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Abstract: Natural ventilation flux is an important variable to be measured or estimated to consider its significant effect on 

greenhouse microclimate modelling and control. It is commonly known that it can be mathematically estimated depending 

on the type and dimension of the greenhouse and its vents, and most importantly on the vents opening percentage. However, 

most of the commercial greenhouses are not equipped with an automatic vent opening system which obligates the grower to 

perform manual control, in addition to the lack of the vent position sensors, due to economic and management reasons. This 

leads to the absence of the control signal variable that represents the vents opening percentage necessary for ventilation flux 

estimation. To cope with this issue, the estimation of ventilation flux without using the vent opening percentage is proposed. 

In this paper, a virtual sensor of greenhouse ventilation flux is developed using a nonlinear autoregressive network with 

exogenous inputs based on principal component analysis using the available measured data and the evolutions of the heat 

fluxes representing the greenhouse energy balance. Preliminary results show an encouraging performance of the virtual 

sensor in estimating the ventilation flux with a mean absolute error of 0.41 m3 s-1. 

Keywords: Protected agriculture; climate modelling; natural ventilation; principal component analysis; artificial neural 

networks; virtual sensor. 

 

1. Introduction 

Nowadays, the world is witnessing serious issues with the change of climate, the increase of population and 

the lack of resources. All the countries are investigating sustainable solutions in all the domains and especially in 

agriculture. Providing food for the growing population is one of the main issues for sustainable development in 

the United Nations’ 2030 agenda [1]. To tackle the food necessity and achieve sustainable agriculture, the reliance 

on greenhouse systems is continuously increasing in the last years. Greenhouses have become a prominent mean 

in the agricultural field. They are constantly under development to reach the quantity and quality of crops that 

not only meet the world growing population but also the strict standards of the competitive markets today. 

In order to sustain the best agricultural outcome, greenhouse ventilation flux is an important variable that 

should be studied and controlled according to its vital role in influencing the crop. To measure this variable, it is 

necessary to use special anemometers as ultrasound or thermal effect-based ones but since the installation of such 

sensors is not usual due to their high costs, it can be estimated using the proposed methods in the literature. In 

[2], the authors proposed several models for ventilation flux estimation for greenhouses with continuous roof 

vents. The models were fitted to the data by identifying two model parameters: coefficient of the pressure drop 

through the vents and coefficient of wind effect. In another paper [3], an air exchange model for a Mediterranean 

greenhouse with roof and side vents was developed. It proved that there are two main driving forces of the 

natural ventilation flux which are: wind effect and temperature effect (difference between inside and outside 

temperature), furthermore, that the total ventilation flux is linearly dependent on the total area of the openings 

of vents. In [4], both of the previous techniques were more investigated and integrated into a multi-input multi-

output (MIMO) greenhouse model to estimate the ventilation flux and the obtained performance demonstrated 

their efficiency. However, the previous methods of estimating or predicting the greenhouse ventilation flux are 

all dependent on the total surface of the openings of vents. This could be considered as a problem of high 
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complexity in greenhouses where the vents opening is performed manually by growers. Manual control means 

the absence of the control signal which in turn means the lack of the exact and continuous recording of vents 

opening percentage making it impossible to estimate the ventilation flux based on the mentioned explicit methods 

in hands which makes it a serious issue. As far as we know, this problem was not investigated in the literature 

and for this reason, the present work is focused on studying new possibilities to estimate the ventilation flux in 

greenhouses using alternative techniques as artificial neural networks. 

An artificial neural network (ANN) is a machine learning algorithm inspired by the way how the human brain 

neuron network processes information. The ANN application in modelling greenhouse climate systems has been 

a subject of interest during many years. It has proven its efficiency in the literature as a very useful tool for these 

types of problems [5, 6]. An ANN type called the nonlinear autoregressive neural network with exogenous inputs 

(NARX) is used in this work. It is a recurrent dynamic network that allows relating the estimation of the output 

to the past inputs and outputs. In [7], a NARX has been used and its capability in estimating transpiration as a 

nonlinear phenomenon has been proven. 

 A useful statistical analysis tool was used for NARX modelling is the principal component analysis (PCA). It 

is the most used method for data exploration and data analysis across all fields of science. It is used with high-

dimensional data to identify a reduced set of principal components (PCs) that represent the original dataset with 

a minimal loss of information leading to a low-dimension dataset [8]. Since the ventilation flux in greenhouses is 

affected by numerous and different variables, PCA could help to identify the most influential ones. 

In this paper, a virtual sensor for greenhouse ventilation flux has been developed based on PCA-NARX 

modelling following the methodology illustrated in Figure 1. A dataset has been generated from a Mediterranean 

multi-span greenhouse located in Almería, Spain including a combination of measured microclimate variables 

 
Figure 1. The methodology for developing the PCA-NARX-based virtual sensor for greenhouse ventilation flux. 
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and the evolutions of model heat fluxes. The model heat fluxes were calculated using an adaptive air temperature 

model due to its capability of providing their optimal estimations (error of <5% between a test and another under 

the same conditions) and reliable for estimating the greenhouse ventilation flux without installing expensive 

sensors. All the obtained variables were firstly processed by: signal filtring, centralization, reduction and 

standardisation. Secondly, the treated dataset was used to generate the PCs for data reduction using PCA. These 

PCs are then considered the new inputs of the neural network. Thus, the network was trained based on the PCs 

to fit the target which is the estimated heat loss using the opening percentage of roof and side vents based on the 

pre-mentioned explicit approach [3]. Finally, the estimated heat loss flux was used to inversely calculate the 

ventilation flux representing the ultimate objective in the proposed virtual sensing method. The validation of this 

developed virtual sensor has shown very promising preliminary results. 

The rest of this paper is organized as follows. In section 2, the used methods and materials are described. 

Section 3 includes network training and validation results and their discussion. Section 4 concludes this paper. 

2. Materials and Methods 

2.1. Greenhouse description 

Studies in this work were carried out using the greenhouse presented in Figure 2. It is a polyethene-covered 

traditional Mediterranean greenhouse, known as the “Almería-type” greenhouse. It is located at “Las 

Palmerillas” Experimental Station which is a property of the Cajamar Foundation (36.79316 latitude, -2.72014 

longitude), in Almería, Spain at an altitude of 151 m. Its total surface is 877 m^2 (37.80 m x 23.20 m), and it is 

dedicated to tomato crops. The greenhouse is equipped with a natural ventilation system, including five zenithal 

windows (8.36 m × 0.73 m) that are installed on the roof of the structure and two lateral windows (32.75 m × 1.90 

m) that are situated along the north and south sidewalls of the cover. 

2.2. Adaptive estimation of greenhouse heat fluxes 

To estimate the evolutions of the greenhouse heat fluxes, an adaptive simplified model of greenhouse air 

temperature is used in this work. The structure of the model adaption method is presented in Figure 3, and it is 

 

Figure 2. Greenhouse facilities used for the experimental tests. (a) exterior view; (b) interior view with an example of a data 

acquisition device; (c) exterior view of roof vent (d) interior view of roof vent; (e) exterior view of lateral vent. 
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entirely explained in [9]. The greenhouse temperature model (see Subsection 2.2.1) is adapted to estimate the 

greenhouse heat fluxes thanks to an online parameter estimation mechanism (see Subsection 2.2.3). The online 

parameter estimator changes the values of the parameters of the heat flux equations to reduce the error between 

the predicted and the real measured air temperature inside the greenhouse. 

2.2.1. Simplified air temperature model 

A pseudo-physical model has been used in this work to obtain the evolution in time of the air temperature 

inside the greenhouse according to the following energy balance: 

𝐶𝑠𝑝ℎ 𝐶𝑑𝑒𝑛
𝐶𝑣𝑜𝑙

𝐶𝑎𝑟𝑒𝑎
 

𝑑𝑋𝑇𝑖𝑛

𝑑𝑡
= 𝑄𝑠𝑜𝑙,𝑎 + 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎 − 𝑄𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 − 𝑄𝑡𝑟𝑝,𝑐𝑟 − 𝑄𝑣𝑒𝑛,𝑎  (1) 

where 𝑋𝑇𝑖𝑛 (K) is the inside air temperature of the greenhouse, 𝑄 represent the heat fluxes (W m-2), where 𝑄𝑠𝑜𝑙,𝑎 

is the solar radiation absorbed by the air, 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎 is the convective flux with the soil surface, 𝑄𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒 is the 

convective and conduction flux (through the cover) between the inside and outside air, 𝑄𝑡𝑟𝑝,𝑐𝑟 is the latent heat 

effect due to crop transpiration, and 𝑄𝑣𝑒𝑛,𝑎 is the heat lost due to natural ventilation. 𝐶𝑠𝑝ℎ (J kg-1 K-1) is the air 

specific heat,  𝐶𝑑𝑒𝑛 (kg m-3) is the air density, 𝐶𝑣𝑜𝑙 (m3) is the greenhouse volume, and 𝐶𝑎𝑟𝑒𝑎 (m2) is the greenhouse 

surface. In the sequel, only the details of the natural ventilation heat flux are provided. A complete description of 

this model with a detailed explanation of the equations to calculate the different heat fluxes can be found in [4]. 

2.2.2. Ventilation flux model 

Since the greenhouse used in this work has lateral and roof windows, the ventilation flux 𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥 (m3 s-1) is 

estimated with the next equation: 

𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥 = 𝑐𝑣𝑒𝑛,𝑑 [(
𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑙𝑎𝑡 𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑟𝑜𝑜𝑓

√𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑙𝑎𝑡
2 +𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑟𝑜𝑜𝑓

2
 )

2

(2 𝑐𝑔 𝑐𝑣𝑒𝑛,ℎ
𝑋𝑇𝑖𝑛−𝐷𝑇𝑒

𝐷𝑇𝑒
 ) +

+ (
𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑙𝑎𝑡 𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑟𝑜𝑜𝑓

2
)

2

𝑐𝑣𝑒𝑛,𝑤𝑑  𝐷𝑤𝑠,𝑒
2 ]

0,5

+ 𝑉𝑙𝑜𝑠𝑠 , 

(2) 

where 𝐷𝑤𝑠,𝑒 (m s-1) is the external wind velocity, 𝑐𝑣𝑒𝑛,𝑑 (dimensionless) is the discharge coefficient, 𝑐𝑣𝑒𝑛,𝑤𝑑  

(dimensionless) is the wind effect coefficient, 𝑐𝑔 (m s-2) is the gravity constant, 𝑐𝑣𝑒𝑛,ℎ (m) is the vertical distance 

between the midpoints of the lateral and roof vents, and 𝑉𝑙𝑜𝑠𝑠 (m3 s-1) is the leakage when the vents are closed 

(e.g., due to filtrations through small gaps in the cover), which is also dependent on external wind speed.  

 

Figure 3. Adaptive model using the RSBA-based online parameter estimator [9]. 
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In Eq. (3), the areas of the lateral and roof windows, 𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑙𝑎𝑡  and  𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑟𝑜𝑜𝑓 , respectively, are calculated 

with the following expressions: 

𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑙𝑎𝑡 = 𝑐𝑣𝑒𝑛,𝑛−𝑙𝑎𝑡  𝑐𝑣𝑒𝑛,𝑙−𝑙𝑎𝑡𝑐𝑣𝑒𝑛,𝑤−𝑙𝑎𝑡 (
𝑈𝑣𝑒𝑛

100
)  (3) 

𝑉𝑣𝑒𝑛,𝑎𝑟𝑒𝑎−𝑟𝑜𝑜𝑓 = 2 𝑐𝑣𝑒𝑛,𝑛−𝑟𝑜𝑜𝑓 𝑐𝑣𝑒𝑛,𝑙−𝑟𝑜𝑜𝑓 𝑐𝑣𝑒𝑛,𝑤−𝑟𝑜𝑜𝑓  𝑠𝑖𝑛 (
𝑈𝑣𝑒𝑛

100
 
𝑐𝑣𝑒𝑛,𝑚𝑎𝑥

2
)  (4) 

where 𝑐𝑣𝑒𝑛,𝑛−[𝑙𝑎𝑡−𝑟𝑜𝑜𝑓] are the number of each type of vent, 𝑐𝑣𝑒𝑛,𝑙−[𝑙𝑎𝑡−𝑟𝑜𝑜𝑓] (m) is the length, and 𝑐𝑣𝑒𝑛,𝑤−[𝑙𝑎𝑡−𝑟𝑜𝑜𝑓] is 

the width, all referred to as the lateral or roof vents. For the roof windows, their maximum opening is limited by 

an angle of 𝑐𝑣𝑒𝑛,𝑚𝑎𝑥 (deg). As it can be noticed in Eqs. (4) and (5), the opened area of the windows of the 

greenhouse depends on the percentage of the opening of the ventilation, expressed as 𝑈𝑣𝑒𝑛 (%), which can be a 

value provided by a controller to regulate the inside air temperature [10] or it can be manually set by the farmers. 

The heat lost due to natural ventilation is estimated by the next expression: 

 𝑄𝑣𝑒𝑛,𝑎 =  
𝐶𝑠𝑝ℎ 𝐶𝑑𝑒𝑛

𝐶𝑎𝑟𝑒𝑎
 𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥  (𝑋𝑇𝑖𝑛 − 𝐷𝑇𝑒)  (5) 

where 𝐷𝑇𝑒 (K) is the external air temperature. The ventilation flux depends on the structure of the greenhouse, 

the external wind velocity, as well as on the difference between tempertures. 

2.2.3. RSBA-based online estimation of model parameters 

The random scaling-based bat algorithm (RSBA) is a variant of the bat algorithm, which is a nature-inspired 

optimization method that imitates bats’ random walk technique and their searching on prey using echolocation. 

In the adaptive model utilized in this work, the RSBA is in charge of finding optimal values for the model 

parameters in order to minimize the error between the model output and the real air temperature measured inside 

the greenhouse. The mathematical formulation of this algorithm was described in previous work [11] and it was 

successfully tested in a real greenhouse for the first time in [9], in which an extensive analysis of its performance 

and its optimality was offered by studying the evolution of the estimated parameters and the heat fluxes affecting 

the inside air temperature according to Eq. (1). 

The RSBA-based online parameter estimator was tuned in [9] with a search range restriction for the values 

of each time-varying parameter. Moreover, the RSBA was prepared to use a dynamical search range based on a 

variation ratio for each parameter. Specifically, the parameter value in each run is constrained to a neighbourhood 

of variation around the last optimal value (change every run). This strategy avoids the appearance of sudden 

changes in the value of certain parameters that physically evolve more slowly. The search ranges and variation 

ratios for the relevant time-varying parameters of the adaptive model are presented in Table 1. These limitations 

are needed to preserve the physical sense of the parameters and to ensure an adequate estimation of the related 

heat fluxes.  

2.3. Greenhouse microclimate dataset 

The greenhouse microclimate dataset used in this work to design the virtual sensor of ventilation flux consists 

of two combined parts which are: 

     Table 1. Search ranges and variation ratios for some of the time-varying parameters of the air temperature model. 

Parameter 𝑪𝒂𝒔𝒘,𝒂 𝑪𝒄𝒏𝒗,𝒔𝒔−𝒂 𝑪𝒄𝒏𝒅−𝒄𝒏𝒗,𝒂−𝒆 𝑪𝒗𝒆𝒏,𝒅 𝑪𝒗𝒆𝒏,𝒘𝒅 𝑪𝒍𝒐𝒔𝒔 

Range [0.1, 0.9] [1, 100] [1, 300] [15, 35]·10-4 [0.1, 1] [0.1, 1] 

Units - W m-2 K-1 W m-2 K-1 - - m3 s-1 

Variation ratio ±2% ±10% ±10% ±7% ±7% ±7% 
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▪ An experimental dataset collected from the greenhouse containing measured variables is presented in Figure 

4. It includes: the wind velocity 𝐷𝑤𝑠,𝑒, the difference between the internal and external measured air 

temperature 𝑇𝑎𝑖𝑟,𝑑𝑖𝑓𝑓  and as well as relative humidity 𝐻𝑎𝑖𝑟,𝑑𝑖𝑓𝑓 .  

▪ An simulated dataset consisting of the estimated evolutions of the greenhouse heat fluxes is presented in 

Figure 5. It includes: 𝑄𝑠𝑜𝑙,𝑎, 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎, 𝑄𝑐𝑛𝑑−𝑐𝑛𝑣,𝑎−𝑒, 𝑄𝑡𝑟𝑝,𝑐𝑟 and 𝑄𝑣𝑒𝑛,𝑎 that were estimated based on the 

equations of the adaptive air temperature model in which the measured variables were supplied as inputs. 

Substantially, this was performed by executing the model in two scenarios:   

a. Using the available vents control signal as one of the model inputs to consider the explicit effect of 

ventilation flux calculated based on Eq. (2) on the heat loss flux calculated based on Eq. (5), and in turn, on 

the model heat balance. Thus, the calculated variables of internal ventilation and heat loss fluxes are 

considered the real targets in designing the virtual sensor of ventilation flux. 

 
Figure 4. Dataset of the measured microclimate variables in the transitional period between winter and spring seasons. 

 
Figure 5. Dataset of the calculated greenhouse heat fluxes in the transitional period between winter and spring seasons. 
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b. Without using the vents control signal which means that the ventilation flux and the heat loss flux are not 

influencing explicitly (Indirect effect) heat balance of the air temperature model (using the same Eq. (1) but 

with 𝑄𝑣𝑒𝑛,𝑎 = 0). Since the used air temperature model is adaptive thanks to the RSBA-online parameter 

estimator, the effect of the heat loss flux will be adaptively compensated by certain behaviours in the 

evolutions of the other heat fluxes. This has led to an accurate prediction of internal air tempertaure which 

is considred the criterion for a successful estimation of heat fluxes. Thus, the estimated heat fluxes in fact 

hold implicitly the ventilation flux information (ventilation effect). Accordingly, the heat fluxes are 

considered as useful data to be used as inputs for designing the virtual sensor of ventilation flux.  

All variables were processed by centralization, reduction and standardisation and some of them were filtered. 

2.4. Nonlinear autoregressive network with exogenous inputs 

A discrete-time NARX model is used in this work. It consists of a recurrent dynamic network with feedback 

connections including numerous layers of the network [7]. This model is defined by the following function: 

where 𝑦(𝑘) is the greenhouse ventilation flux estimated by the model at the discrete-time step 𝑘, 𝑢 is the 

column vector of inputs, 𝑑𝑖𝑛𝑝𝑢𝑡 and 𝑑𝑜𝑢𝑡𝑝𝑢𝑡 are the orders of the past inputs and outputs, respectively, to be used 

for producing 𝑦(𝑘). The NARX was chosen for its advantage in relating the output to the past inputs and outputs.  

2.5. Principle components analysis 

PCA is a multivariate technique that transforms a set of correlated variables into a smaller set of uncorrelated 

variables, called principal components (PCs). The power of PCA is more apparent for a larger number of 

variables. Several PCA applications in the field of greenhouse data analysis have been investigated. In [12] the 

PCA was used to simplify the data samples and to optimize the model learning speed for internal air humidity 

modelling. In [13], neural networks were combined with PCA to explain mathematically the redundancy between 

variables in order to simplify the complex model by keeping the efficient one.  In this paper, the PCA is used to 

choose the relevant information from the greenhouse microclimate variables of the available dataset. 

The starting point for PCA is the sample covariance matrix 𝑆. The covariance matrix for the p-variable is 

calculated as follows:  

where 𝑛 is the number of samples and 𝑋𝑐 is the centred data around the mean value and it is calculated as follows:  

Secondly, the obtained covariance matrix 𝑆 is reduced to a diagonal matrix 𝐿 by pre-multiplying it and post-

multiplying it by a particular orthonormal matrix 𝑈. It is calculated as follows:  

𝑦(𝑘) = 𝑓(𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑑𝑜𝑢𝑡𝑝𝑢𝑡), u(𝑘 − 1), … , 𝑢(𝑘 − 𝑑𝑖𝑛𝑝𝑢𝑡))    (6) 

 

𝑆 =  
1

1 − 𝑛
𝑋𝑐

𝑇𝑋𝑐   ∈  ℝ (7) 

 

𝑆 = (

𝑠1
2 ⋯ 𝑠1𝑝

⋮ ⋱ ⋮
𝑠1𝑝 ⋯ 𝑠𝑝

2
) 

(8) 

 

𝑋𝑐 = 𝑋 − 𝑋𝑚𝑒𝑎𝑛  (9) 

 

𝑈𝑇𝑆𝑈 = 𝐿 (10) 
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where 𝑠𝑖
2 is the variance of the ith variable and 𝑠𝑖𝑗  is the covariance between the ith and 𝑗𝑡ℎ variables. 

The diagonal elements of 𝐿 are called the eigenvalues of 𝑆. The cumulative variance contribution of each 

principal component is calculated with the next expression:   

The columns of 𝑈 are called the eigenvectors, which represent the direction of maximal variability for each 

variable. These vectors are used for analyzing the correlation between variables. Finally, the uncorrelated 

components 𝑍 are calculated as follows: 

The PCA correlation circle is also used to study the relation between the inputs and the target and to reveal 

any possible redundancy of data and avoid it by eliminating the variables that approximately hold the same 

information. 

3. Results and Discussion 

This section presents the results and observations obtained from each stage of the proposed methodology 

(see Figure 1) and their corresponding discussion toward designing and validating a virtual sensor for greenhouse 

ventilation flux.  

3.1. PCA application 

The application of the PCA on the available dataset was performed for two purposes as described in the 

following sub-section. 

3.1.1. Data analysing 

Initial PCs were generated based on the full dataset including the inputs (generated without 

considering 𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥 effect)  and the target (generated with considering 𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥 effect). Figure 6 shows the 

correlations between the PC1 and PC2 that hold the largest amount of information from the original data via 

𝑊𝑃𝐶 (𝑖) =   
𝑙𝑖

∑ 𝑙𝑗
𝑚
𝑗=1

 

 

(11) 

 

𝑍 =  𝑈𝑇𝑋𝑐 (12) 

 

 

Figure 6. Correlation circle between PC1 and PC2. 
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coordinates in a 2-dimensional plot. Based on the fact that the correlations are proportional to the angle between 

vectors, it can be noticed that: (I) 𝑄𝑣𝑒𝑛,𝑎 which represents the target has a strong positive correlation with 𝑄𝑡𝑟𝑝,𝑐𝑟, 

𝐷𝑤𝑠,𝑒, 𝑄𝑠𝑜𝑙,𝑎 and 𝑇𝑎𝑖𝑟,𝑑𝑖𝑓𝑓  since their vectors are grouped in the neutral quadrant; (II) 𝑄𝑐𝑛𝑣−𝑐𝑛𝑑−𝑎−𝑒 and 𝐻𝑎𝑖𝑟,𝑑𝑖𝑓𝑓  

have much lower correlation since they are orthogonal with the target; (III) 𝑄𝑐𝑛𝑣,𝑠𝑠−𝑎 has a low but noticeable 

correlation with the target which is negative since it is in the opposing quadrant. 

The relation between the inputs and the target was also analysed with the Pearson correlation coefficient using 

datasets of different climate conditions as illustrated in Table 2. It can be noticed that: (I) 𝑄𝑡𝑟𝑝,𝑐𝑟 appears to be the 

most correlated variable in the different calm, windy and cloudy days. This could be physically explained as a 

result of the direct effect of internal air temperature and the indirect effect of relative humidity through vapour 

pressure deficit on the crop transpiration. Alos, both 𝑇𝑎𝑖𝑟,𝑑𝑖𝑓𝑓  and 𝐻𝑎𝑖𝑟,𝑑𝑖𝑓𝑓 also have high positive and negative 

correlations, respectively, with heat loss since ventilation flux affects them directly. 𝑄𝑐𝑛𝑣−𝑐𝑛𝑑,𝑎−𝑒 could also be 

considered as one of the most correlated variables with the target based on the shown correlation values because 

it is calculated based on 𝑇𝑎𝑖𝑟,𝑑𝑖𝑓𝑓. 𝐷𝑤𝑠,𝑒 is known to be the main driving force of natural ventilation in greenhouses 

but it does show the only strong correlation with heat loss except for the calm day, however, it is still considered 

a useful input. 𝑄𝑠𝑜𝑙,𝑎 has an interesting noticeable positive correlation especially on the calm day. This could be 

considered an effect as a consequence of the model adaptation using the RSBA-based online parameter estimator. 

𝑄𝑠𝑜𝑙,𝑎 has probably highly compensated the implicit effect of heat loss due to ventilation, because of its relatively 

fast ratio of variation (±7%/1min) leading to its ease of manipulation by the online estimator (with respect to its 

physical constraint) and its strong effect on the model output. 𝑄cnv,ss−a has the weakest correlation due to its 

relation with the soil surface temperature which changes slowly far from the effect of the rapidly varying 

ventilation flux, thus, it could be eliminated to lower the computational cost. 

3.1.2. Generating of PCs 

Four new essential PCs are generated using the full dataset combining the two datasets from the winter and 

spring seasons. In this case, the target 𝑄𝑣𝑒𝑛,𝑎 has not been included because these PCs are the ones to be used as 

inputs of the developed PCA-NARX model. Figure 7 shows the specific amount of information maintained by 

 
Figure 7. Amount of information maintained by the principal components constituting a low-dimensional dataset. 

Table 2. Pearson-based correlation coefficients between the input variables and the target in different climate conditions. 

 Climate type 𝑫𝒘𝒔,𝒆 𝑻𝒂𝒊𝒓,𝒅𝒊𝒇𝒇 𝑯𝒂𝒊𝒓,𝒅𝒊𝒇𝒇 𝑸𝒔𝒐𝒍,𝒂 𝑸𝒄𝒏𝒗,𝒔𝒔−𝒂 𝑸𝒄𝒏𝒗−𝒄𝒏𝒅,𝒂−𝒆 𝑸𝒕𝒓𝒑,𝒄𝒓 

Qheat,loss 

Calm day 0.656 0.663 - 0.627 0.736 0.069 0.476 0.809 

Windy day 0.367 0.397 - 0.325 0.472 - 0.256 0.264 0.516 

Cloudy day 0.381 0.040 - 0.138 0.475 0.025 0.325 0.708 

All days 0.357 0.669 - 0.610 0.547 0.299 0.729 0.342 
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each PC and the total amount of information maintained by all the PCs is 93.8% which is considered sufficient. It 

can be noticed that PC1 include the largest amount of maintained information. The dimension of the dataset has 

been decreased from 7 to 4 variables  

3.2. Virtual sensor design 

The designed NARX model was trained using the generated PCs as inputs and the calculated heat loss due to 

ventilation as a target. Several training processes were performed using 75 % of the dataset for training and the 

remaining 25% for validation. The NARX model was trained using different orders of feedback output parameters 

using the Scaled conjugate gradient backpropagation (trainscg) as a training function and a tapped delay line 

with a delay from 0 to 5 samples at the input and also from 1 to 5 samples at the output. The best structure of the 

NARX model included: 4 layers in total and 2 hidden layers, they consist of  30, 50, 20 and 1 neuron, respectively, 

as it is shown in Figure 8. The simulation results after training are very satisfactory where the estimated variable 

follows the variations efficiently as it is qualitatively shown in Figure 9. Settings of the NARX model design were 

chosen in a way that helps to avoid the overtraining of the network and enhances the generalisation in its 

dynamics, especially because only a short dataset was used in this preliminary study of this problem. The 

quantitative result of this training process present a mean absolute error MAE = 1.88 W m−2 which represents a 

percentage of 1.34 % in a variation interval of [-2.98, 137.26], which is considered sufficient although the variations 

of the target are not fully captured by the trained model. 

3.3. Virtual sensor validation 

 

The best PCA-NARX model among the tested ones is selected to be the preliminary developed virtual sensor 

for greenhouse ventilation flux in this work. The estimation of ventilation flux was based on the calculated heat 

loss flux using the inverse formula of 𝑄𝑣𝑒𝑛,𝑎 (inverse of Eq. (2)). The best PCA-NARX model was resulted after 

training and validating the network through a set of trial and error processes in two cases: 

 
Figure 9. Traning of the PCA-NARX model using the obtained PCs as inputs and the calculated heat loss flux as a target. 

From 08 March 2020 to 23 March 2020 From 27 March 2020 to 11 April 2020

 
Figure 8. NARX network structure. 



XI Congreso Ibérico de Agroingeniería / XI Congresso Ibérico de Agroengenharia 2021 11 of 13 
 

 

 

1- Using a dataset combining both datasets obtained from different periods in winter and spring seasons. 

2- Using only one dataset of the first period recorded in the winter season. 

 As presented in Table 3, the preliminary quantitative results using the combined dataset show better 

performance than only using a separated dataset of one period presenting a MAE =  3.26 W m−2 for simulating 

the heat loss flux and leading to a MAE =  0.41 m3s−1 which are both considered very promising as preliminary 

results. Figure 9 shows the qualitative results and a positive performance can be observed in both diurnal and 

nocturnal periods and for both different datasets affected by the different vents control signals. This supports the 

fact that the more diverse and large the dataset used for training is, the more the dynamics of the resulting model 

are driven by the supplied data rather than the bias parameters added by the ANN, and the more accurate the 

output is in terms of capturing the variations in the target evolution. Simulating such a strongly nonlinear 

phenomenon with such fast dynamics requires more than the provided information in this work. However, it is 

still considered as a preliminary result to help in leading to a better version of this solution.  

4. Conclusions 

In greenhouses, the absence of measurements for the opening percentage of vents (vents control signal) 

complicates the calculation of the ventilation flux. For this reason, a virtual sensor for greenhouse ventilation flux 

has been proposed in this work. It is designed based on a PCA-NARX model following the methodology 

Table 3. Quantitative results of the validation process of the PCA-NARX virtual sensor 

 MAE Error persentage Variation interval 

Using the combined 

dataset 

𝑄ven,a (𝑊 𝑚−2) 3.26 3.93 % [0.08, 83.11] 

𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥  (𝑚3𝑠−1) 0.41 4.57 % [0.1, 5.96] 

Only one dataset: from 

27 March 2020 to 11 

April 2020 

𝑄ven,a (𝑊 𝑚−2) 6.27 5.47 % [0.14, 114.75] 

𝑉𝑣𝑒𝑛,𝑓𝑙𝑢𝑥  (𝑚3𝑠−1) 0.95 14.23 % [0.1, 12.74] 

 

 
Figure 9. Validation of he virtual sensor for greenhouse ventilation flux estimation based on the PCA-NARX model 

From 08 March 2020 to 23 March 2020 From 27 March 2020 to 11 April 2020
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illustrated in Figure 1. A measurements dataset generated from a Mediterranean multi-span greenhouse located 

in Almería, Spain, has been used. A complete dataset including a combination of the measured microclimate 

variables and the calculated evolutions of the heat fluxes of an air temperature model, all in from different periods 

of winter and spring seasons. A set of PCs was generated using PCA with the dataset, leading to a significant 

data dimensional reduction. The resulted components are considered the new inputs of the neural network and 

the calculated heat loss flux due to natural ventilation was considered a real target. Thus, the network was trained 

using the prepared inputs to fit the real target to be used to estimate the ventilation flux as the main objective.  

Preliminary quantitative and qualitative results have been obtained in this work. The validation process of the 

developed virtual sensor has presented a MAE = 0.41 m3s−1 which represents an error percentage of 4.57% 

between the estimated ventilation flux without considering the vents control signal and the calculated ventilation 

flux using the vents control signal. The qualitative result shows that the variations of ventilation flux are captured 

acceptably by the virtual sensor even though the vents control signal included different patterns.  

As conclusions and future perspectives, the preliminary results obtained in this work support the fact that 

developing a superior and reliable virtual sensor for long-term applications calls some very important 

requirements and potential procedures that could be highlighted as follows: 

- A large dataset of at least one year or several datasets of different seasons have to be provided, consisting of 

the needed measured and calculated variables representing the inputs and the target for the proposed PCA-

NARX model. 

- More greenhouse environment dynamics (e.g., the difference between internal and external CO2 

concentration) should be analysed to obtain more correlated variables to the greenhouse ventilation flux if 

they exist. 

- Correlation between the target and the provided measured and calculated data has to be more investigated 

from different perspectives using other data analysis techniques.  

- Different structures of the NARX model and other data-driven modelling methods have to be investigated. 

- Based on the fact that the correlation between the inputs and the target can change depending on the climate 

conditions (calm, windy and cloudy days … etc), a classification technique and multiple data-driven models 

can be obtained for each climate scenario for more accurate performance.  
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