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Resumen

Propiedades homológicas de los módulos tales como la inyectividad, proyectividad,
planitud, etc. se han considerado clásicamente como atributos que los módulos
pueden tener o no tener. Al igual que los interruptores clásicos, sólo tienen las
posiciones de encendido y apagado. Pero esto ha cambiado últimamente y una
nueva tendencia comenzó hace algunos años: la idea es no etiquetar un módulo
como “tiene la propiedad” o “no la tiene”, sino estudiar hasta qué punto el módulo
tiene la propiedad. En esta tesis doctoral se desarrollarán estos conceptos en ámbitos
nuevos y muy interesantes del álgebra homológica.

El primer objetivo de esta tesis es introducir una perspectiva nueva y fresca sobre
la planitud de los módulos. Sin embargo, primero investigamos un contexto más
general introduciendo dominios relativos a una clase precovering X . Llamamos a
estos dominios de completación de X -precubiertas y los denotamos por X−1(L)
para una clase de módulos L. En particular, cuando X es la clase de módulos
planos, los llamamos dominios de completación de precubiertas planas. Este en-
foque nos permite unificar algunos conceptos homológicos conocidos. Eso conduce
a la generalización de algunos resultados importantes, ası́ como a la caracterización
de algunos anillos clásicos en términos de estos dominios.

El segundo objetivo de esta tesis es investigar cuando cada módulo de una clase L
tiene unaX−1(L)-preenvolvente. También investigamos lasX−1(L)-preenvolventes
épicas y mónicas. Este estudio juega un papel clave en el establecimiento de un
marco general para varios resultados clásicos. Luego, para una clase de módulos
M finitamente generados, introducimos la noción de módulosM-R-Mittag-Leffler
como una extensión natural de los módulos R-Mittag-Leffler. Esto nos permite en-
contrar pruebas más fáciles de algunos resultados conocidos y también establecer
otros nuevos.

Palabras claves. Dominios de subproyectividad, dominios de subinyectividad, dominios de
pura subproyectividad, dominios de completación de X -precubiertas, dominios de completación de
precubiertas planas, precubiertas, preenvolventes, R-Mittag-Leffler modulos
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Résumé

Certaines propriétés homologiques des modules telles que l’injectivité, la projec-
tivité, la platitude, etc. ont été classiquement considérées comme des attributs que
les modules peuvent avoir ou ne pas avoir. Tout comme le interrupteurs classiques,
ils n’ont que les positions marche et arrêt. Mais cela a changé récemment et une
nouvelle tendance est apparue il y a quelques années: l’idée n’est pas de considérer
un module comme “il a la propriété” ou “il ne l’a pas”, mais plutôt d’étudier jusqu’à
quel point le module a la propriété. Ces types de concepts sont développés dans
cette thèse dans des contextes nouveaux et intéressants dans l’algèbre homologique.

Le premier objectif de cette thèse est d’introduire une nouvelle perspective sur la
platitude des modules. Cependant, nous étudions d’abord un contexte plus général
en introduisant des domaines relatifs à une classe précouvrante X . Ces domaines
sont appelés domaines de X -précouvertures complétées et on les note par X−1(L)
pour une classe de modules L. En particulier, lorsque X est la classe des mod-
ules plats, nous les appelons domaines de précouvertures plates complétées. Cette
approche nous permet d’unifier certains concepts homologiques connus. Ceci in-
duit la généralisation de certains résultats importants ainsi que la caractérisation de
certains anneaux classiques en fonction de ces domaines.

Le deuxième objectif de cette thèse est d’étudier quand est ce que chaque mod-
ule d’une classe L possède une X−1(L)-préenveloppe. Les X−1(L)-préenveloppes
surjectives et injectives sont également étudiées. Cette étude joue un rôle clé dans la
mise en place d’un cadre général pour plusieurs résultats classiques. Ensuite, pour
une classe de modulesM de type fini, nous introduisons la notion de modulesM-
R-Mittag-Leffler comme extension naturelle des modules R-Mittag-Leffler. Cela
nous permet de retrouver plus facilement certains résultats connus, ainsi que d’en
établir de nouveaux.

Mots Clés. Domaine de sous-projectivité, domaine de sous-injectivité, domaine de pure-
subprojectivité, domaine de X -précouvertures complétées, domaine de précouvertures plates
complétées, précouvertures, préenvelopes, R-Mittag-Leffler modules
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Summary

Homological properties of modules such as injectivity, projectivity, flatness etc.
have been classically considered as attributes that the modules can either have or
not to have. Just like the classical switches, they only have the on and off positions.
But this has changed lately and a new trend started some years ago: the idea is not
to label a module as “it has the property” or “it doesn’t have it”, but to study up to
what degree the module has the property instead. These type of concepts are de-
veloped in this doctoral thesis in new and interesting contexts for the homological
algebra.

The first aim of this thesis is to introduce a new and fresh perspective on flatness
of modules. However, we first investigate a more general context by introducing
domains relative to a precovering class X . We call these domains X -precover com-
pleting domains and denote them X−1(L) for a class of modules L. In particular,
whenX is the class of flat modules, we call them flat-precover completing domains.
This approach allows us to unify some known homological concepts. This leads to
the generalization of some important results as well as the characterization of some
classical rings in terms of these domains.

The second aim of this thesis is to investigate when every module of a class L
has an X−1(L)-preenvelope. Epic and monic X−1(L)-preenvelopes are also inves-
tigated. This study plays a key role in setting a general framework for several clas-
sical results. Then, for a class of finitely generated modulesM, we introduce the
notion ofM-R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler
modules. This enables us to find easier proofs of some known results and also to
establish new ones.

Key Words. Subprojectivity domains, subinjectivity domains, pure-projectivity domains,
X -precover completing domains, flat-precover completing domains, precovers, preenvelopes, R-
Mittag-Leffler modules
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Introduction

Tout au long de cette thèse, R désigne un anneau associatif avec identité et les
modules sont des R-modules unitaire à gauche, sauf mention contraire. Comme
d’habitude, on note la catégorie desR-modules à gauche parR-Mod et la catégorie
des R-modules à droite par Mod-R.

L’étude d’un point de vue relatif de certaines propriétés telles que la projectivité,
l’injectivité et la platitude a été le centre d’intérêt principal de nombreux auteurs
au fil des années (voir par exemple [9], [19], [22] et [23]). L’idée n’est pas de
seulement dire si un module possède une propriété ou non, mais plutôt d’étudier à
quel point il est proche de l’avoir. Ainsi, chaque module est assigné un domaine qui
mesure à quel point il se rapproche de posséder la propriété.

D’abord, les notions relatives de projectivité et d’injectivité ont été introduites
comme un outil pour évaluer l’étendue de ces propriétés pour un module donné. En
effet, la projectivité et l’injectivité relatives sont définies comme suit (voir [19]):
Soit U un module. Si M est un module, alors U est projectif par rapport à M (ou
U est M -projectif) si pour chaque épimorphisme g : M → N et chaque homomor-
phisme f : U → N , il existe un homomorphisme h : U →M tel que le diagramme

U

f
��

h

~~

M g
// N // 0

commute. Le domaine de projectivité d’un module U est la classe de tous les
modules M tels que U est M -projectif.

De même, on dit que U est injectif par rapport à M (ou U est M -injectif) dans
le cas où pour chaque monomorphisme g : K → M et chaque homomorphisme
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Introduction

f : K → U , il existe un morphisme h : M → U tel que le diagramme

U

0 // K g
//

f

OO

M

h

``

commute. Le domaine d’injectivité d’un module U est la classe de tous les modules
M tels que U est M -injectif.

Ensuite, parallèlement à la notion bien connue de l’injectivité relative, Aydoğdu et
López-Permouth ont introduit dans [5] la notion de sous-injectivité. Puis, Holston et
al. ont introduit dans [23] l’analogue projectif de la sous-injectivité et l’ont appelé
la sous-projectivité. Rappelons la définition.

Soient M et N des modules. Alors, M est dit N -sous-projectif si pour tout
épimorphisme g : B → N et tout homomorphisme f : M → N , il existe un
homomorphisme h : M → B tel que gh = f (voir [23, Définition 2.1]). Le do-
maine de sous-projectivité d’un module M , dénoté Pr−1(M), est défini comme
étant la classe

Pr−1(M) := {N ∈ R-Mod : M est N -sous-projectif}.

Il est facile de voir qu’un module est projectif si et seulement si son domaine
de sous-projectivité est constitué de tous les modules (voir [23, Proposition 2.4]).
Ainsi, les domaines de sous-projectivité mesurent la projectivité des modules.

D’autre part, l’étude de la platitude a été abordée dans [9] et [16] de deux différentes
perspectives mais légèrement similaires car les deux sont basées sur le produit
tensoriel. En effet, la platitude relative étudiée dans [9] est définie comme suit :
Soient N un module à droite. Un R-module à gauche M est dit plat par rap-
port à N , relativement plat par rapport à N , ou N -plat si le morphisme canonique
K⊗RM → N ⊗RM est un monomorphisme pour tout sous-module K de N (voir
[9, Définition 2.1]). Le domaine de platitude d’un module M , F−1(M), est défini
comme suit:

F−1(M) := {N ∈ Mod-R : M est N -plat}.

Il est clair d’après la définition qu’un module est plat si et seulement si son do-
maine de platitude est égal à toute la catégorie des modules.

Durğun modifie dans [16] de manière subtile la notion de domaines de platitude et
définit les domaines absolument purs. Cette fois, la définition est basée sur la notion
de pureté. En effet, étant donné un module à gauche M et un module à droite N ,
N est dit absolument M -pur si N ⊗R M → B ⊗R M est un monomorphisme
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Introduction

pour chaque extension B de N (voir [16, Définition 2.2]). Pour un module M , le
domaine absolument pur de M , Ap(M), est défini comme suit:

Ap(M) := {N ∈ Mod-R : N est absolument M -pur}.

Clairement, un module M est plat si et seulement si Ap(M) = Mod-R.

Dans cette thèse, nous introduisons une nouvelle perspective sur la platitude des
modules sans utiliser le produit tensoriel. Cependant, nous commençons d’abord
par définir plusieurs domaines dans un cadre général et introduisons des domaines
relatifs à une classe précouvrante X . Ces domaines sont appelés les domaines de
X -précouvertures complétées car un diagramme impliquant des précouvertures peut
être complété.

La thèse est divisée en trois chapitres.

Le Chapitre 1 est dédié aux préliminaires. Nous fixons la terminologie adoptée
et introduisons quelques résultats utiles pour le reste des chapitres.

Dans le Chapitre 2, nous définissons une nouvelle perspective sur la platitude
des modules inspirée par des idées similaires étudiées dans plusieurs articles sur les
domaines de sous-projectivité. Dans ce processus, les modules projectifs doivent en
général être remplacés par les modules plats. Toutefois, les notions de projectivité
et de platitude sont curieusement différentes, de sorte que les domaines peuvent
être remarquablement uniques. Nous commençons d’abord par étudier un contexte
général en introduisant des domaines relatifs à une classe précouvrante X .

Ce chapitre est organisé comme suit :

Dans la Section 2.1, on définit le domaine deX -précouvertures complétéesX−1(L)
d’une classe de modules L (voir Définition 2.1.1). Puis on démontre quelques pro-
priétés basiques de ces domaines. Dans cette thèse, nous mettons l’accent sur le do-
maine de X -précouvertures complétées X−1(L) d’une classe de modules L au lieu
de X−1(M) pour un module M . Cette approche, également adoptée précédemment
dans [4], permet non seulement de retrouver plusieurs résultats connus mais conduit
également à plus d’applications.

Lorsque X est la classe des modules projectifs, les domaines de X -précouvertures
complétées ne sont rien d’autre que les domaines de sous-projectivité [23]. De
plus, il est facile de montrer qu’un module M ∈ X si et seulement si son domaine
de X -précouvertures complétées est constitué de la classe entière des modules R-
Mod (Proposition 2.1.3). Et si N ∈ X , alors N appartient aux domaines de X -
précouvertures complétées de tout module.

Nous étendons l’étude faite dans [4] et [23] au cas relatif et rassemblons différentes
propriétés de stabilité que vérifient les domaines de X -précouvertures complétées

3



Introduction

(voir Propositions 2.1.5, 2.1.6, 2.1.7,2.1.8, 2.1.9 et 2.1.10). Ensuite, nous étudions
le domaine de X -précouvertures complétées d’un module inclut dans un module de
la classe X . A savoir, nous démontrons que étant donné une suite exacte courte
de la forme 0 → M → X → M ′ → 0, nous avons M ′⊥ ⊆ X−1(M) (Proposition
2.1.12). Dans cette situation, X−1(M) contient la classe des modules injectifs. Cela
nous amène aux propositions 2.1.13 et 2.1.14 où nous établissons des conditions
nécessaires et suffisantes pour que les domaines de X -précouvertures complétées
contiennent la classe particulière des modules injectifs I d’une part et celle des
modules injectifs purs PI d’une autre part, respectivement. Enfin, dans la proposi-
tion 2.1.15, on compare les domaines relatifs à deux classes précouvrantes X et Y
telles que X ⊆ Y .

Dans la Section 2.2, nous mettons en lumière les domaines de précouvertures
plates complétées, obtenus en prenant X comme la classe des modules plats. Cela
nous permet d’obtenir de nouvelles caractérisations de notions connues. Par ex-
emple, dans la proposition 2.2.10, nous démontrons que pour tout anneau R, nous
avons les assertions suivantes:

1. wdim(R) ≤ 1 si et seulement si le domaine de précouvertures plates complétées
de n’importe quel module est stable par sous-modules.

2. L’anneauR est cohérent à droite si et seulement si le domaine de précouvertures
plates complétées de tout module est stable par produits directs.

3. L’anneau R est semi-héréditaire à gauche si et seulement si le domaine de
précouvertures plates complétées de tout module à droite est stable par pro-
duits directs et que le domaine de précouvertures plates complétées de n’importe
quel module à gauche est stable par sous-modules.

De plus, nous avons pu déterminer les domaines de précouvertures plates complétées
de certains types de modules intéressants. En effet, dans l’exemple 2.2.2, nous
démontrons que:

1. Si M est de Ding projectif, alors il existe un module Ding projectif M ′ tel
que le domaine de précouvertures plates complétées de M est M ′⊥.

2. Si M est un module de présentation finie et plat de Gorenstein fort alors le
domaine de précouvertures plates complétées de M est M⊥.

Ensuite, de manière similaire au contexte homologique classique où la relation
entre les modules plats et projectifs est minutieusement étudiée, nous étudions dans
cette thèse la relation entre les domaines de précouvertures plates complétées et les

4



Introduction

domaines de sous-projectivité (Proposition 2.2.4). Cela nous dévoile un nouvel as-
pect de notions bien connues. Rappelons qu’un anneauR est dit parfait si tout mod-
ule plat est projectif. Dans cette thèse, nous donnons une nouvelle caractérisation
d’anneaux parfaits en fonction de ces domaines (Corollaire 2.2.5).

Dans la Proposition 2.2.9, nous donnons une nouvelle perspective sur le résultat
connu suivant : Un module est plat si et seulement si son module caractère est
injectif (voir [26, Theorem]). Ou de manière équivalente, un module est plat si
et seulement si son module caractère est absolument pur. Dans ce nouveau con-
texte, on étudie la relation entre les domaines absolument purs et de domaines de
précouvertures plates complétées (Proposition 2.2.9).

Enfin, dans [11], les anneaux cohérents sont caractérisés par l’équivalence en-
tre la pureté absolue d’un module et la platitude de son module caractère. Ici,
nous démontrons le résultat homologue dans notre contexte. À savoir, nous car-
actérisons les anneaux cohérents à droite au moyen de domaines de précouvertures
plates complétées et de domaines absolument purs (voir la proposition 2.2.11).

Dans la Section 2.3, nous nous intéressons à la relation entre les domaines de
précouvertures plates complétées et les domaines de sous-injectivité. Nous obtenons
une nouvelle perspective au résultat [26, Theorem] énoncé comme suit: un mod-
ule est plat si et seulement si son module caractère est injectif. Dans notre nou-
veau contexte, nous étudions la relation entre les domaines de précouvertures plates
complétées et les domaines de sous-injectivité (Proposition 2.3.1).

L’une des caractérisations classiques des anneaux quasi-Frobenius est celle que
tout module plat est injectif. Ici, nous caractérisons les anneaux quasi-Frobenius en
termes de domaines de précouvertures plates complétées et de domaines de sous-
injectivité (Proposition 2.3.3). Il est également bien connu que lorsque la classe des
modules plats et la classe des modules injectifs coı̈ncident, alors l’anneau n’est rien
d’autre que l’anneau quasi-Frobenius. Nous étudions ici l’homologue de ce résultat
dans notre contexte. Pour cela, nous considérons la question suivante :

Q1. Quelle est la structure d’un anneau sur lequel coı̈ncident les domaines de
précouvertures plates complétées et les domaines de sous-injectivité ?

Nous prouvons qu’un anneau satisfait cette condition si et seulement si tout an-
neau quotient de R est quasi-Frobenius si et seulement si R est isomorphe à un
produit direct fini d’anneaux des matrices n× n sur des anneaux artiniens à idéaux
principaux locaux; pour des entiers positifs n (voir Théorème 2.3.7). Ensuite, nous
donnons des caractérisations équivalentes pour que les domaines de précouvertures
plates complétées contiennent la classe des modules injectifs (Proposition 2.3.9).
En conséquence, ce résultat nous permet de donner une preuve directe des car-
actérisations des anneaux IF précédemment établies par Colby dans [12, Theorem
1] (Corollaire 2.3.10).

5
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Dans [5], un module avec le plus petit domaine de sous-injectivité possible est dit
indigent. Nous introduisons ici le concept analogue; c’est-à-dire celui des modules
pour lesquels les domaines de précouvertures plates complétées sont aussi petits
que possible. Nous appelons ces nouveaux modules des modules f-robustes. Nous
démontrons qu’il existe des modules f-robustes pour tout anneau arbitraire et enfin,
nous établissons une connexion entre les modules f-robustes et les modules indi-
gents (Proposition 2.3.11).

Dans le Chapitre 3, nous poursuivons l’étude des domaines de X -précouvertures
complétées. L’un des problèmes classiques dans le contexte des précouvertures
et des préenveloppes est celui de caractériser quand chaque module possède une
préenveloppe. Ce problème est davantage intéressent lorsque cette préenveloppe
est d’un type spécifique tel qu’une préenveloppe surjective ou injective. Dans ce
chapitre, nous répondons à la question principale suivante :

Q2. Quand est-ce que chaque module d’une classe de modules L possède une
X−1(L)-préenveloppe ?

Cela donne une nouvelle perspective de certaines notions n’impliquant pas de
domaines de X -précouvertures complétées. Par exemple, en prenant L comme
étant la classe des modules de type fini et X celle des modules pure-projectifs,
nous déterminons quand est-ce que chaque module de type fini a-t-il une R-Mittag-
Leffler préenveloppe. Ceci sera amplement développé dans la dernière section.

De plus, les études faites dans [28] et [31] se présentent comme de bons exemples
de ce travail. En effet, Parra et Rada dans [31] ont défini S-proj, pour une classe
de modules de type fini S, comme étant la classe de modules N telle que tout le
morphisme f : S → N , où S ∈ S, se factorise par un module libre. Ensuite, ils
ont étudié quand est-ce que chaque module de S possède une S-proj-préenveloppe.
Il s’est avéré que la classe S-proj est précisément le domaine de sous-projectivité
Pr−1(S) (voir [4, Proposition 2.7]). Et dans [28], on peut voir que Mao a étudié
quand est-ce que chaque module simple possède une Pr−1(S)-préenveloppe, où S
désigne la classe des modules simples.
Par conséquent, le chapitre 3 fournit un contexte unifié répondant aux questions rel-
atives à l’existence de préenveloppes pour les modules d’une classe. Et une telle
étude couvre plusieurs applications possibles.
On rappelle qu’un module M est dit f-projectif si, pour tout sous-module C de type
fini de M , l’injection canonique se factorise à travers un module libre de type fini.
Maintenant, on sait par [4, Proposition 2.22] que la classe Pr−1(S) pour une classe
S de modules de type fini généralise le concept des modules f -projectifs. Cela nous
inspire à définir une extension naturelle du concept de modules R-Mittag-Leffler.
Ici, nous nous appuyons sur les domaines PP-précouvertures complétées, où PP
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désigne la classe des modules purs projectifs. Nous utilisons une caractérisation
appropriée des modules R-Mittag-Leffler dus à Goodearl dans [21]. Nous appelons
ces modulesM-R-modules Mittag-Leffler, relatifs à diverses classes de modules de
type finiM. Avec cette approche, nous retrouvons des résultats connus et donnons
aussi une nouvelle perspective sur les modules R-Mittag-Leffler.

Le Chapitre 3 est divisé en deux sections.

Dans la Section 3.1, nous étudions les domaines de X -précouvertures complétées
en tant que classes pré-enveloppantes. Un outil important pour caractériser quand
est-ce que chaque module d’une classeL a uneX−1(L)-préenveloppe est le concept
relatif des classes localement initialement petites que nous introduisons comme une
extension de la notion classique de classes localement initialement petites (voir [32,
Définition 2.1]). Nous démontrons l’un des résultats principaux de cette section qui
répond à la Question Q2 (Théorème 3.1.3). Ensuite, nous étudions quand est-ce
que chaque module de L a une X−1(L)-préenveloppe surjective d’une part, et une
X−1(L)-préenveloppe injective d’une autre part (voir les Théorèmes 3.1.7 et 3.1.9,
respectivement).

La Section 3.2 est dédiée aux applications. Plusieurs résultats pour des classes
importantes de modules peuvent être obtenus comme applications de nos résultats
principaux. Dans cette section, pour une classe des modules de type fini M, on
définit les modulesM-R-Mittag-Leffler (Définition 3.2.1). Nous donnons quelques
caractérisations équivalentes des modulesM-R-Mittag-Leffler (Proposition 3.2.3)
puis rassemblons et démontrons leurs propriétés de stabilité (Propositions 3.2.5,
3.2.7 et 3.2.9). Nous démontrons que les modules R-mod-R-Mittag-Leffler ne sont
que les modules R-Mittag-Leffler, et que les modules C-R-Mittag-Leffler sont ex-
actement des modules pure-projectifs séparé, où R-mod désigne la classe des mod-
ules de type fini et C celle des modules cycliques (voir Remarque 3.2.2 et Exemple
3.2.4).

En algèbre homologique classique, la relation entre les modulesR-Mittag-Leffler,
les modules f -projectifs et les modules plats a été étudiée et caractérisée ([25,
Proposition 1.2]). Dans notre nouveau contexte, nous étudions le résultat homo-
logue reliant la notion de modulesM-R-Mittag-Leffler à celle deM-proj (voir la
proposition 3.2.12). Enfin, basés sur des résultats prouvés dans la section précédente,
nous donnons des caractérisations pour qu’un module deM aie uneM-R-Mittag-
Leffler-préenveloppe (Proposition 3.2.13).
De même, l’existence de M-R-Mittag-Leffler-préenveloppes surjectives et injec-
tives pour les modules de la classeM est caractérisée (Propositions 3.2.15 et 3.2.16).
Enfin, nous donnons une caractérisation desM-R-Mittag-Leffler-enveloppes pour
les modules dansM (Proposition 3.2.17).
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Throughout this thesisR will denote an associative ring with identity and modules
will be unital leftR-modules, unless otherwise explicitly stated. As usual, we denote
by R-Mod the category of left R-modules and by Mod-R the category of right R-
modules.

The study from a relative perspective of certain properties such as projectivity,
injectivity and flatness was the main focus of many authors throughout the years
(see for instance [9], [19], [22] and [23]). The idea is not to determine whether
or not a module has a property, but rather to study how close it is to have it. That
way, each module is assigned a relative domain that measures to what extent it has
a certain property.

First, relative notions of projectivity and injectivity were introduced as a tool to
evaluate the extent of these properties for any given module. Indeed, relative pro-
jectivity is defined as follows (see [19]). Let U be a module. If M is a module, then
U is projecive relative to M (or U is M -projective) in case for each epimorphism
g : M → N and each homomorphism f : U → N , there is a homomorphism
h : U →M such that the diagram

U

f
��

h

~~

M g
// N // 0

commutes. The projectivity domain of a module U is the class of all modules M
such that U is M -projective.

On the other hand, U is said to be injective relative to M (or U is M -injective) in
case for each monomorphism g : K → M and each homomorphism f : K → U ,

8
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there is a morphism h : M → U such that the diagram

U

0 // K g
//

f

OO

M

h

``

commutes. The injectivity domain of a module U is the class of all modulesM such
that U is M -injective.

Then, in contrast to the well-known notion of relative injectivity, Aydoğdu and
López-Permouth introduced in [5] the notion of subinjectivity. Then, Holston et al.
introduced in [23] the projective analogue of subinjectivity and called it subprojec-
tivity. We recall the definition of subprojectivity domains.

Given two modules M and N , M is said to be N -subprojective if for every epi-
morphism g : B → N and homomorphism f : M → N , there exists a homomor-
phism h : M → B such that gh = f (see [23, Definition 2.1]). The subprojectivity
domain, or domain of subprojectivity, of a module M , Pr−1(M), is defined to be
the class

Pr−1(M) := {N ∈ R-Mod : M is N -subprojective}.

One can see from the definition that a module M is projective if and only if its sub-
projectivity domain consists of all modules, that is, Pr−1(M) = R-Mod (see [23,
Proposition 2.4]). Thus, subprojectivity domains measure projectivity of modules.

On the other hand, the study of flatness was approached in [9] and [16] from two
different but slightly similar alternative perspectives as both use the tensor product.
Indeed, relative flatness studied in [9] is defined as follows:

Given a right R-module N , a left R-module M is said to be flat relative to N ,
relatively flat to N , or N -flat if the canonical morphism K ⊗R M → N ⊗R M is
a monomorphism for every submodule K of N (see [9, Definition 2.1]). The flat
domain of a module M , F−1(M), is defined to be the class

F−1(M) := {N ∈ Mod-R : M est N -flat}.

Clearly, a module M is flat if and only if F−1(M) = Mod-R. It is clear from the
definition that a module is flat if and only if its domain of flatness is equal to the
whole category of modules.

Durğun in [16], modifies in a subtle way the notion of relative flatness domains
and defines absolutely pure domains. This time, the definition is based on the notion
purity. Indeed, given a left module M and a right module N , N is said to be
absolutely M -pure if N ⊗RM → B⊗RM is a monomorphism for every extension

9



Introduction

B of N (see [16, Definition 2.2]). For a module M , the absolutely pure domain of
M , Ap(M), is defined to be the class

Ap(M) := {N ∈ Mod-R : N is absolutely M -pure}.

Clearly, a module M is flat if and only if Ap(M) = Mod-R.

In this thesis, we introduce a new and a fresh perspective on flatness of modules
without the tensor product. But first, we set several domains under one general
framework and introduce domains relative to a precovering class X . We call these
domains X -precover completing domains because a diagram involving precovers
can be completed.

The thesis is divided into three chapters.

Chapter 1 is dedicated to preliminaries. We set the terminology and introduce
some results needed for the rest of the chapters.

In Chapter 2, we define a new alternative perspective on flatness of modules
inspired by similar ideas studied in several papers about subprojectivity domains.
In this process, projective modules should in general be replaced by flat modules.
However, the nature of projectivity and flatness are so curiously different that each
domain can be remarkably unique. We start by investigating a general context by
introducing domains relative to a precovering class X .
This chapter is organized as follows:

In Section 2.1, we define the X -precover completing domain X−1(L) for a class
of modules L (see Definition 2.1.1) and we give the basic properties. Our emphasis
is on the X -precover completing domain X−1(L) of a class of modules L instead of
X−1(M) for a module M . This approach, also previously adopted in [4], not only
allows us to recover several known results but also leads to more applications.

When X is the class of projective modules, X -precover completing domains will
be nothing but subprojectivity domains. Moreover, it is easy to show that a module
M ∈ X if and only if its X -precover completing domain consists of the entire
class of modules R-Mod (Proposition 2.1.3). And if N ∈ X , then M is vacuously
(N ,X )-precover completing.

We extend the study done in [4] and [23] to this relative case and gather different
closeness properties that X -precover completing domains verify (see Propositions
2.1.5, 2.1.9 and 2.1.10). Then, we investigate the X -precover completing domain of
a module embedded in a module in the class X . Namely, we show that given a short
exact sequence of the form 0 → M → X → M ′ → 0, we have M ′⊥ ⊆ X−1(M)
(Proposition 2.1.12) and as a consequence, X−1(M) contains the class of injective
modules. This brings us to Propositions 2.1.13 and 2.1.14 where we establish equiv-
alent conditions for X -precover completing domains to contain the particular class

10
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of injective modules I and that of pure-injective modules PI, respectively. Finally,
in Proposition 2.1.15, we compare the domains relative to two precovering classes
X and Y such that X ⊆ Y .

In Section 2.2, we shed light on flat-precover completing domains, obtained by
taking X to be the class of flat modules. This leads to new characterizations of
known notions. For instance, in Proposition 2.2.10, we show that for any ring R,
we have the following assertions:

1. wdim(R) ≤ 1 if and only if the flat-precover completing domain of any
module is closed under submodules.

2. The ringR is right coherent if and only if the flat-precover completing domain
of any module is closed under direct products.

3. The ring R is left semihereditary if and only if the flat-precover completing
domain of any right R-module is closed under arbitrary direct products and
the flat-precover completing domain of any left module is closed under sub-
modules.

Futhermore, we were able to compute the flat-precover completing domains of some
interesting kind of modules. Indeed, in Example 2.2.2, we show that

1. If M is Ding projective then there exists a Ding projective module M ′ such
that the flat precover completing domain of M is M ′⊥.

2. If M is a finitely presented and strongly Gorenstein flat module then the flat
precover completing domain of M is M⊥.

Then, as in the classical homological context where the relation between flat and
projective modules is extensively studied, we investigate the relation between flat-
precover completing domains and subprojectivity domains (see Proposition 2.2.4).
This shows us a new side to well-known notions. Recall that a ring R is called
perfect if every flat module is projective. Here, we give a new characterization of
perfect rings in terms of our domains (Corollary 2.2.5).

In Proposition 2.2.9, we provide a new perspective on the following known-result:
A module is flat if and only if its character module is injective (see [26, Theorem]).
Or equivalently, a module is flat if and only if its character modules is absolutely
pure. In this context, we obtain the following result in terms of absolutely pure
domains and flat-precover completing domains (Proposition 2.2.9).

Finally, in [11], coherent rings are characterized by the equivalence of the abso-
lutely purity of modules and the flatness of their character modules. Here we show
the counterpart result in our context. Namely, we characterize right coherent rings
by means of flat-precover completing domains and absolutely pure domains (see
Proposition 2.2.11).

11
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In Section 2.3, we focus on the relation between flat-precover completing domains
and subinjectivity domains. We give another new insight to [26, Theorem] that
shows that a module is flat if and only if its character module is injective. In our
new context, we use flat-precover completing domains and subinjectivity domains
(Proposition 2.3.1).

One of the classical characterizations of quasi-Frobenius rings is that they are
those rings for which any flat module is injective. In this work, we characterize
quasi-Frobenius rings in terms of flat-precover completing domains and subinjec-
tivity domains (Proposition 2.3.3). It is also well known that when the class of flat
modules and the class of injective modules coincide, then the ring is nothing but
a quasi-Frobenius ring. Here, we investigate the counterpart of this result in our
context.So we consider the following question:

Q1. What is the structure of a ring over which the flat-precover completing domains
and subinjectivity domains coincide?

We prove that a ring satisfies this condition if and only if every factor ring of
R is QF if and only if the ring R is isomorphic to a direct product of full matrix
rings over Artinian chain rings. (see Theorem 2.3.7). Then, we give equivalent
characterizations for flat-precover completing domains to contain the class of injec-
tive modules (Proposition 2.3.9). As a consequence, this result allows us to give a
straightforward proof to characterizations of IF -rings established in [12, Theorem
1] by Colby (Corollary 2.3.10).

In [5], a module with the smallest possible subinjectivity domain is said to be
indigent. Here we introduce the opposite concept to that of flat modules; that is,
modules for which the flat-precover completing domains are as small as possible.
We call these new modules f-rugged modules. We show that there are f-rugged
modules for any arbitrary ring and finally, we establish a connection between f-
rugged modules and indigent modules (Proposition 2.3.11).

In Chapter 3, we continue the investigation of X -precover completing domains.
One of the classical problems in the context of precovers and preenvelopes is to
characterize when every module has a preenvelope and even more when that preen-
velope is of a specific type such as an epimorphic or a monomorphic preenvelope.
In this chapter, we ask the following main question:

Q2. When does every module of a class L have an X−1(L)-preenvelope?

This yields a new insight into notions not involving precover completing domains.
For example, taking L to be the class of finitely generated modules and X that of
pure-projective modules, we determine when does every finitely generated module
have an R-Mittag-Leffler preenvelope. This will be developed in the last section.

12



Introduction (English)

Moreover, the studies done in [28] and [31] also serve as nice examples of our
work. Indeed, Parra and Rada in [31] defined S-proj, for a class of finitely gener-
ated modules S, as the class of modules N such that every morphism f : S → N ,
where S ∈ S , factors through a free module. Then, they investigated when every
module of S has an S-proj preenvelope. It turns out that the class S-proj is precisely
the subprojectivity domain Pr−1(S) (see [4, Proposition 2.7]).

And in [28], one can see that Mao investigated when every simple module has an
Pr−1(S)-preenvelope, where S denotes the class of simple modules.
Consequently, this present work provides a uniform background for questions rela-
tive to the existence of preenvelopes for a class modules. And such a study covers
several possible applications.
We recall that a module M is said to be f-projective if, for every finitely generated
submoduleC ofM , the inclusion map factors through a finitely generated free mod-
ule. Now, we know by [4, Proposition 2.22] that the class Pr−1(S) for a class S of
finitely generated modules generalizes the concept of f -projective modules. This
inspires us to define a natural extension of the concept ofR-Mittag-Leffler modules.
Here, we rely on PP-precover completing domains, where PP denotes the class
of pure-projective modules. We use a suitable characterization of R-Mittag-Leffler
modules due to Goodearl in [21]. We call these modulesM-R-Mittag-Leffler mod-
ules, relative to various classes of finitely generated modules M. With this ap-
proach, we recover known results and give a new perspective on R-Mittag-Leffler
modules.

Chapter 3 is divided into two section.

In Section 3.1, we investigate X -precover completing domains as preenveloping
classes. An important tool in characterizing when every module of a class of mod-
ules L has an X−1(L)-preenvelope is the concept of relative locally initially small
classes that we introduce as an extension of the classical notion of locally initially
small classes (see [32, Definition 2.1]). We show one of the main result of this
section that answers Question Q2 (Theorem 3.1.3).

Then, we investigate when every module of L has an epic X−1(L)-preenvelope
and a monic X−1(L)-preenvelope (see Theorems 3.1.7 and 3.1.9).

Section 3.2 is dedicated to applications. Several results for significant classes
can be obtained as particular instances from previous results. Here, for a class of
finitely generated modulesM, we defineM-R-Mittag-Leffler modules (Definition
3.2.1). We give some equivalent characterizations ofM-R-Mittag-Leffler modules
(Proposition 3.2.3) and then gather and show their closeness properties (Proposi-
tions 3.2.5, 3.2.7 and 3.2.9). We show that R-mod-R-Mittag-Leffler modules are
justR-Mittag-Leffler modules, whereR-mod denotes the class of finitely generated
modules. We recall that in [6], a module is called singly pure-projective if the inclu-
sion map from each cyclic submodule factors through a finitely presented module.
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We show that C-R-Mittag-Leffler modules are exactly singly pure-projective mod-
ules, where C denotes the class of cyclic modules (see Remark 3.2.2 and Example
3.2.4).

In the classical homological algebra, the relation between R-Mittag-Leffler mod-
ules, f -projective modules, and flat modules has been studied and characterized
([25, Proposition 1.2]). In our new context, we investigate the counterpart of this
result by relating the notion ofM-R-Mittag-Leffler modules to that ofM-proj (see
Proposition 3.2.12). Finally, based on results proved in the previous section, we
give characterizations for when every module in M has an M-R-Mittag-Leffler
preenvelope (Proposition 3.2.13). Similarly, the existence of epic and monic M-
R-Mittag-Leffler preenvelopes for modules in the classM is characterized (Propo-
sitions 3.2.15 and 3.2.16). We end this section with a characterization of M-R-
Mittag-Leffler envelopes for modules inM (Proposition 3.2.17).
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CHAPTER 1

PRELIMINARIES

In this chapter we introduce the basic terminology for rings and modules that we
use, as well as the fundamental results needed for this thesis. We assume that the
fundamentals of module, ring theory and homological algebra are already known.
All definitions which are not given here can be found in [17] and [34] for example.

1.1 Notation and terminology

Throughout this thesis, we will consider the following notation:

R-Mod The class of all left R-modules.

Mod-R The class of all right R-modules.

R-mod The class of all finitely generated modules.

P The class of projective modules.

I The class of injective modules.

PP The class of pure-projective modules.

R-ML The class of R-Mittag-Leffler modules.

E(M) The injective envelope of a module M

PE(M) The pure-injective preenvelope of a module M .

M+ The character module HomZ(M,Q/Z).

16



1.2. ABSOLUTELY PURE DOMAINS

Sum(L) The class of all left R-modules.

Summ(L) The class of all modules which are isomorphic to direct sum-
mands of modules of L.

Add(L) The class Summ(Sum(L)).

To any given class of modules L we associate its right Ext-orthogonal class,

L⊥ = {M ∈ R-Mod | Ext1(L,M) = 0, L ∈ L},

and its left Ext-orthogonal class,

⊥L = {M ∈ R-Mod | Ext1(M,L) = 0, L ∈ L}.

In particular, if L = {M} then we simply write ⊥L = ⊥M and L⊥ = M⊥.

1.2 Absolutely pure domains

In this section, we introduce the work done by Durğun in [16] where he evaluates
the flatness of a module. The class of absolutely pure modules plays a crucial role
in doing so. We start by recalling some basic definitions about purity.

Definition 1.2.1 ([17], Definition 5.3.6). A submodule T of a module N is said to
be a pure submodule if 0 → A ⊗ T → A ⊗ N is exact for all right R-modules
A, or equivalently, if Hom(A,N) → Hom(A,N/T ) → 0 is exact for all finitely
presented modules A.
An exact sequence 0→ T → N → N/T → 0 is said to be pure exact if T is a pure
submodule of N .
A module M is said to be pure injective if for every pure exact sequence 0→ T →
N of modules, Hom(N,M) → Hom(T,M) → 0 is exact. Clearly, every injective
module is pure injective.

Recall that a module N is said to be absolutely pure if every extension of N is
pure exact. The following proposition is useful to characterize the absolute purity
of a given module.

Proposition 1.2.2 ([16], Proposition 2.1). Let N be a module. The following state-
ments are equivalent:

1. N is absolutely pure.

17
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2. M⊗RN →M⊗RE(N) is a monomorphism for each finitely presented right
R-module M .

3. M ⊗R N →M ⊗R E(N) is a monomorphism for each right R-module M .

4. ExtR(F,N) = 0 for each finitely presented module F .

Durğun in [16], introduce an alternative perspective on relative flatness domains
and defines absolutely pure domains as follows.

Definition 1.2.3 ([16], Definition 2.2). Given a left module M and a right module
N , N is said to be absolutely M -pure if N ⊗RM → B ⊗RM is a monomorphism
for every extension B of N . For a module M , the absolutely pure domain of M ,
Ap(M), is defined to be the class

Ap(M) := {N ∈ Mod-R : N is absolutely M -pure}.

Clearly, a module M is flat if and only if Ap(M) = Mod-R.
The next proposition turns out to be quite useful in showing that a module N is

absolutely pure relative to another module M .

Proposition 1.2.4 ([16], Proposition 2.2). Let M be a right module and N be a left
module. The following assertions are equivalent:

1. N is absolutely M -pure.

2. M ⊗R N →M ⊗R E(N) is a monomorphism.

3. There exists an absolutely pure extension E of N such that M ⊗R N →
M ⊗R E is a monomorphism.

1.3 Subprojectivity domains

In [23], an alternative perspective on the projectivity of a module was introduced.
Indeed, the authors define subprojectivity domains as a tool to measure the extent
of projectivity of any module. In this section, we gather some results needed for
this thesis that can be found in [3] and [23]. We start with the definition of the
subprojectivity domain of a module.

Definition 1.3.1 ([23], Definition 2.1). Given modules M and N , M is said to be
N -subprojective if for every epimorphism g : B → N and every homomorphism
f : M → N , there exists a homomorphism h : M → B such that gh = f . The
subprojectivity domain of a module M , or domain of subprojectivity, Pr−1(M), is
defined to be the class

Pr−1(M) := {N ∈ R-Mod : M is N -subprojective}.
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Then, the authors in [23] proceed to simplify the definition of subprojectivity
by showing that in order for a module M to be N -subprojective, it is sufficient
to complete a diagram involving projective covers, free covers or even a single
projective cover.

Lemma 1.3.2 ([23], Lemma 2.2). Let M and N be modules. Then the following
conditions are equivalent:

1. M is N -subprojective.

2. For every morphism f : M → N and every epimorphism g : P → N with P
projective, there exists h : M → P such that f = gh.

3. For every morphism f : M → N and every epimorphism g : F → N with F
free, there exists h : M → F such that f = gh.

4. For every morphism f : M → N there exists an epimorphism g : P → N
with P projective and a morphism h : M → P such that f = gh.

An easy observation shows that the subprojectivity domain of a projective module
P is the whole category of modules, so Pr−1(P ) = R-Mod. In this thesis, we
also need to know the subprojectivity domain of a strongly Gorenstein projective
module. We start first by recalling the definition of strongly Gorenstein projective
modules.

First, recall that a module M is said to be strongly Gorenstein projective if there
exists an exact sequence of projective modules

· · · f→ P
f→ P

f→ P
f→ · · ·

such that M ∼= Imf and such that HomR(−, Q) leaves the above sequence exact
whenever Q is a projective module.
Similarly, a module M is said to be strongly Gorenstein flat if there exists an exact
sequence of flat R-modules

· · · f→ F
f→ F

f→ F
f→ · · ·

such thatM ∼= Imf and such that I⊗R− leaves the above sequence exact whenever
I is an injective right R-module (see [8]). In fact, the relationship between the class
of strongly Gorenstein projective and flat modules was investigated in the following
result.

Proposition 1.3.3 ([8], Proposition 3.9). A module is finitely generated strongly
Gorenstein projective if and only if it is finitely presented and strongly Gorenstein
flat.
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The next result determines the subprojectivity domain of a strongly Gorenstein
projective module.

Proposition 1.3.4 ([4], Corollary 2.9). If M is a strongly Gorenstein projective
module, then Pr

A
−1(M) = M⊥.

In [4], the authors develop a new treatment of the subprojectivity in the categorical
context. Subprojectivity domains are introduced for classes of objects instead of just
single objects. Let A denote an abelian category with enough projectives. Then,
the definition is as follows.

Definition 1.3.5 ([4], Definition 2.14). The subprojectivity domain, or domain of
subprojectivity, of a class of objectsM of A is defined as

Pr−1
A

(M) := {N ∈ A : M is N -subprojective for every M ∈M}.

Therefore, ifM := {M} then Pr
A
−1(M) = Pr

A
−1(M).

The authors in [4] provide a useful way to use subprojectivity domains by charac-
terizing subprojectivity domains through a factorization property. This turns out to
be the key to many results in [4].

Proposition 1.3.6 ([4], Proposition 2.7). LetM andN be objects of A . Then, M is
N -subprojective if and only if every morphismM → N factors through a projective
object.

One easily sees that a module is projective precisely when its subprojectivity do-
main is the whole category R-Mod. Thus, the notion of subprojectivity domains
introduced in [23], somehow, measures the projectivity of modules. This can also
be seen in the following proposition in the categorical context.

Proposition 1.3.7 ([4], Proposition 2.4). Let M be an object of A . Then the fol-
lowing conditions are equivalent:

1. Pr−1
A

(M) is the whole abelian category A .

2. M is projective.

3. M ∈ Pr−1
A

(M).

In the next results, the subprojectivity domains of some known classes of objects
are determined. Recall that an object F is said to be flat if every short exact sequence
0 → A → B → F → 0 is pure, that is, if for every finitely presented object
P , HomA (P,−) makes this sequence exact (see [36]). Then, the following result
can be obtained as an immediate consequence of the definition of subprojectivity
domains (see also [15, Proposition 2.1]).
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Proposition 1.3.8 ([4], Proposition 2.18). The subprojectivity domain of the class
of finitely presented objects is the class of flat objects.

The following result is useful to determine the subprojectivity domain of other
known classes.

Proposition 1.3.9 ([4], Proposition 2.17). Let L be a class of objects of A . Then

Pr
A
−1(Add(L)) = Pr

A
−1(Sum(L)) = Pr

A
−1(Summ(L)) = Pr

A
−1(L).

If L is a set, then all these classes coincide with the class Pr
A
−1(⊕L∈LL).

Recall now that an object is said to be pure-projective if it is projective with respect
to every pure short exact sequence. One can show that in a locally finitely presented
category, an object is pure-projective if and only if it is a direct summand of a direct
sum of finitely presented objects. As a direct consequence of Proposition 1.3.9, we
have the following result.

Proposition 1.3.10 ([4], Corollary 2.20). If the category is locally finitely presented
then the subprojectivity domain of the class of all pure-projective objects is precisely
the class of all flat objects.

Another important class of modules is that of f-projective modules. Recall first
that a module M is R-Mittag-Leffler if for every finitely generated submodule C of
M , the inclusion map factors through a finitely presented module (see [25]). The
relationship between f-projective modules and R-Mittag-Leffler is characterized as
follows.

Proposition 1.3.11 ([25], Proposition 1.2). A module M is f-projective if and only
if it is flat and R-Mittag-Leffler.

Finally, the last result of this section determines the subprojectivity domain of the
class of finitely generated modules.

Proposition 1.3.12 ([4], Proposition 2.22). The subprojectivity domain of the class
of finitely generated modules is the class of f-projective modules.

1.4 Subinjectivity domains

In contrast to the notion of subprojectivity domains, the authors in [5] introduce
the notion of subinjectivity domains as an alternative way on the analysis of the
injectivity of modules. We start with the definition.
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Definition 1.4.1 ([5], Definition 2.1). We say that a module M is N -subinjective
if for every extension K of N and every morphism f : N → M , there exists a
morphism g : K → M such that g/N = f . The subinjectivity domain of a module
M , or domain of subinjectivity In−1(M), is defined to be the class

In−1(M) := {N ∈ R-Mod : M is N -subinjective}.

In the same way that a module is projective if and only if its subprojectivity do-
main consists of the entire class R-Mod, it is clear that a module is injective if and
only if its subinjectivity domain equals R-Mod.

The next proposition shows that for M to be N -subinjective, one only needs to
extend maps to E(N).

Proposition 1.4.2 ([5], Lemma 2.2). The following statements are equivalent for
any modules two M and N :

1. M is N -subinjective.

2. For each morphism φ : N → M and for every essential extension K of N ,
there exists a homomorphism ψ : K →M such that ψ|N = φ.

3. For each morphism φ : N → M there exists a homomorphism ψ : E(N) →
M such that ψ|N = φ.

4. For each morphism φ : N → M there exists an injective extension E of N
and a homomorphism ψ : E →M such that ψ|N = φ.

In classical homological algebra, the relationship between the classes of injective
and projective modules was extensively studied. For instance, it is known that a ring
R is quasi-Frobenius if and only if the classes of injective and projective modules
coincide. In the relative context, the counterpart result is being investigated. The
next result tells us when subinjectivity and subprojectivity domains coincide.
For convenience, we will define the following conditions for a ring R:
(P) : The subinjective domain and the subprojective domain coincide for every
module, i.e. In−1(M) = Pr−1(M) for all modules M .

Theorem 1.4.3 ([15], Theorem 4.1). The following conditions are equivalent:

1. R satisfies (P).

2. Every factor ring of R satisfies (P).

3. Every factor ring of R is quasi-Frobenius.

4. The ring R is isomorphic to a direct product of full matrix rings over Artinian
chain rings.
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Condition (3) in Theorem 1.4.3 was extensively studied separately by Faith in
[18]. Namely, we have the following result.

Recall that a ring R is called left FGF in case every finitely generated module
embeds in a free module.

Proposition 1.4.4 ([18], Theorem 6.1). The following conditions are equivalent:

1. Every factor ring of R is quasi-Frobenius.

2. Every factor ring of R is right FGF .

3. The ring R is isomorphic to a direct product of full matrix rings over Artinian
chain rings.

1.5 Locally initially small and preenveloping classes

Several works were done throughout the years on the notion of injective en-
velopes; among them is the work of Matlis [29]. Simultaneously, Bass [7] intro-
duced the projective cover as a dual notion. This work has enriched the theory of
rings, namely by providing a new class of rings called perfect rings (recall that a
ring is said to be perfect if and only if every module admits a cover projective;
which is equivalent to saying that any flat module is projective). Ever since, there
has been a great interest in the study of precovers and preenvelopes by many authors
throughout the years (see [17] and [37]).
It should be noted that in this section, we will only discuss useful results which are
needed for this thesis. We start with the definition of a cover of a module.

Definition 1.5.1 ([17], Definition 5.1.1). Let R be a ring and let F be a class of
modules. Then for a module M , a morphism φ : F → M is called an F-cover of
M if F ∈ F and the following two conditions hold:

1. Any diagram
F ′

  ��

F
φ
//M

with F ′ ∈ F can be completed to a commutative diagram.

2. The diagram
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F
φ

  ��

F
φ
//M

can be completed only by automorphisms of F .

If φ : F →M satisfies (1) but maybe not (2), then φ is called an F -precover of M .
If every module has an X -(pre)cover, X is said to be (pre)covering.

Having introduced covers, we now define the notion of preenvelopes and en-
velopes dually.

Definition 1.5.2 ([17], Definition 6.1.1). Let F be a class of modules. Then for a
module M , a morphism φ : M → F with F ∈ F is called an F-envelope of M if
the following two conditions hold:

1. Any diagram
F ′

M

OO

φ
// F

``

with F ∈ F can be completed to a commutative diagram.

2. The diagram

F ′

M

φ

OO

φ
// F

``

can be completed only by automorphisms of F .

If φ : M → F satisfies the condition (1) but maybe not (2), then φ is called an
F-preenvelope of M .
If every module has an F-(pre)envelope, we say that F is (pre)enveloping.

In order to characterize a ring R by means of the existence of F-preenvelopes
for all modules, the authors in [32] introduce the concept of locally initially small
classes.
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Definition 1.5.3 ([32], Definition 2.1). Let F be an arbitrary class of modules.
We say that F is locally initially small if, for every module M , there exists a set
FM ⊆ F such that every homomorphism M → F , where F ∈ F , factors through
a direct product of modules in FM .

The next proposition shows that the class of flat modules is locally initially small.

Proposition 1.5.4 ([32], Proposition 2.8). Every class of modules which is closed
under pure submodules is a locally initially small class. In particular, the class Flat
is a locally initially small.

Other examples of locally initially small classes are given in the following propo-
sition.

Proposition 1.5.5 ([32], Proposition 2.9). Let F be a set of modules. Then Sum(F)
is a locally initially small class. In particular, the classes P and PP are locally
initially small.

With these tools in hand, Rada and Saorı́n proceeded in [32] to characterize those
rings for which every module has an F-preenvelope.

Theorem 1.5.6 ([32], Theorem 3.3). Let F be an arbitrary class. The following
assertions are equivalent:

1. Every module has an F-preenvelope.

2. Every module has a Summ(F)-preenvelope.

3. F is locally initially small and the class Summ(F) is closed under direct
products.

4. F is locally initially small and every product of modules in F is a direct
summand of a module in F .

Given a class of modules F , the authors in [32] then investigated under which
conditions it is possible to ensure that every module has an epic F-preenvelope.
Recall that F is a pretorsion-free class provided that F is closed under direct prod-
ucts and submodules.

Proposition 1.5.7 ([32], Proposition 4.1). Let F be an arbitrary class of modules.
Every module has an epic F-preenvelope if and only if F is a pretorsion-free class.
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1.6 Natural identities, character modules and purity

There is a remarkable relationship between the Hom functor and the tensor prod-
uct ⊗ coming from the adjunction of the two functors. In this section, we elaborate
this relationship through natural isomorphisms and characterize some classes of
rings by means of it.

We start with the following result.

Proposition 1.6.1 ([17], Theorem 3.2.11). Let R and S be rings. If A is a finitely
presented module, B an (R, S)-bimodule, and C an injective right S-module, then

τA,B,C : HomS(B,C)⊗
R
A ∼= HomS(HomR(A,B), C)

where the isomorphism is given by τ(f ⊗ a)(g) = f(g(a)).

The following proposition will also be useful.

Proposition 1.6.2 ([34], Theorem 2.76). Let R and S be rings. Let A be a left
R-module, B an (S,R)-bimodule, and C a left R-module. There is a natural iso-
morphism:

τ ′A,B,C : HomS(B ⊗
R
A,C) ∼= HomR(A,HomS(B,C))

given by: for a morphism f : B ⊗R A→ C, a ∈ A, b ∈ B,

τ ′A,B,C(f)(a) : b 7→ f(b⊗ a).

We now characterize coherent rings. This is a result of studying the connection
between flat modules and absolutely pure modules by means of the character mod-
ule.

Proposition 1.6.3 ([11], Theorem 1). The following statements are equivalent:

1. The ring R is a left coherent ring.

2. For any left module M , M is absolutely pure if and only if M+ is a flat right
module.

3. For any left module M , M is absolutely pure if and only if M++ is injective.

4. For any right module M , M is flat if and only if M++ is a flat right module.

Using Propositions 1.6.2 and 1.6.3, one can show the following proposition that
helps determine the flat precover of a module contained in a injective module.
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Proposition 1.6.4 ([17], Proposition 5.3.5). Let R be a right coherent ring, M be a
right R-module, and E be an injective right R-module containing M . Then E+ →
M+ is a flat precover.

In fact, any character module is pure injective as shown in the next result.

Proposition 1.6.5 ([17], Proposition 5.3.7). For any module M , the character mod-
ule M+ is a pure injective right module.

One can easily see that every injective module is absolutely pure. The next propo-
sition shows that the converse happens if and only if the ring Noetherian.

Proposition 1.6.6 ([30], Theorem 3). A ring R is Noetherian if and only if every
absolutely pure module is injective.

Zimmerman [38] explores a stronger notion of purity consisting of monomor-
phisms called strongly pure monomorphisms. This strong notion of purity appears
in the work of several authors (see for example [10, Proposition 2.2]). We recall the
definition.

Definition 1.6.7 ([38], Definition 1.1). A submodule M of a module N is called
strongly pure, s-pure for short, if for every finite tuple x1, . . . , xn of elements in M
there is a map t ∈ Hom(N,M) such that t(xi) = xi, 1 ≤ i ≤ n.

The following result gives an example of a strongly pure monomorphism.

Proposition 1.6.8 ([38], Proposition 1.4). If M is a pure submodule of a pure-
projective module N then M is s-pure in N .
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CHAPTER 2

FLAT PRECOVER COMPLETING
DOMAINS

Recently, many authors have embraced the study of certain properties of modules
such as projectivity, injectivity and flatness from an alternative point of view. Rather
than saying a module has a certain property or not, each module is assigned a
relative domain which, somehow, measures to which extent it has this particular
property. In this chapter, we introduce a new and fresh perspective on flatness of
modules. However, we will first investigate a more general context by introduc-
ing domains relative to a precovering class X . We call these domains X -precover
completing domains. In particular, when X is the class of flat modules, we call
them flat-precover completing domains. This approach allows us to provide a com-
mon frame for a number of classical notions. Moreover, some known results are
generalized and some classical rings are characterized in terms of these domains.

2.1 Relative domains: Basic results

In this section we define X -precover completing domains and state some general
results needed for the rest of the thesis. Here, for an even more general context
and to obtain more applications, we fix our attention on X -precover completing do-
mains of a class of modules L, as also done in [4, Definition 2.13].

For the rest of this thesis, we will denote by X a precovering class of modules
which satisfies the following conditions:

• X is closed under isomorphisms, i.e., if M ∈ X and N ∼= M , then N ∈ X ;
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• X is closed under taking finite direct sums, i.e., M1, ...,Mt ∈ X then M1 ⊕
· · · ⊕Mt ∈ X ;

• X is closed under taking direct summands, i.e., if M = N ⊕ L ∈ X then
N,L ∈ X .

Definition 2.1.1. Given modules M and N , M is said to be (N ,X )-precover com-
pleting if for every morphism f : M → N , and everyX -precover g : X → N , there
exists a morphism h : M → X such that gh = f . When no confusion arises, we will
omit the name of the precovering class and say simply that M is N -precover com-
pleting. The X -precover completing domain of a class of modules L is defined as
the class of modules holding in the X -precover completing domain of each module
of L.

X−1(L) := {N ∈ R-Mod : M is (N,X )-precover completing for every M ∈ L}.

In particular, if L := {M}, then we write X−1(L) = X−1(M).

From the definition, one can see that for any class of modules L, X ⊆ X−1(L).
And if we take X to be the class of projective modules, the X -precover completing
domains are simply subprojectivity domains as defined in [23].

In the following proposition, we give a simple characterization of the notion of
X -precover completing domains.

Proposition 2.1.2. Let L be a class of modules and N be a module. Then the
following assertions are equivalent:

1. N ∈ X−1(L).

2. There exists an X -precover g : X → N such that Hom(M, g) is an epimor-
phism for every M ∈ L.

3. Every morphism M → N with M ∈ L factors through a module in X .

4. Every morphism M → N with M ∈ L factors through a module in X−1(L).

Proof. (1)⇒ (2)⇒ (3) Clear.
(3)⇒ (4) Follows from the fact that X ⊆ X−1(L).
(4) ⇒ (1) Let M ∈ L and consider a morphism f : M → N . We denote by g :
X → N an X -precover. By hypothesis, there exist two morphisms k : K → N and
h : M → K with K ∈ X−1(L) such that f = kh. If t : X ′ → K is an X -precover,
then there exists l : M → X ′ such that h = tl. Since g : X → N is an X -precover,
there exists m : X ′ → X such that gm = kt. Therefere, f = kh = ktl = gml and
so N ∈ X−1(L).
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As the subprojectivity domain does, the X -precover completing domain measures
when a module belongs to the class X . This can be seen from the following result.

Proposition 2.1.3. Let L be a class of modules. Consider the following conditions:

1. X−1(L) = R-Mod.

2. L ⊆ X−1(L).

3. L ⊆ X .

4. X−1(L) is closed under quotients.

Then 1⇔ 2⇔ 3⇒ 4. If X contains the class of projective modules, then 4⇒ 1.

Proof. (1)⇒ (2) Clear.
(2) ⇒ (3) Let M ∈ L and consider the identity morphism 1M : M → M . By
Proposition 2.1.2, 1M factors through a module in X and so M ∈ X .
(3) ⇒ (1) Let M ∈ L, N be any module and consider a morphism f : M → N .
Since M ∈ X , we can see that f factors through a module in X and by Proposition
2.1.2, N ∈ X−1(L).
(1)⇒ (4) Clear.
(4)⇒ (1) LetN be any module and let g : X → N be anX -precover. IfX contains
the class of projective modules, then g is an epimorphism. Since X ⊆ X−1(L), we
deduce that N ∈ X−1(L) by hypothesis.

Proposition 2.1.4. Let {Mi; i ∈ I} be a family of modules. Then, X−1(⊕i∈IMi) =
X−1({Mi}i∈I).

Proof. Let g : X → N be an X -precover. The following diagram is commutative

Hom(⊕i∈IMi, X)
ψX

��

Hom(⊕i∈IMi,g)
// Hom(⊕i∈IMi, N)

ψN

��∏
i∈I Hom(Mi, X)

∏
i∈I

Hom(Mi,g)
//
∏
i∈I Hom(Mi, N)

where ψX and ψN are isomorphisms. Hence the morphism Hom(⊕i∈IMi, g) is epic
if and only if

∏
i∈I Hom(Mi, g) is epic. Therefore, N ∈ X−1(⊕i∈IMi) if and only

if N ∈ X−1(Mi) for every i ∈ I .

In what follows, we study different closeness properties that X -precover complet-
ing domains verify. We start with the following result.

Proposition 2.1.5. Let L be a class of modules. The following statements hold:
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1. Given a short exact sequence of modules 0 → A → B → C → 0 which is
Hom(X ,−) exact, if A and C are in X−1(L), then B is in X−1(L).

2. For a finite family of modules {Ni; 1, ...,m}, Ni ∈ X−1(L) for every i ∈
{1, ...,m}, if and only if ⊕mi=1Ni ∈ X−1(L).

Proof. It suffices to prove the result for precover completing domains of modules.
Let us consider a module M ∈ L.

1. Let 0 → A → B → C → 0 be a short exact sequence of modules which
is Hom(X ,−) exact and suppose that A and C are in X−1(M). Consider the X -
precovers XA → A and XC → C. We get the following commutative diagram

0 // XA
//

��

XA ⊕XC
//

��

XC
//

��

0

0 // A // B // C // 0

We apply the functor Hom(M,−) and we obtain the following commutative dia-
gram

0 // Hom(M,XA) //

��

Hom(M,XA ⊕XC) //

��

Hom(M,XC) //

��

0

0 // Hom(M,A) // Hom(M,B) // Hom(M,C)

with exact rows.
Since A and C hold in X−1(M), the two morphisms Hom(M,XA)→ Hom(M,A)
and Hom(M,XC)→ Hom(M,C) are epimorphisms. Thus, Hom(M,XA⊕XC)→
Hom(M,B) is also an epimorphism and since XA⊕XC ∈ X , by Proposition 2.1.2
we get B ∈ X−1(M).

2. The closure of X−1(M) under finite direct sums is a consequence of 1. Con-
versely, let N ∈ X−1(M) and K be a direct summand of N . If p : N → K is the
canonical projection then Hom(M, p) is epic and then we deduce thatK ∈ X−1(M)
by Proposition 2.1.2.

Recall that M is said to be a small module if Hom(M,−) preserves direct sums.

Proposition 2.1.6. Let L be a class of small modules. The following assertions are
equivalent:

1. The X -precover completing domain of any module in L is closed under arbi-
trary direct sums.

2. The X -precover completing domain of L is closed under arbitrary direct
sums.
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3. For any family of modules {Xi}i∈I in X , ⊕i∈IXi ∈ X−1(L).

Proof. (1) ⇒ (2) This follows from the definition of the X -precover completing
domain of L.
(2)⇒ (3) Clear because X ⊆ X−1(L).
(3) ⇒ (1) Let M be a small module of L and let {gi : Xi → Ni}i∈I be a family
of X -precovers where {Ni}i∈I is a family of modules in X−1(M). The following
diagram

Hom(M,⊕i∈IXi)
∼=
��

// Hom(M,⊕i∈INi)
∼=
��

⊕i∈IHom(M,Xi) // ⊕i∈IHom(M,Ni)

is commutative, and since eachNi is inX−1(M), each Hom(M,Xi)→ Hom(M,Ni)
is epic and so the morphism ⊕i∈IHom(M,Xi)→ ⊕i∈IHom(M,Ni) is epic. Then,
we see that the morphism Hom(M,⊕i∈IXi) → Hom(M,⊕i∈INi) is epic. Let-
ting f : M → ⊕i∈INi be any morphism, we see that f factors through ⊕i∈IXi.
By assumption, we have ⊕i∈IXi ∈ X−1(L), and clearly X−1(L) ⊆ X−1(M), so
⊕i∈INi ∈ X−1(M) by Proposition 2.1.2.

In the next proposition, we give equivalent characterizations for X -precover com-
pleting domains to be closed under direct products.

Proposition 2.1.7. Let L be a class of modules. The following assertions are equiv-
alent:

1. The X -precover completing domain of any module in L is closed under direct
products.

2. The X -precover completing domain of L is closed under direct products.

3. For any family of modules {Xi}i∈I in X ,
∏
i∈I Xi ∈ X−1(L).

Proof. (1) ⇒ (2) This follows from the definition of the X -precover completing
domain of L.
(2)⇒ (3) Clear because X ⊆ X−1(L).
(3) ⇒ (1) Let M be a module of L and {gi : Xi → Ni}i∈I be a family of X -
precovers where {Ni}i∈I is a family of modules inX−1(M). The following diagram

Hom(M,
∏
i∈I Xi)

∼=
��

// Hom(M,
∏
i∈I Ni)

∼=
��∏

i∈I Hom(M,Xi) //
∏
i∈I Hom(M,Ni)
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commutes. Since each Ni is in X−1(M), each Hom(M,Xi) → Hom(M,Ni) is
epic and so the morphism

∏
i∈I Hom(M,Xi) →

∏
i∈I Hom(M,Ni) is epic. Then,

we see that the morphism Hom(M,
∏
i∈I Xi) → Hom(M,

∏
i∈I Ni) is epic. Thus,

any morphism f : M → ∏
i∈I Ni factors through

∏
i∈I Xi. By assumption we have∏

i∈I Xi ∈ X−1(L) so
∏
i∈I Ni ∈ X−1(M) by Proposition 2.1.2.

In the next proposition, we give equivalent characterizations for X -precover com-
pleting domains to be closed under submodules.

Proposition 2.1.8. Let L be a class of modules. The following assertions are equiv-
alent:

1. The X -precover completing domain of any module in L is closed under sub-
modules.

2. The X -precover completing domain of L is closed under submodules.

3. For any submodule K of a module X ∈ X , K ∈ X−1(L).

Proof. (1) ⇒ (2) This follows from the definition of the X -precover completing
domain of L.
(2)⇒ (3) Clear because X ⊆ X−1(L).
(3) ⇒ (1) Let M ∈ L, N ∈ X−1(M) and D be a submodule of N . Consider a
morphism f : M → D. Letting i : D → N denote the injection map, if factors
through a module in X by Proposition 2.1.2, that is, there exist two morphisms
h : M → X and g : X → N such that gh = if and X ∈ X . Let K = Imh
and consider h̄ : M → K such that ιh̄ = h with ι : K → X the injection map.
We have that Kerh̄ ⊆ Kerf and so we can define a morphism φ : K → D such
that φ(h̄(m)) = f(m) for every m ∈ M . We have f = φh̄ and by assumption,
K ∈ X−1(M) and so by Proposition 2.1.2, h̄ : M → K factors through a module
in the class X . Thus, it is easy to see that f also factors through a module in X and
so by Proposition 2.1.2, D ∈ X−1(M).

It is not known whether or not the subprojectivity domains are closed under ker-
nels of epimorphisms. In [4, Proposition 3.2], a weak equivalent condition for this
property was provided. In the relative case we need to assume the additional condi-
tion that the short exact sequences are Hom(X ,−) exact.

Proposition 2.1.9. Suppose that X contains the class of projective modules and let
L be a class of modules. Then the following conditions are equivalent:

1. For every short and Hom(X ,−) exact sequence 0 → A → B → C → 0, if
B,C ∈ X−1(L) then A ∈ X−1(L).
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2. For every short exact sequence 0→ K → X → C → 0 where X → C is an
X -precover, if C ∈ X−1(L) then K ∈ X−1(L).

3. For every X -precover X → C with C ∈ X−1(L), the pullback of X over C
holds in X−1(L).

Proof. It suffices to prove the result for precover completing domains of modules.
So let us consider a module M .
(1)⇒ (2) Clear.
(2)⇒ (1) Consider an exact sequence

0→ A→ B → C → 0

which is Hom(X ,−) exact with B, C ∈ X−1(M). We have the following pullback
diagram

0

��

0

��

K

��

K

��

0 // A // D //

��

X //

��

0

0 // A // B //

��

C //

��

0

0 0
where X → C is an X -precover. Then, K ∈ X−1(M) by assumption because
C ∈ X−1(M). D being the pullback of X → C and B → C and since X → C
is an X -precover, we can easily see that the sequence 0 → K → D → B → 0
is Hom(X ,−) exact. Then, by assertion 1 in Proposition 2.1.5, D ∈ X−1(M).
And since 0 → A → B → C → 0 is Hom(X ,−) exact and D is the pullback
of X → C and B → C, we see that 0 → A → D → X → 0 splits. Thus, A
is a direct summand of D. Using assertion 2 in Proposition 2.1.5 we deduce that
A ∈ X−1(M).
(2)⇔ (3) Consider the following diagram where D is the pullback of X over C

0 // K // D //

��

X //

��

0

0 // K // X // C // 0

Then, the short exact sequence 0 → K → D → X → 0 is Hom(X ,−) exact.
If C ∈ X−1(M) then K ∈ X−1(M) and so by assertion 1 in Proposition 2.1.5,
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D ∈ X−1(M). Conversely, if D ∈ X−1(M) then, by assertion 2 in Proposition
2.1.5 K ∈ X−1(M) (because the short exact sequence 0 → K → D → X → 0
splits).

It is easy to see that if the X -precover completing domain of every class of mod-
ules is closed under kernels of epimorphisms, then X is also closed under kernels of
epimorphisms. For the converse, the following result shows that we have a partial
positive answer when we consider some special epimorphisms.

Proposition 2.1.10. The class X is closed under kernels of epimorphisms if and
only if for every class of modules L and every short exact sequence 0→ A→ B →
X → 0 with X ∈ X , if B ∈ X−1(L) then A ∈ X−1(L).

Proof. It suffices to show this result for precover completing domains of modules.
We first show that X is closed under kernels of epimorphisms. Consider a short
exact sequence 0 → K → X1 → X2 → 0 with X1, X2 ∈ X . Clearly, we have
X1, X2 ∈ X−1(K) so K ∈ X−1(K) and by Proposition 2.1.3 we deduce that
K ∈ X .
For the converse, letX ′ → B be anX -precover and consider the following pullback
diagram

0 // D //

��

X ′ //

��

X // 0

0 // A // B // X // 0
Since X is closed under kernels of epimorphisms, we have D ∈ X . Applying the
functor Hom(M,−) for a module M ∈ L, we obtain the commutative diagrams
with exact rows

0 // Hom(M,D) //

��

Hom(M,X ′) //

��

Hom(M,X)

0 // Hom(M,A) // Hom(M,B) // Hom(M,X)

Since B ∈ X−1(L), Hom(M,X ′) → Hom(M,B) is epic for any M ∈ L and so
Hom(M,D)→ Hom(M,A) is epic too. Therefore, A ∈ X−1(L).

We now give an extension of [4, Proposition 2.17].

Proposition 2.1.11. Let L be a class of modules. Then

X−1(Add(L)) = X−1(Sum(L)) = X−1(Summ(L)) = X−1(L).

If L is a set, then all these classes coincide with the class X−1(⊕L∈LL).
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Proof. Since L holds inside Add(L), we see easily that X−1(Add(L)) holds inside
X−1(L).

For the converse, let N be in X−1(L) and M in Add(L). Then, we know that
there exists a module M ′ in Add(L) and a family of modules {Li} in L such that
M ⊕M ′ = ⊕iLi. By Proposition 2.1.4, we see that N ∈ X−1(M). Consequently,
N ∈ X−1(Add(L)). We deduce that X−1(Add(L)) = X−1(L).

We have clearly L ⊆ Summ(L) ⊆ Add(L) and L ⊆ Sum(L) ⊆ Add(L). Com-
puting the X -precover completing domain of each class, we have X−1(Add(L)) ⊆
X−1(Summ(L)) ⊆ X−1(L) and X−1(Add(L)) ⊆ X−1(Sum(L)) ⊆ X−1(L). We
conclude that X−1(Add(L)) = X−1(Sum(L)) = X−1(Summ(L)) = X−1(L).

If L is a set then, by Proposition 2.1.4, X−1(L) = X−1(⊕L∈LL).

In the rest of this section, we are interested in the precover completing domain of
a single module M . We start by investigating the X -precover completing domain
of a module embedded in a module of the class X .

Proposition 2.1.12. Let 0 → M
α→ X → M ′ → 0 be a short exact sequence with

X ∈ X . Then, M ′⊥ ⊆ X−1(M). Moreover, if α : M → X is an X -preenvelope,
then X−1(M) ∩X⊥ ⊆M ′⊥.

Proof. Let N ∈M ′⊥. Consider the following long exact sequence

// Hom(X,N) // Hom(M,N) // Ext1(M ′, N) // Ext1(X,N) //

Since Ext1(M ′, N) = 0, Hom(X,N) → Hom(M,N) is epic. Thus, N ∈
X−1(M) by Proposition 2.1.2.

Now, let N ∈ X−1(M) ∩X⊥ and X ′ → N be an X -precover. We obtain the fol-
lowing commutative diagram by applying the functors Hom(−, X ′) and Hom(−, N)
to M → X

Hom(X,X ′) //

��

Hom(M,X ′)

��

Hom(X,N) // Hom(M,N) // Ext1(M ′, N)

Since N ∈ X⊥, Ext1(X,N) = 0. Then, from the long exact sequence above,
we see that we only need to prove that Hom(X,N) → Hom(M,N) is epic to
deduce that Ext1(M ′, N) = 0. Since N ∈ X−1(M) we have Hom(M,X ′) →
Hom(M,N) is an epimorphism. Moreover Hom(X,X ′) → Hom(M,X ′) is epic
because α : M → X is anX -preenvelope. Therefore, Hom(X,N)→ Hom(M,N)
is epic. This completes the proof.
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From Proposition 2.1.12, we see that if a moduleM embeds in a module inX then
X−1(M) contains the class of injective modules. In the next result, we prove that
this is in fact an equivalence and also establish some other equivalences similarly to
[15, Lemma 2.2]

Proposition 2.1.13. The following conditions are equivalent for a module M :

1. M embeds in a module in X .

2. There exists a module M ′ such that M ′⊥ ⊆ X−1(M).

3. I ⊆ X−1(M).

4. E(M) ∈ X−1(M).

5. For any flat right R-module F , F+ ∈ X−1(M).

Proof. (1)⇒ (2) This follows from Proposition 2.1.12.
(2)⇒ (3)⇒ (4) Clear.
(4) ⇒ (1) Since E(M) ∈ X−1(M), the inclusion map f : M → E(M) factors
through a module inX , that is, there exist two morphisms h : M → X and g : X →
N with X ∈ X such that f = gh. But gh is a monomorphism and so h : M → X
is monomorphism. We conclude that M can be embedded in a module in X .
(3)⇒ (5) Clear.
(5) ⇒ (3) Let E be an injective module and let F → E+ → 0 be a flat precover.
Then, we have 0→ E++ → F+. And since there exists a canonical monomorphism
E → E++, we obtain a morphism 0 → E → F+ which splits. Now, F+ ∈
X−1(M), so by assertion 2 in Proposition 2.1.5 we obtain E ∈ X−1(M).

Now we investigate when the domains contain the class of pure-injective modules
PI.

Proposition 2.1.14. The following conditions are equivalent for a module M :

1. M is a pure submodule of a module in X .

2. PI ⊆ X−1(M).

3. PE(M) ∈ X−1(M).

4. For any right R-module N , N+ ∈ X−1(M).

5. For any pure-projective right R-module P , P+ ∈ X−1(M).

38



2.2. FLAT-PRECOVER COMPLETING DOMAINS

Proof. (1) ⇒ (2) Let E be a pure-injective module. Let f : M → E be a mor-
phism. We have that M is a pure submodule of a module X ∈ X . We denote by
i : M → X the pure monomorphism. As E is pure-injective, there exists a mor-
phism h : X → E such that f = hi and so f : M → E factors through a module
in X . Thus, E ∈ X−1(M).
(2)⇒ (3) Clear.
(3) ⇒ (1) Since PE(M) ∈ X−1(M), the inclusion map f : M → PE(M) fac-
tors through a module in X , that is, there exist two morphisms h : M → X and
g : X → N with X ∈ X such that f = gh. But gh is a pure monomorphism and so
h : M → X is a pure monomorphism.
(2)⇒ (4) Clear because for every module N , N+ is pure-injective.
(4)⇒ (5) Clear.
(5) ⇒ (2) Let E be a pure-injective module and let P → E+ → 0 be an epimor-
phism with P pure-projective. Then, we have a monomorphism 0 → E++ → P+,
and composing with the canonical monomorphism E → E++, we get a splitting
monomorphism 0 → E → P+. Consequently, E is a direct summand of P+ and,
by assumption, P+ ∈ X−1(M). Thus, by assertion 2 in Proposition 2.1.5, we obtain
E ∈ X−1(M).

We end this section with the next proposition, where we establish a connection
between domains relative to two precovering classes X and Y such that X ⊆ Y .

Proposition 2.1.15. Let X and Y be two precovering classes such that X ⊆ Y
and let M be a module. Then, X−1(M) ⊆ Y−1(M). Furthermore, X−1(M) =
Y−1(M) if and only if Y ⊆ X−1(M).

Proof. Let M be a module and let N ∈ X−1(M). Then any morphism M → N
factors through a module in X by Proposition 2.1.2. Since X ⊆ Y , we deduce that
any morphism M → N factors through a module in Y . Thus, N ∈ Y−1(M) by
Proposition 2.1.2.
Suppose now that Y ⊆ X−1(M). Let N ∈ Y−1(M) and f : M → N be a
morphism. Then, there exists g : Y → N and h : M → Y such that Y ∈ Y
and gh = f . Since Y ⊆ X−1(M), the morphism h : M → Y factors through a
module in X . Hence, the morphism f : M → N also factors through a module in
X . Therefore, N ∈ X−1(M). Finally, it is clear that if X−1(M) = Y−1(M) then
Y ⊆ X−1(M).

2.2 Flat-precover completing domains

Now we focus our attention on the aim of this chapter, which is when taking the
class X to be that of flat modules. In that case, we refer to X -precover complet-
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ing domains as flat-precover completing domains and we denote the flat-precover
completing domain of a module M by F−1(M). Clearly, all the properties proved

in Section 2.1 remain valid for flat-precover completing domains so we will omit
repeating them here. The purpose of this section is twofold: to prove the utility of
flat-precover completing domains by characterizing some classical rings in terms
of these newly defined domains, and to study their relationship with subprojectivity
domains and absolutely pure domains (see [16] and [23]).
First, let us begin with the following extension of the characterizations of a flat
module in terms of flat-precover completing domains. Notice that, following [23],
a module is projective if and only if Pr−1(M) = R-Mod. Thus, M is projective
if and only if P⊥ ⊆ Pr−1(M). In the following proposition we show that the
analogue result also holds for flat-precover completing domains.

Recall that a module C is called cotorsion if Ext1(F,C) = 0 for any flat module
F . We denote the class of cotorsion modules by C. A monomorphism α : M → C
with C cotorsion is said to be a special cotorsion preenvelope of M if Cokerα is
flat. Recall, from [17, Section 7.4], that every module M has a special cotorsion
preenvelope that we denote by C(M).

Proposition 2.2.1. Let M be a module. Then the following conditions are equiva-
lent:

1. M is flat.

2. F−1(M) = R-Mod.

3. M ∈ F−1(M).

4. C ⊆ F−1(M).

5. C(M) ∈ F−1(M).

6. PI ⊆ F−1(M).

7. PE(M) ∈ F−1(M).

8. For any module N , N+ ∈ F−1(M).

9. For any pure-projective module P , P+ ∈ F−1(M).

10. For any module U , M ∈ F−1(U).

11. F−1(M) is closed under quotients.
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Proof. (1)⇔ (2)⇔ (3)⇔ (11) This follow from Proposition 2.1.3.
(2)⇒ (4)⇒ (5) Clear.
(5) ⇒ (3) Consider the short exact sequence 0 → M

α→ C(M) → Cokerα → 0
where α is a special preenvelope (so Coker(α) is flat). Since C(M) ∈ F−1(M),
Proposition 2.1.10 implies that M ∈ F−1(M).
(1)⇔ (6)⇔ (7)⇔ (8)⇔ (9) This follow from Proposition 2.1.14.
(1)⇔ (10) Clear.

From Proposition 2.2.1 we see that if P is a projective module thenM is flat if and
only if F−1(M) = P⊥. But there are other examples ofM such that F−1(M) = N⊥

for some module N (without N⊥ being the whole category of modules).
Recall first that a module M is said to be strongly Gorenstein flat if there is an
exact sequence · · · → P1 → P0 → P 0 → P 1 → · · · of projective modules
with M ∼= Ker(P0 → P 0) such that Hom(−,Flat) leaves the sequence exact (see
[14, Definition 2.1]). Gillespie in [20] renamed these modules as Ding projective
modules since there exists an alternative definition of a strongly Gorenstein flat
module given in [8, Definition 3.1] and that we recalled in Section 1.3.

Example 2.2.2. 1. For any Ding projective module M , there exists a Ding pro-
jective module M ′ such that F−1(M) = M ′⊥.

2. For any strongly Gorenstein flat and finitely presented module M, F−1(M) =
M⊥.

Proof. 1. Any Ding projective module M has a flat preenvelope α : M → F with
F projective. Moreover, Coker(α) is Ding projective. We then apply Proposition
2.1.12 to deduce that F−1(M) = Coker(α)⊥.
2. By Proposition 1.3.3, a module is finitely generated and strongly Gorenstein
projective if and only if it is finitely presented and strongly Gorenstein flat. By
Corollary 2.2.6, F−1(M) = Pr−1(M) for any finitely presented module M and by
Corollary 1.3.4, we can conclude that F−1(M) = M⊥.

In the classical homological algebra, relations between flat modules, projective
modules and absolutely pure modules have been extensively studied. In our new
context, we investigate the counterpart results. Namely, we study the relation be-
tween flat-precover completing domains, subprojectivity domains and absolutely
pure domains (see [4] and [16]). We start by investigating the relationship between
flat-precover completing domains and subprojectivity domains.
Clearly, the subprojectivity domain Pr−1(M) of a moduleM is contained in F−1(M).
However, they are not necessary equal as it is shown by the following example.

Example 2.2.3. The abelian group Q is a flat Z-module, thus by Proposition 2.1.3,
Q ∈ F−1(Q). But Q /∈ Pr−1(Q) for otherwise Q would be a projective Z-module.
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From Proposition 2.1.15 we deduce the following result.

Proposition 2.2.4. Let M be a module. Then, F−1(M) = Pr−1(M) if and only if
Flat ⊆ Pr−1(M).

Recall that a ring R is perfect if and only if any flat module is projective. In terms
of flat-precover completing domains, we have the following result.

Corollary 2.2.5. The following conditions are equivalent:

1. R is perfect.

2. F−1(M) = Pr−1(M) for any module M .

3. F−1(M) ⊆ Pr−1(M) for any module M .

It is shown in Corollary 1.3.10 that the subprojectivity domain of any pure-projective
module contains the class of flat modules. Thus, by Proposition 2.2.4, we deduce
the following result.

Corollary 2.2.6. For any pure-projective module M , F−1(M) = Pr−1(M).

Remark 2.2.7. Corollary 2.2.6 stands as a generalization of the very well-known
result that says: any finitely presented and flat module is projective. Indeed, if N is
a finitely presented and flat module, then by Proposition 2.2.1 N ∈ F−1(N) and so
N ∈ Pr−1(N) by Corollary 2.2.6. Therefore, we conclude that N is projective by
Proposition 1.3.7.

We now apply Proposition 2.2.4 to characterize when the flat-precover completing
domains and subprojectivity domains of finitely generated modules coincide. We
obtain a characterization of rings over which every flat module is f-projective in
terms of flat-precover completing domains. An extensive study of rings over which
every flat module is f-projective is done by Shenglin (see [35, Corollary 5]).

Proposition 2.2.8. The following assertions are equivalent:

1. Any flat module is f-projective.

2. Any flat module is R-Mittag-Leffler.

3. F−1(M) = Pr−1(M) for any finitely generated module M .

4. The class of modules holding in F−1(M) for any finitely generated moduleM
is precisely the class of f-projective modules.
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Proof. (1) ⇔ (2) By Proposition 1.3.11, a module M is f-projective if and only if
M is flat and R-Mittag-Leffler.
(1) ⇔ (3) By Proposition 2.2.4 F−1(M) = Pr−1(M) for every finitely gener-
ated module M if and only if the class of flat modules is inside the subprojectivity
domain of every finitely generated module. By Proposition 1.3.12, the class of
modules holding in the subprojectivity domain of every finitely generated module
is precisely the class of f-projective modules. Thus, F−1(M) = Pr−1(M) for every
finitely generated module M if and only any flat module is f-projective.
(3)⇒ (4) Follows from Proposition 1.3.12.
(4)⇒ (1) Clear.

Lambek [26] proved that, over any ring, a module is flat if and only if its character
module is injective. By Proposition 1.6.5, for any module M , the character module
M+ is a pure injective right module. Thus, we see that a module is flat if and only
if its character module is absolutely pure. The next proposition generalizes this fact
while connecting flat-precover completing domains with absolutely pure domains.

Proposition 2.2.9. Let M be a finitely presented module and N a module. Then,
N ∈ F−1(M) if and only if N+ ∈ Ap(M).

Proof. Let F → N → 0 be a flat precover of N . Since M is finitely presented, by
Proposition 1.6.1 we have the following commutative diagram

(Hom(M,N))+ //

∼=
��

(Hom(M,F ))+

∼=
��

N+ ⊗RM // F+ ⊗RM

Hence,N+⊗RM → F+⊗RM is monic if and only if Hom(M,F )→ Hom(M,N)
is epic. Therefore, N+ ∈ Ap(M) if and only if N ∈ F−1(M) by Proposition
1.2.4.

We end this section with some characterizations of coherent rings in terms of flat-
precover completing domains.

First notice that from Propositions 2.1.7 and 2.1.8, we immediately get the follow-
ing result. Recall that a ring R is left semihereditary if and only if R is left coherent
and wdimR ≤ 1.

Proposition 2.2.10. The following properties hold:

1. The ringR is right coherent if and only if the flat-precover completing domain
of any module is closed under arbitrary direct products.
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2. wdim(R) ≤ 1 if and only if the flat-precover completing domain of any mod-
ule is closed under submodules.

3. The ring R is left semihereditary if and only if the flat-precover completing
domain of any right R-module is closed under arbitrary direct products and
the flat-precover completing domain of any left module is closed under sub-
modules.

Cheatham and Stone characterized in [11, Theorem 1] right coherent rings in
terms of absolutely pure and flat modules. The next proposition gives the coun-
terpart result in terms of flat-precover completing domains and absolutely pure do-
mains.

Proposition 2.2.11. The following assertions are equivalent:

1. The ring R is right coherent.

2. For any module M and any right module N , N ∈ Ap(M) if and only if
N+ ∈ F−1(M).

3. For any finitely presented module M and any module N , N ∈ F−1(M) if and
only if N++ ∈ F−1(M).

Proof. (1) ⇒ (2) Let 0 → N → E be an injective preenvelope of N . Since R
is coherent, E+ → N+ → 0 is a flat precover by Proposition 1.6.4. We have the
following commutative diagram by Proposition 1.6.2

Hom(M,E+) //

∼=
��

Hom(M,N+)
∼=
��

(E ⊗RM)+ // (N ⊗RM)+

Hence, Hom(M,E+)→ Hom(M,N+) is epic if and only ifN⊗RM → E⊗RM
is monic. Therefore, N+ ∈ F−1(M) if and only if N ∈ Ap(M).
(2) ⇒ (3) Let M be a finitely presented module and N be a module. Then, N ∈
F−1(M) if and only if N+ ∈ Ap(M) by Proposition 2.2.9 and so N ∈ F−1(M) if
and only if N++ ∈ F−1(M) by assumption.
(3) ⇒ (1) Let N be a flat module. Then, by Proposition 2.2.1, N ∈ F−1(M) for
any finitely presented module M . By assumption, we have N++ ∈ F−1(M) for any
finitely presented moduleM and soN++ is flat by Propositions 1.3.8 and 2.2.6. We
conclude by Proposition 1.6.3 that R is right coherent.
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2.3 Subinjectivity and flat-precover completing do-
mains

The relation between flat and injective modules was widely studied by several
authors throughout the years leading to a wide range of rich results. In this section,
we study to what extent we can compare the degrees of flatness and injectivity of
modules.

We start with the following result.

Proposition 2.3.1. The following properties hold:

1. For any module M and any right module N , if N+ ∈ F−1(M) then N ∈
In−1(M+).

2. The ring R is right coherent if and only if for any module M and any right
module N , if N ∈ In−1(M+) then N+ ∈ F−1(M).

Proof. For any module L, we denote by σL : L→ L++ the evaluation morphism.
1. Let N+ ∈ F−1(M) with F → N+ a flat precover and let f : N → M+ be any
morphism. Then we have a morphism f+ : M++ → N+. Since N+ ∈ F−1(M),
there exists a morphism h : M → F such that the following diagram commutes

M

σM

��

∃h

��

M++

f+

��

F g
// N+

Then, gh = f+σM and so h+g+ = σ+
Mf

++.
We have the following diagram where each square is commutative

N
f
//

σN

��

M+

σM+
��

N++ f++
//

g+

��

M+++

σ+
M
��

F+
h+

//M+

Now, σ+
MσM+ = 1M+ . Therefore, f = σ+

MσM+f = h+g+σN . Since F+ is
injective, we deduce by Proposition 1.4.2 that N ∈ In−1(M+).
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2. Suppose first that R is coherent and let N ∈ In−1(M+) with g : N → E an
injective preenvelope (notice thatE+ is flat). Then for any morphism f : M → N+,
there exists a morphism h : E →M+ such that the following diagram commutes

M+

N++

f+

OO

N g
//

σN

OO

E

∃h

YY

Then, hg = f+σN and so g+h+ = σ+
Nf

++. We have the following diagram with
each square commutative

M
f
//

σM

��

N+

σN+
��

M++ f++
//

h+
��

N+++

σ+
N
��

E+
g+

// N+

Again, σ+
NσN+ = 1N+ so f = g+h+σM . Therefore, N+ ∈ F−1(M) by Proposi-

tion 2.1.2.
For the converse, we note first that given a module N , if N+ is flat then N is abso-
lutely pure. This is an easy consequence from the fact that every character module
is pure injective (see Proposition 1.6.5). Thus, to prove that R is right coherent it
suffices to prove, by Proposition 1.6.3, that for any module N , if N is absolutely
pure then N+ is flat.
Let now N be an absolutely pure right module. Then, N ∈ In−1(K) for any pure-
injective module K. In particular, N ∈ In−1(M+) for any module M as every
character module is pure-injective. By assumption, N+ ∈ F−1(M) for any module
M and so by Proposition 2.2.1, N+ is flat.

Remark 2.3.2. One can see that the first assertion in Proposition 2.3.1 enables us to
find again the well-known result: if a moduleM is flat thenM+ is injective. Indeed,
if M is flat, then for any right R-module N , N+ ∈ F−1(M). Thus, by Proposition
2.3.1, N ∈ In−1(M+) for any right R-module N and so M+ is injective.
One can also find again that for any module N , if N+ is flat then N is absolutely
pure. Indeed, since N+ is flat, we have that N+ ∈ F−1(M) for any right R-module
M and so, by Proposition 2.3.1, N ∈ In−1(M+) for any right R-module M . Then
we can easily show that N is absolutely pure. Consider 0 → N → E(N). Since
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N ∈ In−1(M+), Hom(E(N),M+)→ Hom(N,M+) is epic. But there is a natural
isomorphism Hom(N,M+) ∼= (M ⊗ N)+, then M ⊗ N → M ⊗ E(N) is monic
for any module M and so N is absolutely pure.

One of the classical characterizations of QF rings is that they are those rings for
which any flat module is injective. Now we characterize QF rings in terms of flat-
precover completing domains and subinjectivity domains.

Proposition 2.3.3. The following assertions are equivalent:

1. The ring R is QF.

2. For any two modules M and N , N ∈ F−1(M) if and only if M ∈ In−1(N).

Proof. (1)⇒ (2) Consider 0→ M
i→ E(M) and let F g→ N be a flat precover of

N . Suppose that N ∈ F−1(M). To prove that M ∈ In−1(N), let f : M → N be
any morphism. Since N ∈ F−1(M), there exists h : M → F such that f = gh. But
R is QF, so F is injective. Thus, there exists l : E(M) → F such that li = h so
f = gh = gli and by Proposition 1.4.2, M ∈ In−1(N).
Now suppose that M ∈ In−1(N) and let us prove that N ∈ F−1(M). For let
f : M → N be any morphism. Since M ∈ In−1(N), there exists h : E(M) → N
such that hi = f . But since R is QF, E(M) is flat and so by Proposition 2.1.2
N ∈ F−1(M).

(2) ⇒ (1) Let F be a flat module. Then, F ∈ F−1(M), for every module M .
By assumption we obtain that for every module M , M ∈ In−1(F ) and so F is
injective. We conclude that R is QF.

In [27], López-Permouth and Simental call a ring R super QF-ring if the relative
projectivity and relative injectivity domains coincide. In their paper, they prove that
a ring R is super QF -ring if and only if R is isomorphic to a direct product of full
matrix rings over Artinian chain rings. Later, in [15, Section 4] Y. Durğun proved
that the subprojectivity and subinjectivity domains coincide if and only ifR is super
QF -ring.

In this section, we investigate the coincidence of flat-precover completing do-
mains and subinjectivity domains. We will say that the flat-precover completing
domains and subinjectivity domains coincide over R if F−1(M) = In−1(M) for
any module M .

By following the same reasoning adopted in [15] and [27], we show that a ring
satisfies F−1(M) = In−1(M) for any module M if and only if the ring R is iso-
morphic to a direct product of full matrix rings over Artinian chain rings.

Proposition 2.3.4. LetR be a ring over which F−1(M) ⊆ In−1(M) for any module
M and let I be an ideal of R. Then F−1(M ′) ⊆ In−1(M ′) for any R/I-module M ′.
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Proof. We may identify R/I-Mod with the full subcategory of R-Mod consisting
of modules annihilated by I . It is clear from the definition of subinjectivity do-
mains that In−1(RM) ∩ R/I-Mod = In−1(R/IM). We also have F−1(R/IM) ⊆
F−1(RM) ∩ R/I-Mod. But F−1(RM) ⊆ In−1(RM). Thus, we conclude that
F−1(R/IM) ⊆ In−1(R/IM).

Proposition 2.3.5. Let R1 and R2 be rings over which the flat-precover completing
domains and subinjectivity domains coincide. Then, the flat-precover completing
domains and subinjectivity domains coincide over R1 ×R2.

Proof. We have for any R1 × R2-module M , M = M1 ⊕ M2 with M1 ∈ R1-
Mod and M2 ∈ R2-Mod. Thus, F−1(M) = F−1(M1) × F−1(M2) = In−1(M1) ×
In−1(M2) = In−1(M). We conclude that R1 × R2 satisfies F−1(M) = In−1(M)
for any module M .

Proposition 2.3.6. LetR be a ring over which the flat-precover completing domains
and subinjectivity domains coincide and let S be Morita equivalent to R. Then the
flat-precover completing domains and subinjectivity domains coincide over S.

Proof. Since S is Morita equivalent to R, there exists an equivalence of categories
φ : R-Mod → S-Mod. It is easy to see that A ∈ F−1(M) if and only if φ(A) ∈
F−1(φ(M)). Similarly, A ∈ In−1(M) if and only if φ(A) ∈ In−1(φ(M)). Thus,
the result follows easily.

Theorem 2.3.7. The following conditions are equivalent:

1. F−1(M) = In−1(M) for any module M ,

2. F−1(M) ⊆ In−1(M) for any module M ,

3. F−1(M) ⊆ In−1(M) for any module over a factor ring of R,

4. Every factor ring of R is QF,

5. The ring R is isomorphic to a direct product of full matrix rings over Artinian
chain rings.

Proof. (1)⇒ (2) Clear.
(2)⇒ (3) This follows from Proposition 2.3.4.
(3) ⇒ (4) This follows from the fact that every flat module over a factor ring of

R is injective. Indeed, let F be a flat R/I-module. Then F ∈ F−1(F ) ⊆ In−1(F )
and so F is injective.

(4)⇒ (5) Follows from Proposition 1.4.4.
(5)⇒ (1) We suppose that R ∼=

∏ki
i=1 Mni

(Di) where the Di’s are Artinian chain
rings. By Proposition 1.4.3, the subprojectivity and subinjectivity domains coincide
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over each Di. But Artinian rings are perfect so by Proposition 2.2.5 the subpro-
jectivity and flat-precover completing domains coincide over each Di. Thus, the
flat-precover completing domains and subinjectivity domains coincide over each
Di. Then, by Proposition 2.3.6, the flat-precover completing domains and subin-
jectivity domains coincide over each Mni

(Di) as it is Morita equivalent to Di. We
conclude by Proposition 2.3.5 that the subinjectivity and the flat-precover complet-
ing domains coincide over R.

Remark 2.3.8. It is worth noting that unlike the implication 2 ⇒ 1 in Theorem
2.3.7, the implication In−1(M) ⊆ F−1(M) ⇒ F−1(M) = In−1(M) for all mod-
ules M does not hold in general. For instance, if we consider a von Neumann regu-
lar ring which is not semisimple then the inclusion In−1(M) ⊆ F−1(M) holds for
every module M . However, there is a flat module F which is not injective. It could
be interesting to study rings which satisfy In−1(M) ⊆ F−1(M) for any module M .
We do not have a complete characterization of rings over which this property holds
but we can observe that when this happens, I ⊆ F−1(M) for any module M and so
R is an IF -ring.

We have the following result.

Proposition 2.3.9. The following conditions are equivalent for a module M :

1. I ⊆ F−1(M).

2. E(M) ∈ F−1(M).

3. For any flat right R-module F , F+ ∈ F−1(M).

4. M embeds in a flat module.

5. For any injective module E and any submodule N of E, if N ∈ M⊥ then
E/N ∈ F−1(M).

Proof. (1)⇔ (2)⇔ (3)⇔ (4) This follow from Proposition 2.1.13.
(5)⇒ (1) Take N = 0.
(1) ⇒ (5) Let E be an injective module. Consider the short exact sequence 0 →
N → E → E/N → 0 with N ∈ M⊥. Applying the functor Hom(M,−), we
obtain the exact sequence

Hom(M,E)→ Hom(M,E/N)→ Ext1(M,N)

Since Ext1(M,N) = 0, Hom(M,E) → Hom(M,E/N) is epic. Since E ∈
F−1(M), every map from M to E factors through a flat module and by Proposition
2.1.2, E/N ∈ F−1(M).
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Now, applying Proposition 2.3.9 to the class of finitely presented modules and to
the class of pure-projective modules, we find characterizations of IF -rings in terms
of flat-precover completing domains, some of which figure in [12, Theorem 1].

We recall first that modules for which the subinjectivity domain is as small as
possible are called indigent modules (see [5, Definition 3.1]). Here, modules for
which the flat-precover completing domain is as small as possible will be called
f-rugged modules to distinguish them from rugged modules defined in [9]. The
flat-precover completing domain of such modules will consist of only flat modules.

Notice that f-rugged modules exist for any ringR. Indeed, considerX = ⊕M∈SM ,
where S is representative set of finitely presented modules. Then, by Proposition
1.3.8 and Corollary 2.2.6, we have F−1(X) = Flat.

Corollary 2.3.10. The following assertions are equivalent:

1. R is an IF -ring.

2. Any module embeds in a flat module.

3. Any pure-projective module embeds in a flat module.

4. Any finitely presented module embeds in a flat module.

5. For any flat module F , F+ is flat.

6. For any injective module E and any submodule N of E, if N is injective then
E/N is flat.

7. For any injective module E and any submodule N of E, if N is absolutely
pure then E/N is flat.

8. There exists an f-rugged module that embeds in a flat module.

Proof. 1 ⇔ 2 ⇔ 3 ⇔ 4 ⇔ 5 ⇔ 6 ⇔ 7 This follow from Proposition 2.3.9 by
considering each time every module M ∈ R-Mod, every pure-projective module
and every finitely presented module. Recall that a module N is flat if and only if
N ∈ F−1(M) for every M ∈ R-Mod if and only N ∈ F−1(M) for every pure-
projective module M if and only N ∈ F−1(M) for every finitely presented module
M (Proposition 2.2.1).
1⇒ 8 Clear.
8 ⇒ 1 Suppose that there exists an f-rugged module M which embeds in a flat
module. Hence, F−1(M) = Flat and by Proposition 2.3.9, I ⊆ F−1(M). Whence,
any injective module is flat. Consequently, R is an IF -ring.
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The following proposition relates the existence of f-rugged modules to that of in-
digent modules. Notice that f-rugged modules are not necessarily finitely generated.

Proposition 2.3.11. LetM be a module. IfR is right Noetherian andM is f-rugged,
then M+ is indigent. Conversely, if there exists a finitely presented module M such
that M+ is indigent, then M is f-rugged and R is right Noetherian.

Proof. Let N ∈ In−1(M+). By Proposition 2.3.1, N+ ∈ F−1(M). But M is f-
rugged so N+ is flat and so N is injective. We conclude that M+ is indigent.
Let now M be a finitely presented module such that M+ is indigent and let us prove
that R is right Noetherian.
We have M+ is pure-injective and it is easy to see that the class of absolutely pure
modules is inside the subinjectivity domain of any pure-injective module. Thus,
every absolutely pure right module is injective and by Proposition 1.6.6, we deduce
that R is right Noetherian.
It is left to prove that M is f-rugged. For let N ∈ F−1(M). Since M is finitely pre-
sented, By Proposition 2.2.11, we have N++ ∈ F−1(M) and applying Proposition
2.3.1 we deduce that N+ ∈ In−1(M+). Since M+ is indigent, N+ is injective and
thus N is flat. We conclude that M is f-rugged.
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CHAPTER 3

PRECOVER COMPLETING DOMAINS
AND APPROXIMATIONS

In this chapter, we continue the investigation of X -precover completing domain
X−1(L), with L being a class of modules and not necessarily a single module.
Namely, we answer the following question: “When does every module in L has
an X−1(L)-preenvelope?”. Epic and monic X−1(L)-preenvelopes are also investi-
gated. This study plays a key role in setting a general framework for several classical
results. Then, for a class of finitely generated modulesM, we introduce the notion
of M-R-Mittag-Leffler modules as a natural extension of R-Mittag-Leffler mod-
ules. This enables us to find easier proofs of some known results and also establish
new ones.

3.1 Preenveloping classes

There has been a great interest in the study of preenveloping classes. Many authors
also were interested in studying epic and monic preenvelopes. This leads us to
study when X -precover completing domains are preenveloping. Epic and monic
preenvelopes are also investigated.

Inspired by the paper of J. Rada and M. Saorı́n [32], we first focus on the question
when the X -precover completing domains are preenveloping classes. Here, we are
interested in the question of when every module of a class has a preenvelope rather
than when every module of the whole category of modules has a preenvelope. We
give some interesting applications.
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We need a relative notion of the locally initially small classes, previously defined
in Definition 1.5.3, to describe when theX -precover completing domains are preen-
veloping.

Definition 3.1.1. A class of modules F is said to be locally initially small relative
to L if, for every M ∈ L, there exists a set FM ⊆ F such that every morphism
M → F , where F ∈ F , factors through a direct product of modules in FM .

A class of modulesF being locally initially small relative toR-Mod simply means
that F is locally initially small. And if F is locally initially small, then F is locally
initially small relative to any class of modules L. Moreover, any class of modules
F is locally initially small relative to itself.

Proposition 3.1.2. Let L be a class of modules. Then, X is locally initially small
relative to L if and only if X−1(L) is locally initially small relative to L.

Proof. Suppose that X is locally initially small relative to L and let M ∈ L. Then,
by definition, there exists a set XM ⊆ X such that every morphism M → X ,
where X ∈ X , factors through a direct product of modules in XM . Every morphism
f : M → N with N ∈ X−1(L) factors through a module X ∈ X by Proposition
2.1.2. And such a factorization M → X factors through a product of modules in
the set XM because X is supposed to be locally initially small relative to L. So we
have just seen that every morphism f : M → N with N ∈ X−1(L) factors through
a product of elements in XM with XM ⊆ X−1(L). Therefore, X−1(L) is locally
initially small relative to L.

For the converse, suppose that X−1(L) is locally initially small relative to L and
let M ∈ L. Then, there exists a set NM ⊆ X−1(L) such that every morphism
M → X , where X ∈ X , factors through a direct product of modules in NM . We
construct a set XM in the following way: for each N ∈ NM we choose an X -
precover X → N of N and include X in XM . Then, XM is clearly a set with
XM ⊆ X .

Let f : M → X be any morphism with X ∈ X . Since X ∈ X−1(L), there exist
g : ∏

i∈I Ni → X and h : M → ∏
i∈I Ni with Ni ∈ NM for every i ∈ I such

that f = gh. Let gi : Xi → Ni be an X -precover with Xi ∈ XM for every i ∈ I .
We denote by πj : ∏

i∈I Xi → Xj and pj : ∏
i∈I Ni → Nj the natural projections.

By the universal property of the direct product, there exists a homomorphism g′ :
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∏
i∈I Xi →

∏
i∈I Ni such that giπi = pig

′ for every i ∈ I .

M

h{{

f
��∏

i∈I Xi
g′
//

πj

��

∏
i∈I Ni

pj

��

g
// X

Xj gj

// Nj

Since Ni ∈ X−1(L), there exists hi : M → Xi such that pih = gihi. By the
universal property of the direct product, there exists h′ : M → ∏

i∈I Xi such that
for every i ∈ I , πih′ = hi. Then, for every i ∈ I we have that pig′h′ = giπih

′ =
gihi = pih. Thus, g′h′ = h and so f = gh = gg′h′. So, f : M → X factors
through a product of element in the set XM . Therefore, X is locally initially small
relative to L.

Now we are in a position to provide in the following result necessary and suf-
ficient conditions for every module in a class of modules L to have an X−1(L)-
preenvelope.

Theorem 3.1.3. Let L be a class of modules. The following conditions are equiva-
lent:

1. Every module in L has an X -preenvelope.

2. Every module in L has an X−1(L)-preenvelope.

3. The class X−1(L) is locally initially small relative to L and closed under
direct products.

4. The classX is locally initially small relative to L andX−1(L) is closed under
direct products.

Proof. (1) ⇒ (2) Let M ∈ L and let φ : M → X ′ be an X -preenvelope. Let
N ∈ X−1(L) and let f : M → N be any morphism. Then, by Proposition 2.1.2,
f factors though a module of X , so there exist two morphisms g : X → N and
h : M → X with X ∈ X such that gh = f . Since φ is an X -preenvelope, there
exists ψ : X ′ → X such that ψφ = h. Hence f = gh = gψφ and therefore φ is also
an X−1(L)-preenvelope of M .

(2) ⇒ (1) Let M ∈ L and let f : M → N be an X−1(L)-preenvelope. We have
that f factors though a module in X , so there exist two morphisms g : X → N and
h : M → X with X ∈ X such that gh = f . We claim that h : M → X is an
X -preenvelope.
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Let φ : M → X ′ be a morphism with X ′ ∈ X . Since X ′ ∈ X−1(L) and f : M →
N is an X−1(L)-preenvelope, there exists ψ : N → X ′ such that ψf = φ. Hence
φ = ψf = ψgh. Therefore, h : M → X is an X -preenvelope.

(2) ⇒ (3) Let {Ni}i∈I be a family of modules in X−1(L) and let f : M →∏
i∈I Ni be a morphism with M ∈ L. For each i ∈ I we denote by pi : ∏

i∈I Ni →
Ni the canonical projection. Let φ : M → N be an X−1(L)-preenvelope. Then, φ
factors through a module in X by Proposition 2.1.2. So there exist two morphisms
h : M → X and g : X → N with X ∈ X such that φ = gh. Since φ is an
X−1(L)-prenvelope, for each i ∈ I there exists a morphism ψi : N → Ni such that
pif = ψiφ.

M
f

//

φ

��

h   

∏
i∈I Ni

pi

��

X

g
~~

N
ψi // Ni

Therefore, for each i ∈ I , we have a morphism ψig : X → Ni. By the universal
property of the direct product, there exists a unique morphism l : X → ∏

i∈I Ni

such that ψig = pil for every i ∈ I . Hence, pilh = ψigh = ψiφ = pif for each
i ∈ I . Therefore, lh = f . Thus,

∏
i∈I Ni ∈ X−1(L) by Proposition 2.1.2.

It is left to prove that X−1(L) is locally initially small relative to L. For that, let
M ∈ L and let φ : M → NM be an X−1(L)-prenvelope. Then, any morphism
M → N , where N ∈ X−1(L), factors through NM . Thus, X−1(L) is locally
initially small relative to L.

(3)⇒ (4) We know from Proposition 3.1.2 thatX is locally initially small relative
to L if and only if X−1(L) is locally initially small relative to L. So the implication
follows easily.

(4) ⇒ (2) Let M ∈ L. Since X is locally initially small relative to L, one can
see that there exists a set XM ⊆ X such that any morphism M → N , with N ∈
X−1(L), factors through a product of modules inXM . We letF = ∏

X∈XM
XHom(M,X).

Then F ∈ X−1(L) because X−1(L) is supposed to be closed under direct products.
Now, for each X ∈ XM there exists a canonical morphism λX : M → XHom(M,X).
Then, there exists a morphism λ : M → F such that πXλ = λX for everyX ∈ XM ,
where πX are the canonical projections. We claim that λ : M → F is an X−1(L)-
preenvelope of M . Indeed, taking any morphism f : M → N with N ∈ X−1(L),
there exist h : M → ∏

X′∈XM
X ′ and g : ∏

X′∈XM
X ′ → N such that f = gh.

Consider the projections πX′ : F → X ′Hom(M,X′) and πpX′h : X ′Hom(M,X′) → X ′

(the projection to the component pX′h where pX′ : ∏
X′∈XM

X ′ → X ′ the canonical
projection). Then, there exists a unique morphism η : F → ∏

X′∈XM
X ′ such that
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πpX′hπX′ = pX′η.

X ′Hom(M,X ′)
πpX′ h

��

F
πX′

oo

η

��

M

f

��

λoo

h

zz

X ′
∏
X′∈XM

X ′ g
//

pX′
oo N

Therefore, pX′ηλ = πpX′hπX′λ = πpX′hλX′ = pX′h for all X ′ ∈ X , so ηλ = h and
hence gηλ = gh = f . We deduce that λ : M → F is an X−1(L)-preenvelope of
M .

In practice, the precover completing domain of a class L is not easy to com-
pute. For this, it would be nice to have a characterization of the existence of X -
preenvelopes for every module in L with conditions depending just on X and L,
that is, without using X−1(L). Theorem 3.1.3 tells us that X−1(L) has to be closed
under direct products. By Proposition 2.1.7, we know that X−1(R-Mod) = X is
closed under direct products if and only if X−1(L) is closed under direct products
for every class of modules L. But having one X−1(L) closed under direct products
is not enough to ensure the closeness of X under direct products. Using Theorem
3.1.3, we can get the following sufficient condition.

Corollary 3.1.4. Let L be a class of modules. If X is closed under direct products
and is locally initially small relative to L, then every module M in L has an X -
preenvelope.

Remark 3.1.5. Notice that the converse of the previous result is not true. Indeed,
if we take X = L, then clearly every module in L has an X -preenvelope and X is
locally initially small relative to L but X can be not closed under direct products.

We now give an application. Letting X be the class of projective modules P , we
see by Proposition 1.3.2 that P-precover completing domains are just subprojectiv-
ity domains (see Definition 1.3.1).

For an arbitrary class S of finitely generated modules, the notion of S-projective
modules was introduced in [31] and is defined as the class of modules N such
that every morphism f : S → N , where S ∈ S , factors through a free module.
Using Proposition 1.3.6, we see that the class S-Proj of S-projective modules is the
subprojectivity domain of the class of modules S. When taking S to be the class of
cyclic modules, S-projective modules are called cyclic-projective modules in [31].

Corollary 3.1.6 ([31], Corollary 3.2). The following conditions are equivalent:

1. Every cyclic module has a projective preenvelope.

2. Every cyclic module has a cyclic-projective preenvelope.
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3. The class of cyclic-projective modules is closed under direct products.

Proof. We set X to be the class of projective modules and L that of cyclic modules.
From the discussion above, the subprojectivity domain of the class of cyclic mod-
ules is the class of cyclic-projective modules. And by Proposition 1.5.5, the class
of projective modules is locally initially small. The result then follows easily from
Theorem 3.1.3.

In [31], it is proved that a ring R verifies the conditions of Corollary 3.1.6 if and
only if the left annihilator of every right ideal of R is finitely generated.

Next, in the following result, we investigate when every module of a class L
admits an epic X−1(L)-preenvelope.

Theorem 3.1.7. Let L be a class of modules. The following conditions are equiva-
lent:

1. Every module in L has an epic X -preenvelope.

2. Every module in L has an epic X−1(L)-preenvelope.

If, in addition, L is closed under quotients, then the conditions above are equiva-
lent to

3. X−1(L) is closed under direct products and submodules.

4. X is locally initially small relative to L, X−1(L) is closed under direct prod-
ucts and for any submodule L of a moduleN ∈ X−1(L) with L ∈ L, we have
that L ∈ X−1(L).

Proof. (1) ⇒ (2) Let M ∈ L and let φ : M → X ′ be an epic X -preenvelope. Let
N ∈ X−1(L) and let f : M → N be any morphism. Then, by Proposition 2.1.2,
f factors though a module in X , so there exist two morphisms g : X → N and
h : M → X with X ∈ X such that gh = f . Since φ is an X -preenvelope, there
exists ψ : X ′ → X such that ψφ = h. Hence f = gh = gψφ and therefore φ is also
an epic X−1(L)-preenvelope of M .
(2) ⇒ (1) Let M ∈ L. If f : M → N is an epic X−1(L)-preenvelope, then
N ∈ X . Indeed, we have by Proposition 2.1.2 that f factors though a module in X .
So, there exist two morphisms g : X → N and h : M → X with X ∈ X such that
gh = f . Since f is an X−1(L)-preenvelope, there exists a morphism k : N → X
such that kf = h. Therefore, gkf = gh = f . But f is epic, so gk = 1N and thus
N ∈ X . Since X ⊆ X−1(L), we deduce that f : M → N is an epic X -preenvelope
of M .
(2) ⇒ (3) It is clear from Theorem 3.1.3 that X−1(L) is closed under direct prod-
ucts. We prove that X−1(L) is closed under submodules.
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LetK be a submodule of a moduleN inX−1(L) and f : M → K be any morphism
with M ∈ L. Letting i : K → N denote the injection map, if factors through a
module in X by Proposition 2.1.2, so there exist two morphisms h : M → X and
g : X → N such that if = gh and X ∈ X . Let φ : M → X ′ denote an epic
X−1(L)-preenvelope. Then, there exists a morphism l : X ′ → X such that lφ = h.
Consider the following commutative diagram

M

f
��φ}}

h

��

X ′

l
xx

K

i
��

X
g

// N

Then, if = glφ and so Kerφ ⊆ Kerf . So, we can define a morphism θ : X ′ → K
such that θ(φ(m)) = f(m) for every m ∈ M . Therefore, we see that f factors
through a module in X and so K ∈ X−1(L) by Proposition 2.1.2.
(3) ⇒ (4) Since X−1(L) is closed under submodules, X−1(L) is locally initially
small by Proposition 1.5.4. So, X−1(L) is locally initially small relative to L. We
use Proposition 3.1.2 to deduce that X is locally initially small relative to L. The
rest of the proof is clear.
(4) ⇒ (2) Let M ∈ L. By Theorem 3.1.3, every module in L has an X−1(L)-
preenvelope. So, we let f : M → N be an X−1(L)-preenvelope. It is easy to see
that the morphism M → Imf is an epic X−1(L)-preenvelope.

When L is taken to be the whole category of modules R-Mod, we find again
Proposition 1.5.7 which states that a class of modulesX is epic preenveloping if and
only if X is closed under direct products and submodules (because X−1(R-Mod) =
X by Proposition 2.1.3).

Corollary 3.1.8. The following conditions are equivalent:

1. Every finitely generated module has an epic projective preenvelope.

2. Every finitely generated module has an epic f-projective preenvelope.

3. The class of f-projective modules is closed under direct products and submod-
ules.

4. The class of f-projective modules is closed under direct products and any
finitely generated submodule of an f-projective module is f-projective.

Proof. We take X to be the class of projective modules and L that of finitely gen-
erated modules R-mod. Then, by Proposition 1.3.12, we know that Pr−1(R-mod)
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is the class of f-projective modules. And we know that the class of projective mod-
ules is locally initially small by Proposition 1.5.5. Then, the result follows from
Theorem 3.1.7.

Recall that a ringR is called π-coherent in case every finitely generated torsionless
right module is finitely presented. By [13, Corollary 5.3], it is proved that the
assertions in Corollary 3.1.8 are equivalent to the ring R being right π-coherent and
left semihereditary.

In the next result, we investigate when every module of a class L admits a monic
X−1(L)-preenvelope.

Theorem 3.1.9. Let L be a class of modules. The following conditions are equiva-
lent:

1. Every module in L has a monic X -preenvelope.

2. Every module in L has a monic X−1(L)-preenvelope.

3. Every module in L has an X−1(L)-preenvelope and I ⊆ X−1(L).

4. The class X is locally initially small relative to L, X−1(L) is closed under
direct products and R+ ∈ X−1(L).

Proof. (1)⇒ (2) Let M ∈ L and let φ : M → X ′ be a monic X -preenvelope. Let
N ∈ X−1(L) and let f : M → N be any morphism. Then, by Proposition 2.1.2,
f factors though a module in X , so there exist two morphisms g : X → N and
h : M → X with X ∈ X such that gh = f . Since φ is an X -preenvelope, there
exists ψ : X ′ → X such that ψφ = h. Hence f = gh = gψφ and therefore φ is also
a monic X−1(L)-preenvelope of M .

(2)⇒ (3) Let E be an injective module and let us prove that E ∈ X−1(L).
Let M ∈ L and M → N be a monic X−1(L)-preenvelope. Then, Hom(N,E) →
Hom(M,E) → 0 is exact. Thus, any morphism M → E factors through N ∈
X−1(L) and so it also factors through a module in X . Therefore, E ∈ X−1(M) by
Proposition 2.1.2.

(3)⇒ (4) Clear by Theorem 3.1.3.
(4)⇒ (1) By Theorem 3.1.3, every module M in L has an X−1(L)-preenvelope.

Let M → N be an X−1(L)-preenvelope. Since R+ ∈ X−1(L), Hom(N,R+) →
Hom(M,R+) → 0 is exact. Thus, N+ → M+ → 0 is exact by Proposition 1.6.2
and therefore, 0→M → N is exact.

As an application of Theorem 3.1.9, we show the following corollary. The argu-
ments are analogue to those of Corollary 3.1.8.

Corollary 3.1.10 ([32], Corollary 5.3). The following conditions are equivalent:
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1. Every finitely generated module has a monic projective preenvelope.

2. Every finitely generated module has a monic f-projective preenvelope.

3. The class of f-projective modules is closed under direct products and every
injective module is f-projective.

4. The class of f-projective modules is closed under direct products and R+ is
f-projective.

The above conditions are equivalent to R being right π-coherent and left FGF as
proved in [32, Corollary 5.3].

We now investigate when every module of a class L has an X−1(L)-envelope.
We saw in Proposition 1.3.8 that the subprojectivity domain of the class of finitely
presented modules is the class of flat modules. By [17, Proposition 6.5.3.], if M →
F is a flat envelope and M is finitely presented, then F is projective. The following
generalizes this result.

Proposition 3.1.11. IfM → N is an X−1(L)-envelope withM a module in L, then
N ∈ X .

Proof. Let f : M → N be an X−1(L)-envelope. Then, f factors though a module
in X , that is, there exist two morphisms g : X → N and h : M → X with
X ∈ X such that gh = f . Since f is an X−1(L)-envelope, there exists a morphism
k : N → X such that kf = h. So f = gkf and then, gk is an automorphism and
thus N ∈ X .

Proposition 3.1.12. Let L be a class of modules. The following conditions are
equivalent:

1. Every module in L has an X -envelope.

2. Every module in L has an X−1(L)-envelope.

Proof. (1) ⇒ (2) Let M ∈ L and let φ : M → X ′ be an X -envelope. Let
N ∈ X−1(L) and let f : M → N be any morphism. Then, by Proposition 2.1.2,
f factors though a module in X , so there exist two morphisms g : X → N and
h : M → X with X ∈ X such that gh = f . Since φ is an X -preenvelope, there
exists ψ : X ′ → X such that ψφ = h. Hence f = gh = gψφ and therefore φ is also
an X−1(L)-envelope of M .

(2) ⇒ (1) By Proposition 3.1.11, if f : M → N is an X−1(L)-envelope, then
N ∈ X . Since X ⊆ X−1(L), we deduce that f : M → N is an X -envelope.
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3.2 Application:M-R-Mittag-Leffler modules

Letting X be the class PP of pure-projective modules, we get PP-precover com-
pleting domains. Recall that in [1, Definition 1], given modules M and N , M is
said to beN -pure-subprojective if for every pure epimorphism g : B → N and mor-
phism f : M → N , there exists a homomorphism h : M → B such that gh = f .
The pure subprojectivity domain of a module M , or domain of pure subprojectivity,
PP−1(M), is defined to be the class

PP−1(M) := {N ∈ R-Mod : M is N -pure-subprojective}.

By [1, Lemma 2], we see that PP-precover completing domains are precisely
pure-subprojectivity domains.

The class of R-Mittag-Leffler modules were also studied in [6] and called finitely
pure-projective modules. In [33], the author defines a relative version of R-Mittag-
Leffler modules, using their characterization with the tensor product (see also [24]).
Here, the key is the characterization of R-Mittag-Leffler modules in terms of fac-
torization of mappings ([21, Theorem 1]). Indeed, we study R-Mittag-Leffler type
conditions relative to an arbitrary class of finitely generated modules instead of re-
stricting ourselves to the whole class of finitely generated modules. Therefore, from
now on,M will denote a class of finitely generated modules.

Definition 3.2.1. A module N is said to beM-R-Mittag-Leffler if N is in the pure-
subprojectivity domain of the classM, PP−1(M).

Remark 3.2.2. If we let R-mod be the class of all finitely generated modules, then
PP−1(R-mod) is the class of all R-Mittag-Leffler modules, denoted R-ML. In-
deed, by Proposition 3.2.3, it is clear that PP−1(R-mod) ⊆ R-ML. Conversely,
let N be an R-Mittag-Leffler module. If f : M → N is any morphism with M a
finitely generated module, then the inclusion map i : Im(f)→ N factors through a
finitely presented module. Thus, f factors through a finitely presented module and
so N ∈ PP−1(M).

Let F = ⊕M∈SM where S is a representative set of finitely presented modules.
We have the following proposition where we give alternative characterizations for
the notion of relative R-Mittag-Leffler.

Proposition 3.2.3. Let N be any module. The following assertions are equivalent:

1. N isM-R-Mittag-Leffler.

2. For every module M ∈ M, every homomorphism f : M → N factors
through a finitely presented module.
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3. For every module M ∈ M, every homomorphism f : M → N factors
through F.

Proof. (1) ⇒ (2) Let f : M → N be any morphism, where M ∈ M. Since
N ∈ PP−1(M), then by Proposition 2.1.2 there exist homomorphisms g : M → P
and h : P → N , where P is a pure-projective module and such that f = hg. But
it is clear from the definition that any pure-projective module is R-Mittag-Leffler.
Therefore, the morphism g factors through a finitely presented module and thus, f
does too.
(2)⇒ (3) Clear.
(3)⇒ (1) Nothing to prove because F is a pure-projective module.

In the next example, we compute the class ofFP-Mittag-Leffler modules and that
of C-Mittag-Leffler modules.

Example 3.2.4. 1. The class ofFP-R-Mittag-Leffler modules is the whole class
of modules R-Mod.

2. The class of C-R-Mittag-Leffler modules is precisely the class of singly pure-
projective modules.

Proof. 1. By Proposition 2.1.11, PP−1(FP) = PP−1(PP) and by Proposition
2.1.3 we have that PP−1(PP) = R-Mod.
2. By Proposition 3.2.3, it is clear that every C-R-Mittag-Leffler modules is singly
pure-projective modules. Conversely, let N be a singly pure-projective modules.
If f : M → N is any morphism with M a finitely generated module, then the
inclusion map i : Im(f)→ N factors through a finitely presented module. Thus, f
factors through a finitely presented module and so N ∈ PP−1(M).

We will say that a class of modules F is closed under pure extensions if for any
pure short exact sequence of modules 0 → A → B → C → 0 such that A and C
are in F , B is also in F .

Proposition 3.2.5. The class ofM-R-Mittag-Leffler modules is closed under direct
summands, direct sums, pure extensions, and pure submodules.

Proof. The closeness under direct summands and pure extensions follow directly
from Proposition 2.1.5. The closeness under direct sums follows from 2.1.6 be-
cause any finitely generated module is small.
We now show that theM-R-Mittag-Leffler modules is closed under pure submod-
ules.
Let N ∈ PP−1(M) and K be a pure submodule of N . Let M ∈ M and
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f : M → K be any morphism, i : K → N be the inclusion map and g : P → N be
a pure-projective precover. Consider the following pullback diagram:

M h

��

θ

  

f

##

D
β
//

α
��

P

g
��

0 // K
i // N

Since N ∈ PP−1(M), there exists h : M → P such that if = gh.
By the universal property of pullbacks, there exists θ : M → D such that βθ = h.
Note that β is pure. Then, by Proposition 1.6.8, there exists k : P → D such that
kβθ = θ. Thus, kh = θ and iαkh = iαθ = if and since i is monic, αkh = f and
so K ∈ PP−1(M) by Proposition 2.1.2.

By Proposition 1.5.4, any class of modules that is closed under pure submodules
is locally initially small. Consequently, by Proposition 3.2.5, we have the following
result.

Corollary 3.2.6. The class ofM-R-Mittag-Leffler modules is locally initially small.

The following proposition is obtained directly from Proposition 2.1.8

Proposition 3.2.7. The following assertions are equivalent:

1. The class ofM-R-Mittag-Leffler modules is closed under submodules.

2. The pure-subprojectivity domain of any module in M is closed under sub-
modules.

3. Any submodule of a pure-projective module isM-R-Mittag-Leffler.

And as a consequence, we have the following result which characterizes when the
class of R-Mittag-Leffler modules is closed under submodules.

Corollary 3.2.8. The following assertions are equivalent:

1. The class of R-Mittag-Leffler modules is closed under submodules.

2. The pure-subprojectivity domain of any finitely generated module is closed
under submodules.

3. Any submodule of a pure-projective module is R-Mittag-Leffler.

In the next result, we see when the class ofM-R-Mittag-Leffler modules is closed
under quotients.
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Proposition 3.2.9. The following conditions are equivalent:

1. The class ofM-R-Mittag-Leffler modules is closed under quotients.

2. The class ofM-R-Mittag-Leffler modules is closed under direct limits.

3. Every module isM-R-Mittag-Leffler.

4. Every module inM is pure-projective.

5. Every module inM isM-R-Mittag-Leffler.

Proof. (1)⇔ (3)⇔ (4)⇔ (5) Follow from Proposition 2.1.3.
(3)⇒ (2) Clear.
(2) ⇒ (3) Since every module is a direct limit of finitely presented modules and
finitely presented modules areM-R-Mittag-Leffler, we deduce that any module is
M-R-Mittag-Leffler.

Since every projective module is pure-projective, it is clear from Proposition
2.1.15 that for any class of modules L, Pr−1(L) ⊆ PP−1(L). However, they
need not be equal, as it is shown in [1, Example 1]. In the next result, we show that
for a flat module F , if F belongs to one of the two domains, then F is also in the
other.

Proposition 3.2.10. Let L be any class of modules and F be a flat module. Then,
F ∈ PP−1(L) if and only if F ∈ Pr−1(L). In particular, Flat ⊆ PP−1(L) if and
only if Flat ⊆ Pr−1(L).

Proof. The sufficient condition follows from the discussion above. Conversely now,
let F be a flat module and consider an epimorphism g : B → F . Since F is flat, g
is a pure epimorphism and so by assumption, Hom(L, g) is epic for every L ∈ L.
Thus, F ∈ Pr−1(L).

Corollary 3.2.11. Every flat module isM-R-Mittag-Leffler if and only if every flat
module isM-projective (that is, it is M -subprojective for every M ∈M).

Proposition 1.3.11 shows the relation between f-projective modules andR-Mittag-
Leffler modules. In the following proposition, we investigate the counterpart result
in our context.

Proposition 3.2.12. AnyM-projective module N isM-R-Mittag-Leffler and ifM
contains the class of finitely presented modules, then N is also flat.

Proof. Since Pr−1(M) ⊆ PP−1(M), any M-projective module N is M-R-
Mittag-Leffler. If now M contains the class of finitely presented modules, then
any short exact sequence 0 → K → B → N → 0 is Hom(M,−) exact for any
finitely presented module M . Thus, N is flat.
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Theorem 3.1.3 allows us to characterize when every module ofM has anM-R-
Mittag-Leffler preenvelope. We show that this is equivalent to the class ofM-R-
Mittag-Leffler modules being closed under direct products. In particular, we get a
characterization of the closure under direct products of the class ofR-Mittag-Leffler
modules (see for example [33, Theorem 5.12 and Corollary 2.7]).

Proposition 3.2.13. The following conditions are equivalent:

1. Every module inM has a pure-projective preenvelope.

2. Every module inM has anM-R-Mittag-Leffler preenvelope.

3. The class ofM-R-Mittag-Leffler modules is closed under direct products.

4. Every module has anM-R-Mittag-Leffler preenvelope.

5. The pure-subprojectivity domain of any module inM is closed under direct
products.

6. For any family of pure-projective modules {Ni}i∈I ,
∏
i∈I Ni isM-R-Mittag-

Leffler.

7. FI isM-R-Mittag-Leffler for every set I .

Proof. (1)⇔ (2)⇒ (3) This follow from Theorem 3.1.3.
(3) ⇒ (4) We know by Theorem 1.5.6 that every module has an M-R-Mittag-

Leffler preenvelope if and only if Summ(M-R-Mittag-Leffler) is closed under di-
rect products and the class ofM-R-Mittag-Leffler modules is locally initially small.
But we have Summ(M-R-Mittag-Leffler) = M-R-Mittag-Leffler by Proposition
3.2.5. And by Corollary 3.2.6, the class ofM-R-Mittag-Leffler modules is locally
initially small. Thus, every module has anM-R-Mittag-Leffler preenvelope.

(4)⇒ (2) Clear.
(3)⇔ (5)⇔ (6) This follow from Proposition 2.1.7.
(6)⇒ (7) Clear because F is pure-projective.
(7)⇒ (6) Suppose that Ni ∈ PP−1(M) for any i ∈ I . Then, for every M ∈M,

any morphism M → Ni factors through F by Proposition 3.2.3. Using similar
arguments to those in 2.1.7 we get the result.

Corollary 3.2.14. The following conditions are equivalent:

1. Every finitely generated module has a pure-projective preenvelope.

2. Every finitely generated module has an R-Mittag-Leffler preenvelope.

3. The class of R-Mittag-Leffler modules is closed under direct products.
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4. Every module has an R-Mittag-Leffler preenvelope.

5. The pure-subprojectivity domain of any finitely generated module is closed
under direct products.

6. For any family of pure-projective modules {Ni}i∈I ,
∏
i∈I Ni is R-Mittag-

Leffler.

7. FI is R-Mittag-Leffler for every set I .

Now, using Theorem 3.1.7, we characterize when every module inM has an epic
M-R-Mittag-Leffler preenvelope.

Proposition 3.2.15. The following conditions are equivalent:

1. Every module inM has an epic pure-projective preenvelope.

2. Every module inM has an epicM-R-Mittag-Leffler preenvelope.

If, in addition,M is closed under quotients, then conditions above are equivalent
to

3. The class ofM-R-Mittag-Leffler modules is closed under direct products and
submodules.

4. The class ofM-R-Mittag-Leffler modules is closed under direct products and
any finitely generated submodule of anM-R-Mittag-Leffler module isM-R-
Mittag-Leffler.

Proof. Using Theorem 3.1.7, we only need to show that the class of pure-projective
modules PP is locally initially small relative toM. We know by Proposition 3.1.2
that PP is locally initially small relative toM if and only if PP−1(M) is locally
initially small relative toM. But by Corollary 3.2.6, PP−1(M) is locally initially
small.

Now we characterize with Theorem 3.1.9 when every module inM has a monic
M-R-Mittag-Leffler envelope. We use the same argument as in the proof of Propo-
sition 3.2.15.

Proposition 3.2.16. The following conditions are equivalent:

1. Every module inM has a monic pure-projective preenvelope.

2. Every module inM has a monicM-R-Mittag-Leffler preenvelope.

3. The class ofM-R-Mittag-Leffler modules is closed under direct products and
every injective module isM-R-Mittag-Leffler.
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4. The class ofM-R-Mittag-Leffler modules is closed under direct products and
R+ is anM-R-Mittag-Leffler module.

Finally, as an application of Proposition 3.1.12, we have the following result.

Proposition 3.2.17. The following conditions are equivalent:

1. Every module inM has a pure-projective envelope.

2. Every module inM has anM-R-Mittag-Leffler envelope.
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[15] Y. Durğun, Rings whose modules have maximal or minimal subprojectivity
domain, J. Algebra Appl. 14 (2015), 1550083.
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