuscript of this thesis addresses the differences between cultivars in 

internal and external fruit quality parameters and yield, and the differential responses to 

increasing N fertilization in muskmelon and sweet pepper grown in soil in greenhouse. 

Due to the importance of the sweet pepper (Capsicum annuum) - muskmelon (Cucumis 

melo) rotation in south-east Spain (Valera et al., 2014), these cultures were taken as a 

model for the present study. 
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The first objective of the thesis was to improve our knowledge on the effect of N 

on rooting patterns and root dynamics in an important vegetable cropping system, which 

will provide insights to improve the crop N management and thus contribute to reducing 

NO3
- leaching loss. This objective was addressed in the first manuscript of the thesis. The 

research was conducted with sweet pepper in a cultivation system called “enarenado” 

soil, in the Almeria province, where more than 90% of the cultivated surface is found 

under this system (García et al., 2016). In addition, sweet pepper cultivation area is close 

to 8000 ha per year (Valera et al., 2017) and there are increasing problems of water 

pollution due to loss of NO3
- (Thompson et al., 2007).  

The second manuscript of the thesis continues with the cultivation of sweet 

pepper, deepening into the rooting processes in the “enarenado” soil. The objective of this 

manuscript was to evaluate the effect of tillage in “enarenado” soils. Soil properties (i.e., 

bulk density, resistance to penetration and soil matric potential) were measured, together 

with crop variables such as dry matter production, crop yield and crop N consumption, 

irrigation, N fertilizer applied and N leaching. Rooting pattern was characterized by 

destructive root length density sampling, relative root length distribution and root 

observation through minirhizotron tubes. 

Finally, the objectives of the third manuscript of the thesis were to evaluate the 

response of parameters of internal and external fruit quality and yield to increasing N 

fertilization in three cultivars of muskmelon and sweet pepper grown in soil in 

greenhouse. We hypothesized that both fruit quality and yield would increase with N 

application up to a point where no improvement in fruit quality and yield would be 

detected.  This third objective of the thesis was relevant to improve our knowledge on the 
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effects of increasing N application on fruit quality and yield, because of the importance 

of sweet pepper and muskmelon crops in the study area, the high application of N rates 

in commercial farms and the diversity of cultivars, together with the increasing demands 

of high quality fruits in commercial farming 
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4.1. Abstract 

 

Rooting is the mechanism by which roots explore soil resources to nourish and anchor 

the plant to the ground. In vegetable crops, nitrogen (N) application exceeds crop demand 

due to over fertilization, thereby contributing to N losses through nitrate (NO3
-) leaching. 

To improve N fertilization, knowledge of the response of rooting behaviour and root 

dynamics to N fertilization will be very useful. In this study, the effect of rates of N 

application on rooting were assessed in two sweet pepper (Capsicum annuum) crops 

grown in an artificially layered soil, with sand mulch, in Almería (south-eastern Spain). 

The treatments were very deficient, conventional, and very excessive in terms of N 

application. Yield, crop N absorption and dry matter of the shoot part were determined. 

Statistically significant differences were found in shoot dry matter between the very 

deficient N, compared to conventional and very excessive N. Root length density 

decreased with increasing application of N, with significantly higher density in the very 

deficient N application. In relation to depth, root length density in the very deficient N 

was nearly double (in the 2016 crop) and triple (in the 2017 crop) than in conventional N 

in the sand mulch layer (0–0.10 m depth). In contrast, root length density in the very 

deficient N treatment was in general lower than in conventional and very excessive N 

application in the 0.10–0.20 m layer. In the deeper layers, 0.20–0.30 and 0.30–0.40 m, no 

effects of N treatments on root length density were found. In relative terms, plants 

subjected to very deficient N treatment allocated relatively more roots in the sand mulch 

layer and less roots in the 0.10–0.20 m layer than when subjected to conventional and 

very excessive N. Root length density was negatively correlated with shoot dry matter, 

crop N absorption, yield and residual soil mineral N at the end of the crops. Overall, 

results of the present work suggest that conventional and very excessive N application 
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maximized the development of the shoot part and crop yield and diminished root length 

density, particularly in the sand mulch layer (0–0.10 m depth). A higher root length 

density was not sufficient under very deficient N in terms of matching dry matter and 

yield of the conventional N treatment. 

Keywords: Capsicum annuum, fertilization, nitrogen management, root density, soil 

layer, vegetable crops. 
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4.2. Introduction 

 

Several factors can influence the rooting of a plant, such as species, soil proprieties 

(physical, chemical and biological characteristics), agricultural practices, climate and 

competition with neighbouring roots (Herrera et al., 2007; Kristensen and Thorup‐

Kristensen, 2007; Primavesi, 1982) In nature, the availability of water and nutrients can 

be very heterogeneous in spatial and temporal terms, so root systems have to face these 

conditions with morphological and physiological changes (Nacry et al., 2013). Roots are 

able to adapt to prevailing environmental conditions and have the capacity to exploit 

localized rich zones or “patches” and respond to them (Hodge, 2010). Roots tend to 

exploit areas rich in nutrients, water and oxygen, in this way absorption is maximized at 

a minimum cost, destining most of those assimilated to the development of the aerial part 

(Gallardo et al., 1996). 

It has been long known that the amount and location of soil plant available nitrogen (N) 

affects root distribution and crop growth (Drew, 1975; Drew et al., 1973; Franco et al., 

2011; Herrera et al., 2007). In tomato (Solanum lycopersicum), root length distribution 

and the soil volume explored were larger with lower N compared to higher rates of applied 

N fertilizer (Lecompte et al., 2008). In wheat (Triticum aestivum),  high rates of N 

fertilization inhibited root growth (Comfort et al., 1988). In maize (Zea mays), high nitrate 

(NO3
−) availability strongly inhibited root growth (Chun et al., 2005). In other herbaceous 

species, such as Hordeum vulgare (Nacry et al., 2013) and Arabidopsis thaliana (Zhang 

and Forde, 2000), high N supply restricted root growth. Increased crop available N 

increased root length of Raphanus sativus  in deeper soil (Kristensen and Thorup-

Kristensen, 2007).  Deep rooting was diminished by the accumulation of N in the surface 

layers of the soil (Svoboda and Haberle, 2006). 
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Root diameter is a parameter involved in the processes of absorption of water and N 

(Kimberly et al., 2009). This is affected by the available N concentration in soil which in 

turn affects crop nutrient absorption (Gong and Zhao, 2019). Fine roots, i.e. diameter of 

<0.002 m, are the main route of nutrient absorption from the rhizosphere (Eissenstat, 

1992). Smaller diameter roots have a larger specific root surface resulting in larger soil 

volume being in contact with the root (McCully, 1999). There is evidence that fine roots 

are especially sensitive to the N availability  but with different responses (Guo et al., 

2008; Noguchi et al., 2013). 

At the global scale, due to a low efficiency of use of fertilizers, it is urgent to optimize N 

applications (Tilman et al., 2002b). In vegetable crops, N is generally applied in large 

amounts that exceed crop demand (Gallardo et al., 2006; Thompson et al., 2007). 

Nitrogen losses by NO3
- leaching is often considerable in vegetable crops, due to high 

fertilization rates, shallow root systems and low N recovery (Padilla et al., 2018; 

Thompson et al., 2007). These problems are common in many regions of the world, for 

example in the south of Spain (R.B. Thompson et al., 2007a), south-eastern United States 

(Zotarelli et al., 2009), and China (Ju et al., 2006). 

It is believed that a root system that explores the deeper horizons of the soil can increase 

the efficiency of N absorption (Gastal and Lemaire, 2002; King et al., 2003). In this way, 

the importance of root growth in deeper soil is reaffirmed (Rasmussen et al., 2015). Given 

the mobility of NO3
- in the soil, the location of roots may be more advantageous than high 

root length density to maximize crop N uptake (Herrera et al., 2007). In horticultural crops 

such as sweet pepper (Capsicum annuum), roots are concentrated in the superficial 

horizons of soils with silty clay loam texture (Castilla, 1986; Martinez, 1987; Padilla et 

al., 2017a). In lettuce (Lactuca sativa) without water and nutrient limitation, roots 
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proliferated in the first 0.20 m of the soil (Gallardo et al., 1996). Deeper rooting has been 

observed in other studies with vegetable crops. In tomato grown in California, higher root 

density was found in the upper 0.40 m (Peterson et al., 2016). In muskmelon (Cucumis 

melo) grown in Yangling, China, roots were mostly distributed within the first 0.40 m of 

soil (Li et al., 2016).  

The effects of N application on shoot growth and yield have been extensively studied in 

vegetable crops (Primavesi, 1982). However, studies focused on rooting patterns, in terms 

of root length and distribution throughout the soil profile, are scarce (Thorup-Kristensen 

and Kirkegaard, 2016). Such studies in soil are limited due to the difficulties in sampling 

roots (Mancuso, 2012). Rooting studies become difficult due to the complexity of the 

rhizosphere (Ryan et al., 2016). Two methods for studying root distribution and density, 

and their dynamics, are traditional destructive soil core sampling, and periodical 

observations using minirhizotron tubes (Hendrick and Pregitzer, 1996; Machado and 

Oliveira, 2002; Mancuso, 2012). 

The objective of this work was to evaluate rooting patterns and root dynamics in response 

to application of increasing doses of N in sweet pepper. There are more than 30,000 ha 

of greenhouses in the area (CAPDR, 2016). The predominant cultivation system is the 

“enarenado” soil where more than 90% of the cultivated surface is found under this 

system (García et al., 2016). This vegetable cropping system is prone to appreciable NO3
- 

losses to underlying aquifers (Thompson et al., 2007). More than 8,000 ha are destined 

for the cultivation of sweet pepper each year, being one of the main crops in the region 

(Valera et al., 2017). This work aims to generate knowledge on the effect of N on rooting 

patterns and root dynamics in an important vegetable crop, which will help to improve 

the management of N in the crop and thus contribute to reducing NO3
- leaching loss. The 
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information generated in this work can also be worthy to be included into simulation-

based decision support systems.  

 

4.3. Material and methods 

4.3.1. Greenhouse crop and experimental design 

Two crops were grown in a greenhouse in soil subjected to three N treatments. A 

combination of destructive root sampling and observations in minirhizotron tubes was 

used. The research was conducted in Almeria, south-eastern Spain. 

Two sweet pepper crops (Capsicum annuum ‘Melchor’) were grown in an artificially 

layered soil known locally as “enarenado” (R.B. Thompson et al., 2007a). The 

“enarenado” consisted of a series of layers: 0.30 m layer of silty loam texture  soil, 

imported from a building site, placed on the original loam soil, a 0.02 m manure layer of 

manure placed over the imported silty loam soil, and a 0.10 m layer of coarse-sand or fine 

gravel (mainly 0.002-0.005 m diameter) placed over the manure layer as mulching 

(Padilla et al., 2017b).  

The experimental work was carried out in the Experimental Station of the University of 

Almería, in Retamar, Almería, SE Spain (36°51′51″N, 2°16′56″W and 92 m elevation). 

The greenhouse structure consisted of polycarbonate walls and a trilaminate low-density 

polyethylene (LDPE) film roof (200 μm thickness) with approximately 60% 

photosynthetically active radiation (PAR) transmittance. It had no heating or artificial 

light, had passive ventilation (side panels and folding roof windows) with an east-west 

orientation, with rows of crops aligned from north to south. The cropping area was 1300 

m2. The greenhouse was organized into 24 plots, measuring 6 m × 6 m; 12 plots were 



Manuscript One: Root and crop responses of sweet pepper to increasing N fertilization 

 

39 

 

used in the current study. Each plot contained three paired lines of plants (six lines of 

plants in total), with 12 plants in each line with a space of 0.5 m between them. The 

separation between the two lines that formed the paired line of plants was 0.8 m and the 

separation between two paired lines was 1.2 m. One plant was placed at 0.06 m and 

immediately adjacent to each dripper, giving a plant density of two plants m-2 and 72 

plants per replicated plot. There were border areas along the edges of the greenhouse. 

Drip irrigation above ground was used for combined irrigation and mineral fertilizers 

application. The emitters had a discharge rate of 3 L h-1. Irrigation was scheduled to 

maintain soil matric potential (SMP) in the root zone, at 0.22 m deep from the surface of 

the sand mulch, within -15 to -25 kPa; one tensiometer (Irrometer, Co., Riverside, CA, 

USA) per plot was used to measure SMP. 

Two cultures were used for evaluation, the first one was transplanted on July 19, 2016 

with a duration of 248 and the second one was transplanted on July 21, 2017 with a 

duration of 214 days. 

In each crop, there were three treatments with different N concentrations, N1, N2 and N3. 

N levels were defined based on local fertilization practices (Camacho and Fernandez, 

2013). Based on local practices, the N2 treatment was regarded as conventional. N 

amount applied throughout the crops was obtained by multiplying N concentration in the 

nutrient solution by irrigation water volume. There were four replications arranged in 

random blocks as detailed in Table 1. 88% of N was applied as NO3
-, the rest as 

ammonium (NH4
+) (Table 1). Other macronutrients remained constant in all treatments in 

the following concentrations: H2PO4
-, 2 mmol L-1; K+, 4 mmol L-1; Ca+2, 4 mmol L-1; 

Mg+2, 1.5 mmol L-1; SO4
-2, 2.35 mmol L-1; on average for the two crops (2016-2017). 

Crops were managed following local practice.  
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Table 1. Mineral N (NO3
––N + NH4

+–N) in soil at the beginning of each crop, N concentration in the 

nutrient solution applied, mineral N applied in the nutrient solution. On average across the two crops, 92% 

of mineral N in soil at the beginning of each crop was in the form of NO3
––N, the rest as NH4

+–N. 

Crop N treatment 

Mineral N at 

planting  

N in 

nutrient 

solution  

N amount 

applied  

(kg N ha-1) (mmol L-1) (kg N ha-1) 

2016 Very deficient (N1) 87 2.0 88 

 Conventional (N2) 85 9.7 561 

 Very excessive (N3) 119 17.7 1320 

     
2017 Very deficient (N1) 34 2.0 86 

 Conventional (N2) 51 9.7 519 

  Very excessive (N3) 85 15.7 1198 

 

4.3.2. Crop dry matter and crop N uptake 

Dry matter was measured by clipping two plants per replicate plot at ground level, with a 

periodicity of 15 days. Dry matter was determined by dividing and fresh weighing the 

different organs of the plants and drying to constant weight in stoves at 65 ° C. Total yield 

was calculated by summing fresh weights of red fruits from each harvest. 

The %N of each organ of the aerial part of the plant was determined using a N analyser 

(Rapid N, Elementar Analysensysteme GmbH, Langenselbold, Germany). The total 

absorption of N was obtained from %N and dry mass weight of each organ, as in Gallardo 

et al., (2020). The efficiency in the use of N of total yield was calculated by dividing total 

yield by crop N uptake. 

4.3.3. Soil mineral N 

Soil mineral N (NO3
-−N + NH4

+−N) was determined at the beginning and end of each 

crop. Samples were taken until 0.70 m relative to the surface of the sand mulch, at three 



Manuscript One: Root and crop responses of sweet pepper to increasing N fertilization 

 

41 

 

depth intervals (0.10–0.30, 0.30–0.50, 0.50–0.70 m), the analysis procedure is detailed in 

Gallardo et al., (2020). 

 

4.3.4. Root analyses 

Root samples were taken on 31 January 2017 for the first crop and on 15 February 2018 

for the second. Soil cores were taken in two positions, at 0.10 m distant to the plant (P1) 

and at 0.30 m distant to the plant (P2) parallel to the row of plants. Distance to a dripper 

was of 0.05 m at P1 and 0.25 m at P2. Within each position, four sampling depths were 

taken: sand mulch layer (0–0.10 m), and soil depths of 0.10–0.20, 0.20–0.30 and 0.30–

0.40 m. A manual auger with a 0.045 m internal diameter was used for the sand layer. For 

the rest of the soil layers, a 0.03 m internal diameter auger was used. Roots in sand and 

soil samples were washed with water and stained with a neutral red solution at 0.35 g L-

1. The staining solution was prepared with ethanol 70% to preserve roots refrigerated at 4 

ºC. Washed roots were scanned at 600 dpi in grey scale, details for scanning can be 

obtained from Padilla et al., (2017a). The WinRHIZO Reg 2016 program (Regents 

Instruments Inc., Quebec, Canada) was used for measuring length and diameter of roots. 

Root length density (m m-3) was computed using the volume of soil sampled in each layer. 

Relative root length distribution per soil layer was calculated as the root length of a given 

soil layer divided by root length of all layers. 

Root length growth dynamics in two soil layers were non-destructively measured using 

the minirhizotron technique. Two transparent minirhizotron tubes were installed, in each 

replicated plot, in July 2016 and were left to stabilize during the 2016 crop because the 

installation of the tubes disturbed the soil. The tubes were 0.60 m long and had 0.064 m 

internal diameter. In the lower part, tubes were sealed with a waterproof cap; in the upper 
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part, a removable rubber cup prevented the passage of light. The part of tube that 

protruded above the sand surface was covered with aluminium tape that prevented heating 

and light penetration into the tube. The tubes were installed at 0.10 m of a plant, to a depth 

of 0.48 m, relative to the sand mulch layer. Root images were taken by sliding a 

cylindrical and rotating scanner into the tube (CI-600, CID Inc., Camas, WA, USA); for 

more details see Padilla et al., (2017a). Two images (0.22 x 0.19 m, 300 dpi) were taken 

per tube, the first one from the surface of the sand mulch layer to 0.22 m depth (0–0.22 

m, hereafter), and the second one from 0.22 to 0.44 m depth (0.22–0.44 m, hereafter). 

The 0–0.22 m image comprised the 0.10 m of the sand mulch layer and the first 0.12 m 

of the imported soil, and the 0.22–0.44 m image comprised the remaining depth of 

imported soil and some of the original soil. Root images were taken throughout the 2017 

crop, every 43 days on average. In the first 90 days of the 2017 crop, root images were 

taken every 26 days. In total, there were 14 root censuses. On each separate image, roots 

were digitized and analysed for root length per m2 of soil (WinRHIZO Tron 2019, 

Regents Instruments Inc.).           

4.3.5. Data analysis and statistics 

For the comparative analysis of the aerial part, analysis of variance of repeated measures 

(RM-ANOVA) over time was used, followed by post hoc least square difference tests. 

For analysis of root length density between the three N treatments, factorial ANOVA was 

used, with four factors, block, N treatment, soil layer and sampling position. Differences 

in root length dynamics were evaluated by RM-ANOVA; factors were block, N, soil layer 

and time. The Spearman coefficient was used to evaluate the correlation between two 

variables (whether linear or not). Statistical procedures were performed with 
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STATISTICA 13 (TIBCO Software, Inc., Palo Alto, CA, USA). Significant differences 

were established at P<0.05. 

 

4.4. Results 

4.4.1. Shoot dry matter 

Significant differences in shoot dry matter were recorded between N application 

treatments (RM-ANOVA N x Time, p < 0.05) (Table 2) (Figure 1). 

 

Table 2. Results of repeated-measure analysis of variance testing the effect of N treatments on shoot dry 

matter production dynamics of the 2016 and 2017 sweet pepper crops. Significant effects at p<0.05 are 

shown in bold. df are degrees of freedom, F is the Fisher value of ANOVA and p is the probability value. 

  2016 crop 2017 crop 

Effect df F p F p 

Nitrogen (N) 2 287.19 <0.001 127.96 <0.001 

Block 3 0.65 0.151 0.22 0.877 

Error 6     

Time (T) 7 234.78 <0.001 249.78 <0.001 

T x N 14 5.47 <0.001 17.66 <0.001 

Error 42     

 

Shoot dry matter of the very deficient N was significantly lower than in the conventional 

and excessive treatments. Conventional and excessive N treatments had comparable dry 

matter in most sampling dates (Figure 1). 
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Figure 1. Shoot dry matter evolution for the three N treatments in the 2016 (a) (N1, 2.0 mmol N L-1; N2, 

9.7 mmol N L-1; N3, 17.7 mmol N L-1) and 2017 (b) (N1, 2.0 mmol N L-1; N2, 9.7 mmol M L-1; N3, 15.7 

mmol N L-1) in two sweet pepper crops. Different lower-case letters above each symbol show significant 

differences between N treatments for each sampling date, at p<0.05. Values are means ± SE. 

4.4.2. Yield and efficiency in the use of N 

Regarding the efficiency in the use of N, the very deficient N treatment was the one that 

had the most efficiency, followed in the order of efficiency by the conventional N 

treatment and well below the very excessive N treatment. Despite the high efficiency of 

the very deficient N treatment, total yield was lowest in both years of cultivation (Table 

3). 

Table 3. Total crop N uptake, total yield and nitrogen use efficiency for total yield (NUEYield) for each 

treatment in the 2016 and 2017 pepper crops. Different letters indicate significant differences (P<0.05) 

between means within each crop year, according to the procedure of least significant difference (LSD).  

Crop Treatment 
N Uptake  

(kg N ha-1) 

 Total yield       

(kg m-2) 

NUEYield                         

(T kg N-1) 

2016 Very deficient (N1) 191 ± 12 a 67 ± 2.0 a 0.76 a 

 Conventional (N2) 418 ± 21 b 91 ± 4.0 b 0.16 b 

 Very excessive (N3) 388 ± 22 b 89 ± 4.0 b 0.06 c 

     

2017 Very deficient (N1) 87 ± 5 a 33 ± 3.0 a 0.38 a 

 Conventional (N2) 268 ± 10 b 60 ± 1.0 b 0.11 b 

  Very excessive (N3) 341 ± 22 c 68 ± 1.0 c 0.05 b 
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4.4.3. Root length density 

Considering the soil profile studied, there were significant differences in root length 

density between positions P1 and P2 (ANOVA, p <0.05), being higher at P1 (i.e. at 0.10 

m from the plant) in both crops (Figure 2). In the 2016 crop, the average root length 

density for the three treatments at P1 (17,980 m m-3) more than doubled averaged root 

length density at P2 (8,265 m m-3) (Figure 2a). In this crop, there were not differences 

between N treatment regardless of the sampling position. In the 2017 crop, the average 

root length density for the three treatments at P1 (21,008 m m-3) was nearly 11 times 

higher than at P2 (1,932 m m-3) (Figure 2b). In this crop, there were differences between 

N treatments at P1 (Table 4). At P1, root length density decreased with N addition, with 

root length density of the very deficient N treatment (26,271 m m-3) being 1.6 times higher 

than root length density of the very excessive N treatment (15,604 m m-3) (Figure 2b); 

conventional N had intermediate root length density values (Figure 2b). 

Figure 2. Root length density in the soil profile in the two sampling positions (P1, at 0.10 m distant to the 

plant, and P2, at 0.30 m distant to the plant, parallel to the row of plants) for the three N treatments. Plot 

(a) represents the 2016 crop (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 17.7 mmol N L-1) and plot (b) 

represents the 2017 crop (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1). Different upper-

case letters above horizontal lines show significant differences between sampling position. Different lower-

case letters over bars show significant difference between treatments within each sampling position. Values 

are means ± SE. ns, not significant at p<0.05. 
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Focusing on individual soil layers, there were significant differences in root length 

density contingent on N treatments (ANOVA N x Layer, p<0.001) (Table 4).  

Table 4. Results of analysis of variance testing the effect of N treatments, sampling position and soil layer, 

on root length density of two sweet pepper crops. Significant effects at p<0.05 are shown in bold. df are 

degrees of freedom, F is the Fisher value of ANOVA and p is the probability value. 

    Root length density   

  2016 crop 2017 crop 

  df F p F p 

Nitrogen (N) 2 0.3 0.761 1.3 0.265 

Position (P) 1 39.5 <0.001 72.4 <0.001 

Layer (L) 3 56.7 <0.001 18.2 <0.001 

N x P 2 0.3 0.768 1.3 0.275 

N x L 6 3.4 <0.001 4.5 <0.001 

P x L 3 9 <0.001 13.3 <0.001 

N x P x L 6 2 0.068 5.5 <0.001 

Block 3 1.1 0.37 0.5 0.685 

Error 165         

 

For both crops, significant differences between N application were found in the sand 

mulch layer and in the 0.10 – 0.20 m soil layers (Table 4; Figure 3). In the sand mulch 

layer, the very deficient N treatment had nearly double the root length density of the 

conventional N treatment in the 2016 crop (19,780 vs. 10,013 m m-3; Figure 3a), and 

nearly triple that of the conventional N treatment in the 2017 crop (27,331 vs. 9,352 m m-

3; Figure 3b). Root length density of the conventional and very excessive N treatments 

was statistically comparable in both years. By contrast, in the 0.10 – 0.20 m soil layer, 

root length density was significantly lowest in the very deficient N treatment in both crops 

(Figure 3).  
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Figure 3. Root length density in each layer for the three N treatments. Panel (a) represents the 2016 crop  

(N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 17.7 mmol N L-1), and panel (b) represents the 2017 crop 

(N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1). Different lower-case letters within each 

soil layer show significance difference between N treatments at p<0.05.  Data have been pooled across P1 

(0.10 m distant to the plant) and P2 (0.30 m distant to the plant) positions. Values are means ± SE. ns, 

not significant at p>0.05. 

In both crops, there were significant differences in root length density between sampling 

position (i.e. P1 vs. P2) depending on soil layer (ANOVA Position x Layer, p<0.001), 

regardless of N treatment (Table 4). In the sand mulch and 0.10 – 0.20 m soil layers, root 

length density at P1 was  higher than at P2, in both crops, whereas there were not 

significant differences between sampling positions in the rest of soil layers (i.e. 0.20 – 

0.30 m and 0.30 – 0.40 m) (Figure 4). 
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Figure 4. Root length density in the two-sampling positions (P1, at 0.10 m distant to the plant; P2, at 0.30 

m distant to the plant parallel to the row of plants) per soil layer. Asterisks within each soil layer show 

significant differences between sampling positions. Panel (a) represents the 2016 crop (N1, 2.0 mmol N L-

1; N2, 9.7 mmol N L-1; N3, 17.7 mmol N L-1) and panel (b) represents the 2017 crop (N1, 2.0 mmol N L-1; 

N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1). Data have been pooled across N1, N2 and N3 treatments. 

Values are means ± SE. ***, P<0.001; ns, not significant at p<0.05. 

 

Regarding root length density per diameter class, 98% of the root length measured was 

of fine roots (roots <0.002 m diameter) and the remaining were coarse roots (roots >0.002 

m diameter) (data not shown).  

 

4.4.4. Relative root length distribution 

For the relative root length distribution per soil layer, significant interactions were found 

between N treatments, position and soil layer (Table 5).  
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Table 5. Results of analysis of variance testing the effect of N treatments, sampling position and soil layer, 

on relative root length distribution of two sweet pepper crops. Significant effects at p<0.05 are shown in 

bold. df are degrees of freedom, F is the Fisher value of ANOVA and p is the probability value. 

  Root percentage  

  2016 crop 2017 crop 

  df F p F p 

Nitrogen (N) 2 0 1 0 1 

Position (P) 1 0 1 0 1 

Layer (L) 3 138.8 <0.001 32 <0.001 

N x P 2 0 1 0 1 

N x L 6 6.6 <0.001 3.5 0.003 

P x L 3 13.1 <0.001 8.4 <0.001 

N x P x L 6 2.1 0.053 4.4 <0.001 

Block 3 0 1 0 1 

Error 165         

 

In the P1 sampling position, averaged for both crops, root length in the sand mulch layer 

was 33% of total root length, 45% in the 0.10–0.20 m soil layer, and 14 and 7% for the 

0.20–0.30 and 0.30–0.40 m soil layers, respectively (Figure 5). In P2 sampling position, 

the root length in the sand mulch layer was 14% of total root length, 50% in the 0.10–

0.20 m soil layer, and 20 and 15% in the 0.20–0.30 and 0.30–0.40 m soil layers, 

respectively. These data show that relative root distribution in the sand layer notably 

decreased from the P1 to the P2 sampling positions (Figure 5).  
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Figure 5. Relative root length distribution per soil layer and sampling position (P1, at 0.10 m distant to the 

plant; P2, at 0.30 m distant to the plant parallel to the row of plants). Panel (a) represents the 2016 crop and 

panel (b) the 2017 crop. Asterisks within each soil layer show significant differences between sampling 

positions. Data have been pooled across N treatments. Values are means ± SE. ***, p<0.001; **, p<0.01; 

*, p<0.05; ns, not significant at p>0.05. 

In terms of relative root length distribution, the very deficient N treatment (N1) had 

significantly higher root length percentage in the sand mulch layer and 0.10–0.20 m soil 

layer, than the conventional and very excessive N treatments (Figure 6). These effects 

were consistent regardless of the year of the crop and sampling position. In contrast, there 

were generally no significant differences in relative root allocation between N treatments 

in the 0.20–0.30 and 0.30–0.40 m soil layers (Figure 7).   
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Figure 6. Relative root length distribution per soil layer for the three N treatments. Panel (a) represents the 

2016 crop (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 17.7 mmol N L-1) and panel (b) shows the 2017 

crop (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1). Different lower-case letters within 

each soil layer show significant differences between N treatments at p<0.05. Data have been pooled across 

P1 position (0.10 m distant to the plant) and P2 position (0.30 m distant to the plant). Values are means ± 

SE. ns, not significant at p>0.05. 

 

4.4.5. Average root diameter 

In the two crops, there was a significant effect of sampling position on average root 

diameter, for all N treatments and soil layers (Table 6). The roots in the P2 sampling 

position were statistically finer than those in the P1 sampling position. Averaging across 

the crops and N treatments, roots were 0.03 mm finer in P2 than in P1.  

Table 6. Results of analysis of variance testing the effect of N treatments, sampling position and soil layer, 

on average root diameter of two sweet pepper crops. Significant effects at p<0.05 are shown in bold. df are 

degrees of freedom, F is the Fisher value of ANOVA and p is the probability value. 

  Root diameter 

  2016  2017  
 df F p F p 

Nitrogen (N) 2 3.620 0.029 0.698 0.499 

Position (P) 1 7.367 0.007 7.354 0.008 

Layer (L) 3 8.117 <0.001 5.441 <0.001 

N x P 2 3.009 0.052 1.898 0.154 

N x L 6 2.998 0.008 2.772 0.014 

P x L 3 1.574 0.198 2.101 0.103 
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N x P x L 6 0.567 0.756 0.582 0.744 

Block 3 5.806 <0.001 5.846 <0.001 

Error 165     

 

For the two crops, there were significant differences in average root diameter between N 

treatments depending on soil layer (Table 6). Differences between N treatments were 

significant in the sand layer in both crops, and in the 0.10–0.20 m soil layer in the 2017 

crop. In those soil layers, the tendency was for coarser roots with increasing N application, 

with finer roots in the very deficient N treatment (N1) (Figure 7). For both years, there 

were no differences in average root diameter in the 0.20–0.30 and 0.30–0.40 m soil layers 

(Figure 7). 

 

Figure 7. Average root diameter in each soil layer for the three N treatments. Panel (a) represents the 2016 

crop (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 17.7 mmol N L-1) and panel (b) shows the 2017 crop 

(N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1). Different lower-case letters within each 

soil layer show significant differences between N treatments at p<0.05. Data have been pooled across P1 

position (0.10 m distant to the plant) and P2 position (0.30 m distant to the plant). Values are means ± SE. 

ns, not significant at p>0.05. 

 

4.4.6. Root dynamics in minirhizotron tubes 

Root length assessed using the minirhizotron tubes in the 2017 crop was very low until 

30 DAT. From this point onwards, root length grew constantly and rapidly until 100 DAT. 
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From 100 DAT until the end of the crop, root length growth continued but with 

appreciably smaller increments (Figure 8). Root length dynamics were affected by N 

treatment and soil layer, but these two factors did not interact significantly (RM-ANOVA, 

p> 0.16) (Table 7). In most of the cycle of the 2017 crop, there were no significant 

differences between N treatments in root length (Figure 8). The exception occurred in 

four sampling dates (at 75, 90, 103 and 204 DAT) when root length was significantly 

higher in the conventional N treatment (N2) than in the very deficient (N1) and very 

excessive N (N3) N treatments (Figure 8a). Soil layer was a significant effect on root 

length, with higher root length in the 0–0.22 m soil layer (D1) than in the 0.22–0.44 m 

soil layer (D2) in most of the cycle, except at the beginning of crop, at 14, 20 and 28 DAT 

(Figure 8b). 

Table 7. Results of repeated-measure analysis of variance testing the effect of N treatment and depth of 

soil layer on root length dynamics, of the 2017 sweet pepper crop. Significant effects at p<0.05 are shown 

in bold. df are degrees of freedom, F is the Fisher value of ANOVA and p is the probability value. 

Effect df F p 

Block  2 0.37 0.694 

Nitrogen (N) 1 28.25 <0.001 

Depth (D) 2 1.28 0.290 

N x D 3 1.85 0.155 

Error 37   

Time (T) 12 175.50 <0.001 

T x N 24 2.23 <0.001 

T x D 12 11.37 <0.001 

T x N x D 24 0.55 0.962 

Error 444   
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Figure 8. Root length dynamics observed through minirhizotron tubes in three N treatments in the 2017 

crop. Panel (a) shows root length in each of the three N treatments (N1, 2.0 mmol N L-1; N2, 9.7 mmol N 

L-1; N3, 15.7 mmol N L-1) when pooling over the two soil layers (i.e. 0–0.22 and 0.22–0.44 m). Panel (b) 

shows root length in each of the two soil layers (D1, 0–0.22 m; D2, 0.22–0.44 m) when pooling over the 

three N treatments (i.e. N1, N2 and N3). Different lower-case letters above each symbol show significant 

differences between N treatments for each date, at p<0.05. Asterisks show significance between soil depths. 

Values are means ± SE. ***, p<0.001; **, p<0.01; *, p<0.05; ns, p>0.05. 

 

Root length production rate, calculated from minirhizotron images, was higher in the first 

soil layer (0–0.22 m) than in the second soil layer (0.22–0.44 m) (ANOVA Depth 

p<0.001). On average across the three N treatments, the root length production rate was 

1.8 times larger in the 0–0.22 m soil layer (Figure 9). There were not significant 

differences between N treatments (ANOVA Nitrogen, p> 0.05) (Table 8) in root length 

production rate. 
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Table 8. Results of analysis of variance testing the effect of N treatments on root length production rate 

over the 2017 sweet pepper crop. Significant effects at p<0.05 are shown in bold. df are degrees of freedom, 

F is the Fisher value of ANOVA and p is the probability value. 

Effect df F P 

Nitrogen (N) 2 1.65 0.205 

Depth (D) 1 23.05 <0.001 

N x D 2 0.77 0.469 

Block 3 1.06 0.375 

Error 39   

 

Figure 9. Root length production rate over the 2017 sweet pepper crop at two soil layers (0–0.22 m and 

0.22–0.44 m) for the three N treatments (N1, 2.0 mmol N L-1; N2, 9.7 mmol N L-1; N3, 15.7 mmol N L-1), 

observed in minirhizotron tubes. Different upper-case letters show significant differences between soil 

layers. Values are means ± SE. ns, not significant at p>0.05. 

4.4.7. Correlation between variables 

Root length density at the P1 sampling position had a strong and significant negative 

correlation with shoot dry matter production, crop N uptake and yield (rS > 0.67, Table 8 

), and also a negative correlation with residual mineral N in the soil at the end of the crops 

(rS = 0.55) (Table 9). Root length growth rate calculated using minirhizotron images was 

not significantly correlated with any of the variables analysed (Table 9). 
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Table 9. Spearman correlation coefficient (rS) between two variables for the 2016 and 2017 crops. 

Asterisks show significance of correlation, at P<0.05 (*), P<0.01 (**) and P<0.001 (***). Absence of 

asterisks denotes not-significant correlations at P>0.05. Significant correlations have been shown in bold. 

P1 and P2 refers to sampling position (i.e. P1, at 0.10 m distant to the plant; P2, at 0.30 m distant to the 

plant parallel to the row of plants). D1 and D2 refers to depth of observation of minirhizotron images (i.e. 

D1, 0–0.22 m; D2, 0.22–0.44 m). 

 

 

4.5. Discussion 

This study showed that the different N treatments, applied by fertigation, resulted in 

higher root length density in the very deficient N treatment, concentrating the roots in the 

most superficial soil layer, compared to the conventional and very excessive N treatments. 

This finding is consistent with studies that reported that N located near the root and high 

soil N concentrations reduced the extension of the roots (Drew, 1975; Drew et al., 1973; 

Lain et al., 1995; Primavesi, 1982). Lecompte et al., (2008) studied the distribution of 

roots and NO3
- of fertigated tomato crops and concluded that the spatial distribution of 

roots was strongly influenced by N fertilization. In this way there is consistency that after 

a great initial rooting, high soil N availability caused the root system to recede, whereas 

low soil N availability was associated with further root extension.   

After 80 DAT, the very deficient N treatment consistently had less shoot dry matter 

 
Crop 

Nuptake 
Yield Residual Nsoil 

Root 

length 

densityP1 

Root 

length 

densityP2 

Root 

growth 

rateD1 

Root 

growth 

rateD2 

Dry matter 0.98*** 0.85*** 0.77*** -0.73*** 0.17 0.17 -0.27 

Crop Nuptake - 0.85*** 0.80*** -0.72*** 0.17 0.18 -0.27 

Yield 0.85*** - 0.66*** -0.67*** 0.53** 0.08 -0.35 

Residual Nsoil 0.80*** 0.66*** - -0.55** -0.01 0.15 -0.33 

Root length densityP1 -0.72*** -0.67*** -0.55** - -0.36 -0.09 0.35 

Root length densityP2 0.17 0.53** -0.01 -0.36 - 0.00 0.27 

Root growth rateW1 0.18 0.08 0.15 -0.09 0.00 - 0.43 

Root growth rateW2 -0.27 -0.35 -0.33 0.35 0.27 0.43 - 
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production than the other two N treatments. Belowground dry matter production was not 

quantified in the present study; instead, root length density was evaluated. The root length 

density increased, and the shoot dry matter decreased in the very deficient N treatment 

with respect to the conventional and very excessive N treatments. These results agree in 

part with the work of Lecompte et al., (2008) where a very deficient N supply significantly 

increased the belowground dry matter and decreased the dry matter shoot, regarding the 

N excessive  treatments. This response of the crop to N deficiency would show that 

assimilates are preferentially used for root development rather than shoot development. 

The opposite occurs with a high N supply (Drew, 1975; Garnett et al., 2009), the 

development of the aerial part is increased and the development of the roots is decreased. 

In the present research high N supply maximized shoot biomass growth and reduced 

belowground length growth, which confirms the literature. 

The proliferation of roots in response to localized soil N is not contradictory to the 

inhibition of root growth at excessive N applications. According to Zhang and Forde, 

(2000), suppression of root growth is a systemic inhibitory response to shoot 

accumulation of NO3
-, while proliferation of roots in a localized nutrient-rich patch is a 

stimulatory effect triggered by NO3
- concentration  in the rhizosphere. 

Root length distribution in the artificially stratified “enarenado” soil showed that 30% of 

the root length was located in the sand mulch layer (0–0.10 m depth), and 48% in the 

0.10–0.20 m soil layer. Below 0.20 m, the length of roots was very low. Castilla, (1986) 

reported similar shallow rooting of fertigated tomato in an “enarenado” soil. 

Approximately 25% of the roots were in the sand layer (Castilla, 1986). The rooting 

patterns reported in the present work are shallower than those of Castilla, (1986); these 
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differences may be due to different rooting behaviour of tomato and sweet pepper, soil 

type and site history.  

In this study in "enarenado" soil, most of the roots developed in the sand layer and the 

upper layer of the soil, which coincided with Castilla, (1986). One of the possible 

explanations could be due to the constant supply of water and nutrients applied by the 

fertigation system. This combined system favours the concentration of roots in the upper 

layers of soil, where water nutrients are applied and concentrated (Machado and Oliveira, 

2003; Oliveira and Calado, 1996; Peterson et al., 2016).  

In tomato crop in soil under fertigation system (Oliveira and Calado, 1996), the largest 

proportion of roots was found in the top 0.40 m of the soil and thereafter rapidly decreased 

with depth. There was a high concentration of roots in the 0.30 to 0.40 m layer, which 

was attributed to a compacted soil horizon immediately below 0.40 m which impeded 

deeper root penetration. 

The results of the present study did not show increased root growth in the deep layers in 

response to N fertilization, concurring with Rasmussen et al. (2015). Several reports agree 

that N fertilization seems to affect the root density more than rooting depth (Thorup-

Kristensen and Van Den Boogaard, 1999; Mahgoub et al., 2017).  

In the present study, root length was concentrated near the emitter (i.e., at the P1 sampling 

position) where the water and nutrients are applied. This is consistent with Padilla et al., 

(2017a) in an “enarenado” soil, where the root density was higher at the sampling position 

near the base of the plant.  

In the P1 sampling position, there were correlations among the variables studied. Root 

length density was negatively correlated with dry matter, yield, crop N uptake, and 
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residual N mineral in soil. This means that root length density decreases with higher 

residual soil mineral N (Drew, 1975; Lain et al., 1995). These results further indicate that 

a higher root length density may not be sufficient to achieve higher dry matter production 

or yield. Rather, it may demonstrate compensatory growth of roots when the N supply is 

low (Lecompte et al., 2008). In the cropping system in which this work was conducted, 

with high frequency drip irrigation/fertigation, higher root length density does not 

compensate for a low N supply. 

Regarding the efficiency in the absorption of N, the very deficient N was the one with the 

highest efficiency. As the application of N increased, the efficiency in the use decreased, 

this coincides with several works (Candido et al., 2009; Rodríguez et al., 2020; Yasuor et 

al., 2013). In any case, the increase in the efficiency of N use of the very deficient N 

treatment was not able to compensate for lower N application and was the one with the 

lowest yield in both years of study (Rodríguez et al., 2020). 

Regarding the study of root dynamics in minirhizotron tubes, higher root length was 

registered in 0–0.22 m of the “enarenado” soil. This coincided with the soil core sampling 

where higher root length density was observed in the sand mulch layer (0–0.10 m depth) 

and the 0.10–0.20 m soil layer. Concentration of roots close to the drip emitter and the 

less compacted upper soil are likely explanations cause for more favourable root growth 

in the 0–0.20 m of “enarenado” soil (Padilla, et al., 2017a).     

The analysis of root length through minirhizotron images was less sensitive to detect 

differences between N treatments than destructive soil core sampling. Using the 

minirhizotron, there were not differences in the analysed layers (i.e., 0–0.22 and 0.22–

0.44 cm depth), whereas destructive root sampling found larger root length density in the 

very deficient N treatment. This lack of co-coincidence may in part be explained by 



  Effect of N on horticultural crops 

60 

 

differences in sampling depths. The first 0.22 m of soil was scanned in a single 

minirhizotron image, thereby integrating the 0–0.10 m layer of the sand mulch and the 

0.10–0.20 m of imported soil. Destructive root samples, in this study, showed that the 

effect of N on root length density in the sand mulch layer was the opposite to that in the 

0.10–0.20 m soil layer below the sand mulch. Future work with minirhizotron images in 

“enarenado” soil should aim to separate results of root length between the sand mulch 

layer and the imported soil layer, as was done with soil core samples in the present study. 

 

4.6. Conclusions 

In the present study, water and nutrients were applied by drip emitters near the plant, and 

roots of sweet pepper were mostly located near the drip emitter. In this artificially 

stratified “enarenado” soil, nearly 80% of the roots was distributed in the sand mulch 

layer (0–0.10 m depth) and the 0.10–0.20 m soil layer. Root distribution below 0.20 m of 

soil was very low, most likely due to high-frequency fertigation. The results of the present 

work suggest that conventional and very excessive N application maximized the shoot 

biomass growth and crop yield but resulted in reduced root length density particularly in 

the sand mulch layer; the opposite occurred under very deficient N application, in addition 

to a reduced efficiency in the use of N. These findings suggest that a higher root length 

density, and a high efficiency of the use of N per se was not sufficient to compensate for 

the low amount of N applied in order to achieve high dry matter production and yield. 
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5.1. Abstract 

Aim of study: Soil compaction causes an increase in bulk density, resistance to 

penetration, low diffusion of oxygen and water in the soil. Tillage is one of the techniques 

to alleviate compaction. The objective of this work was to evaluate the effects of tillage 

on sweet pepper grown in greenhouse soil. Area of study: The experimental work was 

conducted in a plastic greenhouse at the Experimental Station of the University of 

Almeria (SE Spain, 36° 51’ N, 2° 16’ W and 92 m elevation). Material and methods: The 

soil was ploughed with a single pass with ripper to 15 cm depth and with rotavator to 10 

cm depth. The control treatment was soil untilled. Crop dry matter production and root 

length growth and density of sweet pepper were evaluated, in addition to soil 

characteristics such as bulk density, resistance to penetration and soil matric potential. 

 Main results: Tillage reduced soil bulk density from 1.70 to 1.60 kg L-1 in the 10-40 

cm of soil depth. There was a notable reduction in irrigation (12%), total N applied (13%), 

drainage (91%) and N leaching (95%) in the tillage treatment. However, tillage did not 

improve significantly crop dry matter production and yield. The absence of tillage effect 

is possible due to a slight reduction in the bulk density of the soil. Research highlights: 

The tillage treatment produced a notable reduction in irrigation, total N applied, drainage 

and N leaching when compared to the control. 
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5.2. Introduction  

Soil structure is one of the main factors affecting crop growth over the long term 

(Passioura, 1991). Good soil structure consists of soil aggregation associated with high 

porosity, rapid infiltration rates, water retention capacity and increased air circulation 

which all facilitate root penetration and proliferation (Primavesi, 1982). A major problem 

of modern agriculture is the loss of soil aggregation, with compaction being one of the 

most important causes (Hamza & Anderson, 2005; Batey, 2009). Compaction alters the 

overall structure of soil pores, reduces pore number and size, and increases soil bulk 

density and resistance to soil penetration (Iler & Stevenson, 1991; Abu-Hamdeh, 

2003).The effect of soil compaction on crop growth depends on soil texture. In general, 

soil bulk density values that limit root growth are 1.40–1.45 kg L-1 in silty to clay textured 

soil, and 1.65–1.75 kg L-1 in sandy soils (Daddow & Warrington, 1983). 

The most frequent causes of soil compaction are use of heavy machinery, 

intensive cultivation, no crop rotation, and inadequate soil management (Hamza & 

Anderson, 2005; Batey, 2009). Soil compaction is accentuated in soils with low organic 

matter content and in soils with high moisture content (Hamza & Anderson, 2005). 

Organic matter loss can cause soil disaggregation, increasing susceptibility to compaction 

(Cochrane & Aylmore, 1994).  

Soil tillage is a management practice that can alleviate soil compaction in diverse 

agricultural systems (Abu-Hamdeh, 2003; Quincke et al., 2007; Wortmann et al., 2008). 

Erbach et al. (1992) reported that different forms of tillage reduced differentially soil bulk 

density and resistance to penetration within the depth of tilled soil. The most effective 

tillage practices increase availability of soil water to crops due to increased infiltration 
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(Lampurlanés et al., 2001). In crop rotations of wheat and maize, deep tillage increased 

yield due to a reduction of soil compaction and increased soil water holding capacity (Mu 

et al., 2016). Soil management practices that facilitate deep rooting are likely to improve 

the efficient use of N and water, thereby decreasing the likelihood of nitrate (NO3
−) 

leaching (Thorup-Kristensen, 2011). 

The compaction processes in soil-grown crops in greenhouse have become 

widespread worldwide. Indeed, higher soil bulk density values have been reported for 

greenhouse soils than in bare soils (Liang et al., 2013). In recent years, mechanization in 

greenhouse crops has increased notably, which resulted in an increase in soil compaction 

(Erdem et al., 2006). This has led to increased soil bulk density, with values above 1.60 

kg L-1, whereas root growth is thought to be restricted above 1.75 kg L-1 (Primavesi, 

1982). Serious compaction and soil degradation have been detected in greenhouse crops 

due to continuous cultivation, such as in cucumber crops (Liang et al., 2013).  

In the area of Almería, in south eastern Spain, the system of cultivation in 

“enarenado” soil is used, which consists of covering the soil with a layer of siliceous sand 

that maintains humidity (Valera et al., 2014). A drip irrigation system is used with 

fertigation by tapes, in order to apply the dissolved fertilizers in the irrigation water, and 

the soil is kept constantly humid (Thompson et al., 2007a). Within greenhouses, most 

cultural practices such as transplanting, pruning, harvesting, and the application of plant 

protection products are carried out manually by farm workers (Valera et al., 2014; Padilla 

et al., 2017). Due to the presence of a sand mulch, tillage is hardly carried out, since the 

sand mulch layer must be removed prior to tillage and be replaced (Valera et al., 2014). 

The low frequency of tillage accentuates soil compaction processes in SE vegetable crops 

(Castilla, 1986; Martinez, 1987; Padilla et al., 2017).  
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The objective of this work was to assess the effects of tillage on soil properties, 

crop responses and root length growth and density of sweet pepper (Capsicum annuum 

L.) grown in soil in a greenhouse in SE Spain. We measured soil properties (bulk density, 

resistance to penetration, soil matric potential), crop responses (dry matter production, 

crop yield, nitrogen N uptake) and rooting pattern (root length density, relative root length 

distribution, root observation through minirhizotron tubes). 

5.3. Material and methods 

5.3.1. Experimental details 

The work was carried out in a plastic greenhouse located at the Experimental Farm 

of the University of Almería (Almería, Spain, 36° 51’ N, 2° 16’ W; 92 m elevation). The 

area of the greenhouse dedicated to the crop was approximately 1,300 m2. The greenhouse 

was similar to commercial greenhouses of the Almería region. 

Two sweet pepper (cv. Melchor) cropping cycles were grown in soil with a 

summer-winter cycle, from 18 July 2016 to 24 March 2017 (248 days from transplant to 

end; hereafter the 2016-17 crop), and from 21 July 2017 to 20 February 2018 (214 days 

from transplant to end; hereafter the 2017-18 crop). 

The soil was an artificial layered “enarenado” soil, which is typical of the region 

(Valera-Martínez et al., 2016). The “enarenado” soil consists of a 30 cm layer of silty 

clay loam soil, imported from a quarry, placed over the original sandy loam soil and a 10 

cm layer of course river sand placed on the imported silty clay loam soil as a mulch 

(Francisco M. Padilla et al., 2017c). 

There were eight plots of 6 × 6 m, with four plots (i.e., replications) per treatment 

in a fully randomized block design. Polyethylene film sheets buried to 30 cm depth in the 
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borders of the plots prevented water movement between plots. Five-week-old seedlings 

were planted 6-8 cm from each dripper; the plant density was 2 plants/m2.  

Drip irrigation and fertigation were used. Drippers with a flow rate of 3 L h-1 were 

installed every 50 cm in drip lines, arranged in paired lines with an 80 cm separation. 

There was a 120 cm spacing between the paired driplines. There were 2 emitters/m2. 

Fertigation with complete nutrient solutions, applying all macro and micronutrients 

commenced at 9 and 10 days after transplant for the 2016-17 and 2017-18 crops, 

respectively. The N concentrations applied was the same for the two cycles, 9.7 mmol L-

1. All cultural practices were consistent with local crop management.  

Climatic conditions were recorded inside the greenhouse throughout both crops. 

Data were stored in a datalogger.  

5.3.2. Tillage treatments 

There was a tillage treatment and a control with no tillage (i.e., conventional soil 

management). For the tillage treatment, the gravel mulch was removed, and the soil was 

ploughed with a single pass with ripper to 15 cm depth, followed by a single pass with 

rotavator to 10 cm depth. A small tractor pulled the tillage implements. Following 

cultivation, the gravel was replaced on the surface of the cultivated soil and was evenly 

spread to form a 10 cm thick mulch layer. Tillage was conducted at the end of June 2016, 

before the commencement of the 2016-17 crop. No tillage was conducted before the 

2017-18 crop. There were four replicated plots of the tillage and no tillage treatments. 

In both treatments, irrigation volumes and frequency were modified to maintain 

soil matric potential between -15 and -25 kPa. Tensiometers (Irrometer Co., Riverside, 

CA, USA) were installed at 25 cm depth (relative to the surface of the gravel mulch layer) 
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in each plot to measure soil matric potential. The range of -15 to -25 kPa range avoided 

crop water stress (Thompson et al., 2007b). The intended applied N concentration of 

fertigation of both treatments was of 10 mmol L-1; 92% of applied mineral N was in the 

form of NO3
-, the rest as ammonium (NH4

+) 

Irrigation volumes were measured with water meters. Nutrient solution samples 

were collected in both treatments, two times per week, to determine the NO3
- and NH4

+ 

concentrations (SAN++, Skalar Analytical B.V., Breda, The Netherlands). Drainage was 

collected from free-draining lysimeters (Gallardo et al., 2014). Drainage was collected 

from free-draining lysimeters, the soil of the lysimeter reproduced the “enarenado” soil, 

their detailed description is in Gallardo et al. (2020). 

5.3.3. Soil parameters measurements 

Soil bulk density was determined one month after soil cultivation, on 27 July 

2016. Soil coring rings (5.3 cm internal diameter, 4 cm wall height, Eijkelkamp Soil and 

Water, Giesbeek, The Netherlands) were used for determination at 15.5-19.5 and 30.5-

34.5 cm soil depths. All soil depth values are relative to the surface of gravel mulch. One 

determination was conducted in each replicated plot. Each sample was taken 8 cm from 

a plant perpendicular to the line of plants.  

Soil penetration resistance (kPa) was measured with a compaction meter 

(FieldScout SC 900, Spectrum Technologies, Inc., Aurora, IL, USA). Measurements were 

recorded automatically in a data logger for every 2.5 cm of soil depth, from 10 to 25 cm. 

The sampling point was at 8 cm from the plant perpendicular to the line of plants. In each 

of the two pepper crops, measurements were conducted at the beginning and at the end 

of the crop. 
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Mineral N (NO3
-−N and NH4

+–N) content of the soil was determined immediately 

before and at the end of each of the two crops. Sampling in each plot was located at 5 and 

60 cm from the plant perpendicular to the line of plants. Soil mineral N was calculated 

as: 0.65 × position 5 cm + 0.35 × position 60 cm (Soto et al., 2015). The soil was sampled 

in each position to a depth of 70 cm in three depth intervals (10–30, 30–50, 50–70 cm). 

Soil mineral N content was determined following extraction with potassium chloride (40 

g moist soil: 200 mL 2 mol L−1 KCl). NO3
- and NH4

+ concentrations in the extracts were 

determined with an automatic continuous segmented flow analyser (Model SAN++, 

Skalar Analytical B.V., Breda, The Netherlands). 

 

5.3.4. Crop dry matter production and yield  

 Crop dry matter production and yield was determined from eight plants, in an area 

of 4 m2, in each plot. Plants were removed at ground level and the fresh weight material 

of all leaf, stem and fruit was determined. Dry weight was obtained after oven-drying 

subsamples at 65 °C. Mass of pruned material was determined as described above. 

Subsamples of leaf, stem and fruit were individually ground and sequentially in a knife 

mill and ball mill. Total N content (%) was determined (Rapid N, Elementar 

Analysensysteme GmbH, Hanau, Germany). The mass of N in leaf, stem and fruit was 

calculated from %N and mass of dry matter of that component. Crop N uptake (kg ha-1) 

was the sum of N in leaf, stem and fruit. 

 

5.3.5. Root analyses 

Towards the end of both crops, on 31 January 2017 and on 15 February 2018, soil 

cores were taken at 10 cm from the plant (P1) and at 30 cm from the plant (P2), 
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perpendicular to the line of plants. In each position, the gravel mulch layer and 10-20, 20-

30 and 30-40 cm depth layers were sampled; depth is expressed relative to the surface of 

the gravel mulch. A soil auger of 4.5 cm internal diameter was used for the gravel mulch 

layer and an auger of 3 cm internal diameter for the 10-20, 20-30 and 30-40 cm soil layers. 

Two replicate cores per sampling position were collected in each of four replicated plots 

of each of the two tillage treatments. 

Roots of each gravel and soil sample were washed and were dyed with neutral 

red. Washed roots were scanned (Epson Perfection V800, Seiko Epson Corporation, 

Nagano, Japan) at 400 dpi in grey scale. The WinRHIZO Reg 2016 software (Regents 

Instruments Inc., Quebec, Canada) was used to measure root length in each sample. 

Relative root length distribution in each soil layer, relative to the whole soil profile 

sampled, was calculated as the percentage of root length in each soil layer divided by the 

total root length in the whole soil profile. 

Transparent minirhizotron tubes were installed to non-destructively monitor root 

dynamics of sweet pepper throughout the 2017-18 crop. Installation of tubes occurred one 

year before, in July 2016, to allow for soil stabilization. The minirhizotron tubes were 

installed vertically to a depth of 48 cm from the surface of the gravel mulch, and at a 

distance of 10 cm from the plant in the direction of the line of plants. The tubes were of 

polymethyl methacrylate and were 60 cm long with 6.4 cm internal diameter. PVC caps 

were glued in the bottom of the tubes. The part of the tube that protruded above the gravel 

mulch layer was wrapped in aluminium tape to prevent light penetration. Two images (22 

× 19 cm, 300 dpi) were taken per tube, the first one from the surface of the gravel mulch 

to a depth of 22 cm (0-22 cm, hereafter), and the second one from 22 to 44 cm depth (22-

44 cm, hereafter). The 0-22 cm image comprised the 10 cm of the gravel mulch and the 

first 12 cm of the imported soil; the 22-44 cm image comprised the rest of imported soil 
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and some of the original soil. Tube images were scanned (CI-600 Root Scanner, CID Inc., 

Camas, WA, USA) at 300 dpi and roots were digitized and analysed for root length per 

square meter of soil using the WinRHIZO Tron 2019 software (Regents Instruments Inc.). 

During the 207-2018 crop, tube images were taken every 43 days, on average; however, 

during the first 90 days of the crop, it was every 26 days on average. 

5.3.6. Data analysis 

In each of the two crops, differences in measured parameters between the tillage 

and no tillage treatments were tested by factorial analysis of variance (ANOVA) and 

pairwise LSD tests. Significant differences were established at p<0.05. Factors of 

ANOVA included block, tillage treatment and soil layer. Root length dynamics of 

minirhizotron tubes were evaluated by repeated-measure analysis of variance (RM-

ANOVA). The ANOVA analysis were performed with the STATISTICA 13 software 

(TIBCO Software Inc., Palo Alto, CA, USA). 

 

5.4. Results 

5.4.1. Soil parameters measurements 

Soil bulk density was slightly reduced in the tillage treatment (averaged value of 

1.60±0.03 kg L-1) when compared to the no tillage treatment (averaged value of 1.70±0.03 

kg L-1). The relative reductions in the tillage treatment were of 7.3 and 5.5%, for the 15.5-

19.5 cm and30.5-34.5 cm depth soil layers, respectively. 

In both crops, soil penetration resistance (kPa) was reduced in the tillage treatment 

throughout the depth of soil that was measured (i.e., 15.5-19.5-25 cm), both at 

transplanting and at the end of the crop (Fig. 1). The reduction of penetration resistance 
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in the tillage treatment was larger in the first crop (2016-2017), being 52% at transplanting 

and 36% at the end of the crop, considering the 15.5-19.5 cm depth. Soil penetration 

resistance was also reduced in the tillage treatment during the second crop (Fig. 1). 

 

 

Figure 1. Soil penetration resistance in the two treatments (tillage and no tillage), after transplanting (a and 

c) and at the end of the crop (b and d), of two sweet pepper crops grown in soil in a greenhouse. Panels (a) 

and (b) show data of the 2016-17 crop, and panels (c) and (d) show data of the 2017-18 crop. Values are 

means ± SE. 

 

5.4.2. Cropping details 

Climatic conditions of both crops were very similar in terms of air temperature, 

relative air humidity and the integral of solar radiation. There were notable differences in 

soil matric potential between crops, with the 2016-17 crop having less negative soil matric 

potential values (i.e., wetter soils) than the 2017-18 crop (Fig. 2). Soil matric potential in 

the tillage and no tillage treatments was very similar (Fig. 2); the averaged soil matric 
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potential of the no tillage treatment was only 2.6 and 1.6 kPa more negative (i.e., drier) 

than that of the tillage treatment, for the 2016-17 and 2017-18 crops, respectively. 

 

Figure 2. Daily soil matric potential in the two treatments (tillage and no tillage) during two sweet pepper 

crops grown in soil in a greenhouse. Panel (a) shows data of the 2016-17 crop, and panel (b) shows data of 

the 2017-18 crop. Values are means of four replications per treatment. Horizontal dotted lines represent the 

average over the entire crop cycle. 

Total N applied and irrigation were notably reduced in the tillage treatment in both 

crops (Table 1). The averaged reductions in the tillage treatment were of 12% for 

irrigation, and 12.5% for total N applied (Table 1; Fig. 3). There were large reductions in 

drainage and N leaching in the tillage treatments, being 91% for drainage, and 95% for N 

leaching (Table 1; Fig. 3).   

Table 1. Crop details and significance of t-tests between the two treatments (tillage and no tillage), of two 

sweet pepper cropping cycles conducted in soil in a greenhouse. Within each crop and variable, different 

lower-case letters indicate significant differences between treatments at p<0.05. Values are means ± SE.  

Crops Treatment 
N initial‡ 

(kg N ha-1) 

[N] 

nutrient 

solution 

(mmol L-1) 

Irrigation 

(mm) 

N applied 

(kg N ha-

1) 

Drainage 

(mm) 

N leached 

(kg N ha-1) 

N residual‡ 

(kg N ha-1) 

2016-17 Tillage 84±12a 9.7 413 538 14±5a 27±11a 192±42a 

No tillage 54±4a 9.6 502 647 112±14b 72±8b 312±59a 

2017-18 Tillage 49±8a 9.7 383 519 3±0a 0±0a 113±18a 

No tillage 36±9b 9.9 407 561 60±1b 18±3b 169±15b 

‡10-70 cm soil depth 
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Figure 3. Irrigation, N applied, drainage and N leaching in the two treatments (tillage and no 

tillage) during two sweet pepper crops grown in soil in a greenhouse. Lines show cumulative values (left 

axis) and dots show daily values (right axis). 
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Irrigation and the amount of N applied through fertigation was lower in the 2017-

18 crop (Table 1; Fig. 4). Drainage and N leaching was lower in the 2017-18 crop (Table 

1; Fig. 4). Regarding the comparison between tillage treatments, N concentration in 

nutrient solution of fertigation (Table 1) in the tillage and no tillage treatments were 

maintained in very similar values for both treatments. 

 

Figure 4. Root length density in the whole soil profile (0-40 cm), at 10 cm (P1) and 30 cm (P2) from the 

plant, in the tillage and no tillage treatments, of two sweet pepper crops grown in soil in a greenhouse. 

Panel (a) shows data of the 2016-17 crop, and panel (b) shows data of the 2017-18 crop. Values are means 

± SE; ns, p<0.05; ***, p<0.001. 

 

5.4.3. Crop dry matter and yield 

 There was no significant effect of tillage on crop dry matter and yield in any of 

the two crops (Table 2). Crop N uptake was significantly higher (13%) in the tillage 

treatment compared to the no tillage treatment in the 2016-17 crop; there were no 

significant differences in the 2017-18 crop. 
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Crops Treatment 
Dry matter  

(t ha-1) 

Yield  

(t ha-1) 
N uptake (kg N ha-1) 

2016-17 Tillage 15.3±0.7a 91.5±4.2a 418.8±21.7a 

No tillage 13.7±0.8a 89.4±4.2a 365.1±24.3b 

2017-18 Tillage 10.6±0.1a 61.0±1.7a 274.5±11.3a 

No tillage 11.2±0.3a 62.0±5.5a 289.5±2.9a 

 

Table 2. Values of aboveground dry matter, fresh fruit yield and crop N uptake, and results of t-tests 

between the two treatments (tillage and no tillage), of two sweet pepper crops grown in soil in a greenhouse. 

Within each crop and variable, different lower-case letters indicate significant differences between 

treatments at p<0.05. Values are means ± SE. 

 

5.4.4. Root analyses 

 Tillage had a significant effect on root length density in the first crop (2016-17 

crop) but not in the second crop (2017-18 crop) (Table 3). The effect of tillage on root 

length density in the 2016-17 crop was dependent on the sampling position as revealed 

by the significant Tillage × Position interaction but was independent of layer (Table 3). 

Tillage significantly increased root length density in the P2 sampling position (i.e., at 30 

cm from the plant), but not in the P1 sampling position (at 10 cm from the plant), 

regardless of the soil layer (Fig. 4). 

Tillage did not have significant effects on relative root length distribution, in either 

crop (Table 3). There was a marginal Tillage × Layer interaction in the 2016-17 crop 

(p=0.069) whereby tillage decreased root length in the gravel mulch layer and increased 

root length in the rest of soil layers (Fig. 5). 
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Table 3. Results of analysis of variance (ANOVA) testing the effect of tillage, sampling position and soil 

layer, on root length density and relative root length distribution, of two sweet pepper crops grown in soil 

in a greenhouse. 

 

Crop Effect df 

Root length 

density 

Relative root length 

distribution 

F-value p-value F-value p-value 

2016-17 Block 3 2.05 0.114 0.02 0.996 

 Tillage (T) 1 41.40 <0.001 0.44 0.510 

 Position (P) 1 66.53 <0.001 0.23 0.631 

 Layer (L) 3 38.90 <0.001 80.04 <0.001 

 T × P 1 11.84 <0.001 0.00 0.999 

 T × L 3 1.97 0.126 2.46 0.069 

 P × L 3 3.16 0.017 6.59 <0.001 

 T × P × L 3 2.05 0.114 0.02 0.996 

 Error 81     

       

2017-18 Block 3 0.94 0.425 0.17 0.914 

 Tillage (T) 1 0.09 0.768 0.39 0.535 

 Position (P) 1 275.31 <0.001 1.72 0.192 

 Layer (L) 3 25.56 <0.001 19.52 <0.001 

 T × P 1 0.03 0.871 0.09 0.764 

 T × L 3 0.54 0.654 1.23 0.305 

 P × L 3 16.21 <0.001 4.46 0.006 

 T × P × L 3 0.34 0.797 0.73 0.538 

 Error 100     
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Figure 5. Relative root length distribution (%) in the two treatments (tillage and no tillage), at two sampling 

positions, P1 (at 10 cm from the plant) and P2 (at 30 cm from the plant), of two sweet pepper crops grown 

in soil in a greenhouse. Panels (a) and (b) shows data of the 2016-17 crop, and panels (c) and (d) shows 

data of the 2017-18 crop. Values are means ± SE. 

 

Tillage had no significant effect on root length dynamics observed throughout the 

crop in minirhizotron images in the 2017-18 crop (Table 4; Fig. 6). Root length growth 

rate in the 0-22 cm soil layer was estimated at 96±6 m m-2 year-1 in the tillage treatment 

and 104±16 m m-2 year-1 in the no tillage treatment (p=0.680). In the 22-44 cm soil layer, 

root length growth rate was estimated at 52±7 m m-2 year-1 in the tillage treatment and 

73±14 m m-2 year-1 in the no tillage treatment (p=0.314). 
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Table 4. Results of repeated-measure analysis of variance (ANOVA) testing the effect of tillage and soil 

layer, on root length dynamics observed in minirhizotron tubes, of the 2017-18 sweet pepper grown in soil 

in a greenhouse. 

Effect df F-value p-value 

Block (B) 3 1.19 0.344 

Tillage (T) 1 0.02 0.885 

Layer (L) 1 48.94 <0.001 

T × L 1 0.91 0.355 

Error 16   

Date (D) 12 277.15 <0.001 

D × T 12 1.34 <0.197 

D × L 12 8.57 <0.001 

D × T × L 12 1.14 0.328 

Error 192   
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Figure 6. Root length dynamics observed through minirhizotron tubes in the two treatments (tillage and no 

tillage), at two soil layers, 0-22 and 22-44 cm depth of a 2017-18 sweet pepper crop grown in soil in a 

greenhouse. Values are means ± SE. 
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5.5. Discussion 

Several studies have shown reduced soil compaction after tillage in greenhouse-

grown vegetable crops, such as Erdem et al. (2006) and Padilla et al. (2017) in sweet 

pepper, and Castilla (1986) in tomato. In the present study, it is possible that reduction of 

soil compaction due to tillage was less than expected because of movement of machinery 

during tillage, which is a cause of soil compaction, the effect of which is accentuated in 

moist soils (Batey, 2009). In the confined space of this experimental greenhouse, 

manoeuvring the tractor and tractor-mounted equipment was not straightforward. It is 

also possible that ploughing with a single pass with ripper to 15 cm depth, followed by a 

single pass with rotavator to 10 cm depth, were not the most adequate procedures. 

 There was a notable reduction in soil penetration resistance in the tillage 

treatment. This effect was greatest at the beginning of the first crop (2016-17 crop) and 

was progressively diluted until the end of the second crop (2017-18 crop). The constant 

passage of personnel for cultural practices and manually pushed carts may have increased 

soil penetration resistance during the first crop, in addition to a soil that is constantly kept 

close to field capacity (Francisco M. Padilla et al., 2017c). These conditions of high soil 

moisture may have causes the soil compaction processes to be accelerated (García et al., 

2016). This is coincident with Erdem et al. (2006) in a sweet pepper crop grown in a 

greenhouse: soil penetration resistance increased during the first 40 days of the cycle due 

to irrigation management and mechanical weed control.  

This study succeeded in maintaining very similar soil water status in the root zone 

in both treatments. The averaged soil matric potential recorded in the two treatments, 

during the two crops, was -22.6 kPa; this value is sufficient enough to prevent water stress 
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in sweet pepper as the leaf water potential threshold values for water stress, for sweet 

pepper in greenhouse-grown crops, was determined at -58 kPa (Thompson et al., 2007b). 

Similar soil matric potentials in the tillage and no tillage treatments were achieved by 

adjusting irrigation volumes to maintain the soil matric potential, at 25 cm depth relative 

to the gravel mulch, within the range of -15 and -25 kPa. As a result of this irrigation 

management, irrigation volume and consequently total N applied through fertigation was 

reduced 12 and 12.5% in the tillage treatment, respectively. It is possible that tillage 

increased the rate of water infiltration into the soil, which would result in increased soil 

water retention (Hamza & Anderson, 2005), which is consistent with results of Wang et 

al. (2015) where increased soil water content was found in response to tillage in 

greenhouse-grown pepper crops. On the contrary, in the treatment without tillage, the 

irrigation volume had to be greater to maintain the same soil matric potential (Quincke et 

al., 2007).  

The present study found that tillage notably reduced drainage (91%) and 

consequently N leaching (95%) compared to the no tillage treatment, suggesting that 

tillage increased soil water infiltration. There is consensus in literature that reduced soil 

bulk density after tillage generally increases infiltration rates and nutrient leaching losses 

(Hamblin, 1986; Passioura, 1991; Hamza and Anderson, 2005; Quincke et al., 2007). In 

the treatment with tillage, the irrigation volume was also lower, in this way it is possible 

that the washing of N was also lower (Thompson et al., 2007b). In contrast, Pareja-

Sánchez et al. (2017) reported that soil water infiltration was greatly reduced under tillage 

compared to no tillage in maize crops. The underlying mechanism seemed to be in the 

destruction of soil structure and formation of a tillage pan, resulting in lower soil water 

infiltration rates (Pareja-Sánchez et al., 2017). 
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Tillage had no significant effects on crop dry matter production and crop yield in 

either crop, but crop N uptake was increased during the first crop (2016-17 crop). 

Considering that N application was consistently lower in the tillage treatment throughout 

the crop, this result suggests more efficient N use in the tillage treatment. Although, tillage 

did not result in more crop growth and yield, it apparently increased N use efficiency. To 

increase yield of vegetable crops in this system, it may be necessary to find the optimal 

combination with other cropping factors. For instance, Padilla et al. (2017) reported that 

sweet pepper yield decreased in a tillage treatment with addition of compost compared to 

a conventional management with no tillage. The explanation was that compost addition 

increased salinity (Padilla et al., 2017). In other horticultural crops such as cabbage, 

growth and yield were similar with conventional tillage and reduced tillage (Mochizuki 

et al., 2007). 

Despite tillage may not increase yield, crop development could be affected (Jones 

& Popham, 1997; Unger & Jones, 1998). In compacted soils, tillage can break crusts but 

this may not be enough to improve physical soil properties (Primavesi, 1982). Another 

possible explanation proposed by Wang et al. (2015) for the no effect of tillage on yield 

is that there may be other factors, such as irrigation, that condition yield more than tillage 

itself. In extreme cases, soil resistance can limit root growth and reduce crop yield 

regardless of soil moisture status (Whalley et al., 2008). 

Tillage had little effects on root length density and relative root length distribution 

in both crops. The only effect detected was higher root length density at 30 cm from the 

plant (i.e., at the P2 sampling position) in the first crop, which would indicate that tillage 

favoured horizontal root extension. Root penetration in the soil profile has been shown to 

decrease when the soil bulk density exceeds 1.6 kg L-1, but this effect is dependent on soil 
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moisture (Primavesi, 1982). In the present study, tillage reduced soil bulk density from 

1.70 to 1.60 kg L-1, which could still be excessive for root penetration. 

In contrast to the present study, previous work in “enarenado” soils in Almería 

greenhouses reported that tillage decreased root density in the gravel mulch layer (0-10 

cm depth) and increased root density in the 10-20 cm soil layer (Castilla, 1986; Martinez, 

1987; Padilla et al., 2017). It is possible that in the present study that the reduction in soil 

penetration resistance, achieved with tillage, was not sufficient to enhance root 

penetration. Indeed, values of 1700 kPa of soil penetration resistance registered in the 

present study in the tillage treatment, at 25 cm soil depth, were notably higher than the 

values of soil penetration resistance of 1300 kPa reported by Erdem et al. (2006) at 20 

cm soil depth, also with a sweet pepper crop. 

Root production, estimated from minirhizotron images, were consistent with 

results of destructive root analysis, with no significant differences between tillage 

treatments. However, it is worth highlighting that there was a trend towards higher root 

length in the no tillage treatment in the 22-44 cm soil layer. This treatment received a 

greater amount of water and nutrients to reach the target soil water potential and had 

larger drainage volumes and more NO3
- leaching than the tillage treatment. It is 

reasonable to expect that more N was located in the deeper soil layers of this treatment, 

and that the tendency for higher root proliferation in this layer was a response to location 

of N at depth (Kristensen & Thorup‐Kristensen, 2007). It is possible that in this way that 

the interaction of tillage with other factors such as fertilization and irrigation affected the 

dynamics of root growth. 
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Overall, this study has shown that tillage did not enhance crop dry matter 

production or yield of either of the two cropping seasons. However, irrigation, N applied, 

drainage and N leaching were notably reduced with tillage, most likely due to increase 

infiltration capacity. In addition, tillage increased crop N uptake, increasing N use 

efficiency. The absence of effects of tillage on root length density and relative root length 

distribution, together with the slight reduction in soil bulk density and high values of soil 

penetration resistance, suggest that soil compaction was little affected by tillage. In 

"enarenado" soils, tillage is problematic because the layer of gravel mulch must be 

removed prior to tilling. Results of the present study suggest that the tillage applied in the 

experimental greenhouse is not justified in terms of improved crop growth, yield and root 

production.  
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6.1. Abstract 

Fruit quality and yield are the parameters that define most the profitability of vegetable 

farms. The muskmelon and sweet pepper crops are one of the most profitable rotations of 

greenhouse crops in Almería, south-eastern Spain. There is evidence that fruit quality 

may be affected by nitrogen (N) fertilization and cultivar, but these responses may act 

differently. In this study, the effect of different doses of N applied by fertigation, very 

deficient N (N1, 2 mmol L-1), deficient N (N2, 8 mmol L-1) and conventional N (N3, 13 

mmol L-1), and differences between three cultivars for each of the two species, were 

addressed in greenhouse crops grown in soil in Amería. In addition to fruit yield, fruit 

quality parameters such as fruit firmness, colour, ºBrix, pH, acidity and morphometric 

variables, were evaluated. For most of the parameters evaluated in both crops, there were 

no significant interactions between N and cultivar, indicating that effects of N and 

cultivar, whenever significant, occurred individually and consistently regardless of the 

level of the other factor. For fruit firmness in both crops, the N treatment did not affect 

this parameter. In general, in response to lower N fertilization (N1 treatment), the pulp 

was more orange in muskmelon and the skin was more reddish in the sweet pepper, than 

in the N2 and N3 treatments. There were differences in coloration between muskmelon 

and sweet pepper cultivars. Regarding ºBrix, N1 caused an 11% increase in ºBrix values 

for muskmelon and a 4% decrease for sweet pepper. In both crops, the highest yield was 

obtained in the N2 treatment. However, the best fruit quality attributes were not always 

achieved by N2 treatment in muskmelon. In this case, to increase orange pulp colour and 

ºBrix in fruits, lower N fertilizations rates are needed at the cost of decreasing fruit yield. 

Keywords: Capsicum annuum; Colorimeter; Cucumis melo; ºBrix; fertilization; nitrogen.  
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6.2. Introduction 

There is a high concentration of plastic greenhouses in south-eastern (SE) Spain, 

that are used for vegetable production. More than 30,000 hectares are located in Almeria 

province (Valera et al., 2014). A variety of vegetable crops are grown, mostly for export 

to northern European countries (Castilla and Hernandez, 2005). In Almeria province, two 

of the most important greenhouse-grown crops are sweet pepper and muskmelon, with 

annual cropped areas in 2012 of 8,406 and 3,740 ha, respectively (Valera et al., 2014). 

The sequence of autumn-winter grown sweet pepper and spring grown muskmelon is a 

common rotation in this system (Valera et al., 2014). 

The high concentration of greenhouses in SE Spain is associated with intensive 

use of resources, such as water and fertilisers. In general, in commercial greenhouse 

vegetable production in this region, management of irrigation and fertilisers is based on 

the experience of producers and technical advisors (Thompson et al., 2007b). Local 

nitrogen (N) fertiliser recommendations are 175 kg N ha-1 for muskmelon for an expected 

yield of 40-50 t ha-1, and 350-450 kg N ha-1 for sweet pepper for an expected yield of 50-

60 t ha-1 (Reche, 2010, 2008). Commonly, in this vegetable production system, N is 

applied in excess, which is associated with nitrate (NO3
-) leaching loss which negatively 

impacts the local environment (Gallardo et al., 2006; Thompson et al., 2020a, 2020b, 

2007a). 

Crop yield increases asymptotically with N fertiliser application; the rate of N 

fertiliser required to maximize yield within a given system is uncertain for various reasons 

(Thompson et al., 2017).  For this reason, N fertiliser is commonly applied in excess to 

ensure that N  does not limit yield (Locascio et al., 1997; Warner et al., 2004). An 

insufficient N supply results in low yield and small fruits, whereas excessive N can delay 
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fruit ripening (Crisosto et al., 1995; Daane et al., 1995), is an unnecessary cost, and is 

commonly associated with negative environmental impacts. In muskmelon and sweet 

pepper crops, the reported effects of increasing N on fruit quality are varied. In 

muskmelon, increasing N application either had no effect on °Brix (Monteiro et al., 2003; 

Purquerio et al., 2005), or increased °Brix (De Faria et al., 2000a). Applications of nearly 

400 kg N ha-1 resulted in muskmelon fruits with a larger seed cavity, thicker skin and 

firmer flesh, than applications of 0–150 kg N ha-1 (Castellanos et al., 2012; Monteiro et 

al., 2003).  

In sweet pepper, increasing N applications up to 1,300 kg N ha–1 did not affect 

either physical or chemical fruit quality, including sugar content and acidity (Yasuor et 

al., 2013). However, Xiang et al. (2018) reported that 225 kg N ha-1 improved soluble 

solids content, vitamin C content and soluble solids content, compared to 0, 100 and 300 

kg N ha-1. In general, the reported effects of increasing N application on fruit quality of 

muskmelon and sweet pepper are inconsistent. 

There is appreciable research reporting the effects of cultivar on various 

parameters of fruit quality and yield of vegetable crops as tomato and strawberry (Warner 

et al., 2004; Ketelaere et al., 2004; Lado et al., 2012). Much of the research has focussed 

on tomato, and has reported effect of cultivar on the red colour of fruit, firmness, soluble 

solids and commercial yield (Warner et al., 2004; Kaniszewski et al., 2019; Ketelaere et 

al., 2004; Sams, 1999). In muskmelon crops, significant differences were found between 

cultivars in fruit morphometric parameters, such as pulp percentage, seed percentage and 

shape, and yield (Alenazi et al., 2015). Regarding parameters of internal fruit quality, 

differences between cultivars of muskmelon have also been reported in total soluble  

solids content, titratable acidity and beta carotenes (Botía et al., 2005; Sharma et al., 

2014). In the case of sweet pepper, differences between cultivars were also found in fruit 
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quality compounds such as beta carotene, ascorbic acid, total flavonoids and soluble 

phenols (Szafirowska and Elkner, 2008). 

The high concentration of greenhouses in SE Spain and the overuse of N fertiliser, 

in this system, have caused substantial aquifer contamination with NO3
-. In accordance 

with the European Union legislation (EEC, 1997), most of the greenhouse cropping areas 

of SE Spain have been declared as Nitrate Vulnerable Zones (Junta de Andalucia, 2008) 

which requires implementation of improved crop management practices to reduce NO3
- 

contamination of water bodies (Padilla et al., 2018; Thompson et al., 2020a, 2007a). An 

additional and important consideration is that consumers are increasingly demanding high 

product quality and environmental friendly production of fruit and vegetables (Thompson 

et al., 2020a; Valera et al., 2014). Given the importance of muskmelon and sweet pepper, 

and the N management issue in the greenhouse system of SE Spain, information is 

required of cultivar and N effects on fruit quality of these two crops. The objectives of 

this work were to evaluate the responses of parameters of internal and external fruit 

quality, and of yield, to increasing N fertilisation in three cultivars of both muskmelon 

and sweet pepper grown in a greenhouse in soil.  

 

6.3. Materials and Methods  

6.3.1. Crops and experimental site  

One crop of muskmelon (Cucumis melo L.) and another of sweet pepper 

(Capsicum annuum L.) were grown in soil in a greenhouse in Almeria (SE Spain, 36° 51’ 

N latitude, 2° 16’ W longitude; 92 m above sea level). Growing conditions were very 

similar to commercial greenhouses in the area. In the greenhouse, the cropped area was 

approximately 1,300 m2. The soil was artificially stratified at greenhouse construction; it 
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consisted of a layer of silty loam soil (30 cm thickness), placed over the naturally-

occurring soil; a layer of coarse sand (10 mm thickness) acted as mulch. This type of soil 

is the typical of the region and is locally known as “enarenado” (Valera et al., 2016). 

Drip irrigation and fertigation were used. Drippers with a flow rate of 3 L h-1 were 

positioned every 50 cm in drip lines, arranged in paired lines with a separation of 80 cm 

between the two paired drip lines. There was 120 cm between adjacent paired lines. There 

were two emitters per m-2. Seedlings were planted 6–8 cm from each dripper, 

perpendicular to the drip line. Twelve 12 x 6 m plots were used. Polyethylene film sheets 

buried to 30 cm depth in the borders of the plots prevented water movement between 

plots. 

 All cultural practices were conducted according to local crop management. 

Climatic conditions were recorded inside the greenhouse throughout both crops. Data 

were stored in a datalogger. The application of the N treatments, through fertigation, 

commenced 9 and 6 days after transplanting (DAT), for the muskmelon and sweet pepper 

crops, respectively. Complete nutrient solutions were applied for macro and 

micronutrients. 

6.3.2. Experimental design  

  The muskmelon crop was transplanted on 27 February and harvested on 11 June 

2020 (105 days). Three cantaloupe-type muskmelon cultivars were evaluated: TEZAC 

(Seminis, Inc., Bayer AG, Leverkusen, Germany), MAGIAR (Nunhems, BASF SE, 

Ludwigshafen, Germany) and JACOBO (Semillas Fitó, Barcelona, Spain). The sweet 

pepper crop was transplanted on 22 July 2020 and harvested on 28 January 2021 (190 

days). Three cultivars of sweet pepper were used: MELCHOR (Zeraim Iberica, Syngenta 

Crop Protection AG, Basel, Switzerland), MACHADO (Hazera Seeds Ltd., Limagrain 
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Group, Saint Beauzire, France) and CLX PLRJ 731 (HM.CLAUSE SAS, La Motte, 

Portes-lès-Valence, France). In both crops, the three cultivars were planted in each 

experimental plot; two paired lines of plants (i.e., four lines) were planted with each 

cultivar, in each plot. The position of the paired lines of each cultivar in each plot was 

randomized. 

In both crops, three treatments with different N concentration were applied in the 

nutrition solution by fertigation. Intended N concentrations for both crops were 2, 8 and 

14 mmol N L-1, for very deficient N (N1), deficient N (N2), and conventional N 

application (N3), respectively, according to local practices (Camacho and Fernandez, 

2013). Concentration of other macro and micronutrients were applied at the same non-

limiting concentration in all three treatments: HPO4
-
, 2 mmol L-1; K+, 4 mmol L-1; Ca+2, 

4 mmol L-1; Mg+2, 1.5 mmol L-1; SO4
-2, 2.35 mmol L-1. Irrigation volume was adjusted to 

maintain the soil matric potential in the range -15 to -25 kPa at 10 cm depth from the 

surface of the imported loam soil. For this, one tensiometer (Irrometer, Co., Riverside, 

CA, USA) was installed in the same cultivar in each replicate plot of each crop. 

The treatments are described in terms of applied N concentration (mmol L−1) and 

amount of mineral N applied (NO3
−–N + NH4

+–N; kg N ha−1) in Table 1. For all 

treatments, N was applied mostly as NO3
− (93% in muskmelon and 88% in sweet pepper), 

the rest as ammonium (NH4
+). 
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Table 1. Mineral N (NO3
––N + NH4

+–N) in soil (0-60 cm depth) at the beginning of each crop, N 

concentration in the nutrient solution applied and mineral N amount applied in fertigation in the two crops. 

Crop N treatment 

Mineral N 

at planting  

(kg N ha-1) 

N concentration 

in nutrient 

solution  

(mmol L-1) 

N amount 

applied  

(kg N ha-1) 

Muskmelon Very deficient (N1) 86 2.7 

 

61 

 Deficient (N2) 96 8.3 302 

 Conventional (N3) 65 14.0 582 

     

Sweet pepper Very deficient (N1)          30 2.0 65 

 Deficient (N2) 17 7.6 425 

 Conventional (N3) 41 13.0 700 

 

6.3.3. Fruit yield evaluation 

Total yield was calculated by summing the fresh weight of mature fruit in 

muskmelon and of red fruits in sweet pepper that were collected throughout the crops, 

from eight marked plants, of each cultivar, in each plot. In the muskmelon crop, there 

were two fruit harvests at 96 and 104 DAT. In the sweet pepper crops, there were six 

harvests between 98 and 187 DAT; fruit quality was evaluated in the fourth and sixth 

harvests conducted at 100 and 120 DAT, respectively. For both crops, marketable and 

non-marketable fruit were quantified, and average individual fresh fruit weight and 

number were recorded. All non-marketable fruit were categorized by criteria. For 

muskmelon, the criteria were cracking, sunstroke, malformation and <500 g fresh weight, 

according to Visconti et al., (2019). For sweet pepper, the criteria were malformation, 

diseases, and discoloration according to del Amor et al., (2009). In muskmelon and sweet 

pepper, equatorial and polar diameters of the fruit were measured in 10 randomly selected 

fruits in each cultivar and replicate plot. In the muskmelon crop, both diameters were 
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measured in the first harvest at 96 DAT; in sweet pepper, both diameters were measured 

in two harvests at 100 and 120 DAT 

 

6.3.4. Fruit quality evaluation 

Fruit quality parameters were evaluated in muskmelon in the first harvest (96 

DAT), and in sweet pepper, in the 100 and 120 DAT harvests. In both crops, four fruits 

were randomly selected per cultivar and plot. The fruits were immediately taken to the 

laboratory where internal colour measurements were made of the flesh in muskmelon, 

and external colour measurements were made on the skin in sweet pepper. Colour 

measurements were made using a chroma meter (Minolta CR-400, Konica Minolta, 

Osaka, Japan) for determination of lightness (L*), red/green (a*) and blue/yellow (b*) 

coordinates. For muskmelon, the fruits were cut into halves, and colour was measured in 

one half of the fruit in three points equidistant from the equatorial zone. In sweet pepper, 

colour was measured on the external skin in three points equidistant from the equatorial 

zone. Pitch angle (h) and the chroma (C*) were calculated as h = arctan (a* / b*), and C* 

= sqrt ((a*)2 + (b*)2). The colour index (IC*) was calculated as IC*= (a* x 1000) / (L*x 

b*). 

Firmness of fruit was determined in the interior of one half of the muskmelon fruit, 

and on the external skin of sweet pepper, in three equidistant points per fruit using a hand-

held penetrometer (PCE-PTR 200N, PCE Ibérica S.L., Albacete, Spain). 

To determine ºBrix, titratable acidity and pH, measurements were made in the 

juice of muskmelon pulp and of whole fruits of sweet pepper. In both crops, individual 

fruit samples were processed per cultivar and plot. In muskmelon, the skin and seeds were 

removed; in sweet pepper, the peduncle and the seeds were removed. The juice was 
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obtained using a domestic kitchen blender. ºBrix was determined with a digital 

refractometer (PAL-1, ATAGO CO., LTD, Tokyo, Japan). pH was determined with a 

hand-held pHmeter (LAQUA PC110-K, Horiba, Ltd., Kyoto, Japan). Titratable acidity 

for both crops was determined using the following procedure: 10 mL of fruit juice was 

mixed with 50 mL of distilled water and a few drops of phenolphthalein indicator. The 

solution was titrated with 0.1 M NaOH until the indicator turned from clear to pink 

(Domene and Segura, 2014). 

 

6.3.5. Data analysis 

Differences in measured parameters between N treatments and cultivars were 

evaluated by factorial analysis of variance (ANOVA), followed by pairwise LSD posthoc 

tests when the N x Cultivar interaction, or the main effects, were significant at p<0.05. 

Plot was included as a block factor in ANOVA. If needed, variables were transformed to 

meet ANOVA assumptions. Statistical analysis was performed with STATISTICA 13 

(TIBCO Software, Inc., Palo Alto, CA, USA). 

 

6.4. Results  

The Nitrogen x Cultivar interaction was not statistically significant in the 

following parameters evaluated: fruit firmness, fruit colour, ºBrix, acidity, morphometric 

parameters, yield, and percentage of fruit discard, for muskmelon, and fruit firmness, fruit 

colour (L*, b*, h, IC*), ºBrix, pH, and acidity, in sweet pepper (Tables 1-5). Therefore, 

effects of N treatments and cultivars were described as main effects in all parameters, 

analysing either the effect of the N or the cultivar in isolation. 
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6.4.1. N effects on fruit quality and yield 

There were not significant differences in fruit firmness between N treatments, both 

for muskmelon and sweet pepper crops (Table 2; Figure 1). 

Table 2. Results of factorial analysis of variance (ANOVA) testing the effect of three N treatments and 

three different cultivars on external fruit firmness, in muskmelon and sweet pepper. 

  

 Effect df 

Muskmelon Sweet pepper 

F P F P 

Block (B) 3 11.78 <0.001 0.28 0.840 

Nitrogen (N) 2 0.77 0.474 0.52 0.603 

Cultivar (C) 2 12.00 <0.001 47.15 <0.001 

N x C 4 1.23 0.323 0.13 0.970 

Error 24         

 

 

Figure 1. Fruit firmness (N mm-1) for the different N treatments, for muskmelon (a) and sweet pepper (b) 

crops. Values have been averaged across the three cultivars in each species. In muskmelon, fruit 

measurements are internal, in sweet pepper, measurements are external. ns: not significant differences 

between N treatments, at p<0.05. Values are means ± SE. 

In muskmelon, significant differences were found between N treatments in L* 

(lightness) and b* (yellowness) coordinates, and in h (pitch angle), C* (chroma) and IC* 

(colour index), but not in a* (red colour) coordinate (Table 3). For L* and b* coordinates 

and h and C*, values were significantly lower in N1 than in N2 and N3 (Figure 2a, c, d). 

In the case of IC*, N1 and N2 treatments were statistically higher than the N3 treatment 

(Figure 2f). In sweet pepper, significant differences were found between N treatments in 
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L*, a*, b*, h, C* and IC* (Table 3). For L* and b* coordinates and h, values were 

significantly lower in N1 than in N2 and N3 (Figure 2g, k, h). In the case of IC*, N1 

treatment was statistically higher than N2 and N3 treatments (Figure 2l). For a* and C* 

coordinates, differences between nitrogen levels depended on the cultivar (Figure 2h, k). 
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Table 3. Results of factorial analysis of variance (ANOVA) testing the effect of three N treatments and three different cultivars on internal fruit colour coordinates L* (lightness), 1 

a* (red colour), b* (yellowness), and on calculated colour parameters of h (pitch angle), C* (chroma) and IC* (colour index), in muskmelon and sweet pepper. Significance is 2 

shown as:  ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. 3 

 4 

  

 Effect 

  

df 

Muskmelon Sweet pepper 

F-value 
F-value 

L* a* b* h C* IC* L* a* b* h C* 
IC* 

Block (B) 3 3.65* 1.80ns 4.01* 0.70ns 3.10* 1.45ns 1.24ns 1.54ns 0.83ns 1.47ns 1.76ns 1.06ns 

Nitrogen (N) 2 3.91* 0.26ns 12.82*** 5.96** 9.12*** 8.59** 13.85*** 0.26ns 18.67*** 6.54** 3.13ns 15.86*** 

Cultivar (C) 2 11.77*** 142.80*** 123.70*** 304.66*** 79.87*** 284.87*** 10.99*** 15.43*** 15.12*** 2.47ns 21.77*** 3.70* 

N x C 4 2.16ns 2.49ns 1.94ns 0.93ns 1.64ns 1.30ns 0.78ns 6.19*** 2.21ns 2.07ns 6.07** 1.61ns 

Error 24             
      

 5 

 6 



  Effect of N on horticultural crops 

122 

 

 

Figure 2. Fruit colour coordinates L* (lightness; a, g), a* (red colour; b, h) and b* (yellowness; c, i) and 

parameters of internal fruit colour h (pitch angle; d, j), C* (chroma; e, k) and IC* (colour index; f, l), for 

the different N treatments, for muskmelon crop (a-f), and for sweet pepper (g-l). Fruit measurements are 

internal. Values have been averaged across the three cultivars except in panels h and k. Different lower-

case letters above each column show significant differences between N treatments, at p<0.05, except in 

panels h and k that show differences between cultivars within each N treatment. Values are means ± SE. 
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Regarding the parameters of internal fruit quality in muskmelon and sweet pepper, 

significant differences were found between N treatments in all three °Brix, pH and acidity 

(Table 4; Figure 3). In muskmelon, the °Brix was statistically 12% higher in N1 treatment 

compared to N2 and N3 treatments (Figure 3a); however, pH and acidity were 2% and 

15% lower in N1 treatment than in N2 and N3 treatments, respectively (Figure 3b, c). In 

sweet pepper, the °Brix was statistically 4 % lower in N1 treatment compared to N2 and 

N3 treatments (Figure 3d). pH was 2% lower in N1 treatment than in N2 and N3 

treatments (Figure 3e) and acidity was 18% and 6% higher in N2 than in N1 and N3, 

respectively (Figure 3f). 

Table 4. Results of factorial analysis of variance (ANOVA) testing the effect of three N treatments and 

three cultivars on internal fruit quality parameters (°Brix, pH and acidity), in muskmelon and sweet pepper. 

Significant effects are shown as: ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001.  

 

  

 Effect 

  

df 

Muskmelon Sweet pepper 

F-value F-value 

°Brix pH Acidity °Brix pH Acidity 

Block (B) 3 4.11* 1.86ns 1.47ns 3.56* 0.30ns 0.60ns 

Nitrogen (N) 2 11.79*** 8.08** 4.80* 6.68*** 4.10*** 5.30*** 

Cultivar (C) 2 58.58*** 57.14*** 7.12** 63.79*** 20.90*** 2.12ns 

N x C 4 0.67ns 3.00* 1.40ns 0.80ns 2.10ns 0.36ns 

Error 24          
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Figure 3. Internal fruit quality parameters (°Brix (a, d), pH (b, e), and acidity (% citric acid) (c, f)) at three 

different N treatments in muskmelon and sweet pepper. Values have been averaged across three cultivars. 

Different lower-case letters above each column show significant differences between N treatments, at 

p<0.05. Values are means ± SE. 

Regarding the effect of N treatments on morphometric parameters of muskmelon, 

there were significant differences, between N treatments, in fruit weight and equatorial 

and polar diameters (Table 5; Figure 4). For these three parameters, the N1 treatment had 

statistically lower values than the N2 and N3 treatments, which were not statistically 

different from one another (Figure 4a–c). The N1 treatment had muskmelon fruits with 

13% lower weight than the N2 and N3 treatments. Regarding the effect of N treatments 

on morphometric parameters of sweet pepper fruit, there were significant differences 
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between N treatments only for polar diameter (Table 5; Figure 4); the polar diameter in 

the N2 treatments was 9% lower than in N1 and N3 treatments (Figure 4f). 

 

Table 5. Results of factorial analysis of variance (ANOVA) testing the effect of three N treatments and 

three different cultivars on fruit weight and equatorial and polar fruit diameters, in muskmelon and sweet 

pepper. Significant effects are shown as: ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001.  

 

  

 Effect df 

Muskmelon Sweet pepper 

F-value F-value 

Fruit 

weight 

Equatorial 

diameter 

Polar 

diameter 

Fruit 

weight 

Equatorial 

diameter 

Polar 

diameter 

Block (B) 3 0.98ns 0.46ns 1.70ns 0.99ns 0.78ns 0.53ns 

Nitrogen (N) 2 8.56** 8.44** 9.57** 1.13ns 0.33ns 3.48* 

Cultivar (C) 2 1.11ns 2.36ns 1.18ns 86.64*** 10.13*** 120.26*** 

N x C 4 0.45ns 0.25ns 1.15ns 0.46ns 0.13ns 1.15ns 

Error 24         
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Figure 4. Fruit weight (a, d) and equatorial (b, e) and polar (c, f) fruit diameters at different N treatments 

in muskmelon and sweet pepper. Values have been averaged across three cultivars. Different lower-case 

letters above each column show significant differences between N treatments, at p<0.05. Values are means 

± SE. 

 

Regarding total yield in muskmelon and sweet pepper, there were significant 

differences between N treatments in total yield and in the percentage of non-marketable 

fruit in both crops (Table 6; Figure 5). For muskmelon, total yield was significantly 40% 

less than in the N1 compared to the N2 and N3 treatments, which were not significantly 

different (Figure 5a). The percentage of non-marketable fruit was significantly 40% 
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higher in the N1 treatment than in N2 and N3 treatments, which were not significantly 

different (Figure 5b). For sweet pepper, total yield and the percentage of non-marketable 

fruit differed between N treatments (Table 6, Figure 5c, d). Total yield was statistically 

lower in the N1 than in the N2 and N3 treatments, whereas the percentage of non-

marketable fruit was 38% higher in the N1 than in the N2 and N3 treatments (Figure 5c, 

d). 

Table 6. Results of factorial analysis of variance (ANOVA) testing the effect of three N treatments and 

three cultivars on total yield and percentage discard fruit, in muskmelon and sweet pepper. Significant 

effects are shown as: ns, p>0.05; *, p<0.05; **, p<0.01; ***, p<0.001. 

 

  Muskmelon Sweet pepper 

  F-value F-value 

  df Total yield % Discard fruit Total yield % Discard fruit 

Block (B) 3 3.77* 2.80ns 0.59ns 54.54** 

Nitrogen (N) 2 21.88* 21.38* 139.49*** 10.16ns 

Cultivar (C) 2 65.57* 6.44** 2.37ns 0.27ns 

N x C 4 0.85ns 1.26ns 4.84*** 29.53*** 

Error 24      
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Figure 5. Total yield (a, c) and percentage discard fruit (b, d) for the different N treatments, for muskmelon 

and sweet pepper. In muskmelon, values have been averaged across the three cultivars. Different lower-

case letters above each column show significant differences between N treatments, and upper-case letters 

show significant differences between cultivars within each N treatment, at p<0.05. Values are means ± SE. 

 

6.4.2. Cultivar effects on fruit quality and yield 

There were significant differences in internal fruit firmness between cultivars both 

in muskmelon and sweet pepper (Table 2); the muskmelon cultivar TEZAC had 

significantly lower firmness values than cultivars MAGIAR and JACOBO (Figure 6a). 

For sweet pepper, the MACHADO cultivar had 20 and 6% higher firmness than the CLX 

PLRJ 731 and MELCHOR cultivars, respectively (Figure 6b). 
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Figure 6. Fruit firmness (N mm-1), for three different cultivars, in muskmelon (a) and sweet pepper (b). In 

muskmelon, fruit measurements are internal, in sweet pepper, measurements are external. Values have been 

averaged across three N treatments. Different lower-case letters above each column show significant 

differences between cultivars, at p<0.05. Values are means ± SE. 

 

Significant differences were found in fruit colour coordinates and colour 

parameters between cultivars in both muskmelon and sweet pepper (Table 3; Figure 7). 

In muskmelon, cultivar MAGIAR had significantly lower L* and b* coordinates and h 

(Figure 7a, c, d), and higher a* coordinate and IC* (Figure 7b, f), than TEZAC and 

JACOBO. In sweet pepper, the cultivar MELCHOR had significantly higher L* and b* 

coordinates than MACHADO and CLX PLRJ 731 (Figure 7f, h). 
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Figure 7. Fruit colour coordinates L* (lightness; a, g), a* (red colour; b, h) and b* (yellowness; c, i) and 

parameters of internal fruit colour h (pitch angle; d, j), C* (chroma; e, k) and IC* (colour index; f, l), for 

the three different cultivars, in muskmelon (a-f) and sweet pepper (g-l). Fruit measurements are internal. 

Values have been averaged across three N treatments except in panels h and k. Different lower-case letters 

above each column show significant differences between N treatments, at p<0.05. Values are means ± SE. 
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Regarding the parameters of internal fruit quality in muskmelon and sweet pepper, 

there were significant differences between cultivars in both crops (Table 5; Figure 8). For 

muskmelon, ºBrix and pH increased from TEZAC to MAGIAR to JACOBO (Figure 8a, 

b). The cultivar JACOBO had 14 and 25% more ºBrix than MAGIAR and TEZAC, 

respectively. Cultivars MAGIAR and JACOBO presented higher acidity values than the 

cultivar TEZAC (Figure 8c). For sweet pepper, ºBrix and acidity values in the cultivar 

CLX PLRJ 731 were significantly lower than in MELCHOR and MACHADO. By 

contrast, pH was significantly higher in CLX PLRJ 731 than in MELCHOR and 

MACHADO (Figure 8d-f). 

 

Figure 8. Internal fruit quality parameters (°Brix (a, d), pH (b, e), and acidity (% citric acid) (c, f)) for three 

different cultivars of muskmelon (a-c) and sweet pepper (d-f). Values have been averaged across three N 

treatments. Different lower-case letters above each column show significant differences between cultivars, 

at p<0.05. Values are means ± SE. 
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Regarding the morphometric variables of muskmelon fruit, there were no 

significant differences in fruit weight, equatorial and polar fruit diameter between 

cultivars (Figure 9). In sweet pepper, there were significant differences in the 

morphometric variables of fruit weight, equatorial and polar diameter of the fruit, between 

cultivars (Tables 5, 6; Figure 9). The cultivar CLX PLRJ 731 had on average 5% less fruit 

weight than MELCHOR and MACHADO (Figure 9d). For equatorial and polar diameter, 

the CLX PLRJ 731 cultivar had significantly higher values than MELCHOR and 

MACHADO (Figure 9d). 

 

Figure 9. Fruit weight (a, d) and equatorial (b, e) and polar (c, f) fruit diameters for three different cultivars 

of muskmelon (a-c) and sweet pepper (d-f). Values have been averaged across three N treatments. Different 
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lower-case letters above each column show significant differences between cultivars, at p<0.05. Values are 

means ± SE. 

 

6.5. Discussion 

6.5.1. N effects on fruit quality and yield 

The absence of significant effects on fruit firmness of increasing N addition in 

muskmelon was consistent with the results of Ferrante et al. (2008) with netted melon 

(Cucumis melo var. reticulatus cv. Prodigio) with increasing N from 0 to 165 kg N ha-1. 

In the present work, the maximum N application of 580 kg N ha-1 did not affect fruit 

firmness. In contrast, Lima e Silva et al. (2007) with a hybrid of yellow melon (cv. Gold 

Mine) in open field conditions reported that increasing N from 0 to 150 kg N ha-1 

decreased fruit firmness. It is possible that differences in literature regarding muskmelon 

are due to cultivar effects and/or to differences in environmental conditions. For sweet 

pepper, fruit firmness was not affected by increasing N application from 65 to 700 kg N 

ha-1, which is consistent with reports by Contreras et al. (2013) and del Amor et al. (2008). 

The results of the present study and of the literature suggest that fruit firmness is not 

influenced by amount of N fertiliser in sweet pepper. In general, the available results 

suggest that the same applies to muskmelon; however, the available reports ae not 

unanimous.  

Regarding internal fruit colour parameters in muskmelon, an intense orange flesh 

colour is one of the quality attributes most valued by consumers (Krarup et al., 2016). 

The red colour (a*) was not affected by N treatments, but lightness (L*) and yellowness 

(b*) increased from the N1 to the N2 treatment. This finding partly agrees with findings 

of Ferrante et al. (2008) who reported significant differences only in lightness (L*) of 
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muskmelon fruit with N applications ranging from 0 to 165 kg N ha-1. The differences in 

lightness and yellowness can be associated with changes in the contents of pigments such 

as carotenoids and chlorophylls (Flores et al., 2004). The lack of differences in red colour 

(a*) between N treatments, leads to the conclusion that N application does not affect this 

important quality attribute in muskmelon, under the conditions of the present study.  

For sweet pepper, the rate of applied N affected external fruit colour, the fruit of 

the N1 treatment had reduced lightness (L*) and more yellowish colour (b*). In contrast, 

del Amor et al. (2008) reported that a moderately N deficient treatment of 7 mmol L-1 had 

no effect on these parameters. In the present work, the very deficient N treatment had a 

concentration of only 2 mmol N L-1; it is possible that this very low N concentration 

caused the responses on L* and b* parameters. There are reports that confirm that N 

deficiency can affect the colour of sweet pepper fruit (Fageria, 2001).  

A decrease in °Brix was found in response to increasing N fertilisation in 

muskmelon; with a maximum value of 12.5 °Brix being obtained with a N application of 

61 kg N ha-1 (i.e., the N1 treatment). Considering that the minimum reference value for 

commercialization is 10 ºBrix (Ferrante et al., 2008), a °Brix value of 12.5 would be very 

acceptable. It is noteworthy that the ºBrix values of muskmelon fruit in the N2 and N3 

treatments were above the threshold value of 10º, indicating that higher N fertilisation 

also produced fruit with acceptable quality for the commercial market. Other studies 

reported no response of ºBrix to increasing N application, from 0 to165 kg N ha-1 

(Ferrante et al., 2008; Lima e Silva et al., 2007), and from 0 to 300 kg N ha-1 (Monteiro 

et al., 2014). It is possible that the lack of effect of increasing N addition on ºBrix in the 

literature was caused by an insufficient range of N application, unlike in the present study 
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with applications of 302 (N2 treatment) and 582 kg N ha-1 (N3 treatment). Overall, it can 

be concluded that lower N application resulted in sweeter muskmelon fruit.  

For sweet pepper, increasing N fertilisation from N1 to N2 and N3 led to a slight 

increase in ºBrix to an average value of 7.5 ºBrix in the N2 and N3 treatments. Taking 

into account that the reference values for red peppers are in the range 7–8 ºBrix (Contreras 

et al., 2013; Niklis et al., 2002), our results indicate that N2 and N3 treatments led to 

peppers with acceptable marketable quality in terms of ºBrix. The values obtained in the 

N2 and N3 treatments agree with Contreras et al. (2013) of 8 ºBrix with 9.8 mmol N L-1 

applied by fertigation throughout the crop. The lower ºBrix values found with  low N 

fertilisation (N1 treatment), in the present study, were likely caused by a slight delay in 

the ripening of the fruit, since ºBrix increases with the ripening processes of the sweet 

pepper fruit (Niklis et al., 2002). 

Total yield increased from N1 to N2 and N3 in muskmelon, but there were no 

differences between N2 and N3 treatments. This suggests that a N application of 302 kg 

N ha-1, corresponding to an application of 8 mmol N L-1, was sufficient to achieve a 

maximum yield of 6.8 kg m2 in muskmelon. De Faria et al. (2000) reported that N 

applications of 130–180 kg N ha-1 were associated with relatively low yields that averaged 

3.8 kg m2.  

The percentages of non-marketable muskmelon fruit in the present study were also 

informative, with significantly lower percentages in treatments N2 and N3, indicating that 

low N application contributed to more fruit with external flaws. The main reasons for 

muskmelon fruit from treatment N1 being non-marketable were fruit malformation and 

fruit weight of <500g. These observations coincided with several reports with muskmelon 
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where low N application increased percentages of non-marketable fruit (Buwalda and 

Freeman, 1986; Ferrante et al., 2008; Pérez et al., 2004).  

For sweet pepper, as with muskmelon, fruit yield also increased from the N1 to 

the N2 and N3 treatments between which there was no significant difference. A maximum 

total yield of 8.5 kg m-2 was obtained in the N2 treatment with a N application of 425 kg 

N ha-1, corresponding to a concentration of 8.4 mmol N L-1. This is consistent with the 

results of Grasso et al. (2020) and Rodríguez et al. (2020) where maximum yield of sweet 

pepper of 7.5 and 7.0 kg m-2 were obtained with N applications of 519 kg N ha-1 (9.7 

mmol N L-1) and 530 kg N ha-1 (10 mmol N L-1), respectively. The N1 treatment had the 

highest percentage of non-marketable fruit , similar to the results of Grasso et al. (2020). 

6.5.2. Cultivar effects on fruit quality and yield  

There were differences between muskmelon cultivars in internal fruit firmness; 

TEZAC had the lowest firmness while MAGIAR y JACOBO had higher and similar 

firmness. Fruit firmness is affected by temperature during fruit ripening, and cultivars can 

differ in their sensitivity to temperature (Jiménez-Esparza et al., 2017). For sweet pepper, 

MACHADO had the highest external fruit firmness, reaching a maximum value of 4.3 N 

mm-1. This value is appreciably less than the values reported by del Amor et al. (2009) 

for various sweet pepper cultivars that averaged 6.2 N mm-1. Higher fruit firmness is 

likely to be beneficial for transporting fruit (Mitchell et al., 2007). This is very relevant 

for vegetable production in SE Spain, where much of the production is exported to 

northern Europe (Reche, 2008; 2010).   

There was a cultivar effect in muskmelon for L*, a* and b* colour coordinates, 

and for parameters h, C* and IC*. In red colour (a*), MAGIAR was the cultivar with 
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highest value, which generated an intense orange pulp colour which is very relevant to 

consumer preference (a*>15) is sought after by consumers (Krarup et al., 2016). a* values 

≤10 are associated with a pale orange colour that is undesirable to consumers (Krarup et 

al., 2016). Consumers would likely be more attracted to fruit of MAGIAR because of its 

more intense orange colour. In the case of sweet pepper, there were differences between 

cultivars for lightness (L*) and yellowness (b*). MELCHOR  had the highest luminosity 

value and the highest yellowness; these two colour coordinates also differed between 

cultivars in other sweet pepper cultivars (del Amor et al., 2009). For IC*, the cultivars 

with higher values were MELCHOR and MACHADO. It is possible that this similarity 

between cultivars is due to an increase in the red colour coordinate (a*) that indicates 

more reddish colour (Niklis et al., 2002; Soltani et al., 2011). Increasing the a* values in 

the MELCHOR and MACHADO cultivars indicates a greater reddish colour, which is a 

characteristic more desired by consumers (del Amor et al., 2009).  

Within the three muskmelon cultivars, there were differences in ºBrix values, with 

JACOBO having the highest values, with an average value of 13.5 °Brix between the 

three N treatments. In a study that evaluated fruit quality of a large number of "Galia” 

type melon cultivars grown in a greenhouse (Mitchell et al., 2007), cultivars with more 

than 10 °Brix were considered to have adequate quality. It is important to note that the 

JACOBO cultivar in the current study exceeded this target value by more than 3 ºBrix 

units. In addition, the cultivar MAGIAR, evaluated in this study, had ºBrix values higher 

than 10 (i.e., 11.4 °Brix), but the cultivar TEZAC barely reached this threshold value (i.e., 

10.0 °Brix). For sweet pepper, MACHADO and MELCHOR cultivars had the highest 

ºBrix values of 7.6 and 7.7, respectively. These values were slightly lower than values of 

8 ºBrix reported by Contreras et al. (2013) and  Eissa et al. (2007) in various sweet pepper 
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cultivars. For CLX PLRJ 731, an average value of 6.7 ºBrix was determined for the three 

N treatments. Taking into account that the target ºBrix values for red peppers are 7–8 

ºBrix (Contreras et al., 2013; Niklis et al., 2002), MACHADO and MELCHOR had 

acceptable values, but CLX PLRJ 731 was below the acceptable range.  

Cultivars evaluated in the present study also differed in total yield. The 

muskmelon cultivar TEZAC presented the highest marketable yield. Kaur et al., (2017) 

found differences in yields between melon cultivars, attributed to the number of fruits per 

vine and the weight of the fruit. However, in the present study, there were no differences 

between cultivars in mean fruit weight and the diameters of the fruits. It is more likely 

that differences in yield between cultivars were due to fruit number. For sweet pepper, 

the yield of CLX PLRJ 731 was higher than of MELCHOR and MACHADO. It is 

possible that these differences were due to the number of fruits per plant, since the 

percentage of non-marketable fruit did not differ between cultivars, and the mean fruit 

weight of MELCHOR and MACHADO cultivars was higher 

7.6. Conclusions  

For most of the parameters evaluated in muskmelon and sweet pepper crops, there 

were no significant interactions between N treatments and cultivars, indicating that effects 

of N and cultivar, whenever significant, occurred individually and consistently regardless 

of the level of the other factor. For fruit firmness in both crops, the N supply did not affect 

this parameter. In the N1 treatment, the pulp was more orange in muskmelon, and the skin 

was more reddish in sweet pepper, compared to the N2 and N3 treatments. Of the 

muskmelon cultivars, MAGIAR had a more orange pulp, whereas for sweet pepper, the 

cultivars MELCHOR and MACHADO had a more intense red colour. The N1 treatment 
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had 11% more ºBrix for melon, and 4% less in sweet pepper, compared to N2 and N3 

treatments. The muskmelon cultivar JACOBO showed 20% higher ºBrix values than the 

other two cultivars, and the MELCHOR and MACHADO sweet pepper cultivars had 13% 

higher ºBrix than CLX PLRJ 731. In both crops, the highest yield was obtained in the N2 

treatment. However, the best fruit quality attributes were not always achieved by N2 

treatment in muskmelon. In this case, to increase the orange pulp colour and ºBrix in 

fruits, lower N fertilisation rates are required with the cost of decreasing fruit yield. 
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7. General discussion of the thesis  
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The first study of the thesis focused on the effect of increasing the dose of N on 

root development and the accumulation of aerial biomass of sweet pepper crop. This study 

has shown that very deficient N caused a compensatory growth of the roots in sweet 

pepper crops, mostly in the most superficial layers of the soil. Compensatory growth is 

interpreted when the crop uses the reserves to increase root development in response to a 

deficient N (Drew, 1975; Drew et al., 1973; Lain et al., 1995; Primavesi, 1982). 

Otherwise, at excessive N, the development of the aerial part is maximized (Drew, 1975; 

Garnett et al., 2009). Indeed, in the very deficient N treatment, there was a marked 

decrease in aboveground biomass production. These findings are consistent with reports 

of other vegetable crops such as tomato, where increased root systems was detected as N 

fertilization decreased (Lecompte et al., 2008). Compensatory growth could be an 

evolutionary response of the plant in response to a changing environment of N, where the 

control signals for the development of the root could be related to two control points, one 

located in the root and another in the aerial part of the plant (Zhang and Forde, 2000). 

This work has also shown that sweet pepper grown in soil in greenhouse is very 

shallow. Approximately 80% of the roots was in the most superficial layers of the soil, in 

the first 0.20 m, regardless of the N application, being N deficient, conventional or very 

excessive N applications. The study of root dynamics with minirhizotron tubes confirmed 

these results and the greatest root length was found in the first 0-0.20m of enarenado soil. 

One of the possible explanations of the shallow-rooting of the crops is the application of 

high frequency fertigation (Primavesi, 1982). This is consistent with other studies on 

"enarenado" soil crops where the highest concentration of roots was found in the first soil 

layers (Padilla, et al., 2017a; Castilla, 1986). In addition, based on other works such as 

Padilla et al. (2017a) the question that arises is that there might be other factors, in 
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addition to N, such as soil compaction that may be restricting the root system of the pepper 

to the most superficial layers in enarenado soil. In this way, it was proposed to study the 

effect of tillage to alleviate this effect on the development of the roots, growth of the crop 

and use of N by the roots of sweet pepper crops. 

Tillage is a way to facilitate deeper rooting of vegetable crops (Abu-Hamdeh, 

2003; Quincke et al., 2007; Wortmann et al., 2008). However, tillage of the imported soil 

layer did not increase root length density and rooting pattern consistently in two sweet 

pepper crops, neither when evaluated through destructive measurements nor when 

addressed non-destructively through minirhizotron tubes. Tillage reduced soil bulk 

density and penetration resistance, concurrent with previous studies in greenhouse soil 

(Padilla et al., 2017; Erdem et al., 2006), but it is probable that the frequent transit of 

operators for cultural practices, added to soil moisture near to field capacity during the 

entire cultivation period, caused an accelerated compaction of the tillaged soils (Padilla 

et al., 2017; García et al., 2016). Tillage was also meant to improve crop performance in 

terms of growth and fruit production, but tillage did not lead to an increase in dry matter 

production and fruit yield in the sweet pepper crops evaluated in this thesis. The only 

beneficial effects of tillage detected in this thesis appeared in terms of reduced irrigation 

and applied N, drainage, and N leaching. One of the possible explanations was that tillage 

increased retention of soil water and consequently reduced infiltration (Hamza and 

Anderson, 2005; Wang et al., 2015), drainage and N leaching. These results are beneficial 

for farmers, in terms of reducing the use of inputs (water and N fertilizers), and for the 

environment, in terms of reducing nitrate (NO3
-) leaching.  
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In terms of N application effects on crop dry matter production, yield and fruit 

quality, the results of this thesis suggest that the conventional 10 mmol N L-1 

concentration and highly excessive 16 mmol L-1 maximized shoot dry matter production 

and crop yield in sweet pepper. In the case of very deficient N application, of 2 mmol N 

L-1, root length density was maximized but this was not enough to compensate for the 

loss of yield. 

The rotation of sweet pepper and melon in the Almería area is one of the most 

profitable in this system, for this reason these two crops were studied (Valera et al., 2014). 

The study of the effect of N and cultivar on the yield and quality parameters of the fruit 

in muskmelon and sweet pepper was included in chapter 3. For most of the parameters 

evaluated, there were not significant interactions between N treatments and cultivars, 

indicating that effects of N and cultivar, whenever significant, occurred individually and 

consistently regardless of the level of the other factor. Regarding the effects of N within 

the parameters studied, it was found that increasing N doses did not have an effect on 

fruit firmness, this is consistent with other studies with lower doses of N (Ferrante et al., 

2008). In the case of the internal colour parameters of the fruit for muskmelon and sweet 

pepper , the luminosity coordinates (L *) and yellow (b *) increased with the N doses, but 

the red coordinate (a*) was unaffected, which is consistent with Fageria, (2001) and  

Ferrante et al., (2008). Regarding total soluble solids, deficient N caused increased °Brix, 

the opposite case occurred in sweet pepper where N deficient showed a decrease in ºBrix. 

The N2 white 8 mmol L-1treatment had the maximum yield and the lowest fruit discard 

with the minimum dose of N in both, muskmelon and sweet pepper.  
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Regarding the effect of the cultivar, fruit firmness was very different depending 

on the cultivar, coincident with Mitchell et al. (2007). Regarding the evaluated colour 

parameters, there was also a differential behaviour between the cultivars, with the cultivar 

MAGIAR presenting an intense orange colour. For sweet pepper, the MELCHOR and 

MACHADO cultivars presented the most intense red coloration and the most luminous 

characters accepted by consumers (del Amor et al., 2009).  Regarding total soluble solids, 

there were also differences between cultivars; for muskmelon in the cultivar JACOBO 

and sweet pepper MELCHOR and MACHADO registered the highest value.  A 

significant effect of cultivar on yield was also observed; for de muskmelon the cultivar 

TEZAC and SENSEI in N2 was the one that registered the highest yield, in addition to 

having the lowest percentage discard fruit. 

In pepper crops, it is concluded that the conventional and very excessive N doses 

maximized the growth of the biomass of the shoots, but the root density decreased in the 

most superficial layers of the soil. The opposite happens with deficient N, where the 

development of the root is maximized, and the aerial part is minimized. In addition to the 

effect of N on root concentration, it is possible that other factors such as soil compaction 

will affect root development. In the study on the effect of tillage on the development of 

the root in the pepper crop, tillage did not improve the production of aerial dry matter or 

the density of the roots. However, irrigation, applied N, drainage and leaching were 

markedly reduced in tillage treatment, probably due to increased water infiltration into 

the soil and the formation of a tillage tray. In any case, it was shown that tillage by itself 

is not a practice that improves the soil structure. It would be interesting to delve into other 

techniques that can complement the work, such as the incorporation of organic materials 

that help to improve the structure of the soil, improving the yield of pepper crops. 
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In the study of the effect of N and cultivars for muskmelon and sweet pepper 

crops, in most of the parameters evaluated, an effect of the interaction between factors 

was not seen. Regarding the N levels, the N2 treatment was the one that presented the 

highest attributes in morphometric parameters and the highest yields for both crops. But 

in muskmelon, the °Brix, which was superior in the treatment deficient N1; the opposite 

occurred in sweet pepper crop with the N2 treatment with the highest ºBrix. Regarding 

the other main effects of cultivar, of the three cultivars evaluated for the muskmelon and 

sweet pepper, there was no cultivar that stands out for all the evaluated parameters. 

Regarding fruit firmness, in muskmelon MAGIAR and JACOBO showed similar values 

and for sweet pepper MACHADO was higher, which could be a remarkable attribute 

when transporting the fruit. Regarding another important variable such as the colour of 

the fruit, the cultivar MAGIAR for muskmelon and MELCHOR and MACHADO for 

sweet pepper stood out from the rest, presenting an intense orange colour that is highly 

accepted by consumers. Regarding the content of soluble solids, the JACOBO for 

muskmelon presented the highest 13 °Brix and MELCHOR and MACHADO for sweet 

pepper cultivars were the higher with 7.5 ºBrix on average. In terms of total yield, for 

muskmelon TEZAC records the highest values and JACOBO the lowest values. For sweet 

pepper the difference between the cultivars depends on the level of N. The highest yield 

was obtained in N2 where the SENSEI cultivar reached the highest. 

Final considerations, which is for the greenhouse crops evaluated, it is possible to 

obtain high yields and quality of fruits by adjusting the dose of N. This yield benefits for 

farmers since the use of inputs is reduced, in addition to significantly reducing losses 

nitrogen leaching.  
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