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Simple Summary: Four-stranded nucleic acid secondary structures (quadruplexes) including DNA
G-quadruplexes, RNA G-quadruplexes and i-Motifs display key regulatory functions in the human
genome. Quadruplexes play an important role in telomere lengthening and the expression control of
several cancer-related genes. In this context, quadruplex ligands are considered as potential strategies
for anticancer drug discovery. Previous reviews are mainly focused on ligands targeting DNA G-
quadruplexes, RNA G-quadruplexes and i-Motifs in a separate way, hindering a holistic study. The
present review overcomes this limitation by providing a general overview of the recent research on
ligands targeting the three different quadruplex structures in cancer.

Abstract: Nucleic acids can adopt alternative secondary conformations including four-stranded
structures known as quadruplexes. To date, quadruplexes have been demonstrated to exist both in
human chromatin DNA and RNA. In particular, quadruplexes are found in guanine-rich sequences
constituting G-quadruplexes, and in cytosine-rich sequences forming i-Motifs as a counterpart.
Quadruplexes are associated with key biological processes ranging from transcription and translation
of several oncogenes and tumor suppressors to telomeres maintenance and genome instability. In
this context, quadruplexes have prompted investigations on their possible role in cancer biology and
the evaluation of small-molecule ligands as potential therapeutic agents. This review aims to provide
an updated close-up view of the literature on quadruplex ligands in cancer therapy, by grouping
together ligands for DNA and RNA G-quadruplexes and DNA i-Motifs.

Keywords: cancer; G-quadruplexes; i-Motifs

1. Introduction

Nucleic acids have considerable potential to fold into three-dimensional secondary
structures based on particular sequence motifs [1]. Single-stranded guanine-rich DNA se-
quences can fold into stable intramolecular and intermolecular four-stranded G-quadruplexes
(G4s) [2]. G4s arise from Hoogsteen hydrogen bonding of four guanines arranged within
a planar quartet, which is further stabilized by interactions between the O-6 lone- pair
electrons of each guanine and monovalent or divalent cations. Self-stacking of two or
more G-quartets generates a G4 structure [3]. Further studies established that many RNA
sequences featuring G-tracts can also fold into G4 structures, sometimes demonstrating
increased thermodynamic stability and reduced steric hindrance [4]. Therefore, G4s are
found both in DNA and RNA. In addition, single-stranded cytosine-rich sequences can
form hemiprotonated cytosine—cytosine base pairs (C-C+), adopting a structure called
an i-Motif [5]. This structure is less known than other DNA structures, in part due to its
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limited stability. Initially, i-Motifs were considered to mainly occur under acidic conditions,
but an increasing number of studies demonstrate that these sequences are stable structures
even at neutral pH [6]. Although quadruplexes are related to each other in terms of primary
sequence, they in fact comprise a diverse family of structures that can fold into different
topologies including parallel, antiparallel, and hybrid structures for G4s and R-forms or
S-forms for i-Motifs (Figure 1). Each topology is dictated by the pattern of strand polarities
and the orientation of interconnecting loops [7]. The topology of RNA G4s is more limited
to the parallel conformation due to the steric hindrance imposed by the presence of a
2’-hydroxyl group in the ribose sugar. Nevertheless, according to a recent study, RNA G4s
can also adopt different conformations other than the parallel [8]. However, the extent
to which distinct topologies can influence quadruplex formation and function in cells is
still unknown.
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Figure 1. Quadruplex structures. (A) Chemical structure of a G4 and schematic representation of various G4 topologies.

(B) Chemical structure of an i-Motif and schematic representation of various i-Motif topologies.

Experiments using computational, chemical, molecular, and cell biology methods
have demonstrated that quadruplexes are very numerous in the human genome. The use of
computational algorithms to search for the consensus sequence of quadruplexes helped to
identify quadruplexes and reveal their enrichment [9]. Recent advances even accommodate
certain structural variants, higher-order assemblies and account for flanking sequence
effects [10]. Biophysical studies including circular dichroism and ultraviolet melting on dif-
ferent oligonucleotides, were the first to establish that many DNA and RNA sequences can
fold into quadruplexes [11]. More sophisticated techniques, such as X-ray crystallography
and nuclear magnetic resonance (NMR) spectroscopy, have been used to obtain quadruplex
structures at atomic resolution. Interestingly, NMR spectroscopy simultaneously allows for
the structure to be determined in physiological solutions, kinetics and dynamics studies,
and molecular interaction investigations [12]. In addition, quadruplexes have been identi-
fied as cellular features. Given that G4s in DNA or RNA can stall a DNA polymerase or
a reverse transcriptase respectively, the comparison of pause sites in G4-stabilizing and
non-stabilizing conditions enables the detection of G4s in vitro. In particular, direct G4
sequencing in purified single-stranded human DNA identified more than 700,000 DNA
G4s [13]. Furthermore, direct RNA G4 sequencing on poly(A)-enriched RNAs mapped G4
structures in more than 3000 human mRNAs [14]. Although sequencing of i-Motifs has not
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yet been achieved, C-rich complementary strands always accompany G-rich sequences in
the genomic DNA. Therefore, the number of i-Motifs is expected to be similar to that of
DNA G4s. Quadruplexes have been also identified using chemical methods by exploiting
the different reactivities of nucleobases following the formation of quadruplex structures.
For instance, in KMnO4-51 nuclease footprinting, only single-stranded DNA is digested
by S1 nuclease and subsequent computational analyses infer the formation of DNA G4s
based on the nuclease footprints [15]. Alternatively, the location of G4s can be deduced
because the Hoogsteen hydrogen interactions between the guanines in guanine tetrads
provide relative protection from methylation as a result of dimethyl sulfate (DMS) and
subsequent cleavage by piperidine [16]. Another method is the selective 2’-hydroxyl acy-
lation analyzed by primer extension (SHAPE) which utilizes differences in the acylation
kinetics of RNA 2’-hydroxyl groups and the ability of these groups to stall reverse transcrip-
tion [17]. However, to date, these chemical mapping techniques have no detected RNA G4s
in eukaryotic cells [18]. Furthermore, quadruplexes have been visualized by immunofluo-
rescence in cells using specific antibodies. The scFv antibody BG4 revealed both DNA [19]
and RNA [20] G4s in human cells. In accordance, the antibody fragment iMab enabled the
imaging of i-Motifs in the nuclei of human cells and revealed that their formation was also
cell-cycle dependent [21]. In general, quadruplex sequences are non-randomly distributed
but are mainly clustered in pivotal genomic regions, such as DNA replication origins,
telomeres, gene promoters, and untranslated regions (UTRs). There, quadruplexes either
act as physical obstacles, which must be overcome, or as facilitators of normal cellular
functions. Interestingly, quadruplexes are primarily found in active promoters associated
with elevated transcription. However, the folding of quadruplexes in promoters is favored
by an accessible chromatin state but does not necessarily require active transcription. In
fact, quadruplexes act as genomic features that enable the recruitment of Polymerase II to
promoters [22]. Altogether this evidence suggests that quadruplexes are involved in the
regulation of different biological pathways such as replication, transcription, translation,
and genome instability [23] (Figure 2A).
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Figure 2. Quadruplex functions. (A) Schematic diagram of the multiple roles of quadruplexes in several cellular events.

(B) Representation of antitumoral effects mediated by quadruplex ligands for cancer therapy.

In this regard, quadruplexes display key cancer-related functions [24] (Figure 2B).
Quadruplexes are linked to the control of the expression of several oncogenes and tumor
suppressors, both at the transcriptional and translational levels. In addition, quadru-
plexes participate in lengthening telomeres and induce genome instability, processes
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which are frequently altered in cancer in order to sustain limitless replication [25]. In fact,
quadruplex-containing genes are involved in all of the six hallmarks of cancer: sustaining
proliferative signaling, evading growth suppressors, resisting cell death, enabling replica-
tive immortality, inducing angiogenesis and activating invasion and metastasis [26]. The
quadruplex-containing genes related to cancer were comprehensively reviewed in our pre-
vious article [27]. In particular, DNA G4s are found in the repetitive (TTAGGG),, telomeric
sequence [28], which influences the binding of human telomerase reverse transcriptase
hTERT, which is itself responsible for telomere lengthening. Interestingly, the expression
level of the h'TERT gene is also controlled by DNA G4s [29]. Apart from their association
with telomeric function, numerous DNA G4s are harbored in the promoter regions of onco-
genes. Within this group, DNA G4s are found in several oncogenic transcription factors
and transducers, oncogenic growth factors and respective growth factor receptors. Tumor
suppressor genes also contain DNA G4 structures in their promoters [24]. Regarding RNA
G4s, they are found in telomeric repeat-containing RNA (TERRA) [30], and in the transcript
of hTERT [31], controlling telomeric functions. Moreover, UTRs of certain cancer-related
genes possess G4 sequences capable of mediating translation inhibition or activation and
interfere with microRNAs (miRNAs) binding. RNA G4s are more abundant in the 5UTR
regions of oncogenes but they are also present in 3'UTRs [32]. Furthermore, RNA G4
structures in introns affect the splicing and expression patterns of several genes [33]. RNA
G4s are found in tumorigenesis-involved noncoding RNAs, including both long noncoding
RNAs (IncRNAs) and miRNAs. In particular, a G4 folded in a mature miRNA can prevent
the miRNA from binding to its target, whilst a G4 within the pre-miRNA either positively
or negatively influences its processing and biogenesis [34]. In the same way, C-tracts form-
ing i-Motifs are found in telomeres [35] and extratelomeric regions, including the promoter
of several oncogenes and tumor suppressors [36].

In this context, quadruplex ligands have been developed and tested as tools with
which to study the complexity of quadruplexes-mediated mechanisms in carcinogenesis.
Therefore, thanks to its stabilization properties, the small molecule, pyridostatin, enabled
DNA G4 imaging in the nuclei of cells using the G4-recognizing antibody, BG4 [19]. The
same occurred for carboxypyridostatin, a stabilizing ligand targeting RNA G4s within a
cellular context [20]. Aside from being solely considered tools for improving visualization,
quadruplex ligands have emerged as potential strategies for anticancer drug discovery [37].

This study aimed to concisely review the most recent advances in quadruplex targeting
in antitumoral therapy. Given that the field of quadruplexes is continuously developing,
we cover the current state of the art of quadruplex ligands in cancer research. Finally,
we highlight the critical questions that remain to be addressed in the promising “era of
quadruplexes”. Moreover, previous reviews separately focus on DNA G4, RNA G4 and
i-Motif ligands in cancer. To the best of our knowledge, the present review is the first to
bring together these quadruplex ligands, all of which are relevant for cancer therapeutics.

2. Quadruplex Ligands

Enormous efforts are being made to target quadruplexes as a therapeutic approach
given their profound implication in carcinogenesis [37]. Ligands are chemical compounds
that specifically bind to and stabilize the structure of quadruplexes. Without this mecha-
nism, quadruplexes would unfold immediately after their formation in the cell as a result
of helicases [38]. Quadruplexes provide recognition sites for ligands since different quadru-
plex structures adopt specific conformations (Figure 3). Binders generally have an aromatic
surface for 7— stacking interactions with quadruplexes, a positive charge or basic groups
to selectively bind to the loops or grooves of the quadruplex, and a steric bulk to prevent
intercalation with double-stranded DNA [39].
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Figure 3. Quadruplex ligands with different binding modes. (A) NMR structure from different rotation angles of human
C-MYC G4 (TGAGGGTGGGTAGGGTGGGTAA) bound to a carbazole derivative (Protein Data Bank: 6]J]J0). (B) NMR
structure from different rotation angles of the same human C-MYC G4 than (A) bound to a benzofuran-containing compound

(Protein Data Bank: 5W77).

To date, an arsenal of around 1000 small molecules that target quadruplexes has been
reported. In the section below, quadruplex ligands with an anticancer effect are summarized.
Furthermore, the respective timeline is shown in Figure 4. To note, this timeline shows the
year in which the compounds were first described as quadruplex interactive ligands (not
when they were firstly synthesized or discovered). The majority of ligands have emerged
in recent years. As a result of the extensive panel of existing ligands and the huge variety of
in vitro experiments described in the literature, only the most relevant concluding remarks
are included.

2.1. DNA G4 Ligands

Herein we review the plethora of existing small molecules targeting DNA G4s, from
classical ligands to the most recently discovered and selective binders, through the main
chemo-families (Table 1).
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First described as DNA G4 ligand
First described as RNA G4 ligand
First described as i-Motif ligand
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Figure 4. Timeline for quadruplex interactive ligands. Timeline showing the year in which the small-molecule compounds were first described as quadruplex interactive ligands

ligands are in black, RNA G4 ligands are in red and i-Motif ligands are in green.
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Table 1. DNA Gé4-interacting ligands reported to exhibit antitumoral effect and their targets. Ligands that have been

demonstrated to possess antitumoral activity in vivo are marked with an asterisk.

Ligand Target Effect
Adriamycin * Tel [40] Telomere dysfunction
APTO-253 * ¢-KIT [41]; e-MYC [41]; Tel [41] Inhibition of oncogene transcription and telomere dysfunction
Benzo[a]phenoxazines ¢-KIT [42]; Tel [43] Inhibition of oncogene transcription and telomere dysfunction
Benzofuran c-MYC [44] Inhibition of oncogene transcription
Berberine * ¢-KIT [45]; k-RAS [46]; Tel [47] Inhibition of oncogene transcription and telomere dysfunction
BRACO-19* Tel [48] Telomere dysfunction
BTC-f Tel [49] Telomere dysfunction
BZT-Indolium c-MYC [50] Inhibition of oncogene transcription
Carbazole TO BCL2 [51] Inhibition of oncogene transcription
Cepharanthine STAT3 [52] Inhibition of oncogene transcription
cIKP-PIP c-MYC [53] Inhibition of oncogene transcription
Co- and Pd-porphyrins * k-RAS [54] Inhibition of oncogene transcription
CX-3543 * Pan-binder [55] Inhibition of oncogene transcription
CX-5461 * Pan-binder [55] Inhibition of oncogene transcription
C-3 c-MYC [56] Inhibition of oncogene transcription
C8 k-RAS [57] Inhibition of oncogene transcription
C-19 k-RAS [58] Inhibition of oncogene transcription
Diquinolinyl-pyridines ¢-KIT [59]; c-MYC [60] Tel [59] Inhibition of oncogene transcription and telomere dysfunction
. DISUbStImt?d Tel [61] Telomere dysfunction
amidoanthraquinones
DIZ-3 Tel [62] Telomere dysfunction
DTE Tel [63] Telomere dysfunction
Epirubicin * Tel [64] Telomere dysfunction
Furopyridazinones BCL2 [65] Inhibition of oncogene transcription
GQC-05 c-MYC [66] Inhibition of oncogene transcription
GSA1129 PDGFRb [67] Inhibition of oncogene transcription
dGTC365 hTERT [68] Telomere dysfunction
Indoloquinolines * c-KIT [6%]32 Eg/i}/glz[é%]’[;lffls [691; Inhibition of oncogene transcription and telomere dysfunction
Isoalloxazines ¢-KIT [72] Inhibition of oncogene transcription
17zCZ-3* c-MYC [73] Inhibition of oncogene transcription
1ZNP-1 Tel [74] Telomere dysfunction
Liensinine * FGFR2 [75] Inhibition of oncogene transcription
Mitoxantrone * Tel [76]; WT1 [77] Inhibition of oncogene transcription and telomere dysfunction
m-TMPipEOPP Tel [78] Telomere dysfunction

Naphthalene diimides *

Ni-M
Ni-P
Nitidine *
Oxazole telomestatins
PBP2
Phenanthrolines
Phen-DC3
PM2
Porphyrin- photosensitizer
Prolinamide-
peptidomimetic
Pyridostatin *
QON-1
Quercetin *
Quinazolines
RHPS4 *
Ru-Schiff

BCL2 [79]; ¢-KIT [80]; MDM2 [81];
Ribosomal DNA [82]; Tel [83]
Tel [84]

Tel [85]
k-RAS [73]

Tel [86,87]

BCL2 [88]
¢-KIT [89]; c-MYC [89]; Tel [90]
c-MYC [91]; Tel [92]
VEGF [93]
k-RAS [94]

BCL2 [95]; c-MYC [95]

Pan-binder [19]
c-MYC [96]
Tel [97]
¢-KIT [98]; -MYC [99]; RET [100]
Tel [101]
Tel [102]

Inhibition of oncogene transcription and telomere dysfunction

Telomere dysfunction
Telomere dysfunction
Inhibition of oncogene transcription
Telomere dysfunction
Inhibition of oncogene transcription
Inhibition of oncogene transcription and telomere dysfunction
Inhibition of oncogene transcription and telomere dysfunction
Inhibition of oncogene transcription
Inhibition of oncogene transcription

Inhibition of oncogene transcription

Inhibition of oncogene transcription
Inhibition of oncogene transcription
Telomere dysfunction
Inhibition of oncogene transcription
Telomere dysfunction
Telomere dysfunction
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Ligand Target Effect
Se2SAP VEGF [103] Inhibition of oncogene transcription
Schizocommunins * Tel [104] Telomere dysfunction
Stiff-stilbenes Tel [105] Telomere dysfunction
54-5 c-MYC [106]; Tel [106] Inhibition of oncogene transcription and telomere dysfunction
Telomestatin * ¢-MYB [107]; Tel [108] Inhibition of oncogene transcription and telomere dysfunction
TH3 c-MYC [109] Inhibition of oncogene transcription
BCL2 [110]; c-MYC [111]; k-RAS
TMPyP4 * [112]; PDGFa [113]; Tel [114]; VEGF  Inhibition of oncogene transcription and telomere dysfunction
[115]
Topotecan * c-MYB [116] Inhibition of oncogene transcription
Tz1 c-MYC [117] Inhibition of oncogene transcription
VEGEq oligo VEGF [118] Inhibition of oncogene transcription
(Zn)TCPPSpm4 Tel [119] Telomere dysfunction
20A * ¢-KIT [120], k-RAS [120], Tel [120] Inhibition of oncogene transcription and telomere dysfunction
4,5-diazafluorenes Tel [121] Telomere dysfunction
A-Ru Tel [122] Telomere dysfunction

2.1.1. Classical G4 Ligands

Disubstituted amidoanthraquinones were the first G4 ligands to be reported. These
interactive agents tightly bind to telomeric G4s and block the telomerase RNA activity
by disrupting the base-pairing between G-overhang and the enzyme [61]. One year later,
the cationic porphyrin TMPyP4 emerged. TMPyP4 is traditionally known for inducing
telomerase inhibition upon binding to telomeric G4s [114]. Broader targets include G4s in
oncogenes such as: c-MYC transcription factor [111], VEGF vascular endothelial growth
factor [115], PDGFa platelet derived growth factor [113], k-RAS, the GTP-binding protein
involved in transduction [112], and BCL2 mitochondrial protein, which regulates apop-
tosis [110]. However, a major hurdle in the development of TMPyP4 as a G4 ligand is
its ability to also bind to duplex DNA [123] and triplex DNA [124]. The naturally occur-
ring antibiotic alkaloid derived from Chinese herbal medicine, berberine, along with its
derivatives, bind to DNA G4s and inhibit telomere elongation [47,56]. Interestingly, epiber-
berin was the first molecule to be reported that specifically recognized the hybrid-2 form,
one of the telomeric G4 conformations, and was capable of converting other telomeric
G4 forms to hybrid-2 [125]. In addition, berberine can form complexes with G4 k-RAS
promoter in a molecular ratio of 1:1 [46]. Moreover, berberine can be encapsulated by
a modified b-cyclodextrin, exhibiting a significantly stronger binding to the G4 of the
tyrosine kinase receptor ¢-KIT [45]. Another natural product, telomestatin, isolated from
Streptomyces anulatus, was considered a potent telomerase inhibitor due to its ability to
facilitate the formation of G4 structures, and thereby sequestering the single-stranded
(TTAGGG), telomeric primer molecules required for telomerase activity [108]. More re-
cently, the (S)-telomestatin stereoisomer was shown to be a potent telomeric G4 binder
and telomerase inhibitor [126]. Apart from G4s in telomeres, the transition of duplex to a
non-B DNA conformation within the promoter region of the transcription factor c-MYB
is induced by telomestatin [107]. The synthetic pentacyclic acridine RHPS4 also acts as
a potent inhibitor of human telomerase on the submicromolar range through the stabi-
lization of G4s formed by telomeric DNA in vitro [101]. Since its therapeutic potency is
compromised by off-target effects on cardiovascular physiology, novel RHPS4-derivative
ligands with improved toxicological profiles and telomere-targeting activities have been
developed [127]. Bisquinolinium compounds, such as synthetic Phen-DC3, exhibit an
exceptional affinity and selectivity for DNA G4s in human telomeric repeats over DNA
duplexes [92] and form complexes with intramolecular G4s derived from the c-MYC pro-
moter [91]. Moreover, pyridostatin is a synthetic small molecule that binds and stabilizes
telomeric G4s leading to an alteration of shelterin complex integrity and the activation
of DNA damage response [128]. Nevertheless, further studies indicate that, at low con-
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centrations, pyridostatin predominantly interacts with non telomeric DNA loci, including
several oncogenes, before targeting telomeres at higher doses [129]. As a result of its pan-
quadruplex binding ability, pyridostatin has been used to broadly promote G4 formation in
high-throughput sequencing of DNA G4 structures [130]. The 3,6,9-trisubstituted acridine
compound, BRACO-19, was the first rationally designed ligand whose biological activity
was partially restricted to G4-telomere targeting and interference with the capping and
catalytic functions of telomerase [48].

Subsequently, some of these synthetic ligands have entered clinical trials (Figure 5).
(X-3543, also named quarfloxin, is a fluoroquinolone that was originally designed to target
the G4 found in the c-MYC promoter [131]. Further studies demonstrate that CX-3543 also
interacts with a G4 found in ribosomal DNA and disrupts the binding between these G4s
and nucleolin complexes in the nucleolus, thereby inhibiting ribosome biogenesis [132].
Although CX-3543 passed phase Il trials as a candidate therapeutic agent against several
tumors, phase III trials were not completed because of its high binding to albumin. Another
fluoroquinolone, CX-5461, was found to selectively inhibit ribosomal RNA synthesis by
reducing the binding affinity of the SL1 pre-initiation complex and RNA polymerase
I complex to the ribosomal DNA promoter [133]. Very recently, it was shown that SL1
recruitment to ribosomal DNA is performed in a G4-dependent manner and CX-5461 traps
such G4 structures, interfering with SL1 DNA binding activity [134]. Similar to CX-3543,
CX-5461 selectively binds and stabilizes a broad spectrum of G4 structures, including those
harbored in c-MYC, ¢-KIT, and telomeres [55]. Notably, CX-5461 is currently in phase I
clinical trials for patients with BRCA1/2 deficient tumors, constituting the most advanced
G4 ligand in the clinics at the moment.
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Figure 5. Chemical structure of quadruplex ligands used in clinical trials. CX-3543 and CX-5461
are included.

2.1.2. Chemo-Families of G4 Ligands

Many G4 ligands have characteristic cores that can be chemically modified, rendering
various analogues whose therapeutic activity in cancer is being investigated (Figure 6).
During the last decade, extensive research efforts identified naphthalene diimides (NDIs)
as favored chemotypes for G4 binding due to their high target affinity and potential for
chemical variability. NDIs were originally reported to bind to telomeric G4s resulting in
telomerase inhibition [83], although they display a lower specificity for telomere targeting
as compared to RHPS4 [135]. However, after easily tunable synthesis, NDIs were able to
target several oncogene promoters, for example c-KIT [80,136] and BCL2 [79]. A recent study
further demonstrated that NDI derivatives stabilize the G4 formed in the promoter regions
of c-KIT and BCL2 leading to the suppression of their respective protein expression and
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thus, interfering with their oncogenic signaling pathways [137]. In addition, another NDI
derivative binds to G4s in MDM?2 oncogene, which is a master regulator of TP53, reducing
MDM2 transcription. Such an approach could be used to defeat all tumors in which the
restoration of wild-type TP53 is sought [81]. Recently, our research group unveiled G4s
in ribosomal DNA as new targets for NDIs [82]. Various NDIs, such as MM41 [138] and
CMO03 [139] demonstrated promising results in cancer therapeutics in vivo. Importantly,
CMO03 has potential for clinical use in the treatment of drug-resistant cancer. In particular,
gemcitabine-resistant cancer cell lines demonstrate sensitivity to CM03 in the nanomolar
range because the pattern of pathways downregulated by CM03 is largely unaffected in the
gemcitabine-resistant line [140]. On the other hand, phenanthroline derivatives, originally
used as duplex DNA-intercalating agents, have been modified to behave as telomeric
G4-stabilizing ligands [90] and to induce the formation of a telomeric G4 antiparallel
structure [60]. Aside from telomeres, phenanthrolines exhibit high selectivity for G4 DNA
present in the promoter of c-KIT and c-MYC [89]. Inspired by the structure of the natural
G4 ligand telomestatin, new insights were utilized in the synthesis of oxazole telomestatin
derivatives (OTD), including L2H2-60TD [86] and L1H1-7OTD [87], which are powerful
scaffolds for stabilizing telomeric antiparallel G4s. Benzo[a]phenoxazine (BPO) derivatives
have also been identified as new G4 binding molecules with a higher affinity for c-KIT,
inhibiting its transcriptional expression [42]. Another benzo[a]phenoxazine, cresyl violet,
demonstrates stronger binding activity to the (3+1) hybrid G4 structure formed by the
human telomeric sequence as compared to the antiparallel one [43]. Quinazoline and
its derivatives, which are building blocks for natural alkaloids, were reported to bind
more selectively to c-KIT G4s than to duplex DNA [98]. However, in a more recent study,
these compounds efficiently stabilized G4s of different topologies with a very strong
preference for the well-characterized parallel c-MYC G4 [99]. Accordingly, the derivative
NSC194598 was found to be a G4 interactive agent that interferes with transcriptional
activation of the mutated RET gene in cancer, encoding a receptor-type tyrosine kinase [100].
Other naturally occurring alkaloids, indoloquinoline (IQ) derivatives, target G4s at the
telomeres and oncogenic promoters, suggesting an inter-G4 selectivity trend: telomeric ~ k-
RAS > c-KIT [69]. In fact, these compounds are considered to be potent and selective
k-RAS G4 stabilizers, that preferentially target the mutant form of k-RAS [141]. The rational
selection of ligand side chains is crucial for enhancing the affinity or selectivity of 1Q
derivatives [142]. In this regard, methylated IQ derivatives exhibit a high affinity for the
parallel c-MYC G4 in the submicromolar range, with a topology-selective binding and
an excellent discrimination against the antiparallel telomeric G4 [70]. Moreover, another
quindoline derivative, SYUIQ-05, interacts with the VEGF promoter, stabilizing its G4,
thus downregulating its transcription and exhibiting a strong antiangiogenic activity [71].
Within the family of anthraquinone derivatives, mitoxantrone, is currently used in clinics
for cancer treatment in combination with other drugs. Interestingly, recent studies revealed
a new role for mitoxantrone in G4-dependent telomerase inhibition [76]. Additionally;,
mitoxantrone was shown to have potential in stabilizing G4s in the gene promoter of WT1,
a zinc-finger transcription factor, downregulating its transcription [77].

2.1.3. Selective G4 Ligands

Over the last decade, attention has been focused on the development of G4 binders
with selective recognition. Firstly, we would like to note that the majority of ligands have
not been evaluated in large panels of quadruplexes or across the human genome. In this
regard, many of the ligands described in this section are rather promiscuous. Selectivity is
further discussed in the Discussion section.
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Figure 6. Chemical structure of the main chemo-families of G4 ligands. Anthraquinones, Benzo[a]phenoxazines, Indolo-
quinolines, Naphtahlene diimides, Phenantrolines, Quinazolines and Telomestatin derivatives are shown.

Initially, research studies were focused on small molecules with G4-depending telom-
erase inhibitory activity in telomerase-positive tumor cells. Spermine-derivatized tentacle
porphyrins, including TCPPSpm4 and its Zn (II) derivative (ZnTCPPSpm4), stabilize telom-
eric G4 with high stoichiometry and point-to-end stacking or porphyrin self-association as
major binding modes [119]. In addition, 4,5-diazafluorenes [121] and stiff-stilbenes [105]
emerged as new G4-binding chemotypes displaying selectivity for telomeric G4. The natu-
ral compound quercetin even interacts with telomeric G4 in acidic conditions [97]. Novel
derivatives of Schizocommunin, an alkaloid from a fungal source, have been also designed for
telomeric G4 targeting [104]. Anticancer drugs, such as epirubicin [64] and adriamycin [40]
bind as monomers to telomeric G4 with a high affinity. Interestingly, various telomeric
G4 ligands have been shown to discriminate between dimeric and monomeric forms
of G4s. For instance, the cationic porphyrin derivative m-TMPipEOPP [78], the triaryl-
substituted imidazole derivative IZNP-1 [74] and aryl-substituted imidazole DIZ-3 [62]
exhibited a highly specific multimeric interaction. Moreover, it is increasingly clear that
chiral complexes present a significant enantioselectivity [143]. Metallo-supramolecular Ni-
P complexes display selectivity in stabilizing monomeric G4s [85], whilst Ni-M complexes
bind to higher-order G4s [84]. A-enantiomer of ruthenium complexes can also selectively
stabilize human telomeric G4 [122]. Other Ruthenium (II) Schiff base complexes exhibit
telomeric G4 targeting and photo-induce cancer cell death with low cytotoxicity in the
dark [102]. Recently, G4s served as targets for photopharmacological strategies for the first
time. In this regard, a dithienylethene (DTE) ligand demonstrated selectivity for telomeric
G4 with a cytotoxic activity modulated according to its photoisomeric state [63].

The identification of compounds that selectively bind to c-MYC G4 has been a pri-
ority, as c-MYC was long considered undruggable. An ellipticine analog, GQC-05, was
the first-in-class c-MYC selective ligand. GQC-05 alters protein binding to the NHE III;
region within its promoter and decreases c-MYC mRNA, in agreement with a G4 stabiliz-
ing action [66]. In fact, GQC-05 synergizes with Navitoclax to induce cytotoxicity [144].
Following that, several ligands were rationally designed with the aim of c-MYC G4-specific
recognition and downregulation. Among them, the bis-triazolyl carbazole ligand BTC-
£ [49], the cell penetrating thiazole peptide TH3 [109], the four-leaf clover-like ligand known
as IZCZ-3 [73] and the difluoro-substituted quinoxaline QN-1 [96] have been described.
Hybrid molecules with dual DNA-binding components (cIKP-PIP) were also designed for
reading out the adjacent local duplex DNA sequence [53]. In addition, BZT-Indolium is
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a fluorescent and photostable probe that is highly specific for c-MYC G4. BZT-Indolium
downregulates c-MYC transcription and can be used for in vitro staining and live cell
imaging [50]. Recent strategies to identify new c-MYC G4 ligands include high-throughput
screenings. For instance, in a microarray screen of 20,000 small molecules using fluores-
cently labeled c-MYC G4, a novel c-MYC G4-binding benzofuran scaffold compound was
successfully identified [44]. Through affinity selection-mass spectrometry, a library of
50,000 compounds that were previously shown as inhibitors of c-MYC transcription was
screened. The results demonstrated that only one ligand (compound 3) functions through
c-MYC G4 binding [145]. Other strategies use gold-coated magnetic nanoparticles to as-
semble c-MYC G4. These nanotemplates facilitate the regioselective formation of triazole
products such as Tz1, a high-affinity c-MYC G4 ligand [117].

Exploring the impact of k-RAS ligands on RAS-driven tumors also gained immediate
interest. Since TMPyP4 and many of its derivatives suffer from inadequate selectivity,
new porphyrin derivatives were designed to discriminate between different G4 topolo-
gies, with a preference for the parallel over the antiparallel conformation. In particular,
porphyrin-1 (cobalt containing) and porphyrin-2 (palladium containing) [54], were shown
to demonstrate high affinity towards k-RAS promoter G4. Furthermore, a porphyrin-based
photosensitizer showed preferential binding to the 3’-end of k-RAS G4 [94]. The fluorescent
light-up acridine orange C8 also binds and stabilizes k-RAS G4 with modest specificity over
duplex DNA [57]. A new chemotype, compound 19, displayed a high affinity for k-RAS
G4, with a 1:1 stoichiometry ratio and a remarkable selectivity against duplex DNA. It was
also shown to inhibit the transcription of the k-RAS driver oncogene which had been long
considered undruggable [58].

Increasing interest has also been directed towards VEGF G4 ligands as antimetastatic
therapies. Se2SAP, a core-modified expanded porphyrin analogue with significantly re-
duced photoreactivity and increased effectivity in G4-binding as compared with TMPyP4,
was the first selective VEGF G4 binding compound identified [103]. PM2, a perylene
derivative, was demonstrated to be an effective antiangiogenic agent preferentially induc-
ing VEGF intramolecular G4 formation [93]. Lastly, an oligonucleotide named as VEGFq
was tested. It contains the 36 nt G-rich sequence capable of forming G4 in the VEGF pro-
moter. VEGFq binds specifically to the C-rich strand, via strand invasion, stabilizing the
G4 structure formed by the genomic G-rich sequence, resulting in VEGF transcriptional
inhibition [118].

Other G4 ligands targeting “unique” oncogenic promoters have also emerged. An
example is carbazole TO, a fluorescent probe that preferentially targets BCL2 G4, whose
fluorescence intensity is greatly enhanced in the presence of BCL2 G4 [51]. Moreover, two
furopyridazinone derivatives effectively bind to BCL2 G4 with a good selectivity and inhibit
BCL2 gene transcription [65]. Topotecan was found to display a high binding affinity to
c-MYB in vitro and effectively affects its transcription [116]. Isoalloxazines show selective
binding to c-KIT G4 and provide a proof of concept for the inhibition of c-KIT transcrip-
tion [72]. A small drug-like pharmacological chaperone molecule, GTC365, partially directs
the correct hTERT G4 folding pathway, reducing hTERT activity through its transcriptional
repression [68]. The ellipticine analog, GSA1129, selectively targets the 3'-end PDGFRb
G4, to favor its structure and downregulates the transcription of this growth factor recep-
tor [67]. The natural alkaloid liensinine demonstrates high affinity and selectivity for the
G4 formed in the promoter of the growth factor receptor FGFR?2, inhibiting its activity [75].
Furthermore, cepharanthine, a nonplanar molecule derived from the Chinese herb Stepha-
nia cepharantha, was found to recognize and stabilize the G4 in the 3'-flanking region of the
signal transducer STAT3, downregulating its transcription [52].

In contrast, other novel ligands were reported to be selective compounds interacting
not only with a unique G4, but also with a narrow-spectrum of G4s. Among them, new
substituted diquinolinyl-pyridine ligands show a preference for the parallel conformation
of telomeric, c-MYC and c-KIT G4s [59]. The same selectivity pattern was confirmed for
APTO-253, a phenanthroline derivative that is in phase I clinical trials for the treatment of



Cancers 2021, 13, 3156 13 of 25

acute myeloid leukemia [41]. 54-5, a furobenzoxazine naphthoquinone, behaves as a multi-
target ligand with ability to bind to both telomeric and c-MYC extratelomeric structures
with promising biological results [106]. The triarylpyridine 20A is another example of
ligand shown to affect multiple G4s including telomeric, c-KIT and k-RAS [120]. Lastly, a
prolinamide-derived peptidomimetic molecule triggers cell death by synthetic lethality
thanks to the simultaneous inhibition of the transcription of c-MYC and BCL2 genes through
their respective promoter G4s [95].

2.2. RNA G4 Ligands

As described in the Background Section, increasing evidence suggests that UTRs,
coding sequences, and splicing sites of cancer-relevant genes contain putative RNA G4s,
which can be targeted. In addition, RNA G4s play important roles associated with telomeric
function. For example, TMPyP4 binds to a TERRA G4 dimer, intercalating into the 5'-5’
stacking interface of two G4s blocks with a binding stoichiometry of 1:1 [146]. Hereafter,
we compile the published information regarding compounds identified as RNA G4 ligands
targeting 5'UTR, splicing sites and miRNAs of relevance in cancer (Table 2).

Table 2. RNA G4-interacting ligands reported to exhibit antitumoral effect and their targets. Ligands that have been
demonstrated to possess antitumoral activity in vivo are marked with an asterisk.

Ligand Target Effect
k-RAS [147]; n-RAS [147]

Alkyl porphyrins * Inhibition of oncogene translation

Anthrafurandione k-RAS [148] Inhibition of oncogene translation
Bisquinoliniums BAG1 [149]; pre-miRNA149 [150]; Inhibition of oncogene translation and alteration of
TRF2 [151] miRNA biogenesis
Carboxypyridostatin BAGI [149] Inhibition of oncogene translation
Cephaeline Pan-binder [152] Inhibition of oncogene translation
C-12459 KWTERT [31] Telomere dysfunction
C-14 ADAMI0 [153] Inhibition of oncogene translation
Emetine * Pan-binder [152] Inhibition of oncogene translation
GQC-05 BCLX [154] Inhibition of oncogene translation
Jatrorrhizines miRNA-1587 [155] Alteration of miRNA targeting
LNA pre-miRNA-92b [156] Alteration of miRNA biogenesis
Pyridostatin * EWSRI1 [157]; HNF4a [158] Inhibition of oncogene translation
Quinazolines * VEGF [159] Inhibition of oncogene translation
Quindolines n-RAS [160] Inhibition of oncogene translation
RGB-1 n-RAS [161] Inhibition of oncogene translation
RR82 and RR110 n-RAS [162] Inhibition of oncogene translation
Sanguinarine * miRNA-3620-5p [163] Alteration of miRNA targeting
TMPyP4 * miRNA-149 [164]; miRNA-1587 [165]; Alteration of miRNA targeting and
TERRA [146] telomere dysfunction
TMPyP4-C14 k-RAS [166] Inhibition of oncogene translation
ZnAPC n-RAS [167] Inhibition of oncogene translation

2.2.1. 5’UTR G4 Ligands

The discovery of RNA G4s in the 5UTRs of numerous genes led to the proposal
that such RNA motifs could be suitable targets for small molecules to modulate mRNA
translation. The two quinolinium derivatives, RR82 and RR110, considerably reduced the
translational efficiency of the n-RAS 5'UTR [162]. After them, several compounds with
this ability were discovered. Both a polyaromatic molecule, RGB-1 [161], and a novel
p-(methylthio)styryl-substituted quindoline derivative [160], stabilize n-RAS G4 and sub-
sequently repress n-RAS translation. An anionic phthalocyanine, ZnAPC, is another G4
ligand that even binds to n-RAS in the presence of abundant RNA in mammalian cells,
resulting in selective cleavage of the targeted G4 upon photo-irradiation [167]. In addition
to n-RAS, its k-RAS counterpart is also targeted by specific G4 ligands. In this regard, the
alkyl derivative of TMPyP4 (TMPyP4-C14), binds to G4s in the 5UTR of k-RAS mRNA



Cancers 2021, 13, 3156

14 of 25

and, upon photoactivation, selectively induces mRNA degradation, resulting in k-RAS
protein downregulation by approximately 90% [166]. A biotin-streptavidin pull-down
assay identified an anthrafurandione as a potent binder for G4s in the 5UTR of k-RAS
transcript, repressing its translation in a dose-dependent manner [148]. In a multitarget
strategy attempt, alkyl cationic porphyrins were reported to penetrate the cell membrane
and bind to k-RAS and n-RAS mRNAs, while generating reactive oxygen species upon
photoirradiation and finally downregulating both k-RAS and n-RAS expression. There-
fore, these alkyl porphyrins are efficient photosensitizers for the photodynamic therapy
of RAS-driven cancers [147]. Beyond RAS, G4 targeting of other cancer-relevant genes is
increasingly required. Three bisquinolinium compounds (360A, Phen-DC3 and Phen-DC6)
selectively bind to the telomere shelterin protein TRF2 G4, inhibiting its protein expression
in a cellular context [151]. A quinazoline derivative exhibits a significant and specific inter-
action with the G4 in VEGFa 5'UTR, downregulating VEGFa translation and significantly
impeding tumoral cell migration [159]. A series of new methylquinolinium derivatives
have been synthesized and among them, C-24 showed selective affinity for the G4 har-
bored in the metalloproteinase ADAM10 5'UTR, strongly upregulating its translation [153].
Moreover, pyridostatin specifically potentiates the translational suppressing effect of the
G4 located at 5’UTR of the nuclear factor HNF4a [158]. A G4 located at the 5’end of the
antiapoptotic cochaperone BAGI 5'UTR is stabilized by small-molecule ligands such as
carboxypyridostatin and Phen-DC3, which reduce the expression of endogenous BAG1
isoforms [149].

2.2.2. Splicing Site G4 Ligands

G4s are also present at RNA splicing sites, which reveals a novel and significant
role in regulating alternative splicing and expression patterns, and thus, makes them a
possible target for antitumoral G4 ligands. For example, the ellipticine GQC-05, antagonizes
the major 5’ splicing site of BCLX gene, inhibiting the expression of its antiapoptotic
isoform, activating the alternative 5" splicing site, and expressing a proapoptotic isoform.
Apparently, these effects are due to specific interactions between GQC-05 and G4s on
BCLX pre-mRNA [154]. The aforementioned small molecule, pyridostatin, also binds to
G4s in the pre-mRNA of the EWSRI protein involved in sarcoma translocations, blocking
its interaction with the RNA-binding protein HNRNPH1 and regulating its splicing [157].
Similarly, C-12459 induces an alteration of the h'TERT splicing pattern, causing the almost
complete disappearance of the active transcript and an overexpression of the inactive
transcript [31]. In addition, a high-throughput screen identified emetine and its analog,
cephaeline, as small molecules that disrupt G4s, resulting in the inhibition of G4-dependent
alternative splicing in a genome-wide manner [152].

2.2.3. miRNA G4 Ligands

Recent efforts have focused on the development of ligands targeting miRNAs as-
sociated with cancer pathways, as they would allow for the simultaneous regulation of
multiple mRNAs involved in carcinogenesis. Various well-known G4 binders were reported
to target several miRNAs of relevance in cancer. In this way, TMPyP4 stabilizes G4s in
miRNA-1587 [165] and miRNA-149 [164] and Phen-DC3 interacts with pre-miRNA-149 [150].
Moreover, two synthesized jatrorrhizine derivatives with terminal amine groups induce
the dimerization of miRNA-1587 G4 forming 1:1 and 2:1 complexes with the dimeric G4,
although the derived effect has not yet been studied [155]. Interestingly for TP53-driven
tumors, sanguinarine was revealed as a high affinity binder with stabilization effects
on the miRNA-3620-5p G4, blocking the base-pairing of miRNA-3620-5p with its target
sequence [163]. Moreover, a strategy based on rationally designed locked nucleic acid
(LNA) emerged for miRNA targeting. An LNA was designed to bind specifically to the G4
conformation of pre-miRNA-92b and was shown to inhibit its maturation. Consequently,
LNA treatment rescues PTEN expression, which is suppressed by the elevated level of
miRNA-92b in cancer [156].
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2.3. I-Motif Ligands

While there are hundreds of ligands that interact with DNA and RNA G4s, there are
very few compounds that target i-Motifs. Several ligands act as dual i-Motif/G4-interactive
compounds. Thus, we would like to highlight the importance of evaluating their behavior
towards the i-Motif counterpart, when studying G4-targeting compounds. In this section,
DNA i-Motif ligands that were reported to exert antitumoral activity are grouped based on
telomeric or extratelomeric targeting (Table 3).

Table 3. I-Motif-interacting ligands reported to exhibit antitumoral effect and their targets. Ligands that have been
demonstrated to possess antitumoral activity in vivo are marked with an asterisk.

Ligand Target Effect
Berberine * Tel [168] Telomere dysfunction
BRACO-19* Tel [168] Telomere dysfunction
B19 c-MYC [169] Inhibition of oncogene transcription
C343 Pan-binder [170] Inhibition of oncogene transcription
Fisetin VEGF [171] Inhibition of oncogene transcription
Flavonoids BCL2 [172] Inhibition of oncogene transcription
IMC-48 * BCL2[173] Inhibition of oncogene transcription
iM nanoparticles BCL2 [174]); c-MYC [174] Inhibition of oncogene transcription
L2H2-40TD Tel [175] Telomere dysfunction
Mitoxantrone * Tel [168] Telomere dysfunction
Nitidine * k-RAS [176] Inhibition of oncogene transcription
NSC309874 PDGFRbU [67] Inhibition of oncogene transcription
PBP1 BCL2 [88] Inhibition of oncogene transcription
Phenanthrolines Tel [177] Telomere dysfunction
Phen-DC3 Tel [168] Telomere dysfunction
Pyridostatin * Tel [168] Telomere dysfunction
RHPS4 * Tel [168] Telomere dysfunction
SWNTs * Tel [178] Telomere dysfunction

Inhibition of oncogene transcription and

TMPyP4 * Tel [179]; SMARCA4 [180] telomere dysfunction

2.3.1. Telomeric i-Motif Ligands

The first study of a small molecule binding to an i-Motif was reported for TMPyP4,
which promotes the formation of the telomeric i-Motif. This study raised the intriguing
possibility that TMPyP4 triggers the formation of non-B DNA structures in both strands
of the telomeres through a nonintercalative mechanism [179]. The drug mitoxantrone and
some analogues bind to telomeric and c-MYC i-Motif forming sequences, even at physio-
logical pHs [181]. The interaction of well-known G4 ligands, such as berberine, BRACO-19,
mitoxantrone, Phen-DC3, pyridostatin and RHPS4, with the i-Motif-forming sequence on
telomeric DNA has also been confirmed [168]. Apart from these dual telomeric G4 and
i-Motif binders, various compounds have been revealed to interact exclusively with i-Motif
in telomeres. Single-walled carbon nanotubes (SWINTs) were the first nanodevice capable of
inhibiting DNA duplex association and selectively, thus inducing human telomeric i-Motif
formation by binding to the 5-end major groove [178,182]. In addition, phenanthroline
derivatives can stabilize the structure of the human telomeric i-Motif [177]. The cyclic
tetraoxazole compound (L2H2-40TD) is the most recent compound to be characterized as
a telomeric i-Motif ligand with two molecules binding cooperatively [175].

2.3.2. Extratelomeric i-Motif Ligands

The model ligand TMPyP4 also targets the i-Motif found in the chromatin remod-
eler SMARCA4, causing its destabilization [180]. To date, several BCL2 i-Motif ligands
have been discovered. The first one was a cholestane derivative, compound NSC138948
(IMC-48). IMC-48 traps out the BCL2 i-Motif, shifting the equilibrium of secondary DNA
structures and causing transcriptional overexpression of BCL2 [173]. Additionally, three
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natural flavonoids (P1, P5 and P6) exhibit a clear affinity for BCL2 i-Motif binding at a
1:1 stoichiometry [172]. Enantioselectivity is also important for i-Motif targeting as is the
case for the peptidomimetic ligands PBP1 and PBP2. The para-isomer PBP1 exhibits high
selectivity for the BCL2 i-Motif whilst the meta-isomer PBP2 selectively binds to BCL2 G4.
As a consequence, PBP1 upregulates and PBP2 downregulates BCL2 gene expression in
cancer cells [88]. Other oncogenic i-Motifs have gained attention for targeting. In the same
study in which the molecule GSA11129 was identified, a benzothiophene-2-carboxamide
(NSC309874) demonstrated PDGFRb i-Motif-interactive selectivity, inhibiting PDGFRb
promoter activity [67]. In this line, nitidine, a benzophenanthridine alkaloid, dissipates
the hairpin species and stabilizes the k-RAS i-Motif. However, nitidine also stabilizes the
three existing k-RAS G4s and this combined effect leads to the downregulation of k-RAS
gene expression [176]. In contrast, the acridone derivative B19 selectively stabilizes the
c-MYC promoter i-Motif without significant binding to the respective G4 and duplex DNA,
causing the downregulation of c-MYC transcription [169]. Interestingly, the plant flavonol,
fisetin, preferentially binds to the i-Motif from the VEGF promoter region with theranostic
applicability. Fisetin does not induce the stabilization of the VEGF i-Motif structure but
causes both fluorescence emission and the transformation of the i-Motif into a hairpin-like
structure; thus, it can be used to diagnose aberrant formations in i-Motifs. Furthermore,
fisetin facilitates the processivity of polymerases and this control of replication by fisetin is
therapeutically important and feasible [171]. Very recently, different i-Motif nanotemplates,
such as gold-coated magnetic nanoparticles functionalized with the ¢c-MYC and BCL2
i-Motifs, were employed to promote the metal-free synthesis of specific i-Motif ligands. In
order to generate selective ligands for i-Motifs over G4s and duplex DNAs, complementary
c-MYC and BCL2 G4s and self-complementary duplex DNA functionalized nanotemplates
have been used as control templates. Such a strategy generated cell-membrane permeable
triazole leads. In vitro studies reveal that the c-MYC i-Motif leads to the downregulation of
c-MYC gene expression whereas the BCL2 i-Motif leads to the upregulation of BCL2 gene
expression [174]. Thus far, only one compound is considered to be a pan-i-Motif ligand:
C343, a coumarin derivative that exhibits its selectivity for i-Motif DNA over G4s and
duplexes due to its unique recognition based on hemi-protonated C-bases with negatively
charged functionality. Unlike other previously reported i-Motif ligands, C343 stands out
due to its detection versatility. It can sense various i-Motifs with different chain lengths,
sizes, molecularities, and loop lengths, including both intramolecular and intermolecular
structures [170].

3. Discussion

Cancer is a major disease that poses a serious threat to human life and health. As a
result of its complex and heterogeneous pathogenesis, there are still many challenges in
cancer therapy. Finding novel anti-tumor drugs with high selectivity and few side effects is
still the main focus of cancer research. As demonstrated in the present review, an imbalance
in quadruplex dynamics contributes to carcinogenesis, and its manipulation by quadruplex
ligands provides a novel opportunity to defeat cancer. Initial efforts were mainly focused
on targeting telomeric quadruplexes in order to inhibit telomere extension in cancer cells
using telomerase, whereas later studies attempted to transcriptionally modulate individual
cancer genes by targeting their quadruplexes. Although there is a long way to go in the
development of potent drugs, various promising lead compounds have been obtained;
however, the results have thus far been limited. Firstly, at this stage, the variety of binding
sites for these ligands and the differences in their effects on the quadruplex structures make
it difficult to unravel how quadruplexes influence biological function, i.e., whether the
stabilization or destabilization of quadruplexes promotes or inhibits gene expression. Sec-
ondly, the correlation between stabilization in vitro and cell activity is not straightforward.
In particular, a G4 target characterized in vitro may not be the sole G4 targeted in cells.
Furthermore, there is also inherent cell variability, which has an impact on the relationship
between in vitro and in vivo results. A further point to be addressed for the majority of lig-
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ands described thus far is that they are generally characterized by high-molecular weights
and protonated side chains, which may affect their cellular uptake. However, the major
limitation for the clinical application of quadruplex ligands seems to be directly related to
selectivity. In fact, the selectivity pattern of several quadruplex ligands is dose-dependent.
Although global or multiple G4 targeting approaches may be effective, targets need to
be clearly defined in advance. Other conceivable obstacles are the potential side effects
of the ligands on normal tissues. Moreover, the predictive response biomarkers need to
be identified if a personalized anticancer management is to be achieved. Nevertheless,
given the rapid accumulation of data on quadruplex structures and the related biological
functions, and the rapid development of ligands, we are confident that these limitations
can be overcome. In this regard, a wealth of new derivatives with lower cytotoxicity and
superior selectivity will emerge in the near future.

4. Conclusions

In this review, we give an overview of a range of compounds that target quadru-
plexes, including DNA G4s, RNA G4s, and i-Motifs, and discuss their limitations. The
quadruplex-mediated antitumoral effects reported herein may pave the way for cutting-
edge therapeutic approaches in the future treatment of human cancer.
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