
  1 

Influence of Photobioreactor Set-up on the Survival of 

Microalgae Inoculum 

Alessia Bani1,2, Francisco Gabriel Acién Fernandez3, Giuliana 

D’Imporzano1, Katia Parati2*, Fabrizio Adani1 

1Gruppo Ricicla labs., Dipartimento di Scienze Agrarie e 

Ambientali - Produzione, Territorio, Agroenergia (DiSAA), 

Università degli studi di Milano, Via Celoria 2, 20133, Italy 

2Istituto Sperimentale Lazzaro Spallanzani, loc La Quercia 2602 

Rivolta d’Adda (CR), Italy 

3Department of Chemical Engineering, University of Almeria, 
Cañada San Urbano, s/n, 04120 Almeria, Spain 

 

*Corresponding authors: Katia Parati: 
katia.parati@istitutospallanzani.it,  
Tel. +39 0363 78883 
 

 

Keywords 

Bioreactors; Metagenomic; Microalgae; Microbial community; S. 

almeriensis; Wastewater 

 

  



  2 

ABSTRACT 

 

Cultivation of specific microalgae is still difficult in an industrial setup 

as contamination and balancing the economic cost are not always 

possible. Understanding the ecology of cultivation of microalgae is 

therefore necessary to implement stable production. The aim of the 

study was to understand how different types of photobioreactors and 

types of culture medium influenced the survival of a specific 

microalgae inoculum, S. almeriensis. The bacterial and microalgae 

community were studied using Illumina sequencing. Only the closed 

configuration was able to maintain the inoculated species while all the 

other systems developed a different eukaryotic community due to 

contamination and the higher fitness of contaminants. 

Photobioreactor configuration was more important than medium in 

shaping the eukaryotes community, while the bacterial community 

was influenced strongly by both. Results showed that even a well-

adapted strain is maintained only in the closed reactor while the open 

reactors are colonized by a multispecies consortium. 
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1. INTRODUCTION 

Although a large number of microalgae-related applications have 

been previously reported, only a few of them are effectively used at a 

commercial scale, and less than ten microalgae strains are 

commercially available (Raja et al., 2008). One of the reasons for that 

is the high production cost and limited production capacity when using 

closed photobioreactors and also the contamination problems which 

occur by the utilization of open reactors. Moreover, to increase the 

sustainability of microalgae production, the integration of wastewater 

treatment processes has been recommended, and in this case control 

of contamination becomes more difficult. For example, high amounts 

of N-rich and P-rich wastewaters are produced by the agriculture and 

livestock sectors (D’Imporzano et al., 2018), and these can provide 

the nutrients l to produce microalgae biomass (Monlau et al., 2015). 

Additionally, algae biomass holds an intrinsic value for its potential 

use for feedstock production in aquaculture or as biofertilizer (Acién 

et al., 2012; del Mar Morales-Amaral et al., 2015). This strategy is are 

not merely convenient economically because it leads to a cost 

reduction, but is also beneficial at the environmental scale due to a 

lowering of CO2 emissions (D’Imporzano et al., 2018). Often, in a 

biorefinery process, bioreactors are limited to open pond raceways, 
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due their relatively low cost, easy maintenance and large volume 

(Acién et al., 2012). Nevertheless, thin layer reactors could give 

equivalent results or perform more optimally than raceway reactors 

and as a result thin layer reactors would potentially be more 

economically viable (del Mar Morales-Amaral et al., 2015).  

Open reactors are easily contaminated from the surrounding 

environment, including by other algae species (Fulbright et al., 2014), 

bacteria (Ganuza et al., 2016) or predators (Deruyck et al., 2019) that 

could outcompete the desired target species.  

To overcome the contamination problem, or at least limit it so that the 

production is not depressed, while keeping the associated costs 

within the limits for economic success, several strategies have been 

implemented. Extreme environmental conditions were applied to the 

production of different strains of economic value, this included a high 

level of salinity for Dunaliella sp. or alkalinity for Spirulina (Lee, 2001). 

High pH has been demonstrated to reduce the contamination in open 

ponds where Chlorella sp remain the main microalga (above 90% of 

the species present) over a 16 day period (Bell et al., 2016). 

Modulation of pH has also been applied to prevent complete loss of a 

Chlorella culture due to bacterial contamination, using a pulse change 

in the pH that strongly affected the contaminant but not the microalga 
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which was better able to regulate the internal pH (Ganuza et al., 

2016). However the solutions mentioned are not always feasible, 

since many microalgae would not be able to survive or to produce the 

optimal biomass under such stressful conditions and thereby meet the 

industrial goals.  

Interactions between the different organisms and their modulations 

could help in maintaining species purity and the microalgae 

production even in environments prone to contamination such as 

open reactors. Furthermore, the study of the interactive mechanisms 

between bacteria and microalgae should contribute to the 

improvement of production by allowing the selection of optimal 

combinations of microalgae and bacteria for different applications 

such as the production of fatty acids for biodiesel production (Mooij et 

al., 2015). Bacterial cells could easily outnumber algae cells and 

biological relationships range from positive to negative (Lian et al., 

2018). Bacteria could be harmful, as some species could release 

toxins (Lian et al., 2018), although it should not be disregarded that 

they are also essential for algal growth as they provide vitamin B12 to 

algae that are not able to synthesise B12 intrinsically or they may help 

in the mediation of nutrient solubilisation (Krohn-Molt et al., 2017). To 

monitor this system, classical microbiological/morphological 
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techniques are time consuming, laborious and incapable of identifying 

a high percentage of bacterial genera. Molecular techniques can 

overcome some of these limitations, providing quick monitoring 

solutions for pathogens (Ganuza et al., 2016), and also help in 

identifying a higher number of taxa, including many unculturable 

bacteria, and can shed light on the interactions between the different 

microorganisms present in the community. Results from previous 

trials to compare the influence of different types of bioreactors on the 

microalgae/bacterial composition of the culture, cultivated under the 

same conditions (such as using the same algae species inoculum) 

remain limited. Pilot scale volume studies (De Vree et al., 2015) are 

especially underexplored, in contrast to the lab scale, in which studies 

are well established (A. M. Lakaniemi et al., 2012; Zevin et al., 2016). 

Selection of the desired strain should be a key point especially if open 

bioreactors are going to be used. Two approaches can lead to a 

successful operating system: using a consortium in which different 

microalgae occupy slightly different niches and do not compete for the 

same nutrients and have different optima for temperature and light; or 

to use a microalga that is known to be well adapted to the local 

environment so that in theory it should be able to colonize and 
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maintain dominance over possible contaminants (Mooij et al., 2015; 

Narala et al., 2016).  

This study aims to test the performance and composition of the 

microbial community of microalgae cultures, cultivated in different 

types of photobioreactors and different growth media, inoculated with 

conspecific algal species that should be able to be maintained as pure 

cultures due to their high adaptation to the local environments. The 

starting hypotheses were that i) the microalgae inoculum would 

survive and grow in all of the photobioreactors as the strain fits the 

different conditions set up, while ii) the bacterial communities would 

be more susceptible to the changes in composition in relation to the 

different growth conditions and bioreactors’ configuration.  

2. MATERIAL AND METHODS 

2.1 Experimental design 

The microalgae production was established at the research centre of 

“Estación Experimental Las Palmerillas”, property of Fundación 

CAJAMAR (Almería, Spain). Three different pilot scale outdoor 

photobioreactors were developed and subsequently used to grow the 

microalgae: a tubular reactor (closed system, referred to as T 

samples); a raceway reactor; and a thin layer reactor (open systems, 
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referred to as RW and RH for raceway, and RI for thin layer). All the 

reactors were inoculated with the same algal specie, S. almeriensis, 

with 20% of their volume, and then operated in batch mode for one 

week, and were later operated in continuous mode for five weeks at 

0.3 day-1 dilution rate, to achieve a stable steady state. 

Experiments were performed in summertime, from May to July, using 

different culture media prepared with tap water plus fertilizers, pig 

manure, and wastewater.  

In detail, T samples derived from a culture grown in a tubular reactor 

(3 m3) operated in continuous mode using fertilizers and clean water 

as culture medium; sample RW comes from a raceway reactor (20 

m3) also operated in continuous mode using fertilizers and clean 

water as culture medium. Fertilizers used in the trials were: NaNO3, 

MgSO4 and KH2PO4, in order to have a concentration of 200 mg L-1 N 

and 50 mg L-1 of P approximately.   

Sample RH comes from a raceway reactor (4 m3) on which 

microalgae are produced in continuous mode using wastewater as 

culture medium, thus supplying an average concentration of N as NH3 

and P equal to 60 mg-1 and 10 mg L-1 respectively.  Sample RI comes 

from a culture grown in continuous mode using a thin-layer reactor 

(1.5 m3) using clean water plus manure (10%) to provide nutrients, 
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with average concentrations of NH4 and P at 100 and 20 mg L-1. All 

the culture media supplied had no limiting amount of N and P for algae 

growth in the specific irradiance conditions. 

Whatever the bioreactor, the cultures were regulated at pH8 by on-

demand injection of CO2. Samples were taken at a one-off sampling 

event on one single day for all the configurations, after more than 

three weeks in steady state. Samples were freeze-dried and stored at 

-80°C until extraction.  

The specific growth rate µ (day -1) was calculated from the Equation 

(1): 

𝜇 =   1 𝑡 ln (𝑋𝑓 𝑋𝑜⁄ )⁄             [1] 

in which Xo and Xf are the concentrations of cells (g L-1) at the 

beginning and at the end of the batch run, respectively, and t (days) 

is the duration of the run. 

Daily biomass productivity (Dp as mg L-1 d-1) during the culture period 

was calculated by the Equation (2): 

Dp = (𝑋𝑓 − 𝑋𝑜) 𝑡⁄            [2] 

 

2.2 Sampling and DNA extraction 

All samples were collected on the same day after three weeks of 

steady state and immediately freeze-dried. The DNA was extracted 
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from ~ 20 mg of lyophilized algae per sample by using the Biosprint 

96 One-For-All Vet Kit (QIAGEN), in association with the 

semiautomatic extractor BioSprint 96 (Qiagen) and MagAttract 

technology, following the user manual. DNA quantity was measured 

with Qubit (Invitrogen, Life Technologies, Monza, Italy) and the 

260/280 ratio evaluated with Nanodrop (Invitrogen, Life Technologies, 

Monza, Italy). For each reactor, three technical replicates were 

obtained.  

Illumina sequencing was performed on all samples for bacteria and 

eukaryotic communities. For bacteria the V3-V4 hypervariable region 

on the 16S gene was selected and amplified with the following 

primers: 341F-805R (Ferris et al., 1996), while for eukaryotes the ITS 

region with ITS1-ITS4 primers (White et al., 1990) was targeted for 

amplicon sequencing. Illumina sequencing was performed by 

IGATech company (IGA Technology Services s.r.l., Udine, Italy).  

Sequences were submitted to the National Center for Biotechnology 

Information (NCBI) Short Read Archive (SRA) with the following 

accession numbers: PRJNA666427 and PRJNA666428. 

2.3 Bioinformatics analysis 

Amplicons were processed following the same protocol as in Bani et 

al. (2019) for 16s while for the ITS a slightly modified protocol was 
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used. For 16s and ITS sequences were trimmed (q < 20) with Sickle 

(Joshi and Fass, 2011) and error corrected using SPAdes (Bankevich 

et al., 2012) implemented within BayesHammer (Nikolenko et al., 

2013). For 16S only sequences were paired-end aligned using the 

PEAR algorithm (Zhang et al., 2013). VSEARCH (Rognes et al., 

2016) was used for chimera checks and picking operational 

taxonomic units (OTUs) based on 97% similarity via the QIIME2 

pipeline (Bolyen et al., 2019). The resultant OTU sequences were 

assigned taxonomy using the Naïve Bayesian Classifier (Wang et al., 

2007) against the RDP database. ITS sequences were not paired-end 

because no overlap was possible between the two reads and only the 

forward reads were retrieved for the following analysis. Sequences 

were clustered in OTU on 97% of similarity using the VSEARCH 

algorithm inside QIIME2 pipeline (Bolyen et al., 2019). The taxonomic 

annotation was performed using blastn (version 2.8.1) (Zhang et al., 

2000) against the NCBI nucleotide database (Morgulis et al., 2008) 

and taxonomy retrieved using taxdump repository (version 11 March 

2019).  

2.4 Quantitative Real Time PCR 

qPCR was used to quantify 16S rRNA gene copy numbers for 

bacteria.  Alongside general quantification of the microbial 
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community, the study focused on the quantification of specific groups 

of interest such as S. almeriensis and the ammonia oxidizing bacteria 

(AOB). qPCR was performed with 1× POWRUP SYBR Green Master 

Mix (Applied Biosystems, Life Technologies, Monza, Italy) on Applied 

Biosystems 7500 Fast Real Time PCR System (Applied Biosystems, 

Life Technologies, Monza, Italy), used in combination with Applied 

Biosystems software. Each reaction took place in a 20 µl final volume 

containing 1× POWRUP SYBR Green Master Mix, forward and 

reverse primers (200 nM each primer, see below), 0.4 mg mL-1 Bovine 

Serum Albumin (BSA), distilled water (RNase/DNase free, Life 

Technologies, Monza, Italy) and 2 µL of DNA-extracts, and ten-fold 

diluted standard DNA. Primers, thermal condition and source of 

standards are described in Table 1, when the standard was a plasmid 

with the interesting gene insert it was produced by GeneArt Synthesis 

services (Life Technologies, Monza, Italy). Qubit was used to 

determine the stock concentration (gene copies µL-1) and standard 

curves were freshly prepared with ten-fold dilutions ranging from 102 

to 109 copies µL-1. All standards and samples were run in triplicate. 

To check for product specificity and potential primer dimer formation, 

all runs were completed with a melting analysis starting from 65°C to 
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95°C with temperature increments of 0.25°C and a transition rate of 5 

s. 

2.5 Statistical analysis  

All statistical analyses were performed on R studio. Gene copy 

numbers from qPCR were tested to check the assumption of ANOVA 

with Levene test (Car package) (Fox et al., 2012) and Shapiro test. 

The assumptions were respected if data were log-transformed and 

ANOVA was applied to test the importance of the reactor type on the 

abundance of bacteria. When ANOVA results showed a statistically 

significant effect of the type of reactor on data, an HSD test was 

applied to determine the groups. When data did not follow a normal 

distribution a Kruskal-Wallis test was applied (agricolae package) (de 

Mendiburu, 2017). Taxonomic summaries were performed using the 

phyloseq library (McMurdie and Holmes, 2013). Ordination plots were 

created applying Constrained Analysis of Principal Coordinates 

(CAP) based on Bray Curtis distance at genus level for both bacteria 

and fungi (capscale function) (vegan) and to test the effect of the 

reactor factor PERMANOVA was used on an OTU table clustered at 

97% similarity (Oksanen et al., 2007).  

3. RESULTS AND DISCUSSION 
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The aim of the study was to understand how different 

photobioreactors in contrasting configuration systems (open vs. 

closed) and different growth media (fertilizers and wastewaters), 

could influence the microbiota of a culture started with the same 

inoculum over time. To provide clear evidence of how the differential 

operation conditions affected the microbial communities, it was 

necessary to use exactly the same inoculum, as even the same 

species grown in different laboratories could harbour different 

microbial communities that would compromise the comparison 

between different cultivation systems (Zevin et al., 2016). The 

inoculated microalgae S. almeriensis had been isolated in the 

surrounding area of the experimental set-up under high levels of 

irradiance and temperature. The strain was also selected since it was 

expected to be well adapted for cultivation in open reactors (raceways 

and thin layer), thus providing it with a possible ecological advantage 

over other non-desired microalgae that could enter the open systems 

as contaminants. This algal species has an important economic value 

as it holds the ability to accumulate lutein, an important antioxidant 

(Sánchez et al., 2008). In order to prevent an initial potential 

contamination of the culture that would alter the experiment, the 
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inoculum used for the trials was identical for all the photobioreactors 

and it had been growing in the tubular system of the experiment.  

3.1 Reactor performance and chemical parameters 

Reported in Table 2 are the growth performances of the four trials, 

data were in line with productivity reported in the literature (Barceló-

Villalobos et al., 2019; del Mar Morales-Amaral et al., 2015). RI (thin 

layer and 10% of pig manure) showed the best performance while the 

T (tubular and fertiliser) resulted in the lowest daily productivity (YD). 

Thin layer reactors usually have the highest productivity (del Mar 

Morales-Amaral et al., 2015) compared to the other reactors. High 

levels of productivity are also achieved when using wastewater as 

medium and not only fertiliser, reducing the overall cost of the system. 

Productivity for S. almeriensis in thin layer reactors is reported to vary 

between 45 g m-2 d-1 and 11.7 g m-2 d-1 in summer and winter, 

respectively (Barceló-Villalobos et al., 2019; del Mar Morales-Amaral 

et al., 2015) (RI productivity is 38.4 g m-2 d-1) (Table 2). In line with 

other productivity data for S. almeriensis (del Mar Morales-Amaral et 

al., 2015), productivity for raceway photoreactors was lower (31.5 g 

m-2 d-1 at RW (raceway and fertiliser) and 24 g m-2 d-1 at RH (raceway 

and wastewater) (Table 2). The best performance, exhibited by thin 

layer reactors, is usually obtained as a result of the shallower depth 
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of the culture vs the greater depths in raceways, that allowed a better 

penetration of the light (del Mar Morales-Amaral et al., 2015). In 

addition, the use of thin layer reactors appeared to offer further 

advantages such as a relatively minor loss of biomass. It has been 

estimated that there is a loss of 30% of algae biomass in thin layer 

against a complete culture collapse in open ponds in case of rotifer 

contamination, which is relatively common in open set-ups (Deruyck 

et al., 2019). However, recent studies have highlighted that thin layer 

reactors are still far from providing the optimal running parameters. 

The net photosynthesis rate could be increased to more than 60% if 

differential fluxes of pH and oxygen are corrected within the system 

(Barceló-Villalobos et al., 2019).  

3.2 Bioinformatics results 

Sequencing of the 16S amplicon library resulted in 299,186  121,384 

sequences for samples. After trimming, an average of 295,031  

120,048 sequences were retained and 131,450  49,524 assembled 

(Table 3). For the ITS library, a total of 131,188  78,449 sequences 

for samples were found. After trimming, 119,320  79,002 sequences 

were retained for samples (Table 3). The 16S amplicon library 

resulted in a total of 6,693 OTUs already excluding singletons and 

OTUs that were assigned to Chloroplast [is that the right word?] at the 
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order levels while retained the OTUs assigned to Cyanobacteria 

(Table 3). For ITS, the total number of OTUs was 3056 without 

singletons (total including singletons was 10,579 OTUs, Table3).  

3.3 Community composition and structure 

The main phyla and genera found in this study (Figure 1A,C) have 

been reported in other studies on microalgae consortia in wastewater 

treatment processes or high rate algae ponds (Ibekwe et al., 2017; 

Lian et al., 2018). The main phylum was Proteobacteria (42%  9), 

this phylum includes many generalist bacteria that are known to 

colonise different environments including wastewater or microalgae 

cultivation. Within this phylum  are the genera Roseicyclus, which 

accounted for 8% of the bacterial community composition (Figure 1C), 

genera which are usually found connected with microalgae (Tang et 

al., 2018). Proteobacteria was followed by Bacteroidetes (25%  22), 

Planctomyces (8%  6), Actinobacteria (5%  3) and Verrucomicrobia 

(4%  2) (Figure 1A). At the genus level, differences were more 

marked between the closed reactor and the other open reactors with 

the first dominated by Flavobacterium (12%  21 across the 4 

treatments, but in T samples this genus accounted for 45% of the 

reads) which is usually found in association with many microalgae 

(Lian et al., 2018). The open configurations have a more complex 
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composition without a clear bacterial dominance (Figure 1C). The 

presence of a complex community could be due to the species 

arriving in the outside environment due to the movement of air/rain 

and also to their presence in the wastewater or in the pig slurry that 

were being used as sources of nutrients. Complex bacterial 

communities could also be the results of strict species-specific 

interactions. For example, Eigemann et al. (2013) reported that the 

same inoculum of Desmodesmus sp., exposed to different 

environmental conditions, had the same bacterial community (> 80 

and 90% similarity). This finding leads to a supposition that 

microalgae may determine or, at least, affect the microbial community 

present. Similar findings, that a microalgae community can determine 

the composition of a bacterial community, are reported by Krohn Molt 

et al. (2017), highlighting a mechanism of innate immunity of some 

microbes that are thus selected in the phycosphere of specific algae. 

Then, it is not surprising then to find the high relative abundance of 

the Planctomycetes phylum, found in all the open reactors (Figure 1C, 

Rhodopirellula (6%  5)) as this phylum is able to establish a positive 

feedback between bacteria and algae. Higher presence of harmful 

bacteria will result in a negative effect on the microalgae fitness 

therefore microalgae could have recruited this phylum to help in 
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regulating the associated microbiota as it could produce small 

antibiotics molecules while obtaining carbon compounds from the 

algae (Lage and Bondoso, 2014; Wiegand et al., 2018). 

In our case, both the algal and bacterial community were affected by 

environmental conditions (open vs closed reactors) and, even if it is 

possible that algae community influenced the composition of a 

bacterial community, data from this work cannot be conclusive on this 

point.  

Gemmatimonas, the second most abundant genus (7%  5), could 

result in a positive impact on N2O emission, usually a by-product of 

incomplete ammonia oxidation or an intermediate in denitrification 

(Park et al., 2017) in many microalgae production system, as this 

genus is able to reduce nitrous oxide even in anoxic conditions (Park 

et al., 2017). 

Other common genera found in this study were: Roseicyclus (8%  

1), Rhodopirellula (6%  5), Porphyrobacter (5%  4), 

Hydrogenophaga (4%  2) and Oligoflexus (3%  5).  

For Eukaryote communities, Chlorophyta dominated all the reactors 

(>90% of the sequences were assigned to this phylum), while on the 

species level, different mixtures of species could be found based on 

the photobioreactor set up (Figure 1D).  
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This study provides evidence that after 5 weeks of continuous mode-

culturing the inoculum was retrieved only in a closed reactor (Figure 

1D and 3B). The tubular reactor was dominated by the inoculated 

species S. almerienis (95%  1.3), while in the other three reactors 

this alga could be found only at a low percentage (3.6%  2.3) as it 

was almost exclusively replaced by the genus Desmodesmus sp. In 

particular, D. armatus (24%  23), D. opoliensis (35%  33) and D. 

communis (8%  9) were found as the dominant species in the three 

open bioreactors. Each of the species dominated a different reactor: 

D. armatus was the dominant specie in RH reactor (44%  27) while 

D. opoliensis dominated in RI reactor (76%  7). RW configuration did 

not show a clear dominance as D. armatus, D. opoliensis and D. 

communis were all present in similar concentrations (17%  15, 26% 

 11 and 18%  14 respectively) (Figure 1D). It is well known that 

open outdoor photobioreactors are prone to contamination, but the 

presence of a native species inoculated in the culture at high 

concentrations should hold competitive ecological advantages then 

enable survival even in open reactors; however, this was not the case 

(Narala et al., 2016). Typically, the use of native species is  more 

robust as they are acclimated to operational conditions and 
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environmental variables and this should be enough to maintain the 

monoculture (García et al., 2018), in alignment with other studies 

reported in the literature (Petrini et al., 2020). The results found 

corroborated the difficulties of maintaining a monoculture within 

economically advantageous conditions (open configuration systems) 

that is possible only with a few species of microalgae that require 

specific environmental conditions such as high pH or salinity such as 

D. salina or A. platensis (Mooij et al., 2015). .  

The origin of the contaminant microalgae could be tracked to a low 

abundance in the inoculum and then a proliferation in a complex 

community in the open reactor; however, it is more probable that 

contaminant algae were present in the growth media or were recruited 

by dispersal from the surrounding environment and then by ecological 

advantages, replaced the selected strain (Bohutskyi et al., 2016). 

Species such as D. opoliensis or D. armatus  replaced S. almeriensis 

in all the reactors as they have higher fitness, better ability to retrieve 

nutrients and differential growth, and also an ability to tolerate high 

organic pollution, as in the case of the wastewater growth medium 

(Palmer, 1969). 

Eukaryotic alpha diversity indexes (Figure 2E-H) were lower when 

compared to measures for bacterial alpha diversity (Figure 2A-D). 



  22 

Eukaryotic communities in all reactors usually include a few species 

that dominate the community while bacterial communities are more 

diverse and a single dominant species does not become established. 

For all diversity indices, the RW reactor had the highest alpha 

diversity followed by the other two open reactors, RH and RI, while 

the tubular reactor had the lowest alpha diversity (Figure 2E, F). T 

samples showed the lowest Shannon diversity index as they were 

clearly dominated by a single species (Figure 2G), in this case the 

inoculum.  

All alpha diversity indices for bacterial communities showed the same 

trend, with the RH configuration having the highest diversity, followed 

by RI, RW and, finally by T with a lower diversity bacterial community 

(Figure 2A, B). Shannon’s index (Figure 2C) showed that the bacterial 

communities in T samples were more uneven, as T samples were 

clearly dominated by Flavobacterium (Figure 1C) unlike the other 

samples.  

The lower diversity and low Shannon index in T samples for both 

communities could be the results of a more stable system in which 

contamination from the environment was reduced to zero and the 

number of microniches available was limited, due to the smaller 

fluctuations in temperature and light than those which the open 
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systems experienced daily. The higher diversity in the bacterial 

communities could also be explained, since different phyla have been 

shown to use different compounds released by the microalgae in the 

environment. For example, Flavobacterium only uses high molecular 

weight carbon sources, while Rhodobacteriales (Roseicyclus) prefer 

low molecular weight metabolites (Ferrer-González et al., 2020). 

3.4 Community structure and interaction 

Bacterial community structure for the four configurations tested was 

clearly different as shown in Figure 3A. All samples clustered based 

on the reactor type (PERMANOVA p-value 0.001, df= 3, F= 17.131, 

R2= 0.865) with no overlap; T samples were the most dissimilar as 

they were the most distant from all the other reactors (Figure 3A). In 

particular, the large distance between T and RW (different bioreactor 

and same growth media), revealed that the bacterial community 

would be strongly influenced by the configuration system of the 

bioreactors (open system vs. closed system) rather than culture 

medium composition (clean medium vs. wastewater, PERMANOVA 

p-value 0.002, df= 2, F= 5.3067, R2= 0.54113). For the eukaryotic 

community, reactor set-up also had a strong influence on composition 

(PERMANOVA p-value 0.01, df=3, F= 18.169, R2=0.872) (Figure 3B). 

However, for eukaryotic data, there were only three distinct clusters 
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as samples from RW and RH exhibited overlap. It is not possible to 

completely understand the relative importance of the growth medium 

and the reactor type, as the experimental design does not allow a full 

comparison between the treatments. Based on the results of the 

raceway reactors, it is clear that reactors set-up seems more 

important than the growth medium, as the samples from raceways 

were very similar not only in community structure but also 

composition, while microalgae communities, which shared the same 

growth medium but different set-ups, were clearly different (T vs RW). 

If it makes sense that the use of clean medium in a contamination-

prone set-up would result in a different community, it is less intuitive 

to explain why similar communities should be detected in clean 

medium and wastewater raceways. Probably both systems resulted 

in a highly competitive environment due to, on one hand, the high 

resource availability, and on the other hand, an already complex 

community present in the medium and high complexity in the 

substrate available, resulting in similar microalgae communities with 

higher fitness/ability to establish themselves as dominant (Bohutskyi 

et al., 2016).  

Differently from the eukaryotic communities, bacterial communities 

were completely distinct in all the set-ups. That closed 
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photobioreactors have limited bacterial diversity is due to the 

impossibility of spatial dispersion and further limited by the use of 

clean fertilizer. Variability within the bacterial community is, in the 

closed photobioreactor, connected with the microalga inoculated, as 

each microalgae harbors a different microbiota that is host specific 

and different from the surrounding environment (Jackrel et al., 2020). 

However, multiple microalgae could be present at the same time, as 

in all the open systems, and a trade-off between host selection and 

environmental effects is in action, with growth media providing 

multiple types of carbon source and other nutrient forms. In this study, 

for bacterial communities, environmental filtering and dispersal from 

outside sources are stronger than selection from the host, so if the 

host selection had been the primary source of the diversity, the 

resulting bacterial communities in the raceways should have been 

similar, as for the microalgae communities.  

As the two communities of eukaryotes and bacteria were not confined 

in two different environments, their interactions between each other 

could provide information of ecological importance (Figure 3C). Co-

occurrences, based on the Spearman index, were investigated for the 

most common genera (abundance above 5% threshold) and the most 

common eukaryotic species (above 1% threshold). Gemmatimonas 
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had the highest numbers of positive interactions (4) while Chrysolinea 

had the highest number of negative interactions with Oligoflexus (3 

each). Flavobacterium was the genus with most interactions in 

general (6 in total). Flavobacterium is commonly found in many 

microalgal environments both as a free-living organism but also 

closely associated in the phycosphere. Chlorella sp. have been 

demonstrated to actively recruit this genus if an axenic culture is 

exposed to environmental bacteria (Jackrel et al., 2020). Bacterial 

cells could help with Chlorella fitness by providing additional CO2, as 

this is often a limiting factor in photobioreactors, as by-products of the 

degradation of organic compounds that the Chlorella itself could be 

providing (Lian et al., 2018). The interaction between Flavobacterium 

and Chlorella sp. could also result in other economic advantages for 

microalgae production as not only the bacteria could help the fitness 

of the algae but also help in flocculation of the culture. Even if not all 

the species within the genera have the same properties, it has been 

shown that when Flavobacterium sp. were removed from a Chlorella 

culture the flocculation activity was reduced by 3% (Lee et al., 2013). 

This has important economic implications, as harvesting of the culture 

represents one of the most expensive steps.  Further study should 

clarify the active role of the bacteria.  
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3.5 Community quantifications 

Each different reactor type exhibited different bacterial abundances 

as shown in Figure 4A and C. The tubular reactor (T) had the highest 

abundance of bacteria followed by the thin layer (RI) reactor and the 

two raceway reactors with waste medium and synthetic medium (RH 

and RW), respectively. The differences were also supported by the 

result of ANOVA and the following HSD test. When focusing on the 

specific group of ammonia oxidizing bacteria (AOB), similar results 

were obtained to the total quantification (Figure 4C). T reactor had the 

highest proportion of AOB followed by RI and finally RH and RW, 

respectively. Results were also confirmed by the Kruskal-Wallis 

analysis. To support the metabarcoding data, S. almerienis, the 

inoculated species, was also quantified across the different samples. 

As Figure 4B clearly shows, it could be found in abundance in T 

samples and, in lower quantity, also in RW samples. In the other two 

reactors, RI and RH, no amplification was detected for any sample.  

4. CONCLUSION 

This study demonstrated how photobioreactors’ set-up and growth 

media have effected microalgae inoculum dynamics. The inoculum 

was only retrieved in the closed photobioreactor. Algal community 
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was strongly influenced by the bioreactors configurations (open vs. 

closed systems) rather than by growth medium composition. 

Microalgae communities cultivated in the same configuration system 

using different growth media were similar, while microalgae sharing 

the same medium, but grown in different configurations were clearly 

different. Possibly shifts in algal communities influenced the bacterial 

composition and productivity, data from this work cannot be 

conclusive although, beneficial in implementing the planning and 

large production of microalgae. 
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Figure 1. Taxonomic composition of the bacterial and eukaryotic 

community in each of the photobioreactor configurations. Bacterial 

community composition at Phylum level (A) and Genus level (most 

common above 1% abundance threshold) (C). Eukaryote community 

composition at Phylum level (B) and Species level (D). Each barplot 

is the average of the three replicates. 

 

Figure 2. Diversity index bacterial community. A) Richness, B) 

Chao1, C) Shannon index and D) Simpson index. Each boxplot is the 

results of the three replicates. Diversity indices for eukaryotes 

community. E) Richness, F) Chao1, G) Shannon index and H) 

Simpson index. Each boxplot is the results of the three replicates. 

Different letters are for different groups based on Kruskal-Wallis (non 

normal distributed samples, Shannon and Simpson index) or LSD 

post hoc analysis (normal distributed samples, Richness and Chao1). 

 

Figure 3. Ordination plot CAP scale and Spearman correlation. A) 

Bacterial community and B) eukaryotic community. Different colours 

are used for the different experimental set-up. For each treatment are 

presented the three technical replicates. C) Co-occurrence based on 

Spearman rank correlation index. Interactions are shown only if 
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statistically significant (p-value < 0.05). The blue dots are for positive 

interaction while red dots are for negative interactions. Only most 

abundant. 

 

Figure 4. A) 16S gene copy number, B) S. almerienis gene copy 

number and C) AOB gene copy number. Different colours are used 

for each experimental set up. Each box plot is representing the three 

technical samples.  

Table 1. qPCR details for each target gene is specified: the standard 

origins, primers, thermal protocol and references  

Target group Standard 

origin 

Primers Thermal 

protocol 

Reference 

Bacteria N. Communis 

(DSMZ 

number 

28436) PCR 

product 

1055f/1392r 

(Ferris et al., 

1996) 

95 C-10 m/95 

C–20 s/58 C–

15 s/72 C–30 

s 

(Bani et al., 

2019) 

Ammonia 

oxidising 

bacteria AOB 

plasmid with 

fragment of N. 

Eutropha 

AmoA1F/Amo

mA2R 

95 C-2m/94 

C-45 s/56 C-

30 s/72 C-60s 

(Bellucci and 

Curtis, 2011) 



  43 

(GenBank 

KU747123.1) 

(Rotthauwe et 

al., 1997) 

 

S. almeriensis plasmid with 

fragment of S. 

Almeriensis 

(GenBank 

MF977406.1) 

SalmF/SalmR 

(Beatrice-

Lindner et al., 

2018) 

95 C-10 m/95 

C– 15 s/63 C– 

1m/72 C -15s 

(Beatrice-

Lindner et al., 

2018) 
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Table 2. Performance of the different reactor set-ups. Cb: biomass 

concentration, D dilution rate for continuous culturing, YD daily 

productivity, N and P supplied to each reactor. 

 Cba 

(g L-1) 

Da 

(d-1) 
YDa 

(g L-1d-1) 

 

YDa 

(g m-2 d-

1) 

 

N 
mg L-

1 

P 
mg L-

1 

T 2.1±0.1 0.3 0.63±0.05 23.6±0.5 200 50 

RW 0.7±0.1 0.3 0.21±0.05 31.5±0.5 200 50 

RI 3.2±0.1 0.3 0.96±0.05 38.4±0.5 100 20 

RH 0.6±0.1 0.3 0.18±0.05 24.0±0.5 60 10 

aCb: biomass concentration; D dilution rate for continuous culturing; 

YD daily productivity 
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Table 3. Information on the number of sequences retained after the trimming (first two rows) and on the number 

of assembled sequences. Only bacterial sequences were assembled but was not possible for eukaryotic 

sequences (see Material and Methods section) 

 Bacteria Eukaryotes 

 T RW RI RH T RW RI RH 

Total input 282,791 ± 

45,178 

 

258,099 ± 

47,701 

 

290,915 ± 

89,202 

 

364,938 ± 

243,395 

 

108,164 ± 

31,378 

 

141,638 ± 

108,280 

 

123,814 ± 

55,753 

 

126,474 ± 

112,116 

 

Total 

trimmed 

277,249 ± 

44,366 

 

253,604 ± 

47,195 

 

288,003 ± 

87,503 

 

361,268 ± 

240,223 

 

107,967 ± 

31,147 

 

141,085 ± 

107,608 

 

123,501 ± 

55,575 

 

126,162 ± 

111,994 

 

Total 

assembled 

123,879 ±  

15,148 

114,432 ±  

19,744 

127,194 ±  

32,414 

160,296 ±  

100,118 

N/A N/A N/A N/A 
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Not 

assembled 

13,894 ± 

7,720 

 

11,664 ± 

7,203 

 

16,265 ± 

11,079 

 

19,680 ± 

19,495 

 

N/A N/A N/A N/A 

 


