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THESIS SUMMARY 

In recent years, the use of electronic performance and tracking systems has allowed 

practitioners to have a better understanding of the physical demands in soccer. These are useful 

instruments for practitioners because the information obtained from player monitoring during 

competition can be used to guide decision making around the training schedule. The main 

purpose of this doctoral thesis was to answer questions that sport scientists and strength and 

conditioning coaches may have in relation to the analysis of physical performance of 

professional soccer players based on load monitoring through electronic performance and 

tracking systems. In this regard, we analyzed key load indicators, load variability, specific 

performance during high-intensity actions (e.g., sprints and most demanding passages of play), 

contextual variables associated with physical performance, and some methodological issues 

related to load monitoring using electronic performance and tracking systems. 

RESUMEN DE TESIS 

En los últimos años, el uso de sistemas electrónicos de monitorización del rendimiento ha 

permitido a los profesionales del rendimiento deportivo una mejor comprensión de las 

demandas físicas en el fútbol. Estos instrumentos son útiles para los profesionales porque la 

información obtenida de la monitorización de los jugadores durante la competición puede 

ayudar en la toma de decisiones a la hora de prescribir la carga de entrenamiento. El propósito 

principal de esta tesis doctoral fue responder a preguntas que los científicos del deporte y 

especialistas del acondicionamiento físico pueden tener en relación con el análisis del 

rendimiento físico de los jugadores de fútbol profesional a través de sistemas electrónicos de 

monitorización del rendimiento. Por tanto, se analizaron indicadores clave de carga, la 

variabilidad de la carga, el rendimiento específico durante acciones de alta intensidad (Ejemplo: 

sprints y escenarios de máxima exigencia), las variables contextuales asociadas con el 

rendimiento físico y algunas cuestiones metodológicas relacionadas con el control de la carga 

utilizando sistemas electrónicos de monitorización del rendimiento. 
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CHAPTER 1 

 

Introduction  
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1. INTRODUCTION 

Soccer is the world’s most popular sport (Bandyopadhyay, 2017). Millions of people play it 

worldwide, but only a few players become professional (Bandyopadhyay, 2017). This team 

sport is characterized by an intermittent activity profile including high-intensity anaerobic 

actions interspersed with periods of lower intensity (Drust et al., 2000). The match contributes 

to the largest single session load of the training week (Anderson et al., 2016) and its effect is 

typically considered when planning the weekly microcycle (Oliva-Lozano, Muyor, Fortes, et 

al., 2021). This implies that sports performance and medical practitioners need to measure 

physical performance to ensure that the players are well prepared for the competitive demands 

(Oliva-Lozano, Muyor, Fortes, et al., 2021).   

In recent years, the use of electronic performance and tracking systems (EPTS) has allowed 

practitioners to have a better understanding of the physical demands in soccer given that these 

data may be collected on each match and training session (Oliva-Lozano, Barbier, Fortes, et al., 

2021; Pino-Ortega et al., 2021). These tracking systems include camera-based technologies and 

wearable devices, which are based on the combination of positioning systems (e.g., GPS: 

Global Positioning Systems; or LPS: Local Positioning Systems), inertial measurement units 

(e.g., accelerometers, gyroscopes, and magnetometers), and physiological monitors (e.g., heart 

rate monitors) (Oliva-Lozano & Muyor, 2021; Oliva-Lozano & Rago, 2020). Specifically, 

EPTS allow the collection of external load (i.e., the workload experienced by the player such 

as distance covered, accelerations, decelerations, or sprints) and internal load (i.e., 

psychophysiological response to exercise such has mean or peak heart rate) data (Oliva-Lozano 

& Rago, 2020). Consequently, these are useful instruments for practitioners because the 

information obtained from player monitoring in competition can guide decision making around 

the training schedule (e.g., programming of subsequent training or recovery activities (Oliva-

Lozano, Martín-Fuentes, Granero-Gil, et al., 2021; Oliva-Lozano, Muyor, Fortes, et al., 2021). 

In this regard, internal load variables are logistically difficult to capture in real-time, so a wider 

use of external load variables may be observed (West et al., 2021). Although external loads are 

not the stimulus for functional training adaptations, it is important to measure them to provide 

a useful and objective marker of physical performance output, which plays a key role in 

managing the training process (Impellizzeri et al., 2019). This is important in modern soccer 

because the teams have many matches during the season and they may play two matches within 



23 

 

the same week or three matches within 7–10 days  (Anderson et al., 2016; Palucci-Vieira et al., 

2018). 

However, one of the main challenges for sports performance and medical practitioners  when 

using EPTS is the management of data and the interpretation of all the variables (Oliva-Lozano, 

Conte, Fortes, et al., 2021; Rojas-Valverde, Gómez-Carmona, et al., 2019). For example, 

practitioners may daily obtain physical performance reports with ~100 or ~200 variables 

(Rojas-Valverde, Gómez-Carmona, et al., 2019). This implies that large volumes of data need 

to be summarized and practitioners should use adequate methods to identify and select the key 

performance indicators after data is collected in each session (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Rojas-Valverde, Gómez-Carmona, et al., 2019).  

Considering that the match is the most demanding session of the microcycle, each training 

session has a specific aim (Anderson et al., 2016; Kelly et al., 2020). For example, days right 

after the match are usually recovery days for the players who completed more than 60 minutes 

in the match, while the players, who did not get 60 minutes, complete a compensatory session 

to replicate competition loads. Then, the greatest training load is achieved 3-4 days before the 

match and load is reduced progressively on the days before the match (Martín-García, Gómez 

Díaz, et al., 2018). However, research on the load variability from each training and match day 

is necessary to understand how training loads are programmed across the season (Kelly et al., 

2020; Martín-García, Gómez Díaz, et al., 2018). For example, strength and conditioning 

coaches may wonder if match-play demands are abnormally high or low, so the analysis of load 

variability might be a useful monitoring strategy to inform practitioner decision making around 

the training schedule and individual management in the days after competition (Oliva-Lozano, 

Muyor, Fortes, et al., 2021). Nevertheless, understanding the impact of contextual variables on 

physical performance is important as well. Previous studies observed that match-related 

contextual variables (e.g., match outcome, match location, opponent level, length of the 

microcycle) may have a confounding effect on training load interpretation (Brito et al., 2016; 

Curtis et al., 2019; L. Gonçalves et al., 2020; Owen et al., 2017; Rago, Rebelo, et al., 2019). 
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1.1. Analyzing physical performance with special focus on high-intensity actions and most 

demanding passages of play 

Professional soccer players usually cover ~10 km per match (Palucci-Vieira et al., 2018; 

Rampinini et al., 2007), being only ~10% of the total distance performed at high-intensity 

(Rampinini et al., 2007). In this regard, the analysis of distances covered at high intensity (e.g., 

attaining speeds above 23-24 km/h) may provide valuable information for strength and 

conditioning coaches, but the analysis of the acceleration and deceleration characteristics of 

these running actions, which are highly common to the game of soccer, are important too 

(Carling et al., 2010). For example, high-intensity actions contribute to neuromuscular fatigue, 

which consequently increases the injury risk (Carling et al., 2010; Harper et al., 2019). Thus, a 

further analysis of the sprint and acceleration profiles is of interest for coaches to determine 

how the players sprint, accelerate, or decelerate during the game.  

Moreover, a myriad of studies have analyzed the average physical demands of match day to 

allow strength and conditioning coaches design specific training drills that replicate the external 

load demands of competition (Bangsbo et al., 2006; Clemente, Rabbani, et al., 2019). However, 

recent investigations concluded that training tasks, which are aimed at replicating average 

demands, may underestimate competitive demands (Martín-García, Casamichana, et al., 2018; 

Martín-García, Gómez Díaz, et al., 2018). These studies suggested considering not only the 

average/general demands but also the peak locomotor demands that are experienced by the 

players in specific phases of match play (Delaney et al., 2018; Martín-García, Casamichana, et 

al., 2018; Oliva-Lozano, Martínez-Puertas, Fortes, et al., 2021). These phases are known as the 

worst-case scenarios or most demanding passages of play (MDP) (Castellano et al., 2020; 

Fereday et al., 2020; Martín-García, Casamichana, et al., 2018; Martin-Garcia et al., 2019). 

Although there is a current debate on the term that should be used for this idea, little evidence 

related to the MDP in professional soccer has published to date. 

1.2. Contextualizing high-intensity actions and most demanding passages of play 

As mentioned above, the analysis of the sprint profile of professional soccer players in 

competitive match play is limited to date (Ingebrigtsen et al., 2015; Oliva-Lozano, Fortes, 

Krustrup, et al., 2020). Different components of the sprint profile such as the period in which 

the maximum running speed actions occur or how the players reach their maximum speed (e.g., 
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with or without the ball, linearly or non-linearly, attacking or defending, sprinting in own team’s 

field, or sprinting in opponent team’s field) need to be studied considering that the sprinting 

ability is regulated by a complex interaction of multiple factors (Haugen et al., 2014). 

Specifically, a better understanding of maximum running sprints considering not only playing 

position and contextual variables (e.g., ball possession, sprint trajectory, role of the sprint) but 

also performance-related variables (e.g., distance covered, starting speed, acceleration, and 

deceleration) is necessary (Oliva-Lozano, Fortes, Krustrup, et al., 2020).  

Furthermore, there is no information regarding the period in which these high-intensity actions 

(i.e., sprints and most demanding passages of play) occur during professional soccer matches. 

From a practical standpoint, this is important information given that experiencing maximum 

intensity actions in the first or last minutes of the match may significantly influence the training 

drills design and warm-up strategies in match days. 

1.3. A 3-dimensional analysis of the locomotor load experienced by the players 

Currently, the use of electronic performance and tracking systems for load monitoring is a 

common practice in professional soccer (Pino-Ortega et al., 2021). Most available tracking 

systems encompass inertial sensors (e.g., accelerometers, gyroscopes, and magnetometers), 

which allow a better understanding of the three-dimensional (3-D) nature of soccer (Barrett, 

Midgley, Reeves, et al., 2016; Oliva-Lozano et al., 2020). These sensors have been used to 

analyze external load through metrics such as the Player Load (PLTOTAL), which is measured in 

arbitrary units (a.u.) and combines the accelerations in anterior-posterior (PLAP), medial-lateral 

(PLML), and vertical (PLV) planes (Boyd et al., 2011; Chambers et al., 2015; Gómez-Carmona 

et al., 2020; Hulin et al., 2018). However, little is known about the distribution of the load for 

each axis of movement (Barrett, Midgley, Reeves, et al., 2016). 

In addition, soccer is played in a dynamic environment with considerable demands on the 

perceptual-motor skills of the players (Vaeyens et al., 2007; Vänttinen et al., 2010; Ward & 

Williams, 2003). As in other team sports in which the referees, teammates, opposition players, 

or ball are continually in motion, understanding the postural demands met by the players when 

performing sports-specific skills would provide practitioners with meaningful information 

about the performance in perception and action (Warman et al., 2019). However, there are 

limited data available concerning the postural demands of professional soccer players (Oliva-
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Lozano, Maraver, Fortes, et al., 2020b). Thus, the integration of inertial sensors with positioning 

systems has been standardized for load monitoring purposes in team sports (Gómez-Carmona 

et al., 2020). 

1.4. Some technical/methodological issues related to load monitoring in professional 

soccer using electronic performance and tracking systems 

In this introduction, different issues related to the analysis of physical performance in 

professional soccer (e.g., variables that may be used or contextual variables that should be 

considered by the practitioners) have been mentioned and those issues have been directly 

discussed from a physical performance perspective. However, sports performance practitioners 

should understand that there are some technical or methodological issues, which are important, 

related to load monitoring when using EPTS. For instance, if a strength and conditioning coach 

is analyzing the MDP of play, he/she should understand that the MDP may be calculated using 

the fixed length method and the rolling average method.  

Another methodological or technical issue related to the use of EPTS is the validity and 

reliability of these instruments.  Sports organizations require EPTS to meet their needs, but it 

is crucial that the data generated are of acceptable quality (Linke et al., 2018; Malone et al., 

2017). In recent years, FIFA has been working on the FIFA Quality Programme to set 

internationally-recognized industry standards for EPTS (FIFA, 2017). FIFA has invited EPTS 

providers to participate in its own testing and certification event.  However, currently, sport 

scientists, coaches and other professionals openly debate the FIFA quality performance reports 

(e.g., through social networks) and unfortunately, many professionals do not interpret them 

according to how the data are collected.  

Moreover, practitioners usually analyze the data collected by EPTS at the end of each session 

(Oliva-Lozano, Fortes, & Muyor, 2020; Rojas-Valverde, Gómez-Carmona, et al., 2019) but 

some EPTS provide these physical performance parameters in real time that may be very useful 

for practitioners since some decisions may be made during the session (Barrett, 2017; Rojas-

Valverde, Gómez-Carmona, et al., 2019). Nevertheless, EPTS manufacturers use different 

protocols to obtain real-time data and post-session data (Weaving et al., 2017). Therefore, this 

implies that practitioners should understand this type of technical issues related to the use of 

EPTS given that wrong decisions may be made because of inaccurate data. 
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Aims  

  



28 

 

2. AIMS 

2.1. Analyze the key load indicators of professional soccer players in match and training 

sessions. 

2.2. Analyze the load variability of professional soccer players in training and match. 

2.3. Investigate contextual variables associated with the load variability in professional soccer 

players. 

2.4. Analyze physical performance considering high-intensity actions and most demanding 

passages of play in professional soccer players. 

2.5. Investigate contextual variables associated with high-intensity actions and most demanding 

passages of play in professional soccer players. 

2.6. Highlight the importance of a 3-dimensional analysis of the locomotor load experienced 

by the players 

2.7. Analyze some methodological issues related to load monitoring using electronic 

performance and tracking systems. 
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CHAPTER 3 

 

Study I. Key load indicators and load 

variability in professional soccer players: a full 

season study   
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3. KEY LOAD INDICATORS AND LOAD VARIABILITY IN PROFESSIONAL 

SOCCER PLAYERS: A FULL SEASON STUDY 

3.1. Abstract 

The aims of this study were to 1) determine the key load indicators in professional soccer 

through principal component analysis (PCA); and 2) analyze the load variability of each 

training and match day within the microcycle considering the principal components. A 

longitudinal study was conducted for a full season in LaLiga123. Data from 111 load variables 

were collected using electronic performance and tracking systems in both training and match 

days (MD). The results showed that 7 variables, which belonged to the first two components of 

the PCA, explained 80.3% of total variance. Specifically, these variables were: Metabolic 

power, total of steps, Fourier transform (FFT) duration, deceleration distance covered (2-3 

m/s2), total of running actions (12-18 km/h; 21-24 km/h), and distance covered (6-12 km/h) 

were the selected variables. When it comes to the analysis of the load variability of each training 

and match day within the microcycle considering the principal components, the lowest load 

variability was observed in -1MD (i.e., the day before the match). Also, a great load variability 

in +1MD (i.e., the day after the match) with significant differences compared to -5MD (p < 

0.001; d = 0.49) and -4MD (p = 0.01; d = 0.26) was found. Therefore, strength and conditioning 

coaches may use the performance indicators obtained by the PCA for load monitoring purposes. 

In addition, this study suggests the use of the PCA in the context of team sports in order to 

reduce the large number of variables, which are daily managed by strength and conditioning 

coaches. Furthermore, the analysis of load variability of each training and match day within the 

microcycle is also recommended since this may help to optimize performance and reduce the 

injury risk.  

3.2. Keywords 

External Load, Training Load, Game Analysis, Team Sport, Competition, Performance  
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3.3. Introduction 

One of the main challenges when using EPTS is the management of data and the interpretation 

of all the variables provided by the tracking systems (Rojas-Valverde, Gómez-Carmona, et al., 

2019). For instance, strength and conditioning coaches may daily obtain reports with ~100 or 

~200 variables (Rojas-Valverde, Gómez-Carmona, et al., 2019). In consequence, the 

identification and selection of the key performance indicators is necessary (Oliva-Lozano, 

Rojas-Valverde, Gómez-Carmona, et al., 2020d; Rojas-Valverde, Gómez-Carmona, et al., 

2019). This is one of the reasons why statistical methods such as Principal Components 

Analysis (PCA) are used in team sports to reduce the dimensionality of datasets (Oliva-Lozano, 

Rojas-Valverde, Gómez-Carmona, et al., 2020d; Parmar et al., 2018; Rojas-Valverde, Gómez-

Carmona, et al., 2019). This method selects the key performance indicators and disregards the 

least important components of the analysis (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, 

et al., 2020d; Parmar et al., 2018). 

In addition, the management of this information from load monitoring may guide the decision 

making around the training schedule (Oliva-Lozano, Muyor, Fortes, et al., 2021). Different 

studies have showed that professional soccer matches result in the most demanding session of 

the microcycle (Anderson et al., 2016; Kelly et al., 2020) and thus, each training day has a 

specific purpose within the microcycle. For example, the days right after the match are mainly 

recovery days while the greatest training load is achieved 3-4 days before the match (Martín-

García, Gómez Díaz, et al., 2018). Then, training load is reduced progressively on the days 

before the match (Martín-García, Gómez Díaz, et al., 2018). However, the load variability from 

each training and match day, which has not been explored to date, may provide valuable 

information for strength and conditioning coaches to understand how training loads are 

programmed across the season (Kelly et al., 2020; Martín-García, Gómez Díaz, et al., 2018). 

For instance, a previous study showed that the Hooper's score, which serves as a representative 

measure of perceived wellness and psychometric player’s status in professional soccer, was 

sensitive enough to the variability of the training load (Moalla et al., 2016). In consequence, 

understanding load variability of each training and match day may help coaches determine why 

greater or lower variability is observed for a specific training day (e.g., -1MD) compared to 

another (e.g., -4MD). For example, if lower variability was observed in -1MD compared to -

4MD, practitioners may need to investigate if this was normal or due to the effect of context-
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specific variables (e.g., length of the microcycle, season’s period, wellness or fatigue levels) 

(Oliva-Lozano, Gómez-Carmona, Rojas-Valverde, et al., 2021; Oliva-Lozano et al., 2022). 

Therefore, the aims of this study were to: 1) determine the key load indicators in professional 

soccer through principal component analysis (PCA); and 2) analyze the load variability of each 

training and match day within the microcycle considering the principal components. 

3.4. Methods 

Study design 

A longitudinal study was conducted for a full season in a professional soccer team competing 

in LaLiga123, which is the second division of the Spanish soccer league system, from August 

2018 to June 2019. Specifically, a total of 22 teams participated in the league so each team 

played a total of 42 matches. The study was authorized by the Bioethics Committee. 

Data were collected using electronic performance and tracking systems in both training and 

match days (MD) over the course of the competitive season. Each training session was 

categorized as -1MD (1 day prior to the match), -2MD (2 days prior to the match), -3MD (3 

days prior to the match), -4MD (4 days prior to the match), -5MD (5 days prior to the match), 

+1MD (1 day after the match) and, +2MD (2 days after the match). In general, +1MD included 

regeneration exercises and low-impact activities for the players who competed more than 45 

minutes in the match while the rest of players had to compensate demands through rondos, 

high-intensity circuits, possession drills, and small-sided games; +2MD were considered as day 

off; -5MD were characterized by rondos, possessions games, and 11 vs 11 matches in half pitch; 

-4MD consisted of strength training, small-sided games, and pressing tasks; -3MD consisted of 

transitions’ drills, moderate-intensity positional games, and 11 vs 11 matches; -2MD included 

preventive strength training, tactical drills, rondos, passing and control tasks; and, -1MD were 

characterized by activation drills, 6x6+6 small-sided games in addition to the review of tactical 

keys for the match. 

Participants 

A total of 30 male professional soccer players (age: 25.97 ± 3.73 years old; height: 1.80 ± 0.07 

m; weight: 74.60 ± 6.61 kg; professional playing experience: 8.49 ± 2.92 years) took part in the 
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study in the context of their team routine. Players who completed the training session or total 

duration of the match, were included in the analysis. Players who were under a rehabilitation 

program were excluded. In addition, goalkeepers were not included in the study given the 

differences in their activity-profile (Oliva-Lozano, Gómez-Carmona, Pino-Ortega, et al., 

2020a). Informed consent was obtained by the club to use the data of the participants once the 

season was over. However, the players’ names were coded to guarantee data anonymization.  

Procedures 

The players wore a performance tracking system WIMU Pro (RealTrack Systems, Almería, 

Spain) in the back pocket of a chest vest (Rasán, Valencia, Spain). These tracking systems 

consist of triaxial accelerometers, gyroscopes, and magnetometers as well as 10 Hz Global 

Positioning System (GPS), which are valid and reliable instruments for tracking physical 

performance in soccer (Bastida Castillo et al., 2018). Also, these systems have been certified 

by the FIFA Quality Programme for the collection of physical performance variables based on 

speed and position (FIFA, 2020). Every device was calibrated on a Smart Station (RealTrack 

Systems, Almería, Spain) following the manufacturer’s instructions before the start of each 

match and training session. Once the match or training session finished, the data were 

transferred to SPro (RealTrack Systems, Almería, Spain) and the performance report was 

obtained (Table 1). All these variables were included in the analysis since this is a general 

performance report that practitioners may obtain for load monitoring purposes in their daily 

basis. In addition, these variables were selected considering that previous studies used them as 

representative variables of the external load profile from professional soccer players (Asian-

Clemente et al., 2021; Gómez-Carmona et al., 2020; Oliva-Lozano, Rojas-Valverde, Gómez-

Carmona, et al., 2020d; Oliva-Lozano, Fortes, Krustrup, et al., 2020; Oliva-Lozano et al., 2022; 

Pons et al., 2019). Also, some of the variables were split into several zones, which represented 

different ranges of intensity, and were set based on absolute thresholds (e.g., above 24 km/h for 

sprinting actions or above 6 m/s2 for very high-intensity accelerations). In this regard, although 

there is no consensus on how to determine these thresholds (e.g., for speed or acceleration) 

(Sweeting et al., 2017), the zones were defined according to procedures from previous research 

(Asian-Clemente et al., 2021; Gómez-Carmona et al., 2020; Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Oliva-Lozano, Fortes, Krustrup, et al., 2020; Oliva-Lozano et 

al., 2022; Pons et al., 2019). 
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Table 1. Variables provided by the SPro performance report 

Variable Definition 

Session duration Total duration of the session in minutes 

Total distance Total distance covered in meters (m) 

Distance covered by speed zone Distance covered in zones (0-6 km/h, 6-12 km/h, 12-18 km/h, 18-21 km/h, 21-24 km/h) 

Total of actions by speed zone Total of actions in zones (0-6 km/h, 6-12 km/h, 12-18 km/h, 18-21 km/h, 21-24 km/h) 

Time spent in different speed zones Total of time (ms) spent (0-6 km/h, 6-12 km/h, 12-18 km/h, 18-21 km/h, 21-24 km/h) 

Total of high-speed running actions Total of actions above 21 km/h 

High-speed running distance Distance covered above 21 km/h 

Total of sprints Total of actions above 24 km/h 

Sprinting distance Distance covered above 24 km/h 

Explosive distance Distance covered with an acceleration greater than 1.12 m/s2 

Maximum speed Maximum speed (km/h) registered in the session 

Average speed Average speed (km/h) registered in the session 

Total of accelerations Total of accelerations registered in the session 

Total of accelerations by zones Accelerations in zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 m/s2, 4-5 m/s2, 5-6m/s2, >6m/s2) 

Total of decelerations Total of decelerations registered in the session 

Total of decelerations by zones Decelerations in zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 m/s2, 4-5 m/s2, 5-6m/s2, >6m/s2) 

Maximum acceleration Maximum acceleration (m/s2) registered in the session 

Maximum deceleration Maximum deceleration (m/s2) registered in the session 

Average acceleration force Average acceleration G-force registered in the session 

Average deceleration force Average deceleration G-force registered in the session 

Acceleration distance Distance covered (m) in acceleration 

Acceleration distance by zones 
Distance covered (m) in different acceleration zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 

m/s2, 4-5 m/s2, 5-6 m/s2, >6 m/s2) 

Deceleration distance (m) Distance covered (m) in deceleration 

Deceleration distance by zones 
Distance covered (m) in different deceleration zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 

m/s2, 4-5 m/s2, 5-6 m/s2, >6 m/s2) 

Time in acceleration zones Time (ms) in zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 m/s2, 4-5 m/s2, 5-6 m/s2, >6 m/s2) 

Time in deceleration zones Time (ms) in zones (0-1 m/s2, 1-2 m/s2, 2-3 m/s2, 3-4 m/s2, 4-5 m/s2, 5-6 m/s2, >6 m/s2) 

Impacts Total of body impacts registered in the session 

Impacts by zones Total of body impacts registered in different zones (0-3 G, 3-5 G, 5-8 G, >8 G) 

Steps Total of steps registered in the session 

Step balance 
Asymmetry value (%) between the intensity of right and left steps. A negative value 

means that the right side is more loaded than the left side. 

Jumps Total of jumps registered in the session 

Take-off force Average take-off force (G) registered in the session 

Landing force Average landing force (G) registered in the session 

FFT duration  
Total of time (min) in which the intensity of the Fourier Transform (FFT) applied to the 

total acceleration data, which were registered by the 3D accelerometers is above 0.02. 

Maximum frequency Maximum vibration frequency (Hz) recorded by inertial sensors 

Average frequency Average vibration frequency (Hz) recorded by inertial sensors in horizontal acceleration 

Maximum frequency in horizontal acceleration Maximum vibration frequency (Hz) recorded by inertial sensors 

Average frequency in horizontal acceleration Average vibration frequency (Hz) recorded by inertial sensors in horizontal acceleration 

Time spent by frequency zone Time spent (ms) in different frequency zones (0-0.5 Hz, 0.5-1 Hz, 1-1.5 Hz, >1.5 Hz) 

Player Load Accelerometers-derived load (a.u) that represents the load in x-, y-, and z-axis 

Metabolic Power Metabolic power (W/kg) representing the metabolic expenditure per kilogram 

Maximum equivalent distance index 
Value of the maximum equivalent distance index (EDI), which represents the energy 

expenditure divided by the distance covered 

High metabolic load distance (m) Distance covered (m) when the player’s metabolic power is above 25.5 W/kg 

High-metabolic load actions Total of actions when the player’s metabolic power is above 25.5 W/kg 

Locomotor efficiency Ratio representing the player load divided by the distance covered 

High-intensity acceleration profile Difference between the high-intensity accelerations and decelerations (above 3 m/s2) 
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Statistical analysis 

The statistical analysis was run on RStudio (PBC, Boston, MA, USA). Firstly, Principal 

Component Analysis (PCA) was used as a linear dimension reduction method of the dataset. 

Specifically, PCA is a descriptive multivariate statistical analysis that explores a set of 

quantitative variables and computes a set of new synthetic variables, which are also known as 

components. This method selects the significant variables and disregards the least important 

components of the analysis (Parmar et al., 2018) so it may enhance data visualization and 

interpretation from large datasets (Rojas-Valverde et al., 2020). From a practical perspective, 

this is important given that fast evaluation of training and competition performance is required 

in professional soccer (Rojas-Valverde et al., 2020). In this regard, 111 variables of match and 

training activities were used for this analysis (Table 1). Specifically, the dataset was organized 

on a spreadsheet containing player’s id, date, type of session (i.e., MD, +1MD, +2MD, -5MD, 

-4MD, -3MD, -2MD, and -1MD) and the data related to each performance variable from Table 

1. Prior to performing the PCA, training and match data were centered and scaled. Considering 

that cos2 is often used to assess the meaningfulness of the variables in the PCA, a threshold of 

cos2 > 0.5 was used for the first selection of variables (Dubois et al., 2020). Then, the variables 

that showed a correlation with PCA components that exceeded ± 0.7 were used as an indicative 

of a well-defined relationship with the extracted dimension (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Weaving et al., 2018). Also, a correlation matrix was used to 

evaluate collinearity between these new selected variables and when these variables had 

significant collinearity, only one variable was selected (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d). Then, a final PCA was computed using the selected variables.  

Secondly, each observation was projected on the first principal components plane (PC1, PC2). 

Then, the analysis of the load variability of each training and match day within the microcycle 

was assessed using the Euclidean distance (d) from each training or match day to their 

respective cluster centroids. In this case, the Euclidean distance allowed to evaluate the 

similarity or dissimilarity from each training or match day (i.e., the greater the distance, the 

greater the load variability). Finally, one-way analysis of variance (ANOVA) with Tukey’s 

method was used to compare variability between each training and match day within the 

microcycle. The level of significance was set at p ≤ 0.05. 
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3.5. Results 

Regarding the first aim of the study, 22 variables from a total of 111 variables were found to 

match cos2 > 0.5. These variables were: session duration, FFT Duration, Metabolic Power, total 

of steps, time spent in different speed zones (0-6 km/h, 6-12 km/h, 12-18 km/h, 18-21 km/h, 

and 21-24 km/h), time spent in acceleration zones (1-2 m/s2), time in  spent in deceleration 

zones (1-2 m/s2), total of accelerations by zones (1-2 m/s2 and 3-4 m/s2), total of decelerations 

by zones (1-2 m/s2 and 3-4 m/s2), deceleration distance covered by zones (2-3 m/s2), total of 

running actions by speed zones (6-12 km/h, 12-18 km/h, 18-21 km/h, 21-24 km/h), and distance 

covered by speed zones (0-6 km/h and 6-12 km/h) were the selected variables. Then, session 

duration, total of accelerations by zones (3-4 m/s2), and total of decelerations by zones (3-4 

m/s2) were removed since the correlation with PCA components did not exceed ± 0.7. Finally, 

the collinearity assessment was done and a total of 7 variables, which belonged to the first two 

components of the PCA and explained 80.3% of total variance, were selected. Specifically, FFT 

Duration, Metabolic Power, total of steps, deceleration distance covered (2-3 m/s2), total of 

running actions (12-18 km/h; 21-24 km/h), and distance covered (6-12 km/h) were the selected 

variables (Figure 1).  
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Figure 1. Descriptive statistics of performance indicators selected through PCA 
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When it comes to the analysis of the load variability of each training and match day within the 

microcycle considering the principal components (Figure 2), the results showed that the load 

variability in -1MD was significantly lower than MD (p < 0.001; d = 0.65) and the rest of 

training days: -5MD (p = 0.04; d = 0.30), -4MD (p < 0.001; d = 0.53), -3MD (p < 0.001; d = 

0.60), -2MD (p < 0.001; d = 0.58), +1MD (p < 0.001; d = 0.79), and +2MD (p < 0.001; d = 

0.47). Also, load variability in +1 MD was significantly greater than -5MD (p < 0.001; d = 0.49) 

and -4MD (p = 0.01; d = 0.26). In addition, significant differences in load variability between 

MD and -5MD were observed (p = 0.02; d = 0.35). 

 

 Figure 2. Euclidean distance (d) from each training or match day to their respective 

cluster centroids   

3.6. Discussion 

The aims of this study were to determine the key performance indicators in professional soccer 

through PCA; and analyze the load variability of each training and match day within the 

microcycle considering the principal components. One of the novel findings of this study was 

the PCA identified 7 performance variables from a dataset containing 111 variables. In addition, 

significant differences in load variability were observed within the microcycle depending on 

the training day. For instance, -1MD showed the lowest load variability. 

Regarding the key load indicators that were selected through the PCA, coaches may consider 

them since they represent significant information from the physical performance of the players. 
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Also, this may be useful in terms of managing the dataset after each training or match session 

considering that only 7 out 111 performance variables were included. For example, variables 

regarding the activity time of the players such as the FFT duration, which represents the total 

of time in which the players were involved in actions of play (e.g., running, changing of 

direction, etc.) were found (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d). In 

this regard, the results showed that although MD, for instance, last for ~90 minutes, only ~43 

minutes were considered as the FFT duration. Since this is less than 50 % of the total duration 

of the match, this shows that soccer players may be involved in low-intensity actions (e.g., 

walking after game stops, corners, or fouls) for a great part of the match, which is in line with 

a previous study that reported only ~52 minutes of effective time in soccer match play 

(Castellano et al., 2011). Also, metabolic power and the total of steps may be of interest for 

strength and conditioning coaches considering that the former is an energy expenditure index 

strongly related to the player load (Osgnach et al., 2010; Reche-Soto et al., 2019) and the latter 

is representative of lower-limb load (Burland et al., 2021). In addition, the PCA showed that 

the distance covered (6-12 km/h) and the total of running actions (12-18 km/h; 21-24 km/h), 

which include low-to-high speed running actions (Rago, Brito, Figueiredo, Costa, et al., 2020), 

are suggested as key performance indicators. Specifically, these variables demonstrate the 

importance of  understanding soccer as sport characterized by high-intensity actions 

interspersed with longer recovery periods of lower intensity (Oliva-Lozano, Gómez-Carmona, 

Pino-Ortega, et al., 2020a; Oliva-Lozano, Fortes, Krustrup, et al., 2020; M. Varley & Aughey, 

2012). Finally, this study found that deceleration distance covered (2-3 m/s2), which might 

increase the mechanical load and muscle damage post-session (De Hoyo et al., 2016; Harper et 

al., 2019; Harper & Kiely, 2018; Oliva-Lozano, Fortes, Krustrup, et al., 2020), should be 

considered as well. 

In addition, one of the novel contributions of this study to the literature was the analysis of the 

load variability of each training and match day within the microcycle in professional soccer. 

Previous studies have mainly analyzed the differences between the workload profiles 

considering MD and training days (Malone et al., 2015; Oliva-Lozano, Gómez-Carmona, Pino-

Ortega, et al., 2020a; Stevens et al., 2017), but to the best of the authors’ knowledge, this is the 

first study analyzing the load variability within the microcycle. For instance, different studies 

showed that the training load decreased in the days right before competition (e.g., greater 

workload in -4MD or -3MD compared to -2MD or -1MD) (Martín-García, Gómez Díaz, et al., 

2018; Stevens et al., 2017). This study found that the lowest variability of all training days was 
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observed in -1MD, which may be explained by the tapering strategies adopted by coaches the 

day before competition (Fessi et al., 2016). Also, the effect of the length of the microcycle (e.g., 

-4MD in 5-day microcycles may have a different purpose compared to 8-day microcycles) may 

be one of the reasons why the lowest variability was observed in -1MD (Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d).  However, +1 MD showed a great load variability 

and significant differences with -5MD and -4MD. In this regard, the demands of each match 

may influence the creatine kinase concentrations, which are indicators of muscle damage, 24 

hours post-match (M. Russell et al., 2016). Also, from a practical perspective, professional 

soccer players may experience this variability in +1MD depending on the competitive schedule. 

For instance, there may be MD in which the if the team plays too late or far away from home, 

stays at the hotel after the match, travels the day after and train in the evening. Nonetheless, the 

team may return sometimes right after the match and train the following morning, which has a 

direct impact on the recovery period and recovery quality (Nédélec et al., 2015). Finally, when 

it comes to the variability of MD, previous studies only analyzed load variability of different 

performance variables (e.g., distance covered, high-speed running distance, or total of 

accelerations) (Carling et al., 2016; Haddad et al., 2018; Oliva-Lozano, Muyor, Fortes, et al., 

2021). In this regard, it has been observed that between-match variability may be dependent on 

the variable itself since variability tended to increase with running intensity (Gregson et al., 

2010; Haddad et al., 2018; Oliva-Lozano, Muyor, Fortes, et al., 2021). For example, a recent 

study found a 4 % of between-match variability in distance covered while a 19 % of variability 

observed in high-speed running distance (Oliva-Lozano, Muyor, Fortes, et al., 2021). 

However, this study has some limitations. Although the study was conducted during a full 

season, only data from one professional soccer team was collected. Also, the variables related 

to speed and accelerations zones were set based on absolute thresholds (e.g., speed: 0-6 km/h 

or 6-12 km/h; acceleration: 0-1 m/s2 or 1-2 m/s2). In this regard, future studies may consider 

the addition of individualized zones based on maximum speed (Rago, Brito, Figueiredo, 

Krustrup, et al., 2020) or maximum acceleration capacities (Harper et al., 2019) as well as a 

greater amount of teams to increase the statistical power of the PCA. 

3.7. Conclusion 

Strength and conditioning coaches may use the performance indicators obtained by the PCA 

for load monitoring purposes. Specifically, this study suggests the use of the PCA in the context 
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of team sports in order to reduce the large number of variables, which are daily managed by 

strength and conditioning coaches. Thus, the PCA may help coaches visualize and interpret 

large training and match load data. Also, the PCA may help coaches select key load indicators 

in the context of each team (e.g., team level, team formation, style of play, etc.), regardless of 

the tracking system used for data collection. In addition, the analysis of load variability of each 

training and match day within the microcycle is also recommended since this may help to 

optimize performance and reduce the injury risk. For instance, coaches should be cautious in 

post-match training sessions (e.g., +1MD) given the high load variability. 
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4. DECOMPOSING THE VARIABILITY OF MATCH PHYSICAL PERFORMANCE 

IN PROFESSIONAL SOCCER: IMPLICATIONS FOR MONITORING 

INDIVIDUALS 

4.1. Abstract 

The aims of this study were to establish sources of variability in match physical performance 

of professional soccer players and provide a method for monitoring individual between-match 

changes. Eleven players meeting the final inclusion criteria were monitored through an entire 

in-season competition phase (n = 240 individual match observations, median [range] match 

observations per player = 21 [15–31]). Ten-Hertz global positioning systems were used to 

measure match total distance (TD), total high-speed running distance (≥ 21 km·h-1; HSRD), 

total accelerations (TAcc) and maximum running velocity (VMAX). Between-player, between-

position, between-match and within-player variability were determined through linear mixed 

effects models. These data were then used to establish the practical significance of individual 

changes using a Minimum Effects Testing framework. All sources of variability were greater 

for HSRD (13–36%) when compared with all other metrics (<6%). Using combined between-

match and within-player variability along with the smallest worthwhile change (0.2 × between-

player SD), between-match individual changes of ±~10–15% in TD, TAcc and VMAX were 

established as practically significant. For HSRD, these thresholds were considerably higher 

(≥60%). In conclusion, the ability for soccer practitioners to identify meaningful changes in 

match physical performance can aid decision making around player management following 

competition. Our study provides a method to flag changes beyond the normal match-to-match 

variability and by a substantial magnitude. This may have implications for recovery but should 

be combined with other sources of data (internal load and response) and used only as an adjunct 

to practitioner domain knowledge and expertise. 

4.2. Keywords 

Team Sport, Match Performance, Competition, Game Analysis. 
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4.3. Introduction 

Managing the training process of soccer players presents as a daily challenge for sports 

performance and medical practitioners. Information obtained from athlete monitoring during 

competition can be used to guide decision making around the training schedule, such as the 

programming of subsequent training or recovery activities. Soccer matches contribute to the 

largest single session load of the training week (Anderson et al., 2016) and their effects are 

typically considered when planning the weekly microcycle. Players are usually given 24–48 

hours of complete rest or active recovery in anticipation of the physiological and neuromuscular 

responses to competition (Nédélec et al., 2012). However, the time-course of match-related 

recovery responses are extremely individual and may depend on the specific match load 

(Nédélec et al., 2012). Therefore, having the ability to determine whether match-play demands 

are ‘unusual’ or abnormally high/low might prove to be a useful monitoring strategy to inform 

practitioner decision making around the training schedule and individual management in the 

days after competition. 

The need to interpret changes in match physical performance is not a new dilemma and over 

the past decade there have been several investigations attempting to shed light on this issue 

(Carling et al., 2016; Gregson et al., 2010; Haddad et al., 2018). Quantifying the match-to-

match variability of physical performance can be a useful way to highlight changes that appear 

normal and those which seem higher or lower than usual. For instance, previous studies 

concluded that match-to-match variability was usually high (~14-53%) (Carling et al., 2016; 

Gregson et al., 2010; Haddad et al., 2018; Mohr et al., 2003; Rampinini et al., 2007) for high-

speed activities (e.g., high-speed running distance) but low for variables such as total distance 

covered (~3-5%) (Haddad et al., 2018; Mohr et al., 2003; Rampinini et al., 2007). However, in 

isolation (i.e., without partitioning the usual sources of variability into their specific 

components), this approach does not identify the magnitude of a change. This can be achieved 

by scaling changes against so-called reference values for practical importance, such as the 

smallest worthwhile change. Probabilistic methods can then be used to determine the ‘practical 

significance’ of individual changes, taking into account both match-to-match variability and 

the smallest worthwhile change (McLaren et al., 2016; Weston et al., 2015). To our knowledge, 

this approach is yet to be applied in professional soccer. 
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The aims of our study were therefore twofold. We first aimed to provide a comprehensive 

breakdown of the variability in match physical performance of professional soccer players, 

including seasonal trends, variability between positions, players, and matches, and within 

players. Secondly, we aimed to apply a minimum effect testing framework for interpreting 

practically meaningful individual changes in soccer match physical performance.  

4.4. Methods 

Study design 

A cohort study was conducted in a professional soccer team from LaLiga123 during 2018-2019 

season. The team played a total of 42 official matches (21 home matches and 21 away matches). 

Every match was played on natural grass fields with a 4–4–2 playing formation. The length of 

between-match microcycles varied from 3 to 9 days. The club authorized the data collection, 

and this study was approved by the Bioethics Committee of the university. 

Participants 

An initial sample of fourteen professional soccer players were monitored over a single in-season 

phase (n = 515 individual match observations). Goalkeepers were not included in the analysis, 

given their vastly different match activity-demands (Oliva-Lozano, Gómez-Carmona, Pino-

Ortega, et al., 2020a), and players were categorized as central defenders, full-backs, 

midfielders, wide-midfielders, and forwards. In an attempt to provide a representative seasonal 

profile of match external load, we elected to only include players who: a) completed the total 

duration of each match, b) played at least 5 matches during the season, and c) had at least one 

match observation in each trimester of the season (to avoid range effects). The final sample 

therefore included 240 individual match observations from 11 players (age: 28 ± 3 years; height: 

180.9 ± 4.8 cm; body mass: 74.9 ± 4.1 kg; central defenders, n = 3 [67 individual match 

observations]; full-backs, n = 2 [42]; midfielders, n = 2 [48]; wide-midfielders, n = 2 [45]; 

forwards, n = 2 [38]. The median (range) number of match observations per player was 21 (15–

31). 

Procedures 

Previous investigations employing dimension reduction techniques have suggested that 70% of 

the variance in soccer match external loads can be expressed by four principle components, 
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each containing 2–4 variables (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d). 

Variables within a given component are thought to be similar (i.e., highly correlated and 

interchangeable), while components themselves provide different information (i.e., 

uncorrelated and unique). We therefore used a combination of both the previously reported 

component loadings (where a greater loading indicates a higher importance to the component) 

and our professional judgment to select four match external load indicators. These were total 

distance (TD), total high-speed running distance (≥ 21 km·h-1; HSRD), total accelerations 

(TAcc) and maximum running velocity (VMAX). 

Instruments  

Every player was given a WIMU Pro device (RealTrack Systems, Almería, Spain) in order to 

collect physical performance variables. The device was placed on a vertical position in the back 

pocket of a specific vest (Rasán, Valencia, Spain). This device is considered as an electronic 

performance tracking system which mainly consists of 3D accelerometers, gyroscopes, and 

magnetometers as well as positioning sensors through 10 Hz Global Positioning System (GPS). 

These GPS have demonstrated good criterion validity (bias in mean velocity: 1.18-1.32 km·h-

1; bias in distance: 2.32-4.32 m) and reliability (intraclass correlation coefficients: > 0.93) for 

the collection of physical performance variables in soccer (Bastida Castillo et al., 2018).  

All the devices were calibrated following manufacturer’s instructions (Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020e; Oliva-Lozano, Fortes, Krustrup, et al., 2020). Prior 

to data collection, all the devices were first fully charged and placed on a Smart Station 

(RealTrack Systems, Almería, Spain). The station was placed on a flat surface without magnetic 

devices surrounding and then, the devices were turned on. Sixty seconds later, the start 

recording button was pressed and the calibration procedure was completed. Once this procedure 

finished, the devices were given to the players, who were familiar with the tracking systems, 

15 minutes before the start of the match. Finally, the session was analyzed at the end of the 

match using SPro software (RealTrack Systems, Almería, Spain).  

Statistical analysis 

Our design located units of analysis (individual match observations) nested within clusters of 

units (Players), which were nested within larger clusters of clusters (Positions). To properly 

account for this hierarchical (correlated) nesting and to accurately quantify the variability in 
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match physical performance, data were analyzed using separate three-level linear mixed effect 

models. We used the MIXED procedure in SAS® Software (University Edition, SAS Institute 

Inc., Cary, NC, USA) to analyze both the original and log-transformed data, to quantify effect 

estimates in raw and percentage units. Model appropriateness was verified by examining plots 

of the studentized residual and predicted values, which were well behaved for both the raw and 

log-transformed data. 

To determine the linearized seasonal trend in each external load measure (the change in a given 

variable across the entire season), season week was re-scaled to range from -0.5 to 0.5 before 

being specified as a fixed effect (continuous covariate). Subsequently, separate random effects 

were added for Player ID, Position and Match Number. These effects were specified with a 

variance components covariance structure and estimated via Restricted Maximum Likelihood. 

Estimates—expressed as standard deviations (SD) and coefficients of variation (CV)—

therefore included between-player, between-position, between-match and the remaining 

(residual) within-player variability, which is analogous to the typical error from a re-test 

reliability design. Uncertainty in all effects and ranges of values compatible with our data and 

statistical models were expressed as 90% confidence limits (CL). Boundary constraints were 

removed from covariance estimates to allow for negative variance. While negative variance 

(variability below zero) is illogical, it allows for appropriate approximation of the uncertainty 

in the estimate when the true variability is close to zero. 

Building on previous approaches (McLaren et al., 2016; Weston et al., 2015), we used our 

variability estimates to provide a framework for practitioners to interpret individual changes in 

match physical performance indicators. This approach is founded on identifying changes that 

that appear unusual and potentially meaningful. Here, an unusual change can be viewed as one 

beyond the normal match-to-match variability seen in any given player, after accounting for 

any seasonal trend and positional differences. We determined the observed match-to-match 

variability as the pooled (added) between-match SD and within-player typical error. These 

values were then multiplied by the square root of 2 and the appropriate value from the t 

distribution with the model degrees of freedom to establish 80% and 90% confidence limits, 

giving likely ranges for a normal or ‘usual’ individual change. A meaningful change can be 

viewed as one which exceeds a pre-established threshold of practical importance. Through lack 

of a known conceptual or empirical anchor between our match physical performance indicators 

and key match outcomes (e.g., result), we used a distribution-based approach to establish these 
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boundaries (Cook et al., 2018). Upon electing for a threshold equivalent to a small standardized 

change, reference values were given as 0.2 multiplied by the between-player SD or CV. Finally, 

we applied minimum effects tests (MET) (Murphy & Myors, 1999) to establish probabilistic 

reference values for interpreting individual changes in match external loads, which combine 

both match-to-match variability and thresholds of practical importance. The t statistic for a 

change relative to practical importance (change – threshold/ [match-to-match variability × √2]) 

was converted to a probability via the one-tailed t-distribution. These probabilities were 

represented as continuous estimates across a plausible range of changes, as well as the changes 

associated with more conventional alpha levels (0.10 and 0.05). 
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4.5. Results 

The overall (mean) match external loads for TD, HSRD, TAcc and VMAX were 10257 m, 699 

m, 2976 (n) and 31.6 km·h-1. Observed external loads and the associated seasonal trends 

(individual and mean) are presented in Figure 3. There was a seasonal reduction in TD (mean 

slope: -220 m [90% confidence interval: -638 to 197], -2.1% [-6.1% to 1.9%]), and a seasonal 

increase in both HSRD (126 m [3 m to 249 m], 25% [3% to 52%]) and TAcc (112 [-16 to 241], 

3.8% [-0.8% to 8.5%]). The magnitude and direction of the seasonal trend in VMAX was 

inconclusive (0.23 km·h-1 [-0.49 km·h-1 to 0.95 km·h-1], 0.8% [-1.5% to 3.2%]). 

 

Figure 3. Seasonal trends in match external loads. Data are presented as individual match 

observations (grey points), individual linear trends (grey lines) and the overall mean trend 

(thick blue line) with 90% confidence intervals (blue dotted line). 

Estimates of between-player, between-position, between-match and within-player variability in 

each external load metric, expressed in raw (SD) and percentage (CV) units, are presented in 
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Table 2, respectively. The observed match-to-match variability (combined between-match and 

within-player) for TD, HSRD, TAcc and VMAX was 568 m (5.7%), 159 m (31%), 157 (5.6%) 

and 1.58 km·h-1 (5.2%). All sources of variability were greater for HSRD (13–36%) when 

compared with all other external load metrics (<6%). For each external metric, the greatest 

sources of variability were: between-player for TD (5.6%), between-position for HSRD (36%), 

between-match for TAcc (4.9%) and within-player for VMAX 4.9%; Table 2 & 2). 

Table 2. Variability of match physical performance expressed in raw units and coefficients of 

variations (%). 

 Metric 

Variability 

Between-

player 

Between-

position 

Between-

match 

Within-

player 

(SD; 90% 

CI) 

TD (m) 
546 

(147 to 759) 

376 

(-416 to 675) 

428 

(322 to 513) 

373 

(344 to 408) 

HSRD (m) 
72 

(-24 to 104) 

222 

(-107 to 331) 

101 

(72 to 123) 

124 

(114 to 136) 

TAcc (#) 
74 

(12 to 104) 

27 

(-60 to 72) 

137 

(106 to 162) 

76 

(70 to 83) 

VMAX 

(km·h-1) 

0.90 

(-0.30 to 1.31) 

0.93 

(-0.86 to 1.57) 

0.44 

(-0.23 to 

0.66) 

1.52 

(1.40 to 1.66) 

(CV; 90% 

CI) 

TD (%) 
5.6 

(1.5 to 7.8) 

3.8 

(-4.2 to 6.9) 

4.3 

(3.2 to 5.1) 

3.7 

(3.4 to 4.1) 

HSRD (%) 
12.7 

(-3.9 to 18.9) 

36 

(-17 to 59) 

19 

(13 to 23) 

23 

(21 to 25) 

TAcc (%) 
2.5 

(0.4 to 3.5) 

0.9 

(-2.0 to 2.4) 

4.9 

(3.8 to 5.8) 

2.6 

(2.4 to 2.8) 

VMAX (%) 
2.8 

(-1.0 to 4.2) 

3.0 

(-2.7 to 5.1) 

1.5 

(-0.6 to 2.2) 

4.9 

(4.5 to 5.4) 

Reference values and methods for interpreting individual changes in match external loads are 

presented in Table 3 and Figure 4. Based on our thresholds for practical importance (0.2 × 

between-player SD or CV), between-match individual changes of ±10–12% (for a 80% CI/ α = 

0.10) and ±13–15% (for a 90% CI/ α = 0.05) in TD, TAcc and VMAX would be required to 
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suggest practical significance or substantially unusual. For HSRD, these thresholds were 

considerably higher (±58% and ±74%, respectively). 

Table 3. Reference values for interpreting individual changes in match physical 

performance. 

Metric Unit 

± Confidence limits for a 

true change*  

Change (±) required to 

be practically 

significant*# 

80% 90%  α = 0.10 α = 0.05 

TD m 1036 1333  1145 1442 

 % 10.4 13.4  11.5 14.5 
       

HSRD m 291 374  305 389 

 % 56 72  58 74 
       

TAcc # 286 368  301 383 

 % 10.2 13.1  10.7 13.6 
       

VMAX km·h-1 2.88 3.71  3.06 3.89 

 % 9.4 12.1  10.0 12.7 

#Based on the combined between-match and within-player variability (Table 2): TD 

= 568 m (5.7%), HSRD = 159 m (31%), TAcc = 157 (5.6%), VMAX = 1.58 km·h-1 

(5.2%). See methods section for more details. 

*The threshold for a practically important change is given as a small effect size: 0.2 

multiplied by the pure between-player SD (Table 2). Changes are then estimate 

based on a minimum effects test against these thresholds at the given alpha level. 
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Figure 4. Probabilistic reference values for interpreting individual changes in match physical 

performance. Practical significance is given as the probability value from a minimum effects 

test (pMET; Y-axis). The combined between-match and within-player variability estimates 

(Table 2) multiplied by the square root of 2 are used as the error term. The threshold for a 

meaningful change is given as a small effect size (0.2 multiplied by the pure between-player 

SD; Table 2). A smaller pMET indicates a greater likelihood that the change is meaningful, that 

is; ‘unusual’ or substantially beyond the normal match-to-match variability. 

4.6. Discussion 

The ability for soccer practitioners to identify meaningful changes in match physical 

performance has the potential to aid decision making around player management following 
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competition. Through a detailed examination into the variability of match physical performance 

and using a minimum effect testing framework, our study is the first to apply a probabilistic 

method for monitoring individuals in professional soccer. Our main finding was that after 

accounting for seasonal trends and inter-position heterogeneity, between-match individual 

changes of ±~10–15% in representative GPS-derived measures of match physical performance 

(TD, TAcc and VMAX) can be considered practically significant within the current sample. This 

was with the exception HSRD, where thresholds were considerably higher (⪆ 60%). 

Our match physical performance values appear similar to those reported in other investigations 

and may therefore be considered representative of professional soccer competition (Haddad et 

al., 2018; Palucci-Vieira et al., 2019). Previous investigations have also observed that 

professional soccer players usually cover ~10 km per match (Haddad et al., 2018; Palucci-

Vieira et al., 2019), but only 4–6% of the TD is covered at high intensity (Haddad et al., 2018). 

In addition, soccer players are exposed to bouts of activity requiring running speeds in excess 

of 30 km·h-1 (Aquino, Munhoz-Martins, et al., 2017; Haddad et al., 2018), as well as multiple 

changes of direction and duels, which significantly contribute to TAcc (Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d). This supports the professional level population that 

participated in this study. We found HSRD and TAcc to increase throughout the season, 

whereas TD reduced and the trend in VMAX was not clear. Previous studies have also found 

HSRD to increase from the start to the end of the season  (Mohr et al., 2003; Rampinini et al., 

2007), but our observed decline in TD is not consistent with these studies (Mohr et al., 2003; 

Rampinini et al., 2007), which reported a lower TD at the start of the season when compared to 

the middle and end. In this regard, there are several factors (e.g., ball possession, tactics, 

improved fitness, or adaptations to competitive league) that may explain these different trends 

(Rampinini et al., 2007). For example, the team analyzed in our study adopted a direct style of 

play with fast transitions and high defensive lines during the season, which may be another 

factor to explain the increase in HSRD and TAcc (Fernandez-Navarro et al., 2018). Also, 

although HSRD and TAcc are key performance indicators (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d), a previous investigation observed that the teams with low-

percentage ball possession covered more TD than teams with high-percentage ball possession 

(da Mota et al., 2016). Therefore, the seasonal trends need to be analyzed from a context-

specific perspective in order to understand the potential practical applications of this type of 

analysis. 
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Regarding the estimates of between-player, between-position, between-match and within-

player variability in each physical performance metric, a key finding was that sources of 

variability were greater for HSRD (13–36%) in comparison with all other external load metrics 

(<6%). These results are consistent with previous investigations which reported that the 

variability tended to increase with running intensity (Carling et al., 2016; Gregson et al., 2010; 

Haddad et al., 2018; Mohr et al., 2003; Rampinini et al., 2007). For instance, the match-to-

match variability in TD from professional soccer players has been shown to be around 3.1% 

(Mohr et al., 2003), 2.4% (Rampinini et al., 2007) and 5.3% (Haddad et al., 2018) while the 

variability for HSRD was around 9.2% (Mohr et al., 2003), 14.4% (Rampinini et al., 2007), 

17.7% (Gregson et al., 2010), 19.8% (Carling et al., 2016) and 53% (Haddad et al., 2018). 

Compared to previous investigations, however, a novel approach of our study was the ability 

to further partition the usual sources of variability into their specific components. We show, for 

example, that HSRD is far more variable between positions (36%) than it is between players 

within a given position (13%). Furthermore, we separate the observed match-to-match 

variability into true between-match variability (i.e., factors occurring at the level of a match) 

and within-player variability (i.e., factors occurring at the level of an individual). To our 

knowledge, this is the first attempt to do so in soccer. Our results indicate that the between-

match and within-player variability of HSRD are similar, whereas the within-player variability 

of VMAX was over 3 times that of the between-match variability. However, VMAX did appear 

relatively stable, for all sources of variability (<5%), which is supported by previous research 

(Haddad et al., 2018). Our lower estimates (between match: 1.5%, within-player: 4.9%) 

compared to Haddad and colleagues (observed match-to-match: 6–8%) are likely due to 

variance partitioning, but may also be influenced by different positional roles or playing styles 

(Haddad et al., 2018). 

The primary aim of our study was to break down the sources of variability in soccer match 

physical performance and use these data to shed light on monitoring individual between-match 

changes. We approached this twofold. First, between-match and within-player variability were 

combined to construct confidence intervals for an individual change in physical performance. 

This is similar to principles of the minimum detectable change (smallest detectable difference) 

and can be used to determine those which are beyond the observed match-to-match variability. 

For example, a change in whole match TD of +10.4% could be interpreted as higher than usual, 

using an alpha of 0.1 (80% CI). This can be a useful way to incorporate performance variability 

into decision making, but it does not consider the practical importance of a change. Building 
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on the TD example, a whole match change of + 10.5% is greater than the smallest detectable 

difference for an 80%, but only by 0.1% which is unlikely to have any real-world relevance. 

Therefore, we additionally used effect size principles to estimate values of the smallest 

worthwhile change, given as 0.2 of the pure between-player variability (Table 2). Using a 

minimum effects testing framework, we then calculated the probability (pMET) that a match 

change could be considered truly meaningful; that is, ‘unusual’ (beyond the normal match-to-

match variability) by a substantial magnitude. A smaller pMET indicates a greater practical 

significance and intuitively, pMET of 0.10 and 0.05 correspond to individual changes where the 

respective 80% and 90% CI fall completely beyond the threshold of practical importance. For 

TD, this value was 11.5% for an 80% CI. 

We have presented pMET as both the value associated with fixed and conventional alpha levels 

(Table 3) and also as continuous estimates (Figure 4). The former is typical to making inference 

from sample-based research studies but in the practice of monitoring individuals, this approach 

may be to conservative. The reality is that soccer practitioners are likely to interpret match 

physical performance data in a heuristic sense, so knowing if individual changes are trending 

towards practical significance might be of better use. The charts presented in Figure 4 could 

therefore be used to determine the actual practical significance, by drawing a vertical line up 

from the observed change (X-axis) and drawing a perpendicular horizontal line at the intercept 

of the Y-axis to determine the corresponding pMET. These values can then be interpreted in the 

context of the decisions being made and the contextual constraints (e.g., associated time, 

resources and impact on players). For example, a lower pMET for a positive change in HSRD 

and/or TAcc might be indicative of substantially more high-intensity match activity than 

normal. This might warrant the considerations for additional recovery, medical or nutritional 

intervention in the days following the match to ensure appropriate regeneration prior to the next 

competitive fixture. 

We understand that it would be naïve to directly make an inference on fatigue or recovery from 

match physical performance alone, and this should be taken into consideration when making 

decisions using the aforementioned methods. External load is the means by which an internal 

load is induced; which is then the stimulus for consequential responses to the body’s systems 

and functional performance (e.g., fatigue and recovery). Therefore, we do not advocate that 

changes in match physical performance are used to make direct and definitive inference on 

fatigue or recovery. Rather, these changes could imply a differential fatigue or recovery time-
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course response when compared to usual. For example, if practitioners detect changes in match 

physical performance that are substantially higher than usual (e.g., +10–15% for TD, TAcc or 

VMAX) then an assessment of the subsequent ‘response’ might be warranted to inform athlete 

management decisions. This could include post-day subjective measures of fatigue or objective 

measures such as heart rate variability or stiffness (e.g., leg/ whole body). Or, it may simply be 

used as an avenue to start a conversation with the player, where clinical and practical judgment 

can precede generic advice (e.g., sleep, nutrition) or further intervention. However, there are 

some general limitations, which need to be acknowledged and may also guide future 

investigations. First, only one professional soccer team was included in the analysis, so the 

sample size was limited to the most regular players of the league (n = 13) and these findings 

are representative of this sample. A multi-club study would therefore help extend our current 

findings.  Additionally, recently implemented local positioning systems may provide more 

accurate data than GPS (Bastida Castillo et al., 2018; Linke et al., 2018), particularly for match 

physical performance measures such as HSRD and VMAX (Martin Buchheit & Simpson, 2017), 

and should therefore be considered both for interpreting our findings to data collected with 

these systems and future research into the variability of soccer match physical performance.  

Nonetheless, the changes in external load-based measures do not necessarily lead to a 

“worthwhile” change in the performance outcome. Finally, we have stressed the importance of 

including concepts such as the smallest worthwhile change to interpret differences in match 

physical performance, but this distribution-based approach is in itself limited. The extent to 

which group-based effect sizes principles can be used at the individual level can be questioned 

and this is likely a less-robust approach than using anchor-based methods, which are yet to be 

established for match physical performance in soccer.  

4.7. Conclusion 

Competitive fixtures present as the most demanding sessions within a professional soccer 

microcycle. However, the variability of match physical performance is often overlooked. 

Practitioners are responsible for quantifying weekly match demands to inform subsequent 

player management and devise an appropriate training schedule. Understanding the variability 

of match physical performance can aid this decision-making process by determining the 

practical significance of between-match changes. In our study applying this approach alongside 

a minimum effect testing framework, we found that individual changes in representative GPS-

derived measures of match physical performance (TD, TAcc and VMAX) of ±~10–15% can be 
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considered practically significant. That is, beyond the normal match-to-match variability and 

by a magnitude greater than the smallest worthwhile change. This was with the exception of 

HSRD, where thresholds were considerably higher (⪆ 60%). Soccer practitioners might 

therefore consider this approach to facilitate decision making. However, we maintain that other 

sources of data (internal load and the associated response) are needed to properly evaluate 

match demands and any athlete management decisions should be primarily based on domain 

knowledge (training principles and physiological or biomechanical theory) and experience. 
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CHAPTER 5 

 

Study III. Impact of match-related contextual 

variables on weekly training load in a 

professional soccer team: a full season study   
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5. IMPACT OF MATCH-RELATED CONTEXTUAL VARIABLES ON WEEKLY 

TRAINING LOAD IN A PROFESSIONAL SOCCER TEAM: A FULL SEASON STUDY 

5.1. Abstract 

The purpose of this study was to analyze the impact of match-related contextual variables 

(match location, match outcome and level of the opponent) on the weekly training load in a 

professional soccer team throughout a full competitive season. Total distance, high-speed 

running distance (HSRD, > 18 km·h-1), high-metabolic load distance (HMLD, > 25.5 W·kg-1), 

player load and total of impacts (above 3 G), were collected from training and match sessions 

in professional soccer players (n = 25) competing in LaLiga123. Comparisons in external load 

parameters by each match-related contextual variables were examined using a mixed-effect 

model. Differences between playing positions were found for total distance (p < 0.05; r = 0.11-

0.15), HSRD (p < 0.05; r = 0.13-0.19), HMLD (p < 0.05; r = 0.12-0.19), player load (p < 0.05; 

r = 0.11-0.19) and impacts (p < 0.05; r = 0.15-0.26). However, no significant interaction was 

observed between match-related contextual variables and playing position in any variable (p > 

0.05). In addition, a significant impact of match outcome (p < 0.05; r = 0.11-0.15), opponent 

level (p < 0.05; r = 0.11-0.17) and match location (p < 0.05; r = 0.14-0.20) on the weekly 

training load (before and after the match) was observed. In conclusion, match-related contextual 

variables seem to slightly affect weekly external training load. Thus, coaching and medical 

departments could consider the influence of these contextual variables when prescribing the 

training load relative to the match demands. 

5.2. Keywords 

Analysis, Competition, Performance, Team Sport, Training  
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5.3. Introduction 

Training load monitoring has become one of the most common practices in high-performance 

soccer (Hader et al., 2019; Jaspers et al., 2017). The main purpose of this monitoring process is 

to analyze how each player is coping with daily load and how the player is adapting to the 

training stimulus (Gabbett, 2016). The availability of this information, which may be collected 

by electronic performance tracking systems among other methods (Cardinale & Varley, 2017; 

Linke et al., 2018; Rojas-Valverde, Gómez-Carmona, et al., 2019), may assist coaching and 

medical staff to minimize the injury risk or overtraining, and maximize fitness, readiness and 

performance (Cummins et al., 2013; Rago, Brito, Figueiredo, Costa, et al., 2020). 

In consequence, coaches consciously prescribe training load seeking a balance between loading 

the players for adaptation purposes and avoiding fatigue accumulation as match day approaches 

(Gabbett, 2016; Martín-García, Gómez Díaz, et al., 2018; Oliva-Lozano, Fortes, & Muyor, 

2020). Thus, it is important to understand external training loads (i.e., workload performed by 

the player in training sessions) relative to match demands, specifically when attempting to 

optimize position-specific loads (Martín-García, Gómez Díaz, et al., 2018; Vanrenterghem et 

al., 2017). In this regard, several studies, which provide a comprehensive insight into the load 

monitoring process, have reported seasonal training loads from a variety of professional soccer 

leagues (Clemente, Owen, et al., 2019; Clemente, Rabbani, et al., 2019; Martín-García, Gómez 

Díaz, et al., 2018; Stevens et al., 2017). However, the implementation of training programs at 

such high-performance level is difficult given the practical constraints which are related to the 

competitive calendar in professional soccer (Morgans et al., 2014).  

Previous investigations have also suggested that match-related contextual variables (e.g., match 

location, opponent level, match outcome, length of the microcycle) may have a confounding 

effect on training load interpretation (Brito et al., 2016; Curtis et al., 2019; L. Gonçalves et al., 

2020; Owen et al., 2017; Rago, Rebelo, et al., 2019). For instance, it is of interest for strength 

and conditioning coaches to know if the players experience different training demands during 

the week after losing the match compared to the week after winning (L. Gonçalves et al., 2020). 

In this regard, a recent study reported that weekly training load increased after losing a match, 

and before and after playing against a top-level team (Rago, Rebelo, et al., 2019). Therefore, 

these investigations recommend coaches to consider these contextual variables when 
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prescribing weekly training load (Brito et al., 2016; Curtis et al., 2019; Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d; Rago, Rebelo, et al., 2019). 

Currently, only a few studies have analyzed the impact of match-related contextual variables 

on weekly training load in professional soccer teams during short competitive periods (L. 

Gonçalves et al., 2020; Owen et al., 2017; Rago, Rebelo, et al., 2019), so a full-season study is 

necessary. Similar investigations have been carried out to date, which included internal (e.g., 

heart rate recordings and rating of perceived exertion, RPE) (Brito et al., 2016; L. Gonçalves et 

al., 2020; Owen et al., 2017; Rago, Rebelo, et al., 2019) and external load (Curtis et al., 2019; 

L. Gonçalves et al., 2020; Owen et al., 2017; Rago, Rebelo, et al., 2019) variables. However, 

there is no data available concerning the relationship between contextual variables and weekly 

training load relative to peak match demands (i.e., relative training demands to match day). 

These considerations for quantifying training loads based on match demands may be a coaching 

strategy in the periodization training models (Martín-García, Gómez Díaz, et al., 2018). Hence, 

this study aimed to analyze the impact of match-related contextual variables (match location, 

match outcome and level of the opponent) on the weekly training load in a professional soccer 

team throughout a full competitive season.  

5.4. Methods 

Study design 

A longitudinal study was designed to collect data from training and match sessions throughout 

the 2018/2019 competitive season of a Spanish professional soccer team in LaLiga123. The 

league consisted of a total of 42 matches (home, n = 21; away, n = 21) and the team started the 

matches with a standard 1-4-4-2 formation. However, this playing formation could vary based 

on situational variables. For all external load variables, the maximum values registered by each 

player in match days were considered for the calculation of relative training load through the 

following formula: (training session external load / competitive-match external load) × 100 

(Martín-García, Gómez Díaz, et al., 2018). Thus, whereas match data were used to relativize 

training data, inferences were computed on training data only. 

Since the length of the microcycle continually varied over the season from 5 to 9 days based on 

league calendar, the seven-day length of the microcycle was selected given the greatest number 

of cases (n = 879). This also implies that microcycles, which contained national cup (Copa del 
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Rey) matches, were not included in the analysis to avoid calendar congestion effects (Azcárate 

et al., 2018). It has been suggested that at least 80 individual recordings are needed to remove 

the inter-individual variability in observational studies (Gregson et al., 2010). Our study 

included 879 individual files. Then, the players’ training load was weekly quantified. Every 

training session was classified based on match-related contextual variables, which included: 

last match outcome, opponent level and match location, and next match outcome, opponent 

level and match location (Figure 5). Match location was defined as home or away. The opponent 

level was categorized as: a) top, from first to sixth position; b) medium, from seventh to 

fourteenth position; and c) bottom, from fifteenth to twenty-second position considering weekly 

ranking. Match outcome was defined as win, draw and loss.  

 

Figure 5. Sample weekly structure for interpretation of the impact of match-related contextual 

variables on weekly training load. 

Participants 

Twenty-five professional soccer players (age: 26.1 ± 3.8 years old; height: 1.8 ± 0.1 m; body 

mass: 75.5 ± 6.7 kg) participated in the study. The club provided consent to conduct the research 

and therefore, use anonymously the data by ensuring anonymity and confidentiality of the 

participants once the season had finished. Only players who met the following inclusion criteria 

were considered for the study: i) each player had to complete a minimum of one microcycle 

(i.e., training days from a seven-day microcycle) from the competitive season; and, ii) each 

player had to complete at least one full-match in order to calculate the relative training load and 

the effect of contextual variables. Players undergoing any rehabilitation process and 
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goalkeepers were excluded from this study given the different nature of training and match 

demands profile (Oliva-Lozano, Gómez-Carmona, Pino-Ortega, et al., 2020a; Palucci-Vieira et 

al., 2018). This study was designed and conducted in line with the Ethical Standards in Sports 

and Exercise Science Research (Harriss & Atkinson, 2015). In addition, it was approved by the 

Bioethics Committee at the University of Almeria (UALBIO2020/032). 

Procedures 

WIMU Pro (RealTrack Systems, Almeria, Spain) was the electronic performance tracking 

system used to collect the external load variables. These systems registered positioning-derived 

variables through Global Positioning System (GPS) and inertial variables through four 3D 

accelerometers, three 3D gyroscopes, a 3D magnetometer, and a barometer. The validity and 

reliability of WIMU Pro for measuring soccer-specific external load variables have been 

successfully tested by previous investigations (Bastida Castillo et al., 2018; Gómez-Carmona, 

Bastida-Castillo, García-Rubio, et al., 2019; Muñoz-López et al., 2017). Based on previous 

studies (Bastida Castillo et al., 2018; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 

2020e, 2020d), the sampling frequency of the units was set at 10 Hz for the GPS and 100 Hz 

for the inertial sensors. According to the manufacturer’s instructions (RealTrack Systems, 

Almeria, Spain), the units had to be calibrated at the beginning of each data collection session. 

Therefore, the units had to be turned on and placed on a flat surface within the Smart Station 

(RealTrack Systems, Almeria, Spain) for 30 seconds. Then, the units started to record data and 

were vertically placed in the back pocket of a chest vest (Rasán, Valencia, Spain). The players 

wore always the same device in order to avoid inter-unit error (Rago, Rebelo, et al., 2019). 

Once the training or match session had finished, the data was transferred to SPro software for 

analysis (RealTrack Systems, Almeria, Spain) by activating “PC mode” on the Smart Station. 

This software provided a specific report which was stored on WIMU Cloud (RealTrack 

Systems, Almeria, Spain). Finally, full-season data was downloaded from the WIMU Cloud in 

order to run the statistical analysis.  

Variables 

Five external load variables were collected from training and competitive matches: total 

distance covered, high-speed running distance (HSRD, above 18 km·h-1), high-metabolic load 

distance (HMLD, above 25.5 W·kg-1), player load (calculated through the vector sum of 

accelerometry-derived measures from vertical, anterior-posterior and medial-lateral 
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movements) and the total of body impacts (collisions registered by the accelerometers with a 

magnitude above 3G) (Gastin et al., 2019; Gómez-Carmona, Pino-Ortega, et al., 2019; Martín-

García, Gómez Díaz, et al., 2018; Oliva-Lozano, Muyor, Fortes, et al., 2021; Torreño et al., 

2016). External training load was reported as the mean volume of work during the training days 

from the microcycle (i.e., training periods which count from the first training day of the period 

to the following match) (Clemente, Rabbani, et al., 2019; Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d). Weekly external training load was reported as the relative 

percentage to match training load, considering the highest match value recorded for each player. 

Statistical analysis 

Shapiro-Wilks test revealed that external training load data were normally distributed in all 

weeks for all variables (p > 0.05). Considering the longitudinal nature of this study (i.e., each 

player was measured repeatedly at several points in time), comparisons in external load 

parameters by each match-related contextual variable were examined using a mixed-effect 

model with restricted likelihood, taking into account missing data (e.g., injured players or 

reconditioning sessions) and that players took part in a different number of practice sessions 

(Cnaan et al., 1997). Match-related contextual variables were set as fixed effect, the individual 

player was set as random effect, and external load parameters were set as dependent variables. 

When a significant effect was found, pairwise comparisons were examined using a Bonferroni 

post- hoc test. To describe the magnitude of differences, the t statistics derived from the mixed 

model were converted to effect sizes’ correlations (r) and associated 95% confidence intervals 

(95% CIs) (Rosnow et al., 2000). Effect sizes were qualitatively interpreted using the following 

criteria: trivial (r ≤ 0.1), small (r = 0.1 – 0.3), moderate (r = 0.3 – 0.5), large (r = 0.5 – 0.7), 

very large (r = 0.7 – 0.9) and almost perfect (r ≥ 0.9) (Cohen, 1988; Hopkins et al., 2009). 

Descriptive statistics are presented as mean and 95% CIs unless otherwise stated. Statistical 

significance was set at p < 0.05. Data analyses were performed using Statistical Package for 

Social Science software (IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY). 

5.5. Results 

Figure 6 shows descriptive statistics of the mean weekly training load of total distance, HSRD, 

HMLD, player load and impacts by playing position. Statistically significant differences 

between playing positions with a small effect size were found in total distance (p < 0.05; r = 

0.11-0.15), HSRD (p < 0.05; r = 0.13-0.19), HMLD (p < 0.05; r = 0.12-0.19), player load (p < 
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0.05; r = 0.11-0.19) and impacts (p < 0.05; r = 0.15-0.26). In this regard, FB, WMF, and MF 

showed greater total distance, HSRD, HMLD, player load and impacts than CD and FW during 

the training sessions. 

 

Figure 6. Differences between playing position in the mean weekly training load of total 

distance, high-speed running distance (HSRD), high-metabolic load distance (HMLD), player 

load and impacts. aSignificant differences compared to central defenders (CD); bSignificant 

differences compared to forwards (FW); cSignificant differences compared to full-backs (FB); 

dSignificant differences compared to midfielders (MF); eSignificant differences compared to 

wide-midfielders (WMF). 

Weekly training load by match outcome 

Regarding match outcome, player load was significantly greater the training weeks after 

winning (~4.5%; p < 0.05; r = 0.11-0.13).  Also, the results showed greater training load with 

a small effect as well during the training weeks after winning compared to the training weeks 

after losing for total distance (~4.4%; p < 0.01; r = 0.13) and HMLD covered (~4.1%; p < 0.01; 

r = 0.10). However, weekly training load was slightly greater for the training weeks before 

winning than before losing in total distance (~3.1%; p = 0.02; r = 0.10) and HSRD (~7.5%; p 

< 0.01; r = 0.14). In addition, no significant interaction was observed between match outcome 

and playing position in any variable (p > 0.05).  
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Figure 7. Weekly training load according to match outcome (% of the match). 
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Weekly training load by opponent level 

Weekly training load of HSRD and impacts after playing against bottom-level teams was 

slightly greater than weeks after playing top-level (mean difference: ~12.5%; p < 0.01; r = 0.17) 

or medium-level teams (mean difference: ~6.4%; p < 0.01; r = 0.14). However, the training 

weeks before playing against bottom-level teams showed the greatest total distance (~55.4%; p 

< 0.01; r = 0.11-0.14), impacts (~58.5%; p < 0.01; r = 0.15-0.16) and player load (~59.2%; p < 

0.01; r = 0.13-0.15). In addition, slightly greater HSRD (mean difference: ~7.4%; p < 0.01; r = 

0.15) and HMLD (mean difference: ~5.7%; p < 0.01; r = 0.15) were observed before playing 

bottom-level teams compared to medium-level teams. No significant interaction was observed 

between opponent level and playing position in any variable (p > 0.05). 
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Figure 8. Weekly training load according to opponent level (% of the match). 
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Weekly training load by match location 

When it comes to the effect of match location, there were no differences (p > 0.05) in weekly 

training load after playing at home or away. However, a significant increase in total distance 

(mean difference: ~4.6%; p < 0.01; r = 0.17), impacts (mean difference: ~7.6%; p < 0.01; r = 

0.16), player load (mean difference: ~7.1%; p < 0.01; r = 0.20) and HMLD (mean difference: 

~4.5%; p < 0.01; r = 0.14) was observed the training weeks before playing away with a small 

effect size. In addition, no significant interaction was observed between match location and 

playing position in any variable (p > 0.05). 
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Figure 9. Weekly training load according to match location (% of the match). 
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5.6. Discussion 

The purpose of this study was to analyze the impact of match-related contextual variables 

(match location, match outcome and level of the opponent) on the weekly training load during 

a full season study. The main finding of this study was that despite the positional differences 

observed in training load, match-related contextual variables (match outcome, opponent level 

and match location) had a significant effect on weekly training load before and after the match 

regardless of the playing position. 

This study found that professional soccer players experienced positional differences in training 

load, which have also been reported in previous investigations (Akenhead et al., 2016; Malone 

et al., 2015; Martín-García, Gómez Díaz, et al., 2018; Owen et al., 2017). However, a further 

novel finding of this study was the interaction between match-related contextual variables and 

playing position was not significant in any external training load variable. Although only four 

studies have investigated the impact of match-related contextual variables on weekly training 

load (Brito et al., 2016; Curtis et al., 2019; Owen et al., 2017; Rago, Rebelo, et al., 2019), our 

study adds evidence to the literature by concluding that match-related contextual variables had 

a significant impact on weekly training load independently of the playing position. In this 

regard, weekly tactical strategies, which depend on matches characteristics, may explain these 

results. For example, coaches may decide to decrease the volume of tasks with high-intensity 

actions in order to have more time to prepare corner kicks because the upcoming team is good 

in these strategic actions. In consequence, the whole team is affected by a match-related 

contextual variable while playing position does not determine the training load. 

Specifically, one of the match-related contextual variables which had an impact on training load 

was match outcome. Contrary to previous findings (Brito et al., 2016; Curtis et al., 2019; Owen 

et al., 2017; Rago, Rebelo, et al., 2019), which showed lower external and internal training load 

(e.g., distance covered, average speed, HSRD, RPE) the training weeks after winning in 

comparison with losing or drawing, our study observed greater training load in training weeks 

after winning (e.g., total distance, high-metabolic load distance and player load). This finding 

suggests that despite the effect of match-related contextual variables on the training load, the 

coaching strategies applied by each team are different (Rago, Rebelo, et al., 2019). However, 

our study found that training load (e.g., total distance and HSRD) was significantly greater 

when preparing for wins. This is in line with a recent investigation which reported that internal 
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training load (i.e., session-RPE) increased too (Brito et al., 2016). Furthermore, a recent study 

also showed that the training load parameters were specifically greater the day before winning 

the match (i.e., -1MD) (L. Gonçalves et al., 2020). Nevertheless, future research should be done 

in order to investigate the effect of match outcome on both external and internal training load 

in professional soccer.  

A further novel finding was that weekly training load varied based on opponent level. The 

greatest amount of impacts and HSRD covered was observed after playing against bottom-level 

teams. Several studies concluded that playing against weaker teams resulted in lower high-

intensity match demands (e.g., HSRD, high-intensity accelerations or decelerations) (Aquino, 

Munhoz-Martins, et al., 2017; Castellano et al., 2011; Folgado, Duarte, et al., 2014; Rago et al., 

2018), which suggests that degree of neuromuscular fatigue may be lower too during the 

following week. Nevertheless, this may be also dependent on the training day (L. Gonçalves et 

al., 2020). Besides, the results showed that volume-related training load variables such as total 

distance, impacts and player load were the greatest when preparing for bottom-level teams 

(Fernandez-Navarro et al., 2018). The team tactical behavior in match-play may explain these 

results since weaker teams require lower high pressure or direct style of play than top-level 

teams, which suggests that weaker teams keep players closer by increasing the density of 

players per area (Fernandez-Navarro et al., 2018). However, it is to highlight that our results 

are inconsistent with previous research on professional soccer players (Rago, Rebelo, et al., 

2019). Although the same study also found an impact of this match-related contextual variable 

on weekly training load on training load (Rago, Rebelo, et al., 2019), the coaching strategies 

from each team may have been different regarding opponent level. 

Finally, the results concerning the impact of match location on training load partly support the 

findings from a recent study (Owen et al., 2017; Rago, Rebelo, et al., 2019). This study found 

that there were no significant changes in weekly training load (e.g., total distance, HSRD, mean 

heart rate, RPE) after playing home matches or away matches (Rago, Rebelo, et al., 2019), 

which is in line with our results. Since there are studies which found that the overall match 

demands did not significantly vary based on match location (Castellano et al., 2011; Zhou et 

al., 2019), these results may explain why the training load from the following week is not 

significantly affected (Rago, Rebelo, et al., 2019). However, the training load may be 

significantly influenced when preparing for the upcoming match (Brito et al., 2016; Rago, 

Rebelo, et al., 2019). In this regard, our study observed that training load (e.g., increased the 
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week before playing away matches. This may be a coaching strategy to prepare the players for 

the competitive demands since home teams tend to look for a dominant style of play (e.g., by 

increasing ball possession) (Fernandez-Navarro et al., 2018; Lago-Peñas & Lago-Ballesteros, 

2011), which implies that the away team may need to maximize the physical output. This may 

not be the case for all the training days since a recent study showed that the players experienced 

lower external and internal training load before playing away compared to playing at home 

during -5MD training sessions (i.e., five days before the match) (L. Gonçalves et al., 2020). 

Although these results did not replicate the previously reported in the literature, the conclusion 

is similar given the significant impact of match location on weekly training load (Brito et al., 

2016; L. Gonçalves et al., 2020; Rago, Rebelo, et al., 2019).  

However, several limitations need to be considered. For example, data was collected from one 

professional soccer team so adding more teams to the analysis would be of interest to increase 

the power of the analysis. In this regard, although there were significant differences, the 

magnitude of the effect sizes was usually small, which implies that there may be additional 

contextual variables that should be considered (Rago, Rebelo, et al., 2019). Although a total of 

five external training load variables were included in the study, internal load variables were not 

included (Brito et al., 2016; Rago, Rebelo, et al., 2019). Also, the mean weekly training load 

was scaled to the match demands, which implies that there is a lack of consideration for the 

specificity of each training day within the microcycle (e.g., higher loads are usually 

concentrated in the middle of the microcycle to prevent excessive loading right before the 

match) (Brito et al., 2016; Rago, Rebelo, et al., 2019). In addition, some of the variables 

included in the study were collected by GPS and the limitations associated with this technology 

(e.g., satellite connection variability) need to be acknowledged (Malone et al., 2017). Although 

most measurements from training and match days were taken in the same stadium, away 

matches implied different stadiums and geographical locations (Pons et al., 2019). Nonetheless, 

the growth of local positioning systems for load monitoring purposes implies that future studies 

may include local positioning systems (e.g., ultrawideband technology) to improve the accuracy 

of the data during professional soccer matches (Bastida Castillo et al., 2018). 

5.7. Conclusion 

Match-related contextual variables, which included match outcome, opponent level and match 

location, had an impact on the subsequent weekly training load. This study also found that 
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professional soccer players experienced positional differences in training load, which have also 

been reported in previous investigations. However, the interaction between match-related 

contextual variables and playing position was not significant in any variable of the weekly 

training load. In consequence, strength and conditioning coaches need to consider match-related 

contextual variables when planning and prescribing the weekly training load. Gaining 

knowledge of external training loads relative to the match is important for applied practitioners, 

particularly when attempting to optimize individualized loads. In this regard, this study allows 

coaches to understand the weekly training load experienced by professional soccer players. 

Specifically, load quantification relative to the match may be an advantageous strategy to be 

used by coaches within the training periodization models. In addition, this full season study 

may serve as a source of data and comparison for future investigations on the effect of match-

related contextual variables on the weekly training load. 
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CHAPTER 6 

 

Study IV. Acceleration and sprint profiles of 

professional male soccer players in relation to 

playing position  
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6. ACCELERATION AND SPRINT PROFILES OF PROFESSIONAL MALE 

SOCCER PLAYERS IN RELATION TO PLAYING POSITION 

6.1. Abstract 

The study aims were to describe positional differences in the acceleration and sprint profiles of 

professional soccer players in match-play, and analyze start speeds required based on the 

intensity of accelerations and decelerations. This longitudinal study was conducted over 

thirteen competitive microcycles in a professional soccer team from LaLiga 123. Data were 

collected through electronic performance tracking systems. Every player was categorized based 

on the playing position: central defender (CD), full-back (FB), forward (FW), midfielder (MF), 

and wide midfielder (WMF). In respect of acceleration profile, positional differences were 

found for all variables (p < 0.05), except average magnitude of accelerations (ACCAVG, p=0.56) 

and decelerations (DECAVG, p=0.76). The sprint profile also showed positional differences for 

all variables (p < 0.05), apart from sprint duration (p=0.07). In addition, although low-intensity 

accelerations required significantly greater start speeds (Vo) than high-intensity accelerations 

in WMF (0.4 ± 0.2 km/h; p < 0.05) and FW (0.4 ± 0.2 km/h; p < 0.05), no significant differences 

(p > 0.05) were found in CD, FB, and MF. However, high-intensity decelerations were 

performed at significantly higher Vo than low-intensity decelerations in MF (2.65 ± 0.1 km/h; 

p < 0.05), FW (3.3 ± 0.1 km/h; p < 0.05), FB (3.9 ± 0.4 km/h; p < 0.05), WMF (4.3 ± 0.3 km/h; 

p < 0.05), and CD (4.1 ± 0.7 km/h; p < 0.05). Therefore, positional differences exist for most 

variables of the acceleration and sprint profiles. In addition, different Vo were observed 

between high-intensity and low-intensity accelerations as well as high-intensity and low-

intensity decelerations. 

6.2. Keywords 

Acceleration, Soccer, Game Analysis, Performance, Team Sport. 
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6.3. Introduction 

High-speed running actions, or sprints, are considered a prerequisite for successful performance 

in soccer (Martin Buchheit et al., 2014; Haugen et al., 2013). In fact, sprinting skills are of 

prime importance in modern soccer (Martin Buchheit et al., 2014; Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d). For instance, straight sprints are the actions most 

frequently performed when scoring a goal (Faude et al., 2012), evading an opponent, and 

creating a shot on goal (Sweeting et al., 2017). Thus, selection, testing, and physical 

conditioning of players should put emphasis on developing sprinting skills (Haugen et al., 

2013). In addition, careful monitoring of these actions is necessary (Harper et al., 2019; Oliva-

Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d), taking into consideration different 

playing positions (Ingebrigtsen et al., 2015; Miñano-Espin et al., 2017). For example, a wide 

midfielder (WMF) may cover 294 ± 76 m of sprinting distance per match, whereas a central 

defender (CD) may cover 123 ± 48 m (Ingebrigtsen et al., 2015). However, research on the 

sprint profile of professional soccer match-play has so far been limited (Ingebrigtsen et al., 

2015), while different components of the sprint profile, such as sprint duration, start speed of 

each sprint or distance covered per sprint, have not yet been studied. 

In addition, another determinant factor of soccer performance is the acceleration profile (Martin 

Buchheit et al., 2014; Haugen et al., 2013; Ingebrigtsen et al., 2015). The acceleration profile 

is understood as a group of acceleration-based variables that are physically demanding (M. 

Varley & Aughey, 2012) given the rate of change in velocity performed by the player (Little & 

Williams, 2005). High-intensity accelerations and decelerations have a significant impact on 

soccer players’ mechanical load (Harper et al., 2019; Vanrenterghem et al., 2017) and indicators 

of muscle damage post-match (De Hoyo et al., 2016). Accelerations have a high metabolic cost 

(Hader et al., 2016), while decelerations increase the mechanical load (Dalen et al., 2016). 

Moreover, these actions are significantly associated with the neuromuscular fatigue (Harper et 

al., 2019) and rating of perceived exertion (RPE) (Gaudino et al., 2015). For example, a 

previous investigation reported that the total of accelerations performed by professional soccer 

players in training sessions was significantly correlated with their session RPE (Gaudino et al., 

2015). Consequently, previous research suggests that understanding the acceleration profile 

would help to understand the potential impact that this profile might have on match performance 

and risk of injury (Harper et al., 2019).  
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Some studies have tried to individualise (based on playing position) and contextualise both 

acceleration (Dalen et al., 2016; De Hoyo et al., 2018; Ingebrigtsen et al., 2015; M. Varley & 

Aughey, 2012) and sprint profiles (Martin Buchheit et al., 2014; Ingebrigtsen et al., 2015; 

Miñano-Espin et al., 2017), but most studies have analyzed these profiles separately. Also, little 

is known, for example, about the start speed required to perform a high-intensity acceleration 

or deceleration (De Hoyo et al., 2018). The aims of this study were therefore to: 1) describe the 

acceleration profile of players and compare it by playing position; 2) describe the sprint profile 

of players and compare it by playing position; and 3) analyze the start speed (Vo) required 

based on the intensity of the acceleration and deceleration by playing position. Regarding the 

first and second aims, we hypothesized that greater positional differences may be found, 

particularly, between defensive and offensive positions. When it comes to the third aim, we 

hypothesized that high intensity accelerations and decelerations would elicit greater start speeds 

than low intensity accelerations or decelerations. 

6.4. Methods 

Study design 

The study was conducted over thirteen competitive microcycles in a professional soccer team 

from LaLiga 123. The team played one match per microcycle. The match location (home or 

away) alternated with each microcycle; seven matches were played away and six at home. The 

playing formation was 4-4-2 for all matches. Data were collected using wearable sensors 

(RealTrack Systems, Almería, Spain). In addition, every player was categorized based on their 

playing position: central defender (CD), full-back (FB), forward (FW), midfielder (MF), and 

wide midfielder (WMF). 

Participants 

Twenty-three professional male soccer players (age: 26.79 ± 3.78 years; height: 180.81 ± 6.20 

cm; weight: 75.71 ± 6.88 kg; professional career: 8.40 ± 2.80 years) voluntarily took part in the 

study. Each player had a specific playing position: CD (n = 4), FW (n = 5), FB (n = 5), MF (n 

= 5) and WMF (n = 4). Given the very different nature of goalkeeping, this position was not 

included in the study (White et al., 2018). Additionally, only players who completed the total 

duration of the match were analyzed. Consequently, although a total of 13 matches were 

analyzed, not all the players from the sample participated in all the matches. The club allowed 
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the research team to access players’ data and informed consent was provided. The study was 

conducted ethically according to Declaration of Helsinki, and it was approved by the Bioethics 

Committee at the University of Almeria. 

Procedures 

Data were collected using WIMU Pro 10 Hz global positioning system (GPS) devices 

(RealTrack Systems, Almería, Spain). This device also contains inertial sensors (four 3D 

accelerometers, three 3D gyroscopes, one 3D magnetometer and one barometer), which 

collected data at 100Hz. The validity and reliability of this device has been analyzed for the 

collection of time-motion variables and is considered a suitable instrument for this purpose in 

soccer (Bastida Castillo et al., 2018). Regarding the validity of the device, the total bias in mean 

velocity measurement was between 1.18 and 1.32 km/h while the bias in distance was between 

2.32 and 4.32 m (Bastida Castillo et al., 2018). In addition, good inter-unit and intra-unit 

reliability was reported (intraclass correlation coefficients > 0.93) (Bastida Castillo et al., 2018). 

The devices were calibrated according to the manufacturer’s instructions before the start of each 

match. All the devices were placed in the Smart Station (RealTrack Systems, Almería, Spain). 

First, the battery of the devices had to be fully charged. Then, a flat surface was found without 

any nearby magnetic devices in order to turn on the devices. After 60 seconds, the recording 

button was pressed. Once the calibration procedure was complete, the devices were placed in a 

vertical position in the back pocket of a chest vest (Rasán, Valencia, Spain). 

The devices were placed in the Smart Station (RealTrack Systems, Almería, Spain) at the end 

of the match in order to transfer the data to the SPro software (RealTrack Systems, Almería, 

Spain). This software reported a database with the performance variables which were 

categorized into the acceleration and sprint profile as indicated in Table 4. In addition, the start 

speed of the action (Vo) for each high or low-intensity acceleration and deceleration was 

calculated in order to investigate the third aim of this study. This variable (i.e., Vo) was obtained 

from the “Sprint Extended” section of the “Intervals Pro” report, which was created by SPro 

(RealTrack Systems, Almería, Spain). 
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Table 4. Description of acceleration and sprint profile variables. 

Profile Variable Definition 

Acceleration 

ACCDIS
 Total distance covered by accelerations (m) 

DECDIS
 Total distance covered by decelerations (m) 

ACCLOW
 Total number of low-intensity accelerations (below 3 m/s2) 

ACCHIGH
 Total number of high-intensity accelerations (above 3 m/s2) 

DECLOW
 Total number of low-intensity decelerations (above -3 m/s2) 

DECHIGH
 Total number of high-intensity decelerations (below -3 m/s2) 

DIFFACDC ACCHIGH - DECHIGH 

ACCAVG Average magnitude of accelerations (m/s2) 

DECAVG Average magnitude of decelerations (m/s2) 

ACCMAX Maximum magnitude of accelerations (m/s2) 

DECMAX
 Maximum magnitude of decelerations (m/s2) 

Sprint 

SPA Total sprint actions (above 24 km/h) 

SPD Total distance covered by sprinting (above 24 km/h) 

SPDAVG Average distance covered per sprint (above 24 km/h) 

VMAX Maximum speed reached in the match (km/h) 

Sprint time Duration of sprint(s) 

Statistical analysis 

First, descriptive statistics were produced for all variables of the acceleration and sprint profiles. 

Playing position was set as an independent variable. Then, the Shapiro-Wilk test was used to 

analyze the normality of the variables and Levene’s test for homogeneity. Parametric and non-

parametric tests were used, since only ACCDIS, ACCLOW, DECLOW, DIFFACDC, VMAX and sprint 

time were variables with normal distribution. On the one hand, when comparing the 

acceleration and sprint profiles relative to playing position, one-way analysis of variance 

(ANOVA) with Bonferroni post-hoc and Kruskal Wallis tests was used. On the other hand, 

when comparing the intensity of the accelerations (low-intensity accelerations, high-intensity 

accelerations, low-intensity decelerations, and high-intensity decelerations) based on start 

speed (Vo), the Mann-Whitney U test was used. The statistical power, which was calculated by 

G * Power software (Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany), was 

greater than 0.85 in all the variables that were analyzed with the sample size of this study. The 

level of significance was set at p ≤ 0.05 and the statistical analysis was carried out using IBM 

SPSS Statistics version 25 (SPSS Inc., Chicago, IL, USA). Effect sizes (ES) were also 

calculated and categorized as trivial (0‒0.19), small (0.20‒0.49), moderate (0.50‒0.79) and 

large (0.80 or higher) effect (Cohen, 1988). 
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6.5. Results 

Table 5 shows the descriptive statistics of the data collected for all variables of the acceleration 

profile and the positional differences. Significant positional differences (p < 0.05) were found 

for all variables, except DIFFACDC (F4 = 1.15; p = 0.33), ACCAVG (p = 0.56) and DECAVG (p = 

0.76). WMF was the position with the greatest ACCDIS covered (436.5 ± 86.3 m; F4 = 13.63; p 

< 0.05; ES = 0.9 – 2.3) and resulted in a greater DECDIS covered compared to CD (104.4 ± 17.2 

m; p < 0.05; ES = 1.7), FW (75.2 ± 17.2 m; p < 0.05; ES = 1.1), and MF (105.7 ± 16.9 m; p < 

0.05; ES = 1.6). In addition, WMF performed greater ACCHIGH than CD (8.5 ± 2.1; p < 0.05; 

ES = 1.3) and MF (7.8 ± 2.0; p < 0.05; ES = 1.3), greater DECHIGH than CD (13.6 ± 3.6; p < 

0.05; ES = 1.1), and greater ACCMAX (0.3 ± 0.1 m/s2; p < 0.05; ES = 0.6) and DECMAX  (0.4 ± 

0.2 m/s2; p < 0.05; ES = 0.5) than MF. MF showed significantly greater ACCLOW than WMF 

(62.1 ± 14.7; F4 = 5.93; p < 0.05; ES = 1.1), FW (54.1 ± 14.7; F4 = 5.93; p < 0.05; ES = 0.9), 

and CD (51.2 ± 14.7; F4 = 5.93; p < 0.05; ES = 0.9). MF also resulted in greater DECLOW than 

FW (46.8 ± 13.9; F4 = 3.96; p < 0.05; ES = 0.9) and WMF (43.9 ± 13.9; F4 = 3.96; p < 0.05; 

ES = 0.8). However, MF showed lower ACCDIS than WMF (175.8 ± 25.5 m; F4 = 13.63; p < 

0.05; ES = 2.3) and FB (90.5 ± 26.1 m; p < 0.05; ES = 1.1). In addition, FW showed higher 

values of DECMAX compared to CD (0.6 ± 0.2 m/s2; p < 0.05; ES = 0.8). 

Table 5. Acceleration profile of professional soccer players and differences between playing positions. 

  Position     

Variables CD (M ± SD) FB (M ± SD) MF (M ± SD) WMF (M ± SD) FW (M ± SD) p ES 

ACCDIS (m) 290.8 ± 76.0
d 351.3 ± 99.3

cd 260.7 ± 64.1
bd 436.5 ± 86.3

abce 333.6 ±118.1
d 0.01 0.17-2.32 

DECDIS (m) 229.9 ± 43.0
d 271.2 ± 66.3 228.7 ± 54.5

d 334.4 ± 74.5
ace 259.2 ± 55.9

d 0.01 0.03-1.72 

ACCLOW (total) 354.7 ± 54.5
c 378.1 ± 45.8 405.9 ± 61.9

ade 343.8 ± 48.0
c 351.7 ± 46.2

c 0.01 0.06-1.11 

ACCHIGH (total) 26.5 ± 6.1
d 30.4 ± 7.6 27.1 ± 5.5

d 34.9 ± 6.7
ac 29.9 ± 9.6 0.02 0.06-1.32 

DECLOW (total) 355.9 ± 46.9 371.6 ± 45.9 387.4 ± 59.0
de

  343.5 ± 15.8
c 340.6 ± 40.1

c 0.01 0.06-0.92 

DECHIGH (total) 50.9 ± 8.6
d 54.1 ± 13.3 54.8 ± 12.4  64.5 ± 15.8

a 55.2 ± 12.1 0.02 0.04-1.07 

DIFFACDC (total) -24.4 ± 7.8 -23.7 ± 11.0 -27.7 ± 11.6 -29.5 ± 13.5  -25.3 ± 10.0 0.33 0.07-0.47 

ACCAVG (m/s2) 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.56 0.03-0.22 

DECAVG (m/s2) -0.6 ± 0.1 -0.6 ± 0.1 -0.6 ± 0.1 -0.6 ± 0.1 -0.6 ± 0.1 0.76 0.01-0.26 

ACCMAX (m/s2) 4.5 ± 0.4 4.5 ± 0.3 4.4 ± 0.6
d 4.70 ± 0.31

c 4.5 ± 0.6 0.01 0.06-0.67 

DECMAX (m/s2) -5.7 ± 0.5
e -6.1 ± 0.6 -5.8 ± 0.8

d -6.20 ± 0.9
c -6.3 ± 0.9

a 0.04 0.11-0.77 

Note. M: mean; SD: standard deviation; ES: effect size. 
a
Statistical difference to CD (p < 0.05); 

b
Statistical difference to FB (p < 0.05); 

c
Statistical 

difference to MF (p < 0.05); 
d
Statistical difference to WMF (p < 0.05); 

e
Statistical difference to FW (p < 0.05). 
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Table 6 gives the descriptive statistics for the sprint profile as well as the significant positional 

differences observed for all variables, apart from sprint time (F4 = 2.18; p = 0.07). WMF 

reached greater VMAX compared to CD (1.4 ± 0.5 km/h; F4 = 14.47; p < 0.05; ES = 0.9), MF 

(3.5 ± 0.5 km/h; F4 = 14.47; p < 0.05; ES = 2.2), and FW (2.1 ± 0.5 km/h; F4 = 14.47; p < 0.05; 

ES = 1.2). WMF also resulted in greater SPA compared to CD (7.3 ± 1.1; p < 0.05; ES = 1.7), 

MF (11.3 ± 1.1; p < 0.05; ES = 2.9) and FW (7.2 ± 1.1; p < 0.05; ES = 1.8). These differences 

were also observed for SPD covered, which was greater in WMF than CD (189.3 ± 22.5 m; p 

< 0.05; ES = 2.1), MF (250.1 ± 22.1 m; p < 0.05; ES = 3.06) and FW (172.9 ± 22.5 m; p < 0.05; 

ES = 2.05). WMF also showed higher SPDAVG than CD (4.7 ± 1.2; p < 0.05; ES = 1.46). 

However, MF was the position with the lowest SPA (4.6 ± 2.9; p < 0.05; ES = 1.2 – 2.03) and 

VMAX (28.5 ± 1.7 km/h; F4 = 14.47; p < 0.05; ES = 0.7 – 2.1). 

Table 6. Sprint profile of professional soccer players and differences between playing positions. 

  Position     

Variables CD (M ± SD) FB (M ± SD) MF (M ± SD) WMF (M ± SD) FW (M ± SD) p ES 

SPA (total) 8.6 ± 3.7
cd 11.7 ± 3.9

c 4.6 ± 2.9
abde 15.9 ± 4.7

ace 8.7 ± 3.1
cd 0.01 0.04-2.87 

SPD (m) 148.9 ± 73.1
d 228.3 ± 92.5

c 88.2 ± 53.9
bde 338.2 ± 103.9

ace 165.3 ± 58.1
cd 0.01 0.24-3.05 

SPDAVG (m) 16.9 ± 2.6
d 19.2 ± 3.2 20.1 ± 7.7 21.6 ± 3.8

a 19.6 ± 4.8 0.01 0.07-1.45 

VMAX (km/h) 30.6 ± 1.4
acd 30.7 ± 1.6

c 28.5 ± 1.7
abde 32.0 ± 1.6

ace 29.9 ± 2.0
cd 0.01 0.07-2.16 

Sprint time (s) 2.5 ± 0.3 2.8 ± 0.4 2.8 ± 1.2 3.1 ± 0.5 2.9 ± 0.7 0.07 0.03-1.45 

Note. M: mean; SD: standard deviation; ES: effect size. 

a
Statistical difference to CD (p < 0.05); 

b
Statistical difference to FB (p < 0.05); 

c
Statistical difference to MF (p < 0.05); 

d
Statistical 

difference to WMF (p < 0.05); 
e
Statistical difference to FW (p < 0.05). 

 

Figure 10 describes the Vo required to perform low-intensity accelerations, high-intensity 

accelerations, low-intensity decelerations, and high-intensity decelerations. On the one hand, 

low-intensity accelerations required significantly greater Vo than high-intensity accelerations 

in WMF (0.4 ± 0.2 km/h; p < 0.05; ES = 0.12) and FW (0.4 ± 0.2 km/h; p < 0.05; ES = 0.13) 

(Fig. 1a), but no significant differences were found in CD, FB, and MF. On the other hand, 

high-intensity decelerations were performed at significantly higher Vo than low-intensity 

decelerations in MF (2.7 ± 0.1 km/h; p < 0.05; ES = 0.57), FW (3.3 ± 0.1 km/h; p < 0.05; ES = 

0.64), FB (3.9 ± 0.4 km/h; p < 0.05; ES = 0.71), WMF (4.3 ± 0.3 km/h; p < 0.05; ES = 0.75), 

and CD (4.1 ± 0.7 km/h; p < 0.05; ES = 0.79) (Fig. 1b). 
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Figure 10. Differences on start speed of the action (Vo) based on the intensity of the 

accelerations/decelerations; a) Differences between low-intensity accelerations and high-

intensity accelerations; b) Differences between low-intensity decelerations and high-intensity 

decelerations. 
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6.6. Discussion 

The main purpose of this study was to describe the positional differences in the acceleration 

and sprint profiles of professional soccer players in match-play and to analyze the start speed 

(Vo) required based on the intensity of the acceleration and deceleration. This study showed 

positional differences for most variables of the acceleration and sprint profiles. Also, significant 

differences were observed in Vo when comparing high-intensity accelerations and high-

intensity decelerations to low-intensity accelerations and low-intensity decelerations. 

This study is the first to provide detailed information on the acceleration and sprint profiles of 

professional soccer players. Previous investigations (Dalen et al., 2016; Ingebrigtsen et al., 

2015; Tierney et al., 2016) have described positional differences for some of the high-intensity 

profile variables examined in the present study but conclusions from most studies were limited 

because only a few variables, which are the most common in the literature, were analyzed. 

These studies have examined, for instance, professional Norwegian (Dalen et al., 2016; 

Ingebrigtsen et al., 2015) and British (Tierney et al., 2016) soccer teams, and found differences 

between playing positions for variables of the acceleration profile (Dalen et al., 2016; 

Ingebrigtsen et al., 2015; Tierney et al., 2016). For example, WMF covered significantly greater 

ACCDIS (559 ± 232 m) and DECDIS (456 ± 107 m) than MF (ACCDIS: 559 ± 232 m; DECDIS  

360 ± 120 m) (Dalen et al., 2016). Similarly, our study showed that WMF covered significantly 

greater ACCDIS (436.5 ± 86.3 m) and DECDIS (334.4 ± 74.5 m) than MF (ACCDIS: 260.7 ± 64.1 

m; DECDIS 228.7 ± 54.5 m). The same study also found that FB was another position with 

greater ACCDIS covered (714 ± 298 m) than MF (559 ± 232 m) (Dalen et al., 2016). This 

suggests that playing in the lateral side of the pitch in addition to the offensive and defensive 

roles of FB let this position cover longer ACCDIS compared to central playing positions such as 

MF (Konefał et al., 2015).  

With regard to the frequency of the accelerations, another study clearly showed that the totals 

for ACCHIGH and DECHIGH were lower than for ACCLOW and DECLOW (Mark Russell et al., 

2016), which represent the nature of soccer as a sport that involves intermittent repeated periods 

of high-intensity activity (Oliva-Lozano, Gómez-Carmona, Pino-Ortega, et al., 2020a) and thus, 

high neuromuscular fatigue may be developed (Harper et al., 2019). In addition, our results 

support previous research reporting that WMF always performed a higher amount of ACCHIGH 

(35 ± 5 accelerations) and DECHIGH  (62 ± 9 decelerations) than CD (ACCHIGH: 27 ± 7 
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accelerations; DECHIGH: 45 ± 8 decelerations) (Tierney et al., 2016). Consequently, the variable 

DIFFACDC also supports the same study, since the differences between playing positions were 

repeated once again and a higher number of DECHIGH than ACCHIGH was observed in all 

positions (Tierney et al., 2016). However, MF performed significantly greater ACCLOW and 

DECLOW than WMF (mean difference, ACCLOW: 62.1 ± 14.7 accelerations; DECLOW: 43.9 ± 

13.9 decelerations) and FW (mean difference, ACCLOW: 54.1 ± 14.7 accelerations; DECLOW: 

46.8 ± 13.9 decelerations) in our study, which may be explained by the fact that density 

increases (reduced area per player) as the ball is closer to the central zones of the pitch in match 

play (Fradua et al., 2013). Although WMF also had the highest DIFFACDC (-27 ± 4), this study 

reported that FW had the lowest DIFFACDC (-17 ± 4) (Tierney et al., 2016). Players, therefore 

decelerate at high-intensity more than they accelerate at high-intensity, so special focus on 

mechanical load indicators is recommended for strength and conditioning coaches (Dalen et al., 

2016). When it comes to the magnitude of the accelerations and decelerations, the results cannot 

be compared to previous studies (Gaudino et al., 2014; Rago, Silva, et al., 2019), since this is 

the first study to carry out this analysis in match-play. However, when analysing this variable 

in training contexts, differences between playing positions remained low for ACCMAX (0.17 ± 

0.03 m/s2) and DECMAX (0.26 ± 0.03 m/s2) (Rago, Silva, et al., 2019). Consequently, this study 

supports the assertion that the acceleration profile is position-dependent and that different 

training strategies may be adopted to improve match performance and decrease risk of injury 

(Harper et al., 2019). 

Positional differences were found in the sprint profile, and similar conclusions were reached by 

previous studies that analyzed some of the variables of this profile (Dalen et al., 2016; Palucci-

Vieira et al., 2018; M. Varley & Aughey, 2012; Vigh-Larsen et al., 2018). For example, the 

total of SPA performed by FW (14 ± 6 actions), FB (12 ± 5 actions) and WMF (8 ± 4 actions) 

was also greater than CD (5 ± 3 actions) in previous research (M. Varley & Aughey, 2012). 

When it comes to MF, this position showed the lowest amount of SPA not only in our study (5 

± 3 actions) but also in previous research (4 ± 4 actions) (M. Varley & Aughey, 2012). These 

results may be explained by the fact that this position is limited to reach high-speed actions 

given its tactical role (e.g., keeping ball possession, passing) and playing area (Bradley et al., 

2013; Carling, 2010; Fradua et al., 2013). Also, other studies (Ingebrigtsen et al., 2015; Vigh-

Larsen et al., 2018) found that WMF covered the highest SPD (294 ± 76 m and 185 ± 23 m, 

respectively) whereas CD covered the lowest (123 ± 48 m and 77 ±  17 m, respectively). Thus, 

SPDAVG was also position-dependent in this study. However, no significant differences (p > 
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0.05) were observed in a previous study in European professional players (Andrzejewski et al., 

2015). In this sense, it is interesting to note that data were collected from players who belonged 

to ten different teams, which might explain differences in the conclusions reached 

(Andrzejewski et al., 2015). However, the same study found significant differences between 

playing positions when comparing VMAX, which is in line with our study (Andrzejewski et al., 

2015). Specifically, the VMAX reached by WMF (32.0 ± 1.6 km/h) and FW (29.9 ± 2.0 km/h) 

was significantly higher compared to CD (30.6 ± 1.4 km/h) in our study as well as in the above-

mentioned study (WMF: 32.9 ± 2.0 km/h; FW: 33.1 ± 1.9 km/h; CD: 31.7 ± 1.8 km/h) 

(Andrzejewski et al., 2015). Similarly, MF showed the lowest VMAX (31.0 ± 1.7 km/h)  

(Andrzejewski et al., 2015). In this regard, the VMAX from WMF and FW may be explained by 

their greater SPDAVG (WMF: 21.6 ± 3.8 m; FW: 19.6 ± 4.8 m), which allow them to maximize 

their acceleration capacity (Andrzejewski et al., 2015). On the contrary, MF are limited to the 

increase in density of players in central zones of the pitch as explained above (Fradua et al., 

2013). The only variable from the sprint profile that did not show significant differences in our 

study was sprint time, which was in line with previous research, where the largest differences 

observed between positions ranged from 0.1 to 0.2 seconds (Suárez et al., 2014). Overall, these 

findings imply that offensive positions such as WMF and FW are subjected to the highest sprint 

demands, whereas CD, a defensive position characterized by short runs (Ingebrigtsen et al., 

2015; M. Varley & Aughey, 2012; Vigh-Larsen et al., 2018), is the least demanding position in 

respect of the sprint profile in professional soccer. 

Finally, another novel finding of this study was that soccer players required significantly higher 

Vo when performing high-intensity decelerations than low-intensity decelerations across all 

playing positions (mean difference, CD: 4.1 ± 0.7 km/h; WMF: 4.3 ± 0.3 km/h; FB: 3.9 ± 0.4 

km/h; FW: 3.3 ± 0.1 km/h; MF: 2.7 ± 0.1 km/h). However, Vo was significantly greater for 

low-intensity accelerations than high-intensity accelerations, and only in specific positions 

(WMF and FW: 0.4 ± 0.2 km/h). These results indicate that the ability to accelerate or decelerate 

is highly dependent on the Vo of the player, particularly, when decelerating at high-intensity (p 

< 0.01; ES ~ 0.69). In this regard, a recent study, which tested maximal accelerations during 

sprint actions at different Vo, observed a linear decrease in the maximal acceleration when Vo 

increased (Sonderegger et al., 2016). This may be explained by a typical speed-time curve from 

any sprint test in which the largest increase in speed is at the start of the action and then, the 

curve is flattened with increasing running speed (Morin & Sève, 2011; Sonderegger et al., 

2016). In consequence, the acceleration capacity decreases at higher speeds (Sonderegger et al., 
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2016). Training drills could take this into consideration, since it is not only the frequency and 

intensity of the acceleration that is important, but also the Vo required to perform the 

acceleration (De Hoyo et al., 2018). However, it is important to understand that players 

occupying positions such as CD may accelerate or decelerate from lower Vo than players in 

other positions (De Hoyo et al., 2018). Since soccer players perform actions which start at 

different Vo (M. Varley & Aughey, 2012), previous studies assumed that different Vo may 

result in different neuromuscular preload, body inclines and, therefore, different muscle group 

activation (Sonderegger et al., 2016; Young et al., 2001). Furthermore, the players experience 

a massive metabolic load every time the acceleration is increased, even when speed is low 

(Osgnach et al., 2010). Thus, when designing effective match-based drills, these profiles and 

positional differences may be considered for a more accurate approach to players’ performance 

(De Hoyo et al., 2018). In addition, an individualized approach to performance is needed, since 

these results lead to the hypothesis that, for example, a faster CD may have more ability to 

perform high-intensity accelerations and high-intensity decelerations than a slower player in 

the same position. 

There are some limitations that need to be considered when interpreting the findings of this 

research. The data were collected using GPS technology. Only one professional soccer team 

was assessed over 13 official matches from a Spanish competition. In addition, not all the 

players could participate in all the matches. Another limitation of the study is that the effect of 

different variables such as team formation, competitive standard, or style of play on the 

acceleration and sprint profiles was not analyzed. Future studies may consider these variables 

since these variables may affect match running performance (Aquino, Vieira, et al., 2017; 

Bradley et al., 2011; Yi et al., 2019). For example, a previous study showed that teams which 

were characterized by possession-play covered greater distance in high-intensity running 

actions (Yi et al., 2019). Also, although speed and acceleration bands/thresholds were selected 

according to previous studies (Andrzejewski et al., 2015; Mark Russell et al., 2016), it is worth 

noting that this issue has not yet been standardized in the literature (Sweeting et al., 2017).  

6.7. Conclusion 

The findings of this longitudinal study provide meaningful information related to the sprint and 

acceleration profiles of Spanish professional soccer match-play. This study found that 

positional differences exist across playing positions in both profiles, which should be 
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considered by strength and conditioning coaches when designing effective match-based drills 

in training sessions. Also, special focus should be given to WMF since this position was the 

most demanding of the acceleration and sprint profiles. In addition, only a few studies have 

analyzed the acceleration-velocity relationship, which is deemed important when designing 

training drills. Despite strength and conditioning coaches still focusing on training sprint actions 

starting at zero speed, most of these actions are performed at 5-6 km/h in match-play. In 

addition, different Vo were observed between high-intensity and low-intensity accelerations as 

well as high-intensity and low-intensity decelerations. This may potentially affect the 

neuromuscular load of the players and coaching strategies are necessary in order to maximize 

players’ performance. Finally, these data could also serve as a comparison source for future 

researchers or sports scientists and coaches from professional soccer teams. For example, if 

players decelerate at high-intensity more than they accelerate at high-intensity, coaches who 

choose to put more emphasis on acceleration capacity than deceleration capacity in training 

sessions should understand that match-play may require the opposite. 
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7. THE FIRST, SECOND, AND THIRD MOST DEMANDING PASSAGES OF PLAY 

IN PROFESSIONAL SOCCER: A LONGITUDINAL STUDY 

7.1. Abstract 

The study aimed to compare the physical demands required during the first, second, and third 

most demanding passages (MDP) of play considering the effect of playing position, type of 

passage, and passage duration. A longitudinal study for three mesocycles was conducted in a 

professional soccer team competing in LaLiga123. Tracking systems collected total distance 

covered (DIS), high-speed running distance (HSRD), sprinting distance (SPD), total of high-

intensity accelerations (ACCHIGH), and total of high-intensity decelerations (DECHIGH). The 

results confirmed that a significant effect of the type of passage (first, second or third MDP of 

play) on DIS (F(1.24, 178.89) = 115.53; p= 0.01; ηp2 = 0.45), HSRD (F(1.35, 195.36) = 422.82; p= 0.01; 

ηp2= 0.75), SPD (F(1.43, 206.59) = 299.99; p= 0.01; ηp2= 0.68), ACCHIGH (F(1.45, 209.38) = 268.59; p= 

0.01; ηp2= 0.65), and DECHIGH (F(1.45, 209.38) = 324.88; p= 0.01; ηp2= 0.69) was found. In 

addition, a significant interaction between playing position, type and duration of the passage 

was observed in DIS (F(12.60, 453.47) = 1.98; p= 0.02; ηp2= 0.05) and ACCHIGH (F(13.99, 503.78) = 

1.92; p= 0.03; ηp2= 0.06). In conclusion, significant differences in physical demands between 

the first, second, and third MDP of play were observed. However, there were some cases (DIS 

and ACCHIGH) in which no significant differences were found between these passages. 

Therefore, coaches should consider not only the magnitude of these peak intensity periods (e.g., 

distance covered per minute) but also the number of passages that players may experience 

during match play. 

7.2. Keywords 

Game Analysis, Team Sport, Competition, Performance, Football 
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7.3. Introduction 

Soccer is characterized in its physical nature by an intermittent activity profile, mainly based 

on continuous changes of direction and speed (e.g., walking, jogging, high-speed running) 

(Aquino, Munhoz-Martins, et al., 2017; Granero-Gil et al., 2020; Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d; Rago, Brito, Figueiredo, Krustrup, et al., 2020). This 

activity profile leads to the contribution of both aerobic and anaerobic energy system and hence, 

its training is a determining factor in performance and injury prevention (Hunter et al., 2015). 

Many studies have reported that the knowledge of the physical demands of competition is 

necessary to prescribe the optimum training load, especially in teams competing on leagues 

with uncongested schedules (i.e., one match per week) (Bangsbo et al., 2006; Clemente, Owen, 

et al., 2019; Harper et al., 2019). In this sense, previous studies have reported the average 

physical demands of competition to provide information to strength and conditioning coaches 

who may replicate the external load demands of competition in training (Bangsbo et al., 2006; 

Clemente, Rabbani, et al., 2019). However, training tasks aimed at replicating average demands 

may underestimate match demands (Martín-García, Casamichana, et al., 2018; Martín-García, 

Gómez Díaz, et al., 2018). 

Recent studies suggest that it is important to consider not only the general demands but also the 

peak demands that the player faces in certain phases of the match (Delaney et al., 2018; Martín-

García, Casamichana, et al., 2018). These phases are known as the most demanding passages 

of play (MDP), which may be also referred as worst-case scenarios (Castellano et al., 2020; 

Fereday et al., 2020; Martín-García, Casamichana, et al., 2018; Martin-Garcia et al., 2019). 

These MDP may be set at different durations (e.g., 1, 3, 5, 10 minutes) because a player may 

cover ~190 meters per minute given a 1-minute passage but a decrease to ~135 meters per 

minute is observed in 10-minutes passages (Martín-García, Casamichana, et al., 2018). 

Currently, there is relatively little evidence published on the MDP in professional soccer. The 

investigations which are available within the literature show that: i) the MDP are specific 

periods in which the players are exposed to the greatest physical demands (Fereday et al., 2020; 

Martín-García, Casamichana, et al., 2018; Martin-Garcia et al., 2019); ii) positional differences 

exist in different variables of the MDP; iii) the longer the duration of the MDP, the lower the 

intensity (Delaney et al., 2018; Doncaster et al., 2020; Lacome et al., 2018; Martín-García, 
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Casamichana, et al., 2018); and, iv) differences may exist based on contextual variables such 

as match half (Casamichana et al., 2019).  

However, from a practical perspective, it would be of interest to understand if these MDP of 

play have any similarity to other highly demanding passages, which may happen during official 

matches. To the best of the authors’ knowledge, there are no investigations available concerning 

this research question. Taking the first MDP as a reference of peak match demands may lead to 

misleading conclusions about the MDP of play. Hence, the analysis of successive passages in 

official matches is considered necessary in order to prescribe the training load considering the 

match’s physical demands. Therefore, the aim of this study was to compare the physical 

demands required during the first, second, and third most demanding passages (MDP) of play 

in professional soccer matches considering the effect and interaction of playing position, type 

of passage, and passage duration. 

7.4. Methods 

Study design 

A longitudinal study for three mesocycles was conducted in a professional soccer team. A total 

of thirteen consecutive matches from LaLiga 123 were registered. The research was conducted 

on a non-congested schedule which consisted of one match per week. The MDP of play were 

collected by electronic performance tracking systems (RealTrack Systems, Almeria, Spain) 

based on four passage durations (1, 3, 5 and 10 minutes) (Martín-García, Casamichana, et al., 

2018), type of passage (first, second and third) and playing position (central defender, CD: n = 

3; full-back, FB: n = 4; midfielder, MF: n = 4; wide-midfielder, WMF: n = 4; forward, FW: n 

= 5).  

Participants 

Data was collected from a total of 20 players (age: 26.8 ± 3.8 years old; body mass index: 23.1 

± 0.2) for thirteen consecutive matches. Full-match participation was considered as inclusion 

criteria. However, goalkeepers were excluded from the study since this playing position has a 

different activity-profile (Oliva-Lozano, Gómez-Carmona, Pino-Ortega, et al., 2020a; White et 

al., 2018). Informed consent was obtained by the club in order to use the data of the participants 

once the season finished. This study was approved by the University of Almeria’s Ethics Board. 
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Procedures 

The physical demands of the MDP of play were analyzed from the total distance covered (DIS), 

high-speed running distance (HSRD, above 19.8 km/h), sprinting distance (SPD, above 25.2 

km/h), total of high-intensity accelerations (ACCHIGH, above 3 m/s2) and total of high-intensity 

decelerations (DECHIGH, below -3 m/s2). These variables were reported related to the duration 

of the passage (i.e., per minute) and each passage was calculated using rolling averages. This 

procedure was set based on previous investigations on the MDP of play in professional soccer 

(Martín-García, Casamichana, et al., 2018; Martin-Garcia et al., 2019). 

These variables were reported at the end of each match by the software SPro (RealTrack 

Systems, Almería, Spain) since the data was collected using WIMU Pro (RealTrack Systems, 

Almería, Spain). These electronic performance tracking systems had Global Positioning 

Systems (GPS), which allowed the collection of the variables included in this study at 10 Hz 

sampling frequency. Furthermore, these systems are considered as valid (bias in mean velocity: 

1.18-1.32 km/h; bias in distance: 2.32-4.32 m) and reliable (intraclass correlation coefficients: 

above 0.93) instruments for time-motion analysis in soccer (Bastida Castillo et al., 2018). Each 

player wore the same tracking system over the data collection period to avoid inter-unit error 

(Martín-García, Casamichana, et al., 2018). The tracking system was placed in a vertical 

position in the upper back pocket of a chest vest (Rasán, Valencia, Spain). The data was 

transferred to SPro software at the end of each match through Smart Station (RealTrack 

Systems, Almería, Spain). In addition, the number of satellites connected to the device was 

obtained from “SATCOUNT” channel on SPro software (RealTrack Systems, Almería, Spain) 

in order to ensure that the data collection was carried out with an adequate connection in every 

match (Match 1: 7.88 ± 0.75 satellites; Match 2: 8.36 ± 0.93 satellites; Match 3: 7.48 ± 0.97 

satellites; Match 4: 7.81 ± 0.59 satellites; Match 5: 8.09 ± 0.99 satellites; Match 6: 9.89 ± 0.72 

satellites; Match 7: 8.41 ± 1.04 satellites; Match 8: 8.73 ± 1.49 satellites; Match 9: 9.01 ± 1.11 

satellites; Match 10: 8.39 ± 0.73 satellites; Match 11: 8.69 ± 0.73 satellites; Match 12: 9.96 ± 

0.87 satellites; Match 13: 10.89 ± 0.83 satellites) (Malone et al., 2017). 

Statistical analysis 
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Descriptive statistics were calculated for all variables based on playing position and passages. 

The normality of data was obtained using the Shapiro-Wilk test. Besides, Levene's test was 

used to assess the equality of variances while sphericity was assessed using Mauchly's test (p < 

0.05 in all within-subjects variables). A linear model with a mixed-design analysis of variance 

(ANOVA) for repeated measures was analyzed. DIS, HSRD, SPD, ACCHIGH and DECHIGH 

were considered dependent variables. Duration (1, 3, 5 or 10 minutes) and type of passage (first, 

second or third MDP) were set as within-subjects variables while playing position was set as 

between-subjects variable. Bonferroni post hoc tests were conducted for the comparison 

between type of passage. In addition, effect sizes were reported using partial eta-squared (ηp2). 

The level of significance was set at alpha 0.05 (p ≤ 0.05) and the statistical analysis was 

performed with SPSS Statistics for Windows version 25 (IBM Corp., Armonk, NY, USA). 

7.5. Results 

Distance covered 

Figure 11 shows the comparisons between the types of passage based on the duration of the 

passage and playing position. The type of passage had a significant effect on the DIS covered 

in the MDP of play (F(1.24, 178.89) = 115.53; p = 0.01; ηp2 = 0.45). In addition, a significant 

interaction between playing position, type and duration of the passage was found for DIS 

variable (F(12.60, 453.47) = 1.98; p = 0.02; ηp2 = 0.05).  
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Figure 11. Differences in distance covered (DIS) in meters per minute (m/min) between the 

first, second and third most demanding passages of play based on the duration of the passage 

(1, 3, 5 and 10 minutes) and playing position (CD, central defender in Figure 11a; FB, full-

back in Figure 11b; WMF, wide-midfielder in Figure 11c; MF, midfielder in Figure 11d; FW, 

forward in Figure 11e; ALL, team in Figure 11f). Significant differences (p < 0.05) compared 

to the first (a), second (b), and third (c) MDP. 

Although significant differences (p < 0.05) were found when comparing DIS covered between 

the types of passage in most MDP, this comparison was not significant in specific cases. For 

instance, Figure 11a shows that no significant differences were found between the first and 

second MDP in DIS covered by CD in 5-minutes passages (mean difference: ~8.01 m; p = 
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0.23), and 10-minutes passages (mean difference: ~7.26 m; p = 0.87); between the first and 

third MPD in 5-minutes passages (mean difference: ~10.78 m; p = 0.32), and 10-minutes 

passages (mean difference: ~11.77 m; p = 0.46); and between the second and third MDP in 3-

minutes passages (mean difference: ~3.09 m; p = 0.87), 5-minutes passages (mean difference: 

~2.77 m; p = 0.99), and 10-minutes passages (mean difference: 4.51 m; p = 0.99).  

Figure 11b shows that no significant differences were found between the first and second MDP 

in DIS covered by FB in  5-minutes passages (mean difference: ~4.73 m; p = 0.88) and 10-

minutes passages (mean difference: ~5.29 m; p = 0.99); between the first and third MPD in 5-

minutes passages (mean difference: ~8.89 m; p = 0.55) and 10-minutes passages (mean 

difference: ~8.93 m; p = 0.83); and between the second and third MPD in 5-minutes passages 

(mean difference: ~4.15 m; p = 0.99) and 10-minutes passages (mean difference: ~3.63 m; p = 

0.99). 

Figure 11c shows that no significant differences were found between the second and third MPD 

in DIS covered by WMF in 3-minutes passages (mean difference: ~4.36 m; p = 0.23) and 5-

minutes passages (mean difference: ~8.57 m; p = 0.13).  

Figure 11d shows that no significant differences were found between the first and second MPD 

in DIS covered by MF in 5-minutes passages (mean difference: ~7.98 m; p = 0.13); and between 

the second and third MPD in 3-minutes passages (mean difference: ~4.73 m; p = 0.20). 

High-speed running distance covered 

When it comes to HSRD covered (Figure 12), the type of passage had a significant effect on 

the MDP of play (F(1.35, 195.36) = 422.82; p = 0.01; ηp2 = 0.75). However, the interaction between 

playing position, type and duration of the passage was not significant in this variable (F(9.69, 

348.66) = 0.64; p = 0.77; ηp2 = 0.02). Figure 12 shows the comparisons between the types of 

passage, which were always significant (p < 0.05) based on the duration of the passage and 

playing position. 
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Figure 12. Differences in high-speed running distance covered (HSRD) in meters per minute 

(m/min) between the first, second and third most demanding passages of play based on the 

duration of the passage (1, 3, 5 and 10 minutes) and playing position (CD, central defender in 

Figure 12a; FB, full-back in Figure 12b; WMF, wide-midfielder in Figure 12c; MF, 

midfielder in Figure 12d; FW, forward in Figure 12e; ALL, team in Figure 12f). Significant 

differences (p < 0.05) compared to the first (a), second (b), and third (c) MDP. 

Sprinting distance covered 

Figure 13 shows the descriptive statistics of SPD covered by the type of passage, playing 

position, and duration of the passage. In addition, the type of passage had a significant effect 

on the SPD covered in the MDP of play (F(1.43, 206.59) = 299.99; p = 0.01; ηp2 = 0.68). Regarding 
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the interaction between playing position, type and duration of the passage, it was not significant 

for SPD (F(7.41, 266.71) = 1.23; p = 0.28; ηp2 = 0.03). However, the comparisons between the types 

of passage were always significant (p < 0.05) based on the duration of the passage and playing 

position (Figure 13). 

 

Figure 13. Differences in sprinting distance covered (SPD) in meters per minute (m/min) 

between the first, second and third most demanding passages of play based on the duration of 

the passage (1, 3, 5 and 10 minutes) and playing position (CD, central defender in Figure 13a; 

FB, full-back in Figure 13b; WMF, wide-midfielder in Figure 13c; MF, midfielder in Figure 

13d; FW, forward in Figure 13e; ALL, team in Figure 13f). Significant differences (p < 0.05) 

compared to the first (a), second (b), and third (c) MDP. 
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Total of high-intensity accelerations 

When it comes to the total of ACCHIGH (Figure 14), the type of passage had a significant effect 

on the MDP of play (F(1.45, 209.38) = 268.59; p = 0.01; ηp2 = 0.65). In addition, there was a 

significant interaction between playing position, type and duration of the passage for ACCHIGH 

(F(13.99, 503.78) = 1.92; p = 0.03; ηp2 = 0.06). The comparisons of ACCHIGH between the types of 

passage were always significant (p < 0.05) based on the duration of the passage and playing 

position (Figure 14), except for the comparison between the first and second 1-minute passage 

in CD (mean difference: ~0.25; p = 0.18) and 10-minutes passage (mean difference: ~0.14; p = 

0.11); between the second and third 1-minute passage in FW (mean difference: ~0.19; p = 0.12) 

and 3-minutes passage in CD (mean difference: ~0.11; p = 0.07). 
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Figure 14. Differences in the total of high-intensity accelerations (ACCHIGH) per minute 

between the first, second and third most demanding passages of play based on the duration of 

the passage (1, 3, 5 and 10 minutes) and playing position (CD, central defender in Figure 14a; 

FB, full-back in Figure 14b; WMF, wide-midfielder in Figure 14c; MF, midfielder in Figure 

14d; FW, forward in Figure 14e; ALL, team in Figure 14f). Significant differences (p < 0.05) 

compared to the first (a), second (b), and third (c) MDP. 

Total of high-intensity decelerations 

Finally, figure 15 shows the descriptive statistics of DECHIGH by type of passage, playing 

position, and duration of the passage.  The type of passage had a significant effect on the total 

of DECHIGH in the MDP of play (F(1.45, 209.38) = 324.88; p = 0.01; ηp2 = 0.69). However, the 

interaction between playing position, type and duration of the passage was not significant in 

DECHIGH (F(10.79, 388.55) = 0.73; p = 0.28; ηp2 = 0.03). Besides, the comparisons between 

DECHIGH based on the type of passage were always significant (p < 0.05) based on the duration 

of the passage and playing position (Figure 15). 
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Figure 15. Differences in the total of high-intensity decelerations (DECHIGH) per minute 

between the first, second and third most demanding passages of play based on the duration of 

the passage (1, 3, 5 and 10 minutes) and playing position (CD, central defender in Figure 15a; 

FB, full-back in Figure 15b; WMF, wide-midfielder in Figure 15c; MF, midfielder in Figure 

15d; FW, forward in Figure 15e; ALL, team in Figure 15f). Significant differences (p < 0.05) 

compared to the first (a), second (b), and third (c) MDP. 

7.6. Discussion 

To the best of the authors’ knowledge, this was the first study to investigate if there was any 

similarity between the first, second and third MDP of play in professional soccer matches. The 

aim of this study was to compare the physical demands required during the first, second, and 
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MDP of play considering the effect of playing position, type of passage, and passage duration. 

One of the main findings of the study was the observed significant effect of the type of passage 

on all the variables included in the study. The results confirmed that significant differences in 

physical demands existed between the first, second, and third MDP of play in all playing 

positions and passage durations. However, a further novel finding was that there were some 

cases (e.g., DIS and ACCHIGH) in which no significant differences were found between these 

passages, which implies that coaches should consider not only the magnitude of the MDP but 

also the number of passages that players may experience in match-play. 

Although significant differences (p < 0.05) were found when comparing DIS covered between 

the types of passage in most MDP, this comparison was not significant in specific cases. For 

example, FB and CD did not show any significant differences in DIS covered between passages 

for 5-minutes and 10-minutes MDP. This finding reveals that the first MDP cannot be 

considered as a “unique” period in terms of intensity since the second and third passages are 

similar to the first one. This may be explained by the fact that the intensity in distance covered 

per minute decreases in longer passages (Delaney et al., 2018; Fereday et al., 2020; Lacome et 

al., 2018; Martín-García, Casamichana, et al., 2018) because significant differences between 

the first, second, and third passages were always observed in 1 minute. In consequence, it is 

important to consider not only the magnitude (e.g., distance covered per minute) of the peak 

intensity periods (Bradley & Noakes, 2013; Delaney et al., 2018; Fereday et al., 2020; Fransson 

et al., 2017; Martín-García, Casamichana, et al., 2018) but also the amount of passages (i.e., 

how many passages at peak intensity) when analyzing the MDP of play. Specifically, defensive 

positions such as CD and FB need to be considered since the DIS covered in the first, second 

and third passages are similar.  

When it comes to HSRD, a significant effect from the type of passage on the HSRD covered 

during the MDP of play was found and significant differences (p < 0.05) between the first, 

second, and third passages were observed in all playing positions and passage durations. This 

may be an important finding in the understanding of the MDP since the professional soccer 

players analyzed in this investigation were unable to cover during second or third passages 

similar HSRD in comparison with the MDP of play. Since HSRD represents the distance 

covered above 19.8 km/h (Martín-García, Casamichana, et al., 2018; Martín-García, Gómez 

Díaz, et al., 2018), this high-speed threshold may explain why it is difficult to experience 

successive peak intensity periods. In this regard, future investigations should be designed in 



105 

 

order to explain these results. For example, it would be of interest to analyze the inter-player 

variability in the MDP of play because a previous investigation found that the greater the speed 

threshold, the greater the variability (Fransson et al., 2017), which means that there may be 

players experiencing second or third passages similar to the MDP. 

Regarding SPD covered, similar findings to HSRD were found. The SPD covered was 

significantly different (p < 0.05) when comparing between the first, second, and third passages 

in all passage durations and playing positions. Although the speed threshold, which is set at 

25.2 km/h for SPD (Martín-García, Casamichana, et al., 2018; Martín-García, Gómez Díaz, et 

al., 2018), may be a potential factor for decreasing the ability to reach a high-intensity period 

as mentioned above, it does not necessarily imply a relationship with physical fitness (M. 

Buchheit et al., 2012). A previous study observed that match contextual variables related to 

tactical or strategic requirements were likely to modulate on-field activity patterns (e.g., 

repeated-sprint activity) independently of the players’ fitness (M. Buchheit et al., 2012). 

Likewise, a recent study found that not all the training tasks (e.g., small-, medium- or large-

sided games) were suitable to achieve the SPD from the MDP of play, which suggests that more 

research is necessary to understand what drills may be designed to train the MDP of play 

(Martin-Garcia et al., 2019).  

In addition, this study included the analysis of acceleration-based variables, whose results were 

in line with the distance-related variables. A significant effect on the total of ACCHIGH in the 

MDP of play was found and differences were observed between the first, second, and third 

passages in most playing positions and passage durations. However, a further novel finding of 

this study was that no significant differences were observed for CD between the first and second 

1-minute passage in CD (mean difference: ~0.25; p = 0.18); and between the second and third 

1-minute passage in FW (mean difference: ~0.19; p = 0.12) or 3-minutes passage in CD (mean 

difference: ~0.11; p = 0.07). Contrary to the findings of our study, DIS covered by CD and FB, 

in which no significant differences were observed in longer passages (i.e., 5 or 10 minutes), the 

variable of ACCHIGH did not report significant differences in shorter passages (i.e., 1 or 3 

minutes). These results imply that strength and conditioning coaches need to consider the design 

of training tasks that stimulate the total of ACCHIGH in short periods (Martín-García, 

Casamichana, et al., 2018; Martin-Garcia et al., 2019). However, these tasks should be aimed 

at reaching not only the ACCHIGH of the MDP of play but also performing several passages (two 

or more, from one to three minutes). In this regard, a recent investigation reported an interesting 
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practical implication for this variable since it was observed that training tasks involving a 

smaller number of players elicited greater ACCHIGH than others with more players (Martin-

Garcia et al., 2019). For instance, small-sided games with five or six players may be a good 

strategy to adapt players for the MDP of play (Castellano & Casamichana, 2013; Martin-Garcia 

et al., 2019). 

When it comes to DECHIGH, a significant effect of the type of passage was found on the total of 

DECHIGH in the MDP of play and significant differences were observed between the first, 

second, and third passages in all playing positions and passage durations. These results suggest 

that professional soccer players may experience several peak intensity periods with a high 

number of DECHIGH, but the intensity required in the first passage is significantly greater than 

the second MDP, which was also significantly more demanding than the third passage. Previous 

investigations on DECHIGH concluded that the damaging consequences of frequent and intense 

decelerations require specific loading strategies in order to mechanically protect the players 

from such consequences (Harper et al., 2019; Harper & Kiely, 2018). DECHIGH usually last less 

than one second  (Bloomfield et al., 2007a; Harper et al., 2019) and require a high magnitude 

of mechanical load per meter (Dalen et al., 2016; Harper et al., 2019). Since the mechanical 

load demands players to repeatedly suffer from high-intensity eccentric actions, the muscle 

damage and asymmetry in hamstring isometric strength increase (Harper et al., 2019; M. 

Russell et al., 2016). In consequence, future investigations may analyze if the above-mentioned 

reasons, which are related to the neuromuscular fatigue of the player, explain why the in 

DECHIGH from the first, second, and third MDP are significantly different. 

However, this study presents several limitations. Although each player wore the same tracking 

system over the data collection period to avoid inter-unit error (Martín-García, Casamichana, 

et al., 2018), the data was collected with GPS technology (Martin Buchheit & Simpson, 2017; 

Grünbichler et al., 2019). Then, the accuracy of variables such as ACCHIGH and DECHIGH may 

be highly dependent on the devices used in this study (Martín-García, Casamichana, et al., 

2018) or the satellite connection from each match (Malone et al., 2017). Future research may 

be conducted using local positioning systems which may increase the accuracy of the data 

(Bastida Castillo et al., 2018). Also, more variables (e.g., total of high-speed running actions or 

total of sprints) from the MDP of play could be analyzed since these represent the external load 

profile in professional soccer (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d). 

Besides, absolute speed and acceleration thresholds were used for the calculation of HSRD, 
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SPD, ACCHIGH, and DECHIGH. In this regard, recent studies suggest that adding individualized 

thresholds (e.g., based on the player’s maximal acceleration or sprinting speed) are advisable 

to detect individual differences (Abbott et al., 2018; Rago, Brito, Figueiredo, Krustrup, et al., 

2020; Sonderegger et al., 2016).  

The findings from this study have several practical applications for strength and conditioning 

coaches. For example, the magnitude of the MDP of match play from professional soccer 

players were provided based on playing position, which may serve as a reference for the design 

of training drills in order to adapt the players from each position to their specific competitive 

demands. Also, these training drills may be designed for different durations since the data was 

reported based on typical durations of the training drills (i.e., 1, 3, 5 and 10 minutes). Finally, 

the results imply that training drills should be designed considering not only the magnitude 

(e.g., distance covered per minute) of the MDP of play but also the successive passages (e.g., 

first, second, or third MDP) that players may experience in a match given the effect on the 

performance variables included in the study. 

7.7. Conclusion 

The results from this longitudinal study, which was conducted on professional soccer players 

for thirteen matches, confirmed that a significant effect of the type of passage (first, second or 

third MDP of play) was found on all the variables included in the study (DIS, HSRD, SPD, 

ACCHIGH, DECHIGH). Significant differences in the physical demands existed between the first, 

second, and third MDP of play in all playing positions and passage durations. However, there 

were some cases (e.g., DIS and ACCHIGH) in which no significant differences were found 

between the first, second, and third MDP of play. 
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CHAPTER 8 

 

Study VI. When do soccer players experience 

the most demanding passages of match play? 

A longitudinal study in a professional team   
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8. WHEN DO SOCCER PLAYERS EXPERIENCE THE MOST DEMANDING 

PASSAGES OF MATCH PLAY? A LONGITUDINAL STUDY IN A PROFESSIONAL 

TEAM 

8.1. Abstract 

This study analyzed the periods in which the most demanding passages (MDP) of play occurred 

during professional soccer matches, considering different criterion variables and investigating 

the effect that the playing position had on the MDP-of-play occurrence for each criterion 

variable. The MDP of play were calculated based on five criterion variables: distance covered 

(DIS), sprinting distance covered (SPD), high-metabolic load distance (HMLD), and the total 

of high-intensity accelerations and decelerations (ACCHIGH and DECHIGH). The results showed 

that the first period of the match (0’-15’) was the interval with the highest frequency (i.e., the  

greatest % of cases) in which the players achieved the MDP of play for all the variables (DIS = 

38.9%; SPD = 28.4 %; HMLD = 37.7 %; ACCHIGH = 54.3 %; DECHIGH = 48.8 %). The playing 

position had no significant effect on MDP-of-play occurrence in any variable (likelihood ratio, 

LR = 15.88 - 32.05; p > 0.05; effect size, ES = 0.01 - 0.04), except for the DIS covered (LR = 

32.05; p = 0.04; ES = 0.05), in which the most frequent MDP for the full back position occurred 

within the second period of the match (15’-30’). In conclusion, the study presents novel findings 

with significant practical implications for strength and conditioning coaches since the first 

periods of the matches usually elicited the MDP of play and these periods need to be trained to 

prevent injuries and optimize performance. 

8.2. Keywords 

Game analysis, worst-case scenario, performance, team sport. 
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8.3. Introduction 

The MDP of play have been studied using different criterion variables (e.g., distance, sprinting 

distance, and high-intensity accelerations and decelerations) (Martín-García, Casamichana, et 

al., 2018; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Oliva-Lozano, 

Fortes, & Muyor, 2020). For example, professional soccer players might perform 3 high-

intensity accelerations per minute, 4 high-intensity decelerations per minute or cover 192 

meters per minute in the MDP of match play (Martín-García, Casamichana, et al., 2018). In 

addition, contextual variables such as playing position (Martín-García, Casamichana, et al., 

2018; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Oliva-Lozano, Fortes, & 

Muyor, 2020), match half (Casamichana et al., 2019; Oliva-Lozano, Rojas-Valverde, Gómez-

Carmona, et al., 2020e), playing formation, ball in play or ball possession (Riboli, Semeria, et 

al., 2021) may have a significant influence on the MDP of play.  

However, one of the limitations of these studies is that they usually analyze the load or 

magnitude of the MDP of play (e.g., the distance covered, the total of 

accelerations/decelerations or the time spent at different percentages of the MDP) 

(Casamichana et al., 2019; Martín-García, Casamichana, et al., 2018; Oliva-Lozano, Fortes, & 

Muyor, 2020; Oliva-Lozano, Gómez-Carmona, Rojas-Valverde, et al., 2021; Riboli, Esposito, 

et al., 2021) but no information is available regarding the specific period of the match when 

these passages occur. From a practical perspective, this information would allow coaches to 

design specific training strategies to prepare the players for the MDP of play. It is assumed that 

experiencing the MDP of play in the first 15 minutes of the match or in the last 15 minutes of 

the match might influence the design of training drills. 

Therefore, the aims of this study were to: 1) analyze the periods in which the most demanding 

passages of play occurred during professional soccer matches based on different criterion 

variables; and 2) investigate the effect that the playing position had on MDP-of-play occurrence 

for each criterion variable. 
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8.4. Methods 

Study design 

Data were collected during 13 consecutive microcycles from a professional soccer team 

competing in LaLiga 123. The team played one match per microcycle and a total of 13 matches 

were registered. Since this study aimed to analyze the period in which the MDP occurred, the 

match was divided into 6 periods, each with a duration of 15 minutes: period 1 (1’-15’), period 

2 (15’-30’), period 3 (30’-45’), period 4 (45’-60’), period 5 (60’-75’), and period 6 (75’-90’). 

Five criterion variables were selected for the MDP of play: distance covered (DIS), sprinting 

distance covered (SPD, above 25.2 km/h), high-metabolic load distance (HMLD, distance 

covered when the metabolic power was above 25.5 W/kg), total of high-intensity accelerations 

(ACCHIGH, above 3 m/s2), and total of high-intensity decelerations (DECHIGH, below -3 m/s2) 

(Martín-García, Casamichana, et al., 2018). 

Participants 

Twenty professional soccer players (age: 26.8 ± 3.8 years old; body mass index: 23.1 ± 0.2) 

took part in the study. The players were categorized by playing position: central defenders (CD, 

n = 3), forwards (FW, n = 5), midfielders (MF, n = 4), wide midfielders (WMF, n = 4) and full 

backs (FB, n = 4). Only players that completed the entire duration of the match were included 

in the study (total match observations = 161; matches per player = 8.53 ± 3.42). Goalkeepers 

were not included given the differences in the activity profile for this position (Oliva-Lozano, 

Rojas-Valverde, Gómez-Carmona, et al., 2020d). The club gave its informed consent to collect 

the data for this study and approval was also obtained from the institutional ethics board 

(UALBIO2020/032). 

Procedures 

Data were collected using WIMU Pro units (RealTrack Systems, Almería, Spain) during 13 

official matches. These electronic performance tracking systems, which contain inertial sensors 

and Global Positioning System (GPS) technology, are frequently used for collecting data on the 

physical demands in professional soccer (Granero-Gil et al., 2020; Oliva-Lozano, Maraver, 

Fortes, et al., 2020b; Oliva-Lozano, Fortes, Krustrup, et al., 2020; Rago, Rebelo, et al., 2019). 

In addition, these tracking systems have been considered as accurate for physical performance 
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analysis (Bastida Castillo et al., 2018; FIFA, 2020). Before the match, the units were calibrated 

following the manufacturer’s instructions (Oliva-Lozano, Maraver, Fortes, et al., 2020b). Then, 

a member of the research team placed the units in the back pocket of each player’s vest (Rasán, 

Valencia, Spain) 15 minutes before kick-off. The players always wore the same tracking system 

to avoid inter-unit error (Martín-García, Casamichana, et al., 2018). 

Once the match had finished, the data were transferred to SPro (RealTrack Systems, Almería, 

Spain) via Smart Station (RealTrack Systems, Almería, Spain). The performance report for the 

MDP of play was obtained on SPro, which used a 1-minute rolling average technique for MDP 

detection in the five criterion variables (DIS, SPD, HMLD, ACCHIGH, and DECHIGH) (Oliva-

Lozano, Martín-Fuentes, Fortes, et al., 2021). Therefore, the physical demands from the MDP 

of play were reported in relation to the passage length (i.e., per minute).  

Statistical analysis 

Firstly, descriptive statistics were obtained to show how often the MDP of play occurred within 

each 15-minute period, considering the different criterion variables (DIS, SPD, HMLD, 

ACCHIGH, and DECHIGH) and playing positions (CD, FB, FW, MF, and WMF). Then, the eta 

correlation ratio (η) was obtained in order to analyze the association between the playing 

position and the periods in which the MDP of play occurred during the soccer matches. The 

Likelihood Ratio Chi-Square statistic (LR) was also used to analyze whether a dependency 

relationship could be inferred from the sample to the population (i.e., analyzing if the 

relationship were statistically significant). The fact that more than 20% of the categories had 

expected frequencies lower than 5 was the reason why the LR statistic was selected instead of 

the Pearson Chi-Square statistic (Koehler & Larntz, 1980). If there was a significant correlation 

(p ≤ 0.05) between the playing position and the periods in which the MDP of play occurred 

during the soccer matches, the null hypothesis was rejected and the alternative hypothesis was 

accepted (i.e., the playing position and the MDP of play were significantly associated). In the 

case of there being a significant association between the variables, adjusted standardized 

residuals were used to determine among which categories there were large differences between 

the observed and the expected frequencies. In this regard, an adjusted residual with an absolute 

value greater than 1.96 indicated that the number of cases within that cell was significantly 

larger, or smaller, than would be expected if the null hypothesis were true, with a significance 

level of 0.05.  
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To complete the exploratory association analysis, a simple correspondence analysis was 

performed, represented through a perceptual map, which allowed us to graphically compare the 

relative frequencies and establish the relationships between the different categories of the two 

qualitative variables considered (the playing position and the criterion variable) as well as the 

similarities between the categories of each variable. Finally, the eta square (η²) was obtained as 

a measure of the effect size. The data analysis was performed using IBM SPSS Statistics version 

26 (SPSS Inc., Armonk, NY, USA) with the level of significance set at p ≤ 0.05. 

8.5. Results 

Figure 16 shows how often the MDP of play occurred within each 15-minute match period for 

each criterion variable (DIS, SPD, HMLD, ACCHIGH, and DECHIGH). The first period (0’-15’) 

was the interval with the highest frequency (i.e., having the greatest total or percentage of 

cases), in which the players achieved the MDP of play for all the variables over the course of 

the matches. The following period (15’-30’) represented the second most frequent interval in 

which the MDP was achieved for all the variables, except for SPD. In the case of the SPD, the 

second most frequent period was at the end of the match (75'-90’). 
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Figure 16. Counts of the most demanding passages (MDP) of play based on the criterion 

variable and the periods in which the MDP occurred. DIS: distance covered; SPD: sprinting 

distance covered; HMLD: high-metabolic load distance; ACCHIGH: total of high-intensity 

accelerations; DECHIGH: total of high-intensity decelerations. 

Table 7 shows the distribution of the MDP of play throughout the match, considering the effect 

of the playing position for each criterion variable. Regarding the DIS covered, the playing 

position had a significant effect on the period in which the MDP of DIS occurred (LR = 32.05; 
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p = 0.04; ES = 0.05); this explains the rejection of the null hypothesis for the independence of 

the variables at the 95 % confidence level.  

Table 7. Distribution of the MDP of play throughout each 15-minute period considering the effect of the playing position for each criterion variable. 

Variable Position 
Period 

η LR p ES 
0’-15’ 15’-30’ 30’-45’ 45’-60’ 60’-75’ 75’-90’ 

DIS 

WMF 16 (45.7 %) 6 (17.1 %) 3 (8.6 %) 0 (0 %) 6 (17.1 %) 4 (11.4 %) 

0.11 32.05 0.04     0.05 

FW 23 (57.5 %) 3 (7.5 %) 3 (7.5 %) 1 (2.5 %) 5 (12.5 %) 5 (12.5 %) 

CD 9 (34.6 %) 3 (11.5 %) 5 (19.2 %) 0 (0 %) 4 (15.4 %) 5 (19.2 %) 

MF 13 (37.1 %) 8 (22.9 %) 3 (8.6 %) 1 (2.9 %) 8 (22.9 %) 2 (5.7 %) 

FB 2 (7.7 %) 8 (30.8 %) 4 (15.4 %) 1 (3.8 %) 3 (11.5 %) 7 (26.9 %) 

SPD 

WMF 7 (20 %) 6 (17.14 %) 7 (20 %) 1 (2.86 %) 7 (20 %) 7 (20 %) 

0.11 15.88 0.72     0.01 

FW 15 (37.5 %) 3 (7.5 %) 5 (12.5 %) 0 (0 %) 4 (10 %) 11 (27.5 %) 

CD 7 (26.9 %) 2 (7.7 %) 5 (19.2 %) 0 (0 %) 4 (15.4 %) 8 (30.8 %) 

MF 12 (34.4 %) 5 (14.3 %) 3 (8.6 %) 0 (0 %) 8 (22.9 %) 5 (14.3 %) 

FB 5 (19.2 %) 3 (11.5 %) 5 (19.2 %) 0 (0 %) 6 (23.1 %) 5 (19.2 %) 

HMLD 

WMF 10 (28.6 %) 8 (22.9 %) 5 (14.3 %) 1 (2.9 %) 6 (17.1 %) 5 (14.3 %) 

0.11 25.13 0.19     0.01 

FW 21 (52.5 %) 4 (10 %) 2 (5 %) 0 (0 %) 5 (12.5 %) 8 (20 %) 

CD 9 (34.6 %) 6 (23.1 %) 3 (11.5 %) 0 (0 %) 4 (15.4 %) 4 (15.4 %) 

MF 16 (45.7 %) 8 (22.9 %) 1 (2.9 %) 0 (0 %) 8 (22.9 %) 2 (5.7 %) 

FB 5 (19.2 %) 10 (38.5 %) 1 (3.8 %) 1 (3.8 %) 4 (15.4 %) 4 (15.4 %) 

ACC 

WMF 19 (54.3 %) 7 (20 %) 5 (14.3 %) 0 (0 %) 3 (8.6 %) 1 (2.86 %) 

0.15 32.05 0.18     0.02 

FW 30 (75 %) 4 (10 %) 1 (2.5 %) 0 (0 %) 2 (5 %) 2 (5 %) 

CD 11 (42.3 %) 8 (30.8 %) 5 (19.2 %) 0 (0 %) 0 (0 %) 2 (7.7 %) 

MF 17 (48.6 %) 7 (20 %) 4 (11.4 %) 0 (0%) 5 (14.3 %) 1 (2.9 %) 

FB 11 (42.3%) 7 (26.9 %) 4 (15.4 %) 1 (3.8 %) 1 (3.8 %) 1 (3.8 %) 

DEC 

WMF 22 (62.9 %) 8 (22.9 %) 1 (2.9 %) 0 (0 %) 1 (2.9 %) 3 (8.6 %) 

0.20 21.29 0.38     0.04 

FW 24 (60 %) 7 (17.5 %) 2 (5 %) 0 (0 %) 4 (10 %) 3 (7.5 %) 

CD 10 (38.5 %) 6 (23.1 %) 4 (15.4 %) 0 (0 %) 5 (19.2 %) 1 (3.8 %) 

MF 14 (40 %) 8 (22.9 %) 5 (14.3 %) 0 (0 %) 2 (5.7 %) 5 (14.3 %) 

FB 9 (34.6 %) 6 (23.1 %) 2 (7.7 %) 1 (3.8 %) 3 (11.5 %) 4 (15.4 %) 

Note: η = eta; LR = likelihood ratio; ES = effect size; FW = forward; MF = midfielder; WMF = wide midfielder; FB = full back; CD = central defender.  

To further explain this association regarding the MDP of DIS covered, it was necessary to 

identify which category combinations presented the largest differences between the observed 

and the expected frequencies. In this regard, Table 8 shows the adjusted standardized residuals. 

The association between period 1 (0’-15’) and the FW position was also significant (adjusted 
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standardized residual = 2.7), as it was between the FB position and period 2 (15’-30’) and period 

6 (75’-90’) (adjusted standardized residuals = 2.1). However, the residual was negative 

(adjusted standardized residual = -3.5) for the association between period 1 (0’-15’) and the FB 

position, which indicates that fewer players than expected performed the MDP of play within 

this period. 

Table 8. Adjusted standardized residuals for the most demanding passages (MDP) of play in distance covered. 

Position 
Period 

0’-15’ 15’-30’ 30’-45’ 45’-60’ 60’-75’ 75’-90’ 

WMF 0.9 0 -0.6 -0.9 0.2 -0.5 

FW 2.7 -1.9 -0.9 0.3 -0.7 -0.4 

CD -0.5 -0.9 1.4 -0.8 -0.1 0.8 

MF -0.3 1 -0.6 0.5 1.2 -1.6 

FB -3.5 2.1 0.8 0.9 -0.6 2.1 

Furthermore, a simple correspondence analysis was performed and represented through a 

perceptual map in order to complete the exploratory association analysis between the playing 

position and the period in which the MDP of DIS occurred (Figure 17). Period 1 (0’-15’) 

differed most from the other periods, this difference being greater when compared to period 2 

(15’-30’) and period 6 (75’-90’).  These periods also showed similar behavior compared to 

period 4 (45’-60’) and period 3 (30’-45’), respectively. In addition, the greatest playing position 

differences were found between FW (57.5 % of the MDP of play occurred in period 1) and FB 

(7.7 % of the MDP of play occurred in period 1). 
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 Figure 17. Simple correspondence analysis represented through a perceptual map, showing 

the relationships between the different categories of playing position (FW, forward; MF, 

midfielder; WMF, wide midfielder; FB, full back; CD, central defender) and the periods in 

which the most demanding passage of play for distance occurred. Note: The distance between 

any row dots or column dots serves as a measure of their similarity (or dissimilarity). 

When it comes to the SPD, most of the MDP occurred in period 1 for FW (37.5 %), MF (34.4 

%), CD (26.9 %), WMF (20 %), and FB (19.2 %). The results showed that the playing position 

had no significant effect on the period in which the MDP of SPD occurred (LR = 15.88; p = 

0.72; ES = 0.01) so the null hypothesis was accepted for the independence of the variables. 

Regarding the HMLD, the most frequent MDP of play occurred during the first period, again 

for WMF (52.5 %), MF (45.7 %), CD (34.6 %), FW (28.6 %), and FB (19.2 %). In addition, 

the results showed that the playing position and the period in which the MDP of HMLD 

occurred presented a low correlation (η = 0.11), and that these variables were not significantly 

associated (LR = 25.13; p = 0.19; ES = 0.01). In consequence, the null hypothesis was accepted 

for the independence of the variables. 
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Finally, similar results were observed for the MDP of play relating to the ACCHIGH and 

DECHIGH. The first period reported the most MDP of play for FW (ACCHIGH: 75 %; DECHIGH: 

60 %), WMF (ACCHIGH: 54.3 %; DECHIGH: 62.9 %), MF (ACCHIGH: 48.6 %; DECHIGH: 40 %), 

CD (ACCHIGH: 42.3 %; DECHIGH: 38.5 %) and FB (ACCHIGH: 42.3 %; DECHIGH: 34.6 %). The 

playing position had no significant effect (η = 0.15 – 0.20) on the period in which the MDP of 

ACCHIGH or DECHIGH occurred since the null hypothesis was accepted for the independence of 

the ACCHIGH (LR = 32.05; p = 0.18; ES = 0.02) and DECHIGH (LR = 21.29; p = 0.38; ES = 0.04) 

variables. 

8.6. Discussion 

This study analyzed the periods in which the MDP of play occurred during professional soccer 

matches, considering different criterion variables and investigating the effect that the playing 

position had on MDP-of-play occurrence for each of the variables. This innovative approach to 

the analysis of the MDP of play has significant practical implications for strength and 

conditioning coaches. For instance, the current study found that the first 15-minute period of 

the matches (0’-15’) elicited the MDP of play for all the variables. In addition, the playing 

position had no significant effect on MDP-of-play occurrence in any variable, except for the 

DIS covered, in which the most frequent MDP for FB occurred in the second period of the 

match (15’-30’). 

Although the results showed that the MDP of play in DIS are usually experienced during the 

first match period, a significant dependence relationship was observed between the playing 

position and the period in which the MDP of DIS occurred. For example, the greatest 

differences between the playing positions were found between FW (57.5 % of the MDP of play 

occurred in period 1) and FB (7.7 % of the MDP of play occurred in period 1). In line with 

previous research, these results suggest that the tactical role of each playing position (e.g., 

attacking vs defensive positions) (Dellal et al., 2011; Martín-García, Casamichana, et al., 2018; 

Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Oliva-Lozano, Fortes, & 

Muyor, 2021) might influence MDP-of-play performance. For example, the DIS covered by FB 

(~195.3 m/min) may be significantly greater than FW (~180.9 m/min) (Martín-García, 

Casamichana, et al., 2018). However, this interpretation should be viewed with caution because 

the playing position only explained 4.6 % of the variance in the period in which the MDP of 

DIS occurred (η2 = 0.05). Moreover, all the playing positions usually experienced the MDP of 
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DIS covered during the first 30 minutes of the matches. Therefore, strength and conditioning 

coaches should take this into consideration when designing training drills aimed at preparing 

the players for the MDP of play.  

When it comes to the MDP of play in the SPD and HMLD covered, similar results were found 

- the most frequent MDP of play occurred during the first period of the match (0’-15’). This 

finding agrees with a recent study which observed that the first period of the match (0’-15’) 

elicited most maximum speed actions (Oliva-Lozano, Fortes, & Muyor, 2021). In fact, these 

results are consistent with previous research, which observed that fatigue decreased the ability 

to perform physical work as the soccer match progressed (Casamichana et al., 2019; Mohr et 

al., 2003; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Rampinini et al., 

2007, 2009). Moreover, the playing position had no significant effect on the period in which 

the MDP of SPD or HMLD occurred. Recent studies have also observed declines in the SPD 

and HMLD covered in the MDP of play during the second half of the match regardless of the 

playing position (Casamichana et al., 2019; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, 

et al., 2020e). These findings were in line with other research works, which concluded that the 

high-intensity running distance covered (above 18 km/h, 19.8 km/h, and 30 km/h) by 

professional soccer players took place within the first 15 minutes of the match (Mohr et al., 

2003; Mark Russell et al., 2016). Consequently, these results suggest that soccer players tend 

to face the greatest demands during the first period of the match.  

Regarding the ACCHIGH and DECHIGH, all the playing positions showed the most frequent MDP 

of play during the first 15-minute period (0’-15’). Thus, the playing position was not 

significantly associated with the period in which the MDP of ACCHIGH and DECHIGH occurred. 

These results lend support to previous findings in the literature which also observed a decline 

in the acceleration and deceleration capacity as the match progressed  (Akenhead et al., 2013; 

Dalen et al., 2016; Harper et al., 2019; Mark Russell et al., 2016). For instance, one study found 

the greatest amount of ACCHIGH (~5) and DECHIGH (~9) during the first 15-minute period of 

the match (Mark Russell et al., 2016). This change in the acceleration and deceleration capacity 

towards the end of the match suggests that these actions are vulnerable to neuromuscular fatigue 

and, therefore, to an exacerbated risk of injury (Harper et al., 2019).  

There are several limitations which should be taken into account when interpreting this study’s 

findings. Firstly, the study sample was limited to one professional soccer team and no training 
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data were included (Oliva-Lozano, Gómez-Carmona, Rojas-Valverde, et al., 2021). 

Furthermore, the MDP of play were calculated for 1-minute intervals. Futures studies might 

include longer passages as well (e.g., 3, 5 or 10 minutes) (Oliva-Lozano, Martín-Fuentes, 

Fortes, et al., 2021). In addition, the effect of match-to-match variability was not considered 

(Oliva-Lozano, Muyor, Fortes, et al., 2021). Also, it would be of interest to analyze the context 

of the MDP of play by investigating if these MDP are linked to offensive or defensive actions, 

running with or without the ball, different playing formations, etc. Lastly, it is important to 

highlight that individualization of the data (e.g., considering player’s maximum speed) and the 

combination with internal load parameters are necessary for an accurate load monitoring (Oliva-

Lozano, Gómez-Carmona, Rojas-Valverde, et al., 2021). 

8.7. Conclusion 

This study presents novel findings with significant practical implications for strength and 

conditioning coaches since the first 15-minute period of the matches (0’-15’) elicited the MDP 

of play for DIS, SPD, HMLD, ACCHIGH and DECHIGH. Apart from the technical and tactical 

skills required in soccer match play, the MDP of play need to be trained for, considering not 

only the magnitude of these passages of play (e.g., DIS covered per minute) but also when these 

passages occur over the course of the game. Given the observed decline in physical performance 

during the MDP of play as the matches progressed, strength and conditioning coaches should 

design specific training drills (e.g., from 1-minute to 10-minute passages considering area per 

player) in order to prepare the players for match’s high intensity periods. Repeated sprints and 

high-intensity interval training may be among the appropriate strategies for developing 

proficient physical and physiological capabilities in professional soccer players (Turner & 

Stewart, 2014).  
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CHAPTER 9 

 

Study VII. When and how do professional 

soccer players sprint in match play?   
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9. WHEN AND HOW DO PROFESSIONAL SOCCER PLAYERS SPRINT IN 

MATCH PLAY? 

9.1. Abstract 

The aims of this study were to examine the periods in which the maximum speed actions 

occurred during professional soccer matches and analyze these actions considering the effect 

of playing position and different contextual variables. The study was conducted for three 

mesocycles in LaLiga123 matches. Performance-related variables (VMAX: maximum speed; Vo: 

starting speed; SPD: sprinting distance; ACCMAX: maximum acceleration; DECMAX: maximum 

deceleration) and sprint-related contextual variables (trajectory, ball possession, role, field area 

in which the action occurred) from each maximum speed action were collected. The first 15 

minutes of each match half elicited the greatest amount of maximum speed actions (44.6% of 

cases), regardless of playing position (likelihood ratio, LR=13.95; p=0.95; effect size, 

ES=0.16). However, the playing position had a significant effect on the role of the action (Chi-

Squared, χ2=50.68; p=0.001; ES=0.63) and the field area in which the sprint occurred 

(χ2=26.54; p=0.001; ES=0.46). Regarding the effect of different contextual variables on the 

sprint-related performance variables, no significant effect from any contextual variable on 

ACCMAX, DECMAX or Vo was found (p>0.05). Nevertheless, the contextual variables had a 

significant effect on SPD (from ball possession: sprints without the ball > sprints with the ball; 

trajectory: non-linear sprints > linear sprints; role: offensive sprints > defensive sprints) and 

VMAX (from ball possession: sprints without the ball > sprints with the ball; playing position: 

midfielders < other positions). Considering match demands, training drills should be designed 

to maximize performance in the first 15-minute periods of each half with special focus on non-

linear sprints and VMAX (>30 km/h), Vo (7-10 km/h), SPD (>30 m), ACCMAX (>3m/s2), and 

DECMAX (< -4 m/s2).  

9.2. Keywords 

Sprint Profile, Game Analysis, Team Sport, Competition, Performance  



125 

 

9.3. Introduction 

The selection, testing, and training of soccer players should emphasize the acquisition of 

sprinting skills (Haugen et al., 2013; Oliva-Lozano, Fortes, Krustrup, et al., 2020). A recent 

study concluded that professional soccer players need to perform ~10 sprints per match, which 

require speeds above ~30 km/h (Oliva-Lozano, Fortes, Krustrup, et al., 2020), even though 

significant performance differences between playing positions may exist (Chmura et al., 2018; 

Konefał et al., 2019; Oliva-Lozano, Fortes, Krustrup, et al., 2020). This is key for the design of 

specific training drills and recovery strategies since, for instance, wide-midfielders may 

perform ~16 sprints per match while central midfielders may perform ~5 sprints (Oliva-Lozano, 

Fortes, Krustrup, et al., 2020). 

Nevertheless, the analysis of the sprint profile of professional soccer players in competitive 

match play is limited to date (Ingebrigtsen et al., 2015; Oliva-Lozano, Fortes, Krustrup, et al., 

2020). Different components of the sprint profile such as the period in which the maximum 

running speed actions occur or how the players reach their maximum speed (e.g., with or 

without the ball, linearly or non-linearly, attacking or defending, sprinting in own team’s field, 

or sprinting in opponent team’s field) need to be studied considering that the sprinting ability 

is regulated by a complex interaction of multiple factors (Haugen et al., 2014). Specifically, a 

better understanding of maximum running sprints considering not only playing position and 

contextual variables (e.g., ball possession, sprint trajectory, role of the sprint) but also 

performance-related variables (e.g., distance covered, starting speed, acceleration, and 

deceleration) is necessary since these are unique actions that occur in the course of the game 

(Oliva-Lozano, Fortes, Krustrup, et al., 2020).  

Furthermore, another limitation of previous research is that there is no information regarding 

the period in which these sprints occur during professional soccer matches. From a practical 

standpoint, this is important information given that experiencing the maximum speed actions 

in the first or last minutes of the match may significantly influence the training drills design. 

Therefore, the aims of this study were to: 1) examine the periods in which the maximum speed 

actions occurred during professional soccer matches; and 2) analyze the maximum speed 

actions registered in match play considering the effect of playing position and different 

contextual variables. 
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9.4. Methods 

Study design 

This study was conducted for three mesocycles in a non-congested schedule, which involved a 

total of 13 official matches (i.e., one match per week) in LaLiga 123. Sprint-related performance 

variables were collected using electronic performance and tracking systems. In addition, each 

match was recorded on video in order to synchronize it with the data collected by the electronic 

performance and tracking systems. 

Participants 

A total of 19 male professional soccer players (age: 26.8 ± 3.8 years old; body mass: 23.1 ± 

0.2) participated in the study. Each player was categorized according to its playing position 

(central defenders, CD; full backs, FB; midfielders, MF; wide midfielders, WMF; and forwards, 

FW). Overall, a total of 127 match observations were available (WMF, n = 27; MF, n = 27; 

FW, n = 25; FB, n = 25; CD, n = 24). Only the players who completed the full match were 

included in the study while goalkeepers could not be included given the different nature of their 

activity-profile (Oliva-Lozano, Fortes, & Muyor, 2020; White et al., 2018). Informed consent 

was obtained for the use of data from the participants once the season was completed. 

Moreover, the study was approved the Bioethics Board of the university. 

Procedures 

Each player worn a WIMU Pro device (RealTrack Systems, Almeria, Spain) in a chest vest 

(Rasán, Valencia, Spain) during the matches. These tracking systems contain inertial sensors 

(four 3D accelerometers, three 3D gyroscopes, one 3D magnetometer, one barometer) and 

global positioning system (GPS) technology. These devices were selected since previous 

investigations considered them as valid and reliable instruments for the collection of physical 

performance parameters (Bastida Castillo et al., 2018) in addition to the approval from the FIFA 

Quality Programme (FIFA, 2020). Each tracking system was calibrated before the start of the 

match following the manufacturer’s instructions (Oliva-Lozano, Maraver, Fortes, et al., 2020b). 

The data were transferred to the SPro software (RealTrack Systems, Almeria, Spain) in order 

to synchronize each match with the video recorded by 4K-HDR cameras (Sony Corp., Tokyo, 

Japan). The start of the first and second half was used as a reference for the start and end of the 
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synchronization. Then, the Intervals Pro report from SPro (RealTrack Systems, Almeria, 

Spain), which showed the sprint-related performance variables (VMAX: maximum velocity in 

km/h; Vo: starting velocity in km/h; SPD: sprinting distance covered in meters; ACCMAX: 

maximum acceleration in m/s2; DECMAX: maximum deceleration in m/s2) collected at 10 Hz, 

was obtained. This allowed the selection of the maximum speed action reached by each player 

and the observational analysis considering the sprint-related performance variables (i.e., VMAX, 

Vo, SPD, ACCMAX, and DECMAX from the maximum speed actions registered in the match) 

and the following contextual variables: ball possession (i.e., sprint with or without the ball), 

trajectory (i.e., linear or non-linear sprint), role of the sprint (i.e., offensive or defensive sprint) 

and field area in which the sprint occurred (i.e., sprint in own team’s field area or sprint in 

opponent team’s field area). In addition, each maximum speed action was categorized according 

to 15 minutes: period 1 (1’-15’), period 2 (15’-30’), period 3 (30’-45’), period 4 (45’-60’), 

period 5 (60’-75’), and period 6 (75’-90’) since the first aim of the study was to this study aimed 

to examine the periods in which the maximum speed actions occurred. 

Statistical analysis 

Regarding the first aim of the study, descriptive statistics were obtained to show the periods in 

which the maximum speed actions occurred during the matches. Then, Chi-Squared test was 

calculated to analyze the association between the periods in which the maximum speed actions 

occurred and the playing position. Pearson Chi-Squared statistic (χ2) was selected unless 20% 

of the categories had expected frequencies lower than 5 and in this case, the likelihood ratio 

(LR) statistic was used (Koehler & Larntz, 1980). If the association was not significant between 

the periods in which the maximum speed actions occurred and the playing position, the null 

hypothesis for the independence of the variables was accepted at the 95% confidence level. 

However, if the association between the variables was significant, the null hypothesis was 

rejected and adjusted standardized residuals were obtained to determine among which 

categories the differences were large. An adjusted residual with an absolute value higher than 

1.96 showed that the number of cases within that cell was significantly greater or lower than 

would be expected if the null hypothesis were true. Additionally, Crammer’s V was reported as 

a measure of effect size (ES) for chi-squared test (Cohen, 1988). 

Regarding the analysis of the association between contextual variables and the maximum speed 

actions registered by each position for the second aim of the study, Chi-Squared test was applied 
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again with the same criteria than the first aim. However, a multi-factor analysis of variance 

(ANOVA) through a general linear model was also conducted in order to investigate the effect 

that playing position (i.e., CD, FB, MF, WMF, and FW) and contextual variables (i.e., ball 

possession, sprint trajectory, role of the sprint, and field area in which the sprint occurred) had 

on the sprint-related performance variables (i.e., VMAX, Vo, SPD, ACCMAX, and DECMAX). 

Playing position and contextual variables were set as the independent variables while the sprint-

related performance variables were set as the dependent variables. Then, Bonferroni post hoc 

tests were carried out to compare between independent variables. In this case, the effect sizes 

were reported using partial eta-squared (ηp2) (Cohen, 1988). The statistical analysis was 

performed on SPSS Statistics for Windows version 25 (IBM Corp., Armonk, NY, USA) and 

the level of significance was set at p ≤ 0.05. However, the statistical power, which was greater 

than 0.85 in all the variables analyzed for the sample size of the study, was calculated on 

G*Power software (Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany) (Faul et al., 

2007). 

9.5. Results 

Figure 18 shows the distribution of the maximum speed actions throughout each 15-minute 

period of match play. The period 1 (0’-15’: 22.7 % of cases) and the period 4 (45’-60’: 21.9 % 

of cases) reported the greatest amount of maximum speed actions. Also, the results showed that 

the playing position had no significant effect on the period in which the maximum speed actions 

occurred (LR = 13.95; p = 0.95; ES = 0.16), which explains the acceptance of the null 

hypothesis for the independence of the variables at the 95% confidence level. 
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Figure 18. Count of maximum speed actions throughout each 15-minute period of match 

play. 

Table 9 shows the total of maximum speed actions registered in match play considering each 

contextual variable and playing position. The playing position had no significant effect on 

sprints with/without the ball (sprints without the ball = 94.5%; sprints with the ball = 5.5% of 

cases; LR = 2.13; p = 0.71; ES = 0.14) or sprint trajectory (non-linear sprints = 70.3 % of cases; 

linear sprints = 29.7 % of cases; χ2 = 5.48; p = 0.24; ES = 0.21). 

Table 9. Descriptive statistics for maximum speed actions registered in match play considering each contextual variable and playing position 

Variables  CD FW WMF FB MF ALL χ2 p ES 

Ball 

possession 

Yes 1 (4.2 %) 3 (12 %) 1 (3.7 %) 1 (4 %) 1 (3.7 %) 7 (5.5 %) 

2.13* 0.71 0.14 

No 23 (95.8 %) 22 (88 %) 26 (96.3 %) 24 (96 %) 26 (96.3 %) 121 (94.5 %) 

Trajectory 

Linear 11 (45.8 %) 4 (16 %) 7 (25.9 %) 8 (32 %) 8 (29.6 %) 38 (29.7 %) 

5.48 0.24 0.21 

Non-linear 13 (54.2 %) 21 (84 %) 20 (74.1 %) 17 (68 %) 19 (70.4 %) 90 (70.3 %) 

Role 

Offensive 1 (4.2 %) 23 (92 %) 19 (70.4 %) 11 (44 %) 6 (22.2 %) 60 (46.9 %) 

50.68 0.001 0.63 

Defensive 23 (95.8 %) 2 (8 %) 8 (29.6 %) 14 (56 %) 21 (77.8 %) 68 (53.1 %) 

Field area 

Own team 22 (91.7%) 6 (24 %) 11 (40.7 %) 16 (64 %) 17 (63 %) 72 (56.3 %) 

26.54 0.001 0.46 
Opponent 

team 
2 (8.3 %) 19 (76 %) 16 (59. 3%) 9 (36 %) 10 (37 %) 56 (43.8 %) 

Note: χ2 = chi squared; *Chi squared statistic represented as the likelihood ratio (LR) given that at least 20% of the categories had expected frequencies 
lower than 5; ES = effect size; FW = forward; MF = midfielder; WMF = wide midfielder; FB = full back; CD = central defender.  
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However, the playing position had a significant effect on the role of the sprint action (χ2 = 50.68; 

p = 0.001; ES = 0.63). Specifically, a significant association between the role of the sprint action 

and FW (offensive sprints = 92 %; defensive sprints = 8 %; adjusted standardized residual = 5), 

WMF (offensive sprints = 70.4 %; defensive sprints = 29.6 %; adjusted standardized residual = 

2.8), CD (offensive sprints = 4.2 %; defensive sprints = 95.8 %; adjusted standardized residual 

= 4.7), and MF (offensive sprints = 22.2 %; defensive sprints = 77.8 %; adjusted standardized 

residual = 2.9), while the association was not significant between the role of the sprint and FB 

(offensive sprints = 44 % of cases; defensive sprints = 56 % of cases; adjusted standardized 

residual = 0.3). 

In addition, a significant effect of the playing position on the field area in which the sprint 

occurred was observed (χ2 = 26.54; p = 0.001; ES = 0.46), which explains the rejection of the 

null hypothesis for the independence of the variables at the 95% confidence level. Specifically, 

the association was significant between the field area in which the sprint occurred and CD 

(sprints in own team’s area = 91.7%; sprints in opponent team’s area = 8.3%; adjusted 

standardized residual = 3.9), and FW (sprints in own team’s area = 24 %; sprints in opponent 

team’s area = 76 %; adjusted standardized residual = 3.6). 

Figure 19 shows the effect of different contextual variables on the sprint performance. When it 

comes to the SPD covered, a significant effect from ball possession (sprints without the ball: 

~33.81 m > sprints with the ball: ~30.20 m; F(1, 91) = 6.15; p = 0.02; ηp2 = 0.06), sprint trajectory 

(non-linear sprints: ~35.45 m > linear sprints: ~29.28 m; F(1, 91) = 6.89; p = 0.01; ηp2 = 0.07), 

and role of the sprint action (offensive sprints: ~37.79 m > defensive sprints: ~29.94 m; F(1, 91) 

= 10.52; p = 0.002; ηp2 = 0.10) was observed. 
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Figure 19. Effect of different contextual variables on the sprint-related performance variables. 
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Regarding the VMAX, a significant effect from ball possession (sprints with the ball: ~29.43 

km/h; sprints without the ball: ~30.33 km/h; F(1, 91) = 4.98; p = 0.03; ηp2 = 0.05) was found. In 

addition, playing position had a significant effect on the sprint performance (F(4, 91) = 5.79; p = 

0.001; ηp2 = 0.20), being the VMAX from MF (~28.34 km/h) significantly lower than the rest of 

playing positions (FW = ~30.13 km/h; CD = ~30.41 km/h; FB = ~30.57 km/h; WMF = ~31.94 

km/h). However, no significant effect from any contextual variable on ACCMAX, DECMAX or 

Vo was observed (p > 0.05). 

9.6. Discussion 

The main purpose of this study was to analyze when and how professional soccer players sprint 

in match play. One of the novel findings of this study was that the first period of each match 

half (i.e., period 1 and period 4) elicited the greatest amount of maximum speed actions in 

competitive match play, regardless of playing position. However, the playing position had a 

significant effect on the role of the sprint action and the field area in which the sprint occurred. 

Regarding the effect of different contextual variables on the sprint-related performance 

variables, no significant effect from any contextual variable on ACCMAX, DECMAX or Vo was 

observed. Nevertheless, the contextual variables had a significant effect on SPD (from ball 

possession, sprint trajectory, and role of the sprint action) and VMAX (from ball possession and 

playing position). 

This study found that the maximum speed actions were more frequent in the beginning period 

of each match half compared to the rest of periods, regardless of the playing position. To the 

best of the authors’ knowledge, this is the first study to report this findings. However, this goes 

in line with previous studies, which concluded that the sprint performance was reduced 

temporarily during and towards the end of each match half (Krustrup et al., 2006; Mohr et al., 

2003; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e). Overall, it may be 

concluded that professional soccer players tend to decrease their physical performance in the 

second half compared to the first half (Carling & Dupont, 2011; Mohr et al., 2003; Oliva-

Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Mark Russell et al., 2016). 

Specifically, one of these studies also showed that the high-intensity running distance was 

greater in the first period of each match half compared to the rest of periods (Mohr et al., 2003). 

Although the reasons why performance is decreased towards the end of the match are unclear, 
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this may be explained by the effect of fatigue associated with reduced glycogen levels (Krustrup 

et al., 2006; Reilly et al., 2008). 

In addition, contextual variables such as the role of the sprint action and the field area in which 

the sprint occurred were significantly associated with the playing position. For example, 

offensive positions such as FW and WMF perform significantly greater number of sprints in 

opponent team’s field area and offensive sprints compared to the total of sprints in own team’s 

field area and defensive sprints. These results are consistent with a previous investigation, 

which showed that FW and WMF performed more offensive sprints (FW = ~20.6 sprints; WMF 

= ~15.9 sprints) than defensive sprints (FW = ~4.9 sprints; WMF = ~8.7 sprints) (Andrzejewski 

et al., 2015). On the contrary, the same study found that defensive players such as FB and CD 

performed more defensive sprints (FB = ~13.2 sprints; CD = ~11.7 sprints) than offensive 

sprints (FB = ~9.7 sprints; CD = ~1.4 sprints) (Andrzejewski et al., 2015). These differences 

might be explained by the technical and tactical role of these playing positions (Andrzejewski 

et al., 2015; Dellal et al., 2011; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e). 

For example, CD usually perform defensive actions aimed to secure the team’s goal area 

(Andrzejewski et al., 2015) while FW are rarely involved in team’s defensive tasks but 

continually try to receive orthogonal and diagonal passes, reaching the opponent’s penalty area 

and sprinting for taking a shot on goal (Andrzejewski et al., 2014). However, the playing 

position had no effect on the sprint trajectory or sprints with/without the ball. This is justified 

by the results which show that most maximum speed actions are non-linear and without the 

ball. In this regard, a recent study recommended strength and conditioning coaches to 

implement training strategies that enhance the mechanical efficiency of the players when 

sprinting in non-linear actions (e.g., curvilinear sprints) (Fílter et al., 2020).  

Additionally, although no significant effect from any contextual variable on ACCMAX, DECMAX 

or Vo was observed, some contextual variables had an effect on SPD covered and VMAX. For 

instance, running ball possession in the maximum speed actions decreased the SPD covered 

and VMAX since running with the ball is not only technically more demanding but also ~10 % 

more energy-demanding than running without the ball (Piras et al., 2017). Thus, specific 

training drills need to be designed to improve general running with the ball and dribbling 

technique at speeds above 25 km/h (Carling, 2010). In addition, these training drills should also 

consider the offensive and defensive roles of the sprint because the results showed that the 

players covered greater SPD in offensive sprints compared to defensive sprints. Finally, playing 
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position should also be considered given that the VMAX from MF (~28.34 km/h) was 

significantly lower than the rest of playing positions (FW = ~30.13 km/h; CD = ~30.41 km/h; 

FB = ~30.57 km/h; WMF = ~31.94 km/h). This is explained by the fact that the technical-

tactical role of MF requires continuous offensive and defensive actions mainly in central zones 

of the soccer pitch, where the density of players increase (Fradua et al., 2013; Oliva-Lozano, 

Fortes, Krustrup, et al., 2020). In consequence, training drills need to be designed based on the 

effect of contextual variables but also considering the demands of match-play. For example, 

players should be prepared for sprints longer than 30 m, achieving speeds above 30 km/h as 

well as high intensity accelerations and decelerations (accelerations above 3 m/s2 and 

decelerations below -4 m/s2) (Oliva-Lozano, Fortes, Krustrup, et al., 2020). In addition, the 

sprinting actions need to include starting speeds about 7-10 km/h despite the fact that fitness 

coaches still focus on sprinting actions from stationary conditions (Oliva-Lozano, Fortes, 

Krustrup, et al., 2020). 

Nonetheless, it is to mention that this study presents some limitations. For instance, GPS 

technology was used for the data collection in the matches. However, future investigations may 

consider the addition of local positioning systems in order to improve the accuracy of the data 

(Bastida Castillo et al., 2018). Also, this study was focused on sprint-related contextual 

variables while other match-related contextual variables (e.g., style of play, team formation, 

match location, match outcome, opponent level) were not analyzed. Future research may 

consider these limitations to have a better understanding of the impact of match-related 

contextual variables on sprint performance.  

9.7. Conclusion 

This study showed that the first period of each match half (i.e., period 1 and period 4) elicited 

the greatest amount of maximum speed actions in competitive match play, regardless of playing 

position. Nevertheless, the playing position had a significant effect on the role of the sprint 

action and the field area in which the sprint occurred. When it comes to the effect of different 

contextual variables on the sprint-related performance variables, no significant effect from any 

contextual variable on ACCMAX, DECMAX or Vo was observed. However, the contextual 

variables had a significant effect on SPD (from ball possession, sprint trajectory, and role of the 

sprint action) and VMAX (from ball possession and playing position). 
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This study presents a novel approach to the literature with results that imply significant practical 

applications for strength and conditioning coaches. Considering that the first 15-minute periods 

of each match half elicited the greatest amount of maximum speed actions, training drills should 

be designed with the aim of maximizing performance in these periods of the match. However, 

training the resistance to fatigue is also important since situational factors may elicit maximum 

speed actions at any time of the match. In addition, although non-linear sprints are the most 

frequent maximum speed actions and special focus should be put on sprints with different 

trajectories, linear sprint training is also positive since it may lead to improvements in non-

linear sprints too (Fílter et al., 2020). Overall, the training drills should be based on the demands 

of match-play. For instance, players need to be prepared for sprints longer than 30 m, achieving 

speeds above 30 km/h as well as high intensity accelerations and decelerations (accelerations 

above 3 m/s2 and decelerations below -4 m/s2. Furthermore, the sprints need to be trained with 

starting speeds about 7-10 km/h. 
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CHAPTER 10 

 

Study VIII. Exploring the use of player load in 

professional soccer players   
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10. EXPLORING THE USE OF PLAYER LOAD IN PROFESSIONAL SOCCER 

PLAYERS 

10.1. Abstract 

The aims of this study were to (1) analyze the distribution of the player load (PLTOTAL) in three 

axis of movement (PLAP: anterior-posterior; PLML: medial-lateral; PLV: vertical) during 

professional soccer matches, (2) investigate the effect of playing position on PL-related 

variables, and (3) explore the association between PLTOTAL and distance covered by the players.  

Data were collected from professional soccer players using WIMU Pro tracking systems 

(RealTrack Systems, Almeria, Spain), which included inertial sensors. The axis of movement 

had a significant effect on the distribution of the load (p < 0.001; conditional R2 = 0.91), with 

the greatest contribution from the PLV (p < 0.001; d = 5.41-5.86). Moreover, no effect of playing 

position on PLTOTAL, PLV, PLML, or PLAP was observed (p > 0.05). Finally, a large correlation 

was found between PLTOTAL and distance covered, and the linear mixed model showed that 

distance may be predicted by the PLTOTAL (conditional R2 = 0.81; p < 0.001). Differences in 

load distribution were based on the axis of movement, although playing position had no effect 

on any variable. The selection of either distance covered, which is representative of a 2-

dimensional analysis, or PLTOTAL, which is representative of a 3-dimensional analysis, may be 

adequate for monitoring locomotor demands or accelerometer-derived load. Training strategies 

which focus on the vertical component of match-play should be adopted. In addition, given that 

PLTOTAL is an accelerometry-based metric which combines the accelerations in anterior-

posterior, medial-lateral, and vertical planes, strength and conditioning coaches may use this 

parameter as a measure of total body load.  

10.2. Keywords 

External Load, Body Load, Football, Match Analysis, Team Sports.  



139 

 

10.3. Introduction 

Current EPTS allow the collection of performance-related variables such as total distance 

covered, total of high-speed actions, maximum speed, acceleration, and deceleration (Oliva-

Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d). In addition, most available tracking 

systems encompass inertial sensors (e.g., accelerometers, gyroscopes, and magnetometers) to 

understand the three-dimensional (3-D) nature of soccer (Barrett, Midgley, Reeves, et al., 

2016). Previously, triaxial accelerometers have been used to quantify external load through 

specific metrics such as Player Load (PLTOTAL), which is measured in arbitrary units (a.u.) and 

combines the accelerations in anterior-posterior (PLAP), medial-lateral (PLML), and vertical 

(PLV) planes (Boyd et al., 2011; Chambers et al., 2015; Gómez-Carmona et al., 2020; Hulin et 

al., 2018). Soccer strength and conditioning coaches and practitioners frequently adopt PLTOTAL 

as a useful load monitoring tool (Gómez-Carmona et al., 2020). For instance, body impacts, 

which lead to a rise in PLTOTAL (Gómez-Carmona et al., 2020), may increase perceived exertion, 

upper body neuromuscular fatigue, and plasma creatine kinase (Hulin et al., 2018; Johnston et 

al., 2014). Thus, although previous literature has focused mainly on positioning-related metrics 

(e.g., distance covered, total of sprints, accelerations, etc.) (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Palucci-Vieira et al., 2018), the use of PLTOTAL has been 

extensively used in a wide variety of team sports (Gómez-Carmona et al., 2020). 

However, little is known about the distribution of the load for each axis of movement and this 

might be important for a better understanding of the development of fatigue (Barrett, Midgley, 

Reeves, et al., 2016). For example, changes of direction, which are frequent actions performed 

by soccer players, require high mechanical load (Besier et al., 2001; Merks et al., 2021), but 

repetitive loading of musculoskeletal tissues illustrates damage accumulation consistent with a 

mechanical fatigue process (Edwards, 2018). Consequently, given the biomechanical nature of 

changes of direction, PLML might be a representative variable of these actions regarding the 

fatigue and muscle damage of the player. Likewise, accelerations and decelerations, which are 

key load indicators of performance (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 

2020d), might be significant contributors to PLAP, as well as tackles or jumps, which might 

increase PLV.  

Also, from a practical standpoint, it is of interest to understand the position-specific workload 

profiles of match-play in order to prescribe adequate recovery strategies and adapt the training 
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stimulus to the competitive demands (Oliva-Lozano, Gómez-Carmona, Rojas-Valverde, et al., 

2021). For example, a recent study showed that midfielders performed more high intensity 

changes of direction than other playing positions (Granero-Gil et al., 2020). Thus, the match 

demands may have a direct impact on muscle damage indicators (e.g., increased creatine kinase 

concentrations) (M. Russell et al., 2016; Souglis et al., 2018). In this regard, a previous 

investigation found that playing position had a significant effect on the time-course of specific 

muscle damage, oxidative stress, and inflammation markers following an official soccer match 

(Souglis et al., 2018). For instance, midfielders showed greater peaks than defenders in all 

biochemical markers (Souglis et al., 2018). However, research is conflicting with some studies 

observing that the match demands are also position-dependent (Dalen et al., 2016; Martín-

García, Casamichana, et al., 2018) while others concluded that the variance of variables such 

as PLTOTAL was not significantly explained by the positional role during professional soccer 

match play (Barrett, Midgley, Reeves, et al., 2016). Further investigations on the PLTOTAL 

experienced by each position in professional soccer is needed given this variable has received 

little attention. (Dalen et al., 2016) This analysis might help to understand the post-match 

fatigue response of professional soccer players (Souglis et al., 2018). 

The potential use of PL-related variables for load monitoring purposes in team sports has been 

suggested by previous investigations (Dalen et al., 2016; Gómez-Carmona et al., 2020). 

Specifically, PLTOTAL is a key variable for strength and conditioning coaches given that this 

may be representative of a 3-D performance. Conversely, distance covered or high-speed 

running actions only represent 2D movements and are frequently investigated in soccer research 

(Dalen et al., 2016; Gómez-Carmona et al., 2020). However, previous research has found strong 

associations between PLTOTAL and distance covered in semiprofessional soccer players 

(Casamichana et al., 2013; Casamichana & Castellano, 2015).  

Based on the aforementioned studies, PLTOTAL may be a useful workload parameter (Gómez-

Carmona et al., 2020); studies exploring the use of this parameter in professional soccer are 

necessary. We hypothesized that despite different load distribution between axes of movement, 

PLTOTAL might be used as a body load indicator for all playing positions. Therefore, the aims 

of this study were to analyze (1) the distribution of the PLTOTAL in three axes of movement 

(PLAP, PLML, PLV) during professional soccer matches, (2) the effect of playing position on PL-

related variables, and (3) the association between PLTOTAL and distance covered by professional 

soccer players. 
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10.4. Methods 

Study design 

A longitudinal study was conducted in a professional soccer team, which competed in Spanish 

LaLiga123. A total of 13 consecutive matches that belonged to the last period of the league 

were registered. All matches were played in open stadiums (i.e., non-covered stadiums) so 

wearable tracking systems, which included global positioning system (GPS) and inertial 

measurement units (e.g., accelerometers, gyroscopes, or magnetometer), were used for the data 

collection. The data collection was authorized by the club and the Bioethics Committee of the 

university approved the study (UALBIO2020/032). 

Participants 

A total of 19 professional soccer players (age: 26.8 ± 3.8 years old; height: 1.79 ± 0.08 m; body 

mass: 73.6 ± 6.4 kg) were analyzed. Only players completing the total duration of the match 

were included in the analysis for a final sample size of 12 players, who were categorized 

according to their playing position (i.e., central defender, full-back, midfielder, wide-

midfielder, and forward). Goalkeepers were not included in the study given their different 

match activity-demands (Oliva-Lozano, Gómez-Carmona, Rojas-Valverde, et al., 2021). 

Procedures 

Every player was provided with a WIMU Pro tracking system (RealTrack Systems, Almería, 

Spain), which was placed in the back pocket of the same tight-fitted chest vest (Rasán, Valencia, 

Spain) in every match. This tracking system consists of 3D accelerometers, gyroscopes, and 

magnetometers collecting data at 100 Hz as well as 10 Hz GPS (using differential Doppler to 

obtain velocity). Previous research showed good criterion validity (bias in mean velocity: 1.2-

1.3 km/h; bias in distance: 2.3-4.3 m) and reliability (intraclass correlation coefficients: above 

0.93) for the collection of physical performance variables in soccer (Bastida Castillo et al., 

2018). Also, these tracking systems have the FIFA Quality Programme certificate for the 

collection of position and velocity metrics (FIFA, 2020). In addition, each tracking system was 

calibrated before the start of the match following manufacturer’s instructions (Oliva-Lozano, 

Gómez-Carmona, Rojas-Valverde, et al., 2021). For this purpose, one member of the research 



142 

 

group placed the tracking systems on a flat surface without surrounding magnetic devices and 

turned them on. Thirty seconds later, the units were placed in the chest vest. 

Data collected by the tracking systems were visualized on SPro software (RealTrack Systems, 

Almería, Spain) and the following variables were downloaded for each player and match half 

at the end of the match: player load (PLTOTAL, a.u.), anterior-posterior player load (PLAP, a.u.), 

medial-lateral player load (PLML, a.u.), vertical player load (PLV, a.u.), and distance covered in 

meters (Gómez-Carmona et al., 2020). Also, the total of satellites connected to the device were 

downloaded from SPro in order to ensure that GPS data collection was carried out with an 

adequate connection (8.77 ± 1.30 satellites) in all matches (Malone et al., 2017). One member 

of the research team ensured that the GPS had satellite connection before the start of the matches 

(Rico-González et al., 2020). 

Statistical analysis 

Firstly, outliers from the dependent variables were eliminated from the analysis.  Specifically, 

a total of 600 match observations including first and second half data points were included 

considering each playing position (central defenders, n = 144; full-backs, n = 120; midfielders, 

n = 123; wide-midfielders, n = 110; forwards, n = 103). Regarding the first aim of the study, 

the differences between PLTOTAL across the three axes were evaluated via linear mixed models 

(LMM) with the axes (i.e., PLV, PLAP, PLML) as fixed effect and half, and player as random 

effects. In case of statistically significant differences, a post-hoc analysis was calculated using 

Bonferroni correction. Moreover, for pairwise comparisons with statistically significant 

differences, effect sizes were calculated via Cohen’s d and interpreted as < 0.2 (trivial), 0.20 – 

0.59 (small), 0.60 – 1.19 (moderate), 1.2 – 1.19 (large), and ≥ 2.0 (very large) (Hopkins et al., 

2009). Regarding the second aim of the study, the difference between playing positions in 

PLTOTAL, PLV, PLAP, and PLML were assessed vial LMM with playing position as fixed effect, 

and half and player as random effects. For the third aim of our study, a LMM was adopted with 

PLTOTAL as the dependent variable, distance as a fixed effect and half, and player as random 

effects. All the analyses were conducted on RStudio (version 3.5.2) and significance was set at 

p < 0.05. Based on the sample size of 12 players, the statistical power was greater than 0.8 for 

all analyzed variables. 
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10.5. Results 

Regarding the first aim of the study, Figure 20 shows the distribution of the PLTOTAL in the three 

axes of movement (PLAP, PLML, PLV) during professional soccer matches. Specifically, the axis 

of movement had a significant effect on the distribution of the PLTOTAL (p < 0.001; conditional 

R2 = 0.912) with significant differences between PLV and PLML (22.58 ± 0.54 a.u; p < 0.001; d 

= 5.86; very large), PLV and PLAP (19.24 ± 0.49 a.u; p < 0.001; d = 5.41; very large), as well as 

PLAP and PLML (3.35 ± 0.41 a.u; p < 0.001; d = 1.13; moderate). 

 

Figure 20. Differences in the triaxial distribution of player load (PLAP: anterior-posterior; 

PLML: medial-lateral; PLV: vertical). aStatistical difference (p < 0.001) to PLAP; bStatistical 

difference (p < 0.001) to PLML; cStatistical difference (p < 0.001) to PLV. 

Moreover, no significant effect of playing position was observed for PLTOTAL, PLV, PLML, and 

PLAP (Table 10). 
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Table 10. Outcomes of linear mixed models with playing position as fixed effect and half and player as random effects 

Dependent 

variable 
Fixed effect Estimate Std. Error df t-value p R2 Model Fit 

PLTOTAL 

Intercept 65.0 3.8 12.8 17.0 <0.001 

Conditional = 0.646 

Marginal = 0.179 

AIC = 1305  

BIC = 1332 

Forwards 7.7 5.7 11.8 1.3 0.206 

Full Backs 7.4 5.7 11.8 1.3 0.221 

Midfielders 8.6 5.2 12.2 1.7 0.119 

Wide Midfielders 10.9 5.7 11.8 1.9 0.080 

PLAP 

Intercept 27.1 1.9 12.6 14.3 <0.001 

Conditional = 0.612 

Marginal = 0.125 

AIC = 1037  

BIC = 1064 

Forwards 3.8 2.9 11.8 1.3 0.216 

Full Backs 1.3 2.9 11.7 0.4 0.668 

Midfielders 3.6 2.6 12.1 1.4 0.190 

Wide Midfielders 3.6 2.9 11.7 1.2 0.237 

PLML 

Intercept 24.1 1.6 13.0 15.3 <0.001 

Conditional = 0.717 

Marginal = 0.206 

AIC = 896   

BIC = 922 

Forwards 3.9 2.4 12.0 1.7 0.130 

Full Backs 2.0 2.4 11.9 0.8 0.411 

Midfielders 2.5 2.1 12.2 1.2 0.254 

Wide Midfielders 4.7 2.4 11.9 2.0 0.071 

PLV 

Intercept 44.1 2.5 12.7 17.8 <0.001 

Conditional= 0.621 

Marginal= 0.207 

AIC = 1164  

BIC = 1190 

Forwards 4.0 3.7 11.7 1.1 0.302 

Full Backs 7.0 3.7 11.6 1.9 0.083 

Midfielders 6.3 3.3 12.1 1.9 0.082 

Wide Midfielders 7.4 3.7 11.6 2.0 0.068 

Individual descriptive relationships between PLTOTAL and distance are shown in Figure 21. The 

LMM analysis showed that PLTOTAL was significantly associated with distance covered 

(conditional R2 = 0.809; p < 0.001 – Table 11). 
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Figure 21. Individual descriptive relationships between distance covered (m) and PLTOTAL 

(a.u.) in the first and second halves of the matches. 

Table 11. Outcomes of linear mixed model with PLTOTAL as dependent variable, distance as fixed effect, and half, and player 

as random effects. 

Dependent 

variable 
Fixed effect Estimate Std. Error df t-value p R2 Model Fit 

PLTOTAL 
Intercept 71.4 1.7 11.7 42 <0.001 Conditional = 0.809 

Marginal = 0.435 

AIC = 1165  

BIC = 1181 Distance 0.01 <0.001 190 14.2 <0.001 
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10.6. Discussion 

The main purpose of this study was to explore the use of player load in professional soccer by 

analyzing the distribution of the PLTOTAL in three axis of movement, investigating the effect of 

playing position on PL-related variables, and analyzing the association between PLTOTAL and 

distance covered during match-play. The results, which were in line with our hypothesis, 

showed that the axis of movement had a significant effect on the distribution of the PL, with 

PLV demonstrating the greatest load. In addition, no effect of playing position on any PL-related 

variable was observed. Finally, a significant association between PLTOTAL and distance covered 

was observed, suggesting that strength and conditioning coaches may not need to analyze both 

volume parameters in their daily monitoring.  

Regarding the first aim of the study, the results are consistent with previous studies that 

analyzed the relative contribution of each axis to the PLTOTAL (Barrett, Midgley, Reeves, et al., 

2016; Barrett, Midgley, Towlson, et al., 2016; Page et al., 2015). Specifically, PLV was greater 

than PLAP and PLML (Barrett, Midgley, Reeves, et al., 2016; Barrett, Midgley, Towlson, et al., 

2016; Page et al., 2015), and PLAP greater than PLML (Page et al., 2015). These findings 

demonstrate that each axis of movement contributes to PLTOTAL but in different ways. This 

might be explained by previous research on soccer players, which showed that players spent 

~48.7 % of time moving in a directly forward direction, ~20.6 % of time not moving in any 

direction and the rest of time moving lateral, backward, diagonal and arced directions 

(Bloomfield et al., 2007b). Moreover, there are specific actions of match-play such as the sprint, 

which may require greater PLV and PLAP than PLML. However, strength and conditioning 

coaches need to consider that most sprints are non-linear actions (e.g., curve sprints) (Oliva-

Lozano, Fortes, & Muyor, 2021), so this might lead to an increase in PLML. Specifically, curve 

sprints require the player to generate centripetal forces and lead to different mechanical and 

neuromuscular behaviors compared to linear sprints (Filter et al., 2020). Given that the PLV 

contributed most to PLTOTAL, this implies that vertical force production is a critical component 

of soccer players performance (Loturco et al., 2020). Thus, it is recommended that professional 

soccer players perform both ballistic and non-ballistic vertically directed exercises (Loturco et 

al., 2015, 2020) in addition to core exercises for an effective kinetic chains transfer to upper 

and lower body extremities (Oliva-Lozano & Muyor, 2020). A previous study observed that the 

first 15 minutes of the match elicited the highest PLTOTAL, PLV, PLML, and PLAP, and each 15 

min period were progressively reduced during the second half (Barrett, Midgley, Reeves, et al., 
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2016). These previous findings suggest that the individual axes should be monitored as a 

measure of external load given that this decrease in performance might be associated with the 

development of fatigue during the match (Barrett, Midgley, Reeves, et al., 2016). 

Another finding of this study was that playing position had no significant effect on any PL-

related variable. In this regard, a recent study observed that the pattern of development of the 

PLTOTAL, PLV, PLML, and PLAP throughout match time was very similar in all playing positions, 

which implies that physical pacing patterns might be employed by soccer players (Dalen et al., 

2020). However, this pattern was not observed for other external load variables such as distance 

covered, sprinting distance, total of accelerations or total of decelerations (Dalen et al., 2020). 

This is also consistent with other investigations, which observed that playing position had no 

significant effect on the locomotor efficiency (i.e., PLTOTAL per meter covered) (Oliva-Lozano, 

Maraver, Fortes, et al., 2020b) and that the variance in the PLTOTAL was not significantly 

explained by the positional role during professional soccer match play (Barrett, Midgley, 

Reeves, et al., 2016). Nevertheless, other researchers also showed that positional differences in 

PLTOTAL may exist across playing positions (Dalen et al., 2016). For instance, central defenders, 

midfielders, and wide-midfielders showed 12 %, 18 %, and 26 % greater PLTOTAL, respectively, 

than full-back players, which may be explained by the technical-tactical role of each playing 

position in each team (Dalen et al., 2016). These conflicting findings between studies suggest 

that more research is required to determine the effect of additional contextual factors such as 

team playing style, playing formation, or league/competition levels on PL variables (Brito 

Souza et al., 2020; Palucci-Vieira et al., 2018). Although playing position had no significant 

effect on any PL-related variable in our study, it is also recommended that team performance 

analysts examine the physical demands for each playing position in order to perform a context-

specific analysis.  

Finally, a significant relationship between PLTOTAL and distance covered was observed, which 

is in line with previous research assessing the relationship between training load 

indicators(Casamichana et al., 2013; Casamichana & Castellano, 2015) (r > 0.7 and p < 0.01). 

Although this implies the potential use of PLTOTAL as a significant workload parameter, soccer 

practitioners should consider if it is necessary to daily analyze both parameters. Given the large 

number of variables provided by electronic performance tracking systems, one of the greatest 

challenges is the selection of key performance parameters (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Rojas-Valverde et al., 2020). The results from this study do not 
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mean that PLTOTAL and distance covered are interchangeable variables, but both parameters are 

strongly correlated. Therefore, the selection of one of them may be enough for load monitoring 

purposes. 

Although this study presents novel findings, some limitations need to be acknowledged. For 

instance, only competition data were included from only one team. Future studies may include 

several teams and training data. Also, the tracking systems were placed at the scapulae, but it 

has been suggested that the center of mass may be a better location to acquire accelerometer 

data (Barrett, Midgley, Towlson, et al., 2016).   

10.7. Conclusion 

PLTOTAL and the triaxial data provided by performance tracking systems (i.e., PLV, PLAP, PLML) 

may be used for load monitoring purposes in training sessions and matches. Given the 

differences observed between each axis of movement, training strategies need to be adopted in 

order to tolerate the load experienced by professional soccer players. However, given the large 

contribution of PLV to PLTOTAL, special focus should be placed on the vertical component. Thus, 

both ballistic and non-ballistic vertically directed strength and conditioning exercises are 

recommended. Although playing position had no significant effect on any PL-related variable 

in our study, it is recommended that team performance analysts examine the physical, technical 

and tactical demands for each playing position in order to understand context-specific factors 

influencing PL. In addition, given the relationship between distance covered and PLTOTAL, and 

that PLTOTAL is a triaxial accelerometry-based metric which combines the accelerations in 

anterior-posterior, medial-lateral, and vertical movements, strength and conditioning coaches 

are encouraged to use this parameter as a measure of total body load. For instance, PLTOTAL 

could be used as a surrogate measure of total distance in stadiums with por satellite coverage. 
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CHAPTER 11 

 

Study IX. Kinematic analysis of the postural 

demands in professional soccer match play 

using inertial measurement units   
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11. KINEMATIC ANALYSIS OF THE POSTURAL DEMANDS IN PROFESSIONAL 

SOCCER MATCH PLAY USING INERTIAL MEASUREMENT UNITS 

11.1. Abstract 

The development of wearable sensors has allowed the analysis of trunk kinematics in match 

play, which is necessary for a better understanding of the postural demands of the players. The 

aims of this study were to analyze the postural demands of professional soccer players by 

playing position. A longitudinal study for 13 consecutive microcycles, which included one 

match per microcycle, was conducted. Wearable sensors with inertial measurement units were 

used to collect the percentage (%) of playing time spent and G-forces experienced in different 

trunk inclinations, and the inclination required for different speeds thresholds. The inclination 

zone had a significant effect on the time percentage spent on each zone (p<0.001, ηp2=0.85) 

and the G-forces experienced by the players (p<0.001, ηp2=0.24). Also, a significant effect of 

the speed variable on the trunk inclination zones was found since trunk flexion increased with 

greater speeds (p<0.001; ηp2=0.73), except for midfielders. The players spent most of the time 

in trunk flexion between 20° and 40°, the greatest G-forces were observed in trunk extension 

zones between 0° and 30°, and a linear relationship between trunk inclination and speed was 

found. This study presents a new approach for the analysis of players’ performance. Given the 

large volumes of trunk flexion and the interaction of playing position, coaches are 

recommended to incorporate position-specific training drills aimed to properly prepare the 

players for the perception-action demands (i.e., visual exploration and decision making) of the 

match as well as trunk strength exercises and other compensatory strategies before and after the 

match.  

11.2. Keywords 

Football, Posture, Game Analysis, Load, Team Sports, Tracking Systems 
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11.3. Introduction 

Soccer is a team sport which is played in a dynamic environment with considerable demands 

on the perceptual-motor skills of the players (Vaeyens et al., 2007; Vänttinen et al., 2010; Ward 

& Williams, 2003). Then, as in other team sports in which the ball, teammates, referees, or 

opposition players are continually in motion, it is suggested that the understanding of the 

postural demands met by the players when performing sports-specific skills would provide 

coaches and performance analysts with meaningful information about the performance in 

perception and action (Warman et al., 2019). For example, the downward orientation of the 

head and the trunk may restrict the ability to perform in the field of regard (Lim et al., 2017; 

Warman et al., 2019). However, soccer players usually play the ball with the feet, which may 

increase the trunk flexion and move the field of regard down (Warman et al., 2019). Also, the 

increase in trunk flexion is a natural movement given the increase in speed (Souza, 2016), which 

suggests that the analysis of the trunk inclination required for different speeds thresholds is 

necessary. 

In addition, the trunk kinematics have a significant effect on knee and hip energetics in running 

(Teng & Powers, 2014a), hamstring injury (Schuermans et al., 2017), patellofemoral joint stress 

(Teng & Powers, 2014b), and low back pain in professional soccer players (Grosdent et al., 

2016). For instance, a previous study found that upright trunk posture in running was associated 

with greater patellofemoral joint stress than running with forward trunk flexion (Teng & 

Powers, 2014b). In this regard, another study concluded that running with an upright trunk 

posture increased knee extensors’ energy generation and absorption while incorporating ~10 

degrees trunk flexion decreased such energy generation and absorption (Teng & Powers, 

2014a). 

Moreover, soccer is a sport which involves different high-intensity actions such as 

accelerations, decelerations, sprints, changes of directions, jumps, collisions, or landings 

(Granero-Gil et al., 2020; Oliva-Lozano, Fortes, & Muyor, 2020; Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d; Riboli, Semeria, et al., 2021). In this context, the 

ankles, knees and hip chained to the spine play a crucial role as shock absorbers since the 

magnitude and total of shocks on the musculoskeletal system lead to chronic injury risks in 

recreational runners (Lindsay et al., 2014; Simoni et al., 2020). For instance, the trunk 

acceleration magnitude (i.e., G-force) is highly correlated to the forces lending to the mechanics 
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of injury (Lindsay et al., 2014). These accelerations, which are measured by inertial 

measurement units that register triaxial movements (x, y, and z), are considered as an important 

external workload indicator (Gómez-Carmona et al., 2020; Oliva-Lozano, Maraver, Fortes, et 

al., 2020b). In consequence, the understanding of the G-forces placed on the trunk when 

performing activities involving running actions is considered necessary in order to maximize 

running economy and injury prevention (Oliva-Lozano, Maraver, Fortes, et al., 2020b).  

However, there are limited data available to date concerning the postural demands of 

professional soccer players in match play (Oliva-Lozano, Maraver, Fortes, et al., 2020b). A 

recent investigation, which was conducted on soccer players (Oliva-Lozano, Maraver, Fortes, 

et al., 2020b), suggested that practitioners should consider this information for the design of 

training drills given the postural demands observed during match play. In addition, this 

investigation concluded that strength and conditioning coaches should also consider the impact 

that contextual variables such as playing position may have on the trunk inclination and G-

forces experienced by the players (Oliva-Lozano, Maraver, Fortes, et al., 2020b). Nevertheless, 

more studies on the postural demands of professional soccer players during match play are 

necessary because it is the only study published to date (Oliva-Lozano, Maraver, Fortes, et al., 

2020b). Perhaps, one of the reasons for the lack of research on this topic is explained by the 

methodological difficulties associated with the instruments used for measuring trunk 

kinematics (Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b). Although the gold standard 

instruments for this aim are the motion capture systems, these are limited to laboratory settings 

(Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b; Poitras et al., 2019). In recent years, 

wearable inertial measurement units have been considered as alternative instruments for motion 

capture since these may give insight into how soccer players use their trunk to perform the 

sport-specific skills in match play (Warman et al., 2018, 2019).  

Therefore, the aims of this study were to: 1) analyze the percentage (%) of playing time that 

soccer players spend in different trunk inclinations in match play; 2) analyze the G-forces that 

soccer players  experience in different trunk inclinations; 3) analyze the trunk inclination 

required for different speeds thresholds; 4) analyze the effect of playing position on the time 

percentage that soccer players spend in different trunk inclinations, G-forces that the players 

experience in different trunk inclinations, and trunk inclination required for different speeds 

thresholds. Based on the results observed from a recent study on professional soccer players 

(Oliva-Lozano, Maraver, Fortes, et al., 2020b), it is hypothesized that the players may spend 
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most of the time in trunk flexion. Then, the greatest G-forces may be observed in similar trunk 

flexion ranges and a linear relationship between trunk inclination and speed should be found. 

11.4. Methods 

Study design 

A longitudinal study for 13 consecutive microcycles, which included one match per microcycle, 

was conducted in LaLiga 123. This study was carried out between March 17th, 2019 (first 

match) and June 6th, 2019 (last match). Wearable sensors with inertial measurement units were 

used to obtain time-, acceleration- and velocity-based variables considering different trunk 

inclination angles. The study was designed according to the Ethical Standards in Sports and 

Exercise Science Research (Harriss & Atkinson, 2015) and the club authorized the data 

collection during the competitive season. In addition, the institutional bioethics committee’s 

approval was obtained. 

Participants 

A total of 15 professional soccer players (27.14 ± 3.94 years; 1.82 ± 0.06 cm; 75.57 ± 5.64 kg) 

participated in the study. The players were categorized into different playing positions: central 

defenders (CD), full-backs (FB), forwards (FW), midfielders (MF), and wide-midfielders 

(WMF). Only players who completed the total duration of the match were included in the 

analysis. However, goalkeepers were not considered for the study given the different nature of 

their activity-profile (Oliva-Lozano, Gómez-Carmona, Pino-Ortega, et al., 2020a). 

Procedures 

The data were collected by WIMU Pro devices (RealTrack Systems, Almería, Spain) in match 

play (Figure 21). These are wireless inertial measurement units composed of four triaxial 

accelerometers, three triaxial gyroscopes, one triaxial magnetometer, and one barometer. In 

addition, these devices are Global Positioning Systems (GPS). Based on previous studies which 

used the same tracking devices (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e, 

2020d), these were calibrated before the start of the match following the manufacturer’s 

instructions (RealTrack Systems, Almería, Spain). The data collected by the device was 

visualized on SPro (RealTrack Systems, Almería, Spain) at the end of each match and the raw 
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data from “ATTITUDE EULER Z”, “ACELT”, and “GPS Speed” channels was downloaded 

for the analysis. 

 

Figure 21. Tracking system (A) placed in the back pocket of a chest vest (B). 

Since each player wore a WIMU Pro device, which was vertically placed in the back pocket of 

a chest vest, the “ATTITUDE EULER Z” represented the orientation of the device (in degrees, 

°) for movements within the Z-axis (i.e., trunk flexion and extension movements) (Oliva-

Lozano, Martín-Fuentes, & Muyor, 2020b). This device has been considered as a reliable 

instrument for measuring the inclination for movements within the Z-axis (mean bias: ~1.2°; 

intraclass correlation coefficients > 0.97; coefficient of variation < 7%) (Oliva-Lozano, Martín-

Fuentes, & Muyor, 2020b). Then, these data, which were collected at 100Hz, were used to 

calculate the trunk inclination zones based on a recent protocol (Warman et al., 2019). 

Considering that the upright position represented the 0° position and the “ATTITUDE EULER 

Z” reported -90° for this position, the authors applied a formula (i.e., value from ATTITUDE 

EULER Z + 90) in order to obtain the upright position at 0°. Therefore, the trunk flexion zones 

were: 0° - 10°, 10° - 20°, 20° - 30°, 30° - 40°, 40° - 50°, 50° - 60°, 60° - 70°, 70° - 80°, 80° - 

90°, and > 90° while the trunk extension zones were: 0° - -10°, -10° - -20°, -20° - -30°, -30° - -

40°, and < -40°. In addition, the time that soccer players spent in different trunk inclinations 
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were calculated as time percentage (e.g. total of values in 10°-20° zone ÷ total duration   ×100) 

since the matches had different durations (i.e., 90 minutes + match-related stoppage time).  

The “ACELT” is defined as the resultant vector of the G-forces registered by the triaxial 

accelerometers (x, y z), which measures the combination of gravity and changes in vertical and 

horizontal movements of the device (ACELT formula = √𝑥2 + 𝑦2 + 𝑧2) (Gómez-Carmona, 

Bastida-Castillo, García-Rubio, et al., 2019) (Figure 22A). The accelerometers from WIMU 

Pro (RealTrack Systems, Almería, Spain) have been tested and considered as good instruments 

given the accuracy to calculate accelerometry-based variables (mean bias: ~0.01 G; coefficient 

of variation < 0.6%) (Gómez-Carmona, Bastida-Castillo, García-Rubio, et al., 2019).  

Finally, the “GPS Speed” data were collected at 10 Hz. The speed data collected by WIMU Pro 

is considered as valid (bias: 1.2 – 1.3 km/h) and reliable (intraclass correlation coefficients: > 

0.93) (Bastida Castillo et al., 2018). The GPS data collected were synchronized with “EULER 

Z” data in order to calculate the players’ average trunk inclination required for different speeds 

thresholds (0 - 7 km/h, 7 – 14 km/h, 14 – 21 km/h, >21 km/h) (Figure 22B). 

 

Figure 22. Raw data collected by the tracking system from the “ACELT” channel (A) and the 

“ATTITUDE EULER Z plus 90” (i.e., upright position) synchronized with GPS Speed (B). 
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Statistical analysis 

The descriptive statistics were obtained for the time percentage that soccer players spent in each 

zone of trunk inclination, the G-forces that the players experienced in each zone of trunk 

inclination, and the trunk inclination required for each speed threshold. Shapiro-Wilk test was 

used to test the normality of the data and Levene’s test was performed to assess the equality of 

variances. The sphericity was obtained through Mauchly’s test (p < 0.05 in all variables). A 

linear model with mixed-design analysis of variance for repeated measures was performed. 

Playing position was considered a between-subject variable for this analysis. The comparisons 

between the time percentage that the soccer players spent in each zone of trunk inclination, the 

G-forces that the players experienced in each zone of trunk inclination, and the trunk inclination 

required for each speed threshold were obtained through Bonferroni post hoc. Also, the effect 

sizes were reported through partial eta-squared (ηp2). The statistical analysis was run on SPSS 

Statistics for Windows (IBM Corp., Armonk, NY, USA) with the level of significance set at p 

≤ 0.05. 

11.5. Results 

Table 11 shows the descriptive statistics with the time percentage that the soccer players from 

each playing position spent on different inclination zones during match play as well as the 

differences between zones. The inclination zone variable had a significant effect on the time 

percentage spent on each zone (F(1.18, 154.06) = 510.11, p < 0.001, ηp2 = 0.85). Specifically, the 

soccer players spent most of the time in trunk flexion between 20° and 30° (WMF: ~50%; CD: 

~46%; MF: ~45%; FB: ~42%; FW: ~36%) followed by the zone between 30° and 40° (FW: 

~37%; CD: ~36%; FB: ~26%; MF: ~24%; WMF: 21%). In addition, a significant interaction 

between playing position and the time percentage spent in different trunk inclination zone was 

observed (F(7.37, 154.06) = 5.74; p < 0.001; ηp2 = 0.21). 
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Table 11. Time percentage (%) spent on each trunk flexion and extension zone (Mean ± Standard deviation). 

 Inclination 

zones (°) 

Central 

defenders 
Full-backs Forwards Midfielders Wide-midfielders 

Trunk 

flexion 

0°-10° 
0.17 ± 0.18 

c, d, e, f, j 

1.05 ± 1.25 
b, c, d, e, h, i, k, l, m, 

n, o 

0.47 ± 0.80 
c, d, e, f, g, j 

0.58 ± 0.60 
b, c, d, e, f 

0.95 ± 0.50 
b, c, d, e, f, k, l, m, n, o 

10°-20° 
3.29 ± 3.43 

c, d 

18.95 ± 18.10 
a, c, f, g, h, i, j, k, l, 

m, n, o 

7.08 ± 8.79 
c, d 

17.31 ± 13.58 
a, c, f, g, h, i, j, k, l, 

m, n, o 

13.41 ± 4.09 
a, c, f, g, h, i, j, k, l, m, 

n, o 

20°-30° 
46.09 ± 11.52 

a, b, e, f, g, h, i, j, k, 

l, m, n, o 

42.16 ± 13.31 
a, b, e, f, g, h, i, j, k, l, 

m, n, o 

36.16 ± 13.72 
a, b, e, f, g, h, i, j, 

k, l, m, n, o 

44.62 ± 12.43 
a, b, d, e, f, g, h, i, j, 

k, l, m, n, o 

50.20 ± 4.21 
a, b, d, e, f, g, h, i, j, k, l, 

m, n, o 

30°-40° 
35.47 ± 10.40 

a, b, e, f, g, h, i, j, k, 

l, m, n, o 

25.59 ± 13.91 
a, e, f, g, h, i, j, k, l, 

m, n, o 

36.75 ± 14.36 
a, b, e, f, g, h, i, j, 

k, l, m, n, o 

24.23 ± 14.35 
a, c, e, f, g, h, i, j, k, l, 

m, n, o 

20.71 ± 4.26 
a, c, e, f, g, h, i, j, k, l, 

m, n, o 

40°-50° 
9.47 ± 3.12 

a, c, d, f, g, h, i, j, k, 

l, m, n, o 

7.79 ± 5.39 
a, c, d, f, g, h, i, j, k, l, 

m, n, o 

10.67 ± 3.89 
a, c, d, f, g, h, i, j, 

k, l, m, n, o 

8.59 ± 4.65 
a, c, d, f, g, h, i, j, k, l, 

m, n, o 

8.15 ± 1.74 
a, c, d, f, g, h, i, j, k, l, 

m, n, o 

50°-60° 
3.05 ± 1.36 

a, c, d, e, g, h, i, j, 

k, l, m, n, o 

2.40 ± 1.84 
b, c, d, e, g, h, i, j, k, 

l, m, n, o 

3.70 ± 1.04 
a, c, d, e, g, h, i, j, 

k, l, m, n, o 

2.76 ± 1.39 
a, b, c, d, e, g, h, i, j, 

k, l, m, n, o 

3.08 ± 0.63 
a, b, c, d, e, g, h, i, j, k, 

l, m, n, o 

60°-70° 
0.84 ± 0.43 

c, d, e, f, g, h, i, k, l, 

m, n 

0.80 ± 0.65 
b, c, d, e, f, l, m, n 

1.92 ± 2.23 
a, c, d, e, f, h, i, k, l, 

m, n, o 

0.79 ± 0.31 
b, c, d, e, f 

1.08 ± 0.26 
b, c, d, e, f, k, l, m, n, o 

70°-80° 
0.28 ± 0.14 

c, d, e, f, g, j, k, l, 
m, n 

0.31 ± 0.23 
a, b, c, d, e, f, g, k, l, 

m, n 

0.64 ± 0.48 
c, d, e, f, g, j, k, l, 

m, n 

0.29 ± 0.18 
b, c, d, e, f, k, l, m, n, 

o 

0.46 ± 0.19 
b, c, d, e, f, j, k, l, m, n, 

o 

80°-90° 
0.16 ± 0.07 
c, d, e, f, g, j 

0.16 ± 0.09 
a, b, c, d, e, f, j 

0.47 ± 0.56 
c, d, e, f, g, j, k, l, 

m, n 

0.18 ± 0.18 
b, c, d, e, f 

0.41 ± 0.18 
b, c, d, e, f, j, k, l, m, n, 

o 

>90° 
1.01 ± 0.66 

a, c, d, e, f, h, i, k, l, 

m, n, o 

0.68 ± 0.28 
b, c, d, e, f, i, k, l, m, 

n, o 

1.85 ± 0.90 
a, c, d, e, f, h, i, k, l, 

m, n, o 

0.60 ± 0.69 
b, c, d, e, f, l, m, n 

1.45 ± 0.70 
b, c, d, e, f, h, i, k, l, m, 

n, o 

Trunk 

extension 

0°-10° 
0.03 ± 0.03 
c, d, e, f, g, h, j 

0.06 ± 0.06 
a, b, c, d, e, f, h, j, l, 

m, n 

0.04 ± 0.01 
c, d, e, f, g, h, i, j 

0.03 ± 0.02 
b, c, d, e, f, h, m, n 

0.06 ± 0.03 
a, b, c, d, e, f, g, h, i, j, l, 

m, n 

10°-20° 
0.01 ± 0.00 
c, d, e, f, g, h, j 

0.01 ± 0.01 
a, b, c, d, e, f, g, h, i, 

j, k, m, n 

0.02 ± 0.01 
c, d, e, f, g, h, i, j, 

m 

0.01 ± 0.01 
b, c, d, e, f, h, j, m, n 

0.01 ± 0.01 
a, b, c, d, e, f, g, h, i, j, 

k, m, n 

20°-30° 
0.00 ± 0.00 
c, d, e, f, g, h, j 

0.00 ± 0.00 
a, b, c, d, e, f, g, h, j, 

k, l 

0.01 ± 0.01 
c, d, e, f, g, h, i, j, l 

0.00 ± 0.00 
b, c, d, e, f, h, j, k, l 

0.01 ± 0.01 
a, b, c, d, e, f, g, h, i, j, 

k, l 

30°-40° 
0.00 ± 0.00 
c, d, e, f, g, h, j 

0.00 ± 0.01 
a, b, c, d, e, f, g, h, j, 

k, l 

0.02 ± 0.01 
c, d, e, f, g, h, i, j 

0.00 ± 0.00 
b, c, d, e, f, h, j, k, l 

0.00 ± 0.00 
a, b, c, d, e, f, g, h, i, j, 

k, l 

>40° 
0.15 ± 0.60 

c, d, e, f, j 
0.05 ± 0.21 
a, b, c, d, e, f, j 

0.20 ± 0.36 
c, d, e, f, g, j 

0.01 ± 0.03 
b, c, d, e, f 

0.02 ± 0.04 
a, b, c, d, e, f, g, h, i, j 

Note: aStatistical difference to 0°-10° (flexion); bStatistical difference to 10°-20° (flexion); cStatistical difference to 20°-

30° (flexion); dStatistical difference to 30°-40° (flexion); eStatistical difference to 40°-50° (flexion); fStatistical difference 

to 50°-60° (flexion); gStatistical difference to 60°-70° (flexion); hStatistical difference to 70°-80° (flexion); iStatistical 

difference to 80°-90° (flexion); jStatistical difference to >90° (flexion); kStatistical difference to 0°-10° (extension); 

lStatistical difference to 10°-20° (extension); mStatistical difference to 20°-30° (extension); nStatistical difference to 30°-

40° (extension); oStatistical difference to >40° (extension) 
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Table 12 shows the descriptive statistics with the G-forces that the soccer players from each 

playing position experienced in different inclination zones during match play as well as the 

differences between zones. The inclination zone also had a significant effect on the G-forces 

that the soccer players experienced in each zone (F(2.85, 247.96) = 26.78, p < 0.001, ηp2 = 0.24). 

Specifically, the greatest G-forces were observed in trunk extension zones for CD (~2.3G 

between 10° and 20° trunk extension), MF (~2.3G between 0° and 10° trunk extension), WMF 

(~2.2G between 10° and 20° trunk extension), FW (~1.9G between 20° and 30° trunk 

extension), and FB (~1.8G between 0° and 10° trunk extension). However, the interaction 

between playing position and the G-forces experienced in the trunk inclination zones was not 

significant (F(11.4, 87) = 0.93; p = 0.52; ηp2 = 0.04). 

Table 12. ACELT (G) for each trunk flexion and extension zone (Mean ± Standard deviation). 

 Inclination 

zones (°) 
Central defenders  Full-backs Forwards Midfielders Wide-midfielders 

Trunk 

flexion 

0°-10° 
2.16 ± 0.45 

b, c, d, e, f, g, h, i, j 

1.49 ± 0.26 
b, c,  

1.83 ± 0.32 
b, c, d, e, h, i, j 

2.12 ± 0.69 
b, c, d, e, f, g, h, i, j 

1.56 ± 0.15 
b, c, i, j, k 

10°-20° 
1.48 ± 0.22 

a, c, d, e, h, i, j, k, l 

1.20 ± 0.12 
a, f, g, k 

1.30 ± 0.14 
a, c, g, k 

1.27 ± 0.22 
a, c, l, k 

1.19 ± 0.04 
a, f, g, k, l 

20°-30° 
1.09 ± 0.02 

a, b, e, f, g, h, i, j, k, l, 

m 

1.12 ± 0.06 
a, d, e, f, g, h, i, k 

1.10 ± 0.02 
a, b, e, f, g, h, i, k 

1.10 ± 0.04 
a, b, d, e, f, g, h, i, j, 

k, l, m 

1.11 ± 0.02 
a, d, e, f, g, h, k, l, m 

30°-40° 
1.11 ± 0.05 

a, b, e, f, g, h, i, j, k, l, 
m 

1.22 ± 0.08 
c, e, f, g, k 

1.13 ± 0.06 
a, e, f, g, h, i, j, k 

1.17 ± 0.05 
a, c, d, e, f, g, h, k, l, 

m 

1.22 ± 0.04 
c, e, f, g, i, j, k, l 

40°-50° 
1.25 ± 0.10 

a, b, c, d, f, g, j, k, l, m 
1.35 ± 0.09 
c, d, f, i, j, k 

1.30 ± 0.06 
a, c, d, f, g, i, j, k 

1.29 ± 0.06 
a, c, d, e, k, l 

1.32 ± 0.04 
c, d, f, g, i, j, k, l 

50°-60° 
1.38 ± 0.11 

a, c, d, e, g, i, j, k, l, m 
1.44 ± 0.06 
b, c, d, e, h, i, j 

1.45 ± 0.07 
c, d, e, i, j 

1.33 ± 0.08 
a, c, d, e, k 

1.43 ± 0.08 
b, c, d, e, h, i, j, k, l 

60°-70° 
1.44 ± 0.13 

a, c, d, f, h, i, j, k, l 
1.41 ± 0.07 
b, c, d, h, i, j 

1.49 ± 0.15 
b, c, d, e, i, j 

1.33 ± 0.11 
a, c, d, k 

1.44 ± 0.11 
b, c, d, e, h, i, j, k, l 

70°-80° 
1.33 ± 0.13 

a, b, c, d, g, i, j, k, l, m 
1.32 ± 0.08 

c, f, g, j, k 

1.42 ± 0.19 
a, c, d, i, j 

1.33 ± 0.12 
a, c, d, k 

1.30 ± 0.13 
c, f, g, i, j, k, l 

80°-90° 
1.20 ± 0.11 

a, b, c, d, f, g, h, k, l, m 
1.23 ± 0.08 

c, f, g, j, k 

1.27 ± 0.19 
a, c, d, f, g, h, j, k 

1.26 ± 0.15 
a, c, k, l 

1.11 ± 0.07 
a, d, e, f, g, h, k, l, m 

>90° 
1.13 ± 0.09 

a, b, e, f, g, h, k, l, m 
1.17 ± 0.06 
e, f, g, h, i, k 

1.12 ± 0.06 
a, e, f, g, h, i, k 

1.23 ± 0.13 
a, c, k 

1.08 ± 0.03 
a, d, e, f, g, h, k, l, m 

Trunk 

extension 

0°-10° 
2.14 ± 0.56 

b, c, d, e, f, g, h, i, j 
1.81 ± 0.45 
b, c, d, e, h, i, j 

1.90 ± 0.30 
b, c, d, e, i, j 

2.32 ± 0.71 
b, c, d, e, f, g, h, i, j 

2.20 ± 0.34 
a, b, c, d, e, f, g, h, i, j 

10°-20° 
2.34 ± 1.18 

b, c, d, e, f, g, h, i, j 
1.78 ± 0.70 1.67 ± 0.41 

2.09 ± 0.80 
b, c, d, e, i, j 

2.23 ± 0.63 
b, c, d, e, f, g, h, i, j 

20°-30° 
2.12 ± 1.21 
c, d, e, f, h, i, j 

1.77 ± 1.12 1.93 ± 0.82 
2.13 ± 1.20 

c, d 
2.01 ± 0.61 

c, i, j 

30°-40° 1.97 ± 1.70 1.63 ± 1.71 1.73 ± 0.43 1.76 ± 1.20 1.91 ± 1.25 

>40° 1.47 ± 1.52 1.44 ± 1.88 1.40 ± 0.60 1.66 ± 1.71 1.19 ± 0.91 

Note: aStatistical difference to 0°-10° (flexion); bStatistical difference to 10°-20° (flexion); cStatistical difference to 20°-

30° (flexion); dStatistical difference to 30°-40° (flexion); eStatistical difference to 40°-50° (flexion); fStatistical difference 

to 50°-60° (flexion); gStatistical difference to 60°-70° (flexion); hStatistical difference to 70°-80° (flexion); iStatistical 

difference to 80°-90° (flexion); jStatistical difference to >90° (flexion); kStatistical difference to 0°-10° (extension); 

lStatistical difference to 10°-20° (extension); mStatistical difference to 20°-30° (extension); nStatistical difference to 30°-

40° (extension); oStatistical difference to >40° (extension) 
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Regarding the analysis of the trunk inclination required for different speeds thresholds (Figure 

23), a significant effect of the speed variable was found  since trunk flexion increased with 

greater speeds (F(1.83, 162.85) = 239.52; p < 0.001; ηp2 = 0.73). However, the greatest trunk 

inclination for MF (i.e., 31.84 ± 0.85°) was found between 7 and 14 km/h. In addition, a 

significant interaction between playing position and the trunk inclination required for the speed 

zones was observed  (F(7.31, 89) = 18.55; p < 0.001; ηp2 = 0.45). 

 

Figure 23. Trunk inclination (in degrees, °) required for different speed thresholds and 

playing positions 

11.6. Discussion 

The aims of this study were to analyze the time percentage that soccer players spent in different 

trunk inclinations in match play, analyze the G-forces experienced in different trunk 

inclinations, and analyze the trunk inclination required for different speeds thresholds while 

considering the effect of playing position. This study is one of the first steps in the analysis of 

the postural demands of professional soccer players. The main findings were that these players 

spent most of the time in trunk flexion between 20° and 40°, the greatest G-forces were 

observed in trunk extension zones between 0° and 30°, and a linear relationship between trunk 

inclination and speed in all playing positions was observed, except for MF. Therefore, the 

results do not confirm the hypothesis that the greatest G-forces may be observed in trunk flexion 

zones. 

The results showed that the soccer players spent most of the time in trunk flexion between 20° 

and 40°. A recent investigation on field hockey players observed that these were half of the 

match in two trunk flexion zones (30°-40°: ~26% of total time; 40°-50°: ~26% of total time) 

(Warman et al., 2019). This trunk inclination allows the players to perform the sport-specific 
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movements such as running with the ball or passing and controlling the ball, which may move 

the field of regard down (Lim et al., 2017; Warman et al., 2019). In addition, the results showed 

that the playing position should be also considered when analyzing the postural demands. WMF 

was the position with the greatest time percentage (~50%) between 20° and 30° while FW 

showed the lowest time percentage (~36%) in match play. Although these differences may be 

due to the positional demands (i.e., WMF tend to run with the ball for longer times than FW) 

(Ade et al., 2016), these results suggest that these postural demands (e.g., time percentage that 

the players spend in trunk flexion) need to be considered when designing specific training drills 

(Oliva-Lozano & Muyor, 2020). This becomes even more important when players report low 

back pain, which is associated with altered lumbopelvic control (Grosdent et al., 2016), because 

the players may tend to adopt trunk-flexed postures (Hides et al., 2016; Müller et al., 2015). 

Hence, trunk strength exercises and lumbopelvic control exercises may be also beneficial for 

the players (Grosdent et al., 2016; Oliva-Lozano & Muyor, 2020). 

When it comes to the G-forces that the soccer players experienced in different inclination zones 

during match play, a novel finding of the study was that the greatest G-forces were observed in 

trunk extension zones for all playing positions. Given the short period of time that the players 

spent in trunk extension zones during the matches (below 2% of the total time), these results 

might be explained by the fact that the players suffer from very specific collisions, falls, or 

jumps in these brief periods (Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020d; 

Mark Russell et al., 2016). Nonetheless, the results from this study showed that the average G-

forces of soccer players in trunk flexion (~1.32G) during match play are consistent with 

previous research on running kinematics, which examined the average G-forces experienced by 

the athletes (1.21G – 1.38G) (Lindsay et al., 2014). However, contrary to the findings on the 

previous aim, which examined the time percentage that the players spent in each trunk 

inclination zone, no significant effect of playing position on the G-forces experienced in the 

trunk inclination zones was found. In this regard, future studies are needed in order to 

understand if the postural demands are dependent on the playing position or the player itself. 

Finally, the results showed that the trunk flexion increased with greater speeds in all playing 

positions, except for MF. Although the trunk inclination is a variable which has received little 

attention in the literature, it is to highlight that the increase in trunk flexion is a natural 

movement given the increase in speed (Souza, 2016). The progression to faster running speeds 

is associated with increases in electromyographic activity, especially in the multifidus muscle, 
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and kinematic changes (Saunders et al., 2005). However, MF showed different results because 

the greatest trunk inclination was observed between 7 and 14 km/h, which implies that postural 

demands of the MF players differ from the rest of playing positions. Considering the importance 

of the tactical connection between MF and the rest of playing positions in addition to their role 

as game organizers (e.g., passing the ball and linking the sectors of the team) (Clemente et al., 

2015), these results may be explained by the fact that this position requires an upright posture 

at greater speeds in order to perform in their field of regard (Lim et al., 2017; Warman et al., 

2019). From a practical perspective, this is one of the reasons why previous researchers 

suggested that it is important to understand the postural demands of the players during the sport-

specific skills (Jeffreys, 2008; Warman et al., 2018, 2019). For example, if a player tends to 

increase the trunk flexion when sprinting, this may lead to the downward orientation of the head 

and restrict the ability to perform in the field of regard (Lim et al., 2017; Warman et al., 2019). 

In consequence, training drills focused on the visual exploration and decision making are 

necessary in order to have a successful performance in the field of regard.  

It is plausible that some limitations of the study may influence the interpretations of these 

results. For example, data was collected from only one professional soccer team. This study 

was focused on the trunk kinematics, but the analysis of the kinematics of the ankles, knees or 

hip was not conducted. Only players who completed the total duration of the match were 

included in the analysis as homogenization criteria. In addition, not all the playing positions 

could be analyzed since goalkeepers were not included. Therefore, future studies should 

consider these limitations in addition to other variables of interest such as ball possession or 

player’s fatigue, which may have a significant relationship with the postural demands of soccer 

players (Oliva-Lozano, Maraver, Fortes, et al., 2020b). For instance, the sagittal trunk 

inclination and G-forces experienced by professional soccer players in match play are usually 

reduced during the second half of the match, which suggests that fatigue may lead to changes 

in the kinematics of the players (Oliva-Lozano, Maraver, Fortes, et al., 2020b). 

In addition, the data were collected by inertial measurement units and GPS technology, which 

have advantages and disadvantages from a practical standpoint. For example, this technology 

allows the collection of external load (e.g., kinematic parameters such as trunk inclination or 

speed) and internal load variables (e.g., heart rate) (Kos & Kramberger, 2017; Rojas-Valverde, 

Gómez-Carmona, et al., 2019). Although these instruments are valid, reliable, and suitable for 

measuring the inclination in the sagittal plane (Oliva-Lozano, Martín-Fuentes, & Muyor, 
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2020b), acceleration (G-forces) (Gómez-Carmona, Bastida-Castillo, García-Rubio, et al., 2019) 

and position-related variables (Bastida Castillo et al., 2018), the gold standard technology for 

motion capture are optical tracking systems (Poitras et al., 2019). Optical tracking systems are 

limited to laboratory settings and thus, wearable sensors have been considered as an alternative 

method for motion capture (Poitras et al., 2019). However, previous investigations suggested 

that the inertial measurement units should include methods to compensate the drift error and 

improve the accuracy of the data (Fasel et al., 2018; Fong & Chan, 2010; Guiry et al., 2014). 

Specifically, the multi-sensor fusion and the placement of multiple sensors on different 

segments of the body are frequent methods which may increase the accuracy of the data 

collected (Fasel et al., 2018; Fong & Chan, 2010; Guiry et al., 2014; L. Liu et al., 2020; Marta 

et al., 2020). Nonetheless, this last method is useful in professional soccer because wearing 

multiple sensors on the body may be dangerous and uncomfortable for the player (Medina et 

al., 2017; Oliva-Lozano, Maraver, Fortes, et al., 2020b). 

11.7. Conclusion 

This study showed how the data collected by inertial measurement units may be used for the 

analysis of the postural demands of professional soccer players. Since the results showed that 

match play led to significant postural demands, coaches are recommended to incorporate 

training drills which consider the match demands. For example, the volume of trunk flexion 

observed implies that soccer players may unconsciously move the field of regard down and 

position-specific training drills at different speeds are necessary in order to properly prepare the 

players for the perception-action demands (i.e., visual exploration and decision making) of the 

match. In addition, it is suggested that trunk strength exercises are designed with special focus 

on flexion positions as well as other compensatory exercises for trunk extension muscles, which 

balance trunk flexors and trunk extensors. Indeed, the trunk strength exercises might add 

perturbations so as to stimulate trunk accelerations between 2G and 3G in both flexion and 

extension.  
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Study X. Effect of playing position, match half, 

and match day on the trunk inclination, g-

forces, and locomotor efficiency experienced 

by professional soccer players in match play   
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12. EFFECT OF PLAYING POSITION, MATCH HALF, AND MATCH DAY ON THE 

TRUNK INCLINATION, G-FORCES, AND LOCOMOTOR EFFICIENCY 

EXPERIENCED BY PROFESSIONAL SOCCER PLAYERS IN MATCH PLAY 

12.1. Abstract 

The rapid growth of wearable sensors has allowed the analysis of trunk kinematics during the 

match, which is necessary for having a better understanding of the postural demands of soccer 

players. However, some contextual variables may have an impact on the physical demands of 

the players. The aim of this study was to analyze the effect of three contextual variables (playing 

position, match half, and match day) on the sagittal trunk inclination, G-forces, and locomotor 

efficiency experienced by soccer players in match play. Then, wearable sensors were used to 

collect the trunk kinematics during 13 matches. Firstly, positional differences were found on 

the trunk inclination (p=0.01) and the G-forces experienced by the players (p<0.001). For 

example, the greatest and lowest trunk inclination was found for FW (~34.01°) and FB 

(~28.85°) while the greatest and lowest G-forces were found for WMF (1.16 G) and CD (1.12 

G), respectively. However, there were no positional differences on the locomotor efficiency 

(p=0.10;). Secondly, the match half had a significant effect on the trunk inclination (p=0.01) 

and the G-forces experienced by the players (p<0.001) with significant lower values observed 

during the second half. No differences between halves were found on the locomotor efficiency 

for any playing position (p=0.41). Finally, no significant effect of match day on any variable 

was observed. This investigation is one of the first steps towards enhancing the understanding 

of trunk kinematics from professional soccer players. The positional differences found on the 

trunk inclination and G-forces imply that the development of position-specific training drills 

considering the postural demands is necessary so as to prepare the players not only for the 

physical demands but also for a successful performance in the field of regard. Also, the 

resistance to fatigue needs to be trained given the differences between halves. 

12.2. Keywords 

Football, Posture, Match Analysis, Load, Team Sports, Inertial Measurement Units. 
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12.3. Introduction 

One of the variables that gives an insight into the postural demands is the sagittal trunk 

inclination of the player while running (Warman et al., 2018, 2019). This variable is highly 

associated with the low back pain (Grosdent et al., 2016), hamstring injury (Schuermans et al., 

2017), hip and knee energetics in running (Teng & Powers, 2014a), and patellofemoral joint 

stress (Teng & Powers, 2014b). For example, running at a controlled speed (e.g., 3.4 m/s) with 

an excessive upright posture has been associated with greater patellofemoral joint stress 

compared to running with forward trunk flexion (Teng & Powers, 2014b). In addition, the trunk 

inclination is not only related to the development of musculoskeletal injuries but it also may 

explain the performance in the field of regard (Lim et al., 2017; Warman et al., 2019). Then, 

the trunk inclination may be considered as an important variable since soccer players usually 

play the ball with the feet and their ability to perform in the field of regard may be affected as 

well (Warman et al., 2019). 

Furthermore, the analysis of the trunk accelerations through the G-forces experienced by the 

players may provide meaningful information about the players’ performance (Gómez-Carmona 

et al., 2020; Gómez-Carmona, Pino-Ortega, et al., 2019). Soccer is a team sport characterized 

by high-intensity actions (e.g., intermittent sprints, changes of direction, body impacts, jumps, 

and landings), which implies that measuring the trunk accelerations is necessary (Granero-Gil 

et al., 2020; Oliva-Lozano, Fortes, & Muyor, 2020; Oliva-Lozano, Rojas-Valverde, Gómez-

Carmona, et al., 2020d). Since inertial sensors allow the quantification of the trunk accelerations 

in the three axes of movement, recent investigations have suggested the use of G-forces as an 

external workload indicator (Gómez-Carmona et al., 2020). The trunk plays an important role 

as “shock absorber”, but the magnitude (i.e., G-forces) and amount of shocks on the 

musculoskeletal system may increase the risk of injury (Lindsay et al., 2014; Simoni et al., 

2020). 

Thus, the integration of inertial sensors (e.g., accelerometers) with global positioning systems 

(GPS) has become a trending method for workload monitoring in team sports (Gómez-Carmona 

et al., 2020). Many studies support the practical implementation of accelerometry monitoring 

through variables such as the locomotor efficiency ratio (i.e., player load ÷ total distance 

covered) (Barrett, Midgley, Reeves, et al., 2016; Gómez-Carmona et al., 2020). This is a very 

practical variable from a performance standpoint since a player that accumulates more load than 
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another player may be indicative of a reduced locomotor efficiency if both covered the same 

distance (Barrett, Midgley, Reeves, et al., 2016). Moreover, the locomotor efficiency ratio has 

been identified as a representative variable of fatigue and injury risk in match play (Barrett, 

Midgley, Reeves, et al., 2016). 

In consequence, the analysis of the postural demands through the trunk inclination, the G-forces 

experienced by the players and the locomotor efficiency ratio is necessary. In addition, 

contextual variables such as playing position, match half and match day, which usually have an 

impact on the physical demands of professional soccer players (Barrett, Midgley, Reeves, et 

al., 2016; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e, 2020d; Trewin et al., 

2018), need to be considered. However, limited data have been published to date. To the best 

of the authors’ knowledge, no studies are available to date regarding the analysis of trunk 

inclination and the G-forces experienced by the players in competitive match-play. Thus, the 

aims of this study were to analyze the effect of playing position, match half, and match day on 

the sagittal trunk inclination, G-forces, and locomotor efficiency ratio of professional soccer 

players in match play. 

12.4. Methods 

Study design 

This study used a cohort design for 13 microcycles in which one match per microcyle (i.e., 

weekly periods counting from the day after the match to the following match) was played by 

an professional soccer team from LaLiga 123. These microcycles belonged to the last phase of 

the season. Wearable sensors, which contained inertial measurement units and GPS technology, 

were used in order to collect the trunk kinematics in match play. The data collection was 

authorized by the club and informed consent for volunteer participation in the study was given. 

Also, the approval from the institutional bioethics committee was obtained. 

Participants 

Fifteen professional male soccer players (27.1 ± 3.9 years old; 75.6 ± 5.6 kg; 1.8 ± 0.1 m;) took 

part in this study. They belonged to specific playing positions: central defenders (CD, 26 match 

observations), full-backs (FB, 19 match observations), wide-midfielders (WMF, 18 match 

observations), midfielders (MF, 17 match observations), and forwards (FW, 14 match 
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observations). However, the players who could not participate in the total duration of the match 

were not included in the study in order to avoid the effect of pacing strategies (Carling & 

Dupont, 2011; Martín-García, Casamichana, et al., 2018; Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d; Mark Russell et al., 2016). In addition, goalkeepers were 

excluded from the analysis given the differences in the activity-profile (Oliva-Lozano, Gómez-

Carmona, Pino-Ortega, et al., 2020a). 

Procedures 

WIMU Pro units (RealTrack Systems, Almería, Spain) were used as electronic performance 

tracking systems in order to collect the data during the matches. These wearable units, which 

were placed in the back pocket of a chest vest on a vertical position (Figure 24), contain inertial 

sensors (four 3D accelerometers, three 3D gyroscopes, one 3D magnetometer) recording data 

at 100Hz and GPS technology recording data at 10Hz. Each unit was calibrated before the start 

of the match following the manufacturer’s instructions (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020e). The data collected by the units were transferred to SPro 

(RealTrack Systems, Almería, Span) at the end of the matches in order to download the 

“Intervals Pro” report in addition to the raw data from “ATTITUDE EULER Z” and “ACELT” 

channels.  

 

Figure 24. Tracking system placed in the back pocket of a chest vest 
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The process to obtain these data was as follows: first, open the session file; second, create the 

first and second half drills using the “Select mode” on SPro; third, launch “ATTITUDE EULER 

Z” channel, “ACELT” channel, and “Intervals Pro” to the central panel; forth, click on “Export” 

to download the data. The “Intervals Pro” report was used to obtain the total distance covered 

(in meters) and the player load, which is an accelerometer-derived variable that derives from 

movements registered in the x-, y-, and z-axis (Gómez-Carmona, Bastida-Castillo, González-

Custodio, et al., 2019). These variables allowed the calculation of the locomotor efficiency (i.e., 

locomotor efficiency = player load ÷ total distance covered in meters) (Barrett, Midgley, 

Towlson, et al., 2016) (Figure 25). 

 

Figure 25. Data collected by the tracking system on the Intervals Pro report (RealTrack 

Systems, Almería, Spain), which were used to calculate the locomotor efficiency ratio. 

The “ATTITUDE EULER Z” was used to analyze the sagittal trunk inclination (in degrees, °) 

(Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b) (Figure 26a). Since the upright posture 

equals 0° and the original data collected by the unit reported 90° for the same position, the 

researchers applied a simple formula, which was the data value from “ATTITUDE EULER Z” 

plus 90, so as to obtain the right position (Figure 26b). Thirdly, the “ACELT” data, which 

reported the resultant vector of the G-forces from horizontal and vertical movements registered 
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by the three axis (x, y, z) of the accelerometers (ACELT formula = √𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) (Gómez-

Carmona, Bastida-Castillo, García-Rubio, et al., 2019) (Figure 26c). 

 

Figure 26. Raw data from “ATTITUDE EULER Z” (A), “ATTITUDE EULER Z plus 90” so 

as to obtain the right position (B), and “ACELT” (C). 

Statistical analysis 

First of all, the descriptive statistics for the trunk inclination, G-forces and locomotor efficiency 

ratio were calculated by playing position, match half, and match day. Then, the equality of 

variances was calculated through Levene’s test and the sphericity was calculated through 

Mauchly’s test (p < 0.05 in all variables). A linear model with a mixed-design analysis of 
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variance for repeated measures was run. Trunk inclination, G-forces and locomotor efficiency 

ratio were set as dependent variables. Then, the Bonferroni post hoc was used in order to 

compare the results from the dependent variables between playing positions, match halves, and 

match days. The confidence interval (CI) and Cohen’s d were reported for the pairwise 

comparisons. In addition, the partial eta-squared (ηp2) was calculated to express the amount of 

variance accounted for the independent variables. The statistical analysis was performed on 

SPSS Statistics (IBM Corp., Armonk, NY, USA) with the level of significance set at p ≤ 0.05. 

12.5. Results 

Sagittal trunk inclination 

Figure 27 shows the mean sagittal trunk inclination and standard deviation by playing position 

and match half. The playing position had a significant effect on the sagittal trunk inclination 

(F(4, 32) = 4.44; p = 0.01; ηp2 = 0.36). Regarding the match half, it had a significant effect on the 

trunk inclination (F(1, 32) = 9.05; p = 0.01; ηp2 = 0.22). Then, the interaction between match half 

and playing position was significant too (F(4, 32) = 3.80; p = 0.01; ηp2 = 0.32). Specifically, the 

sagittal trunk inclination during the first half was significantly greater compared to the second 

half in CD (~1.52°; p = 0.01; CI = 0.75 – 2.28; d = 0.60) and MF (~1.45°; p = 0.01; CI = 0.45 

– 2.45; d = 0.33).  

In addition, FW showed significantly greater sagittal trunk inclination than FB in the first half 

(~5.09°; p = 0.04; CI = 0.13 – 10.05; d = 1.06). During the second half, FW also showed 

significantly greater inclination than FB (~5.49°; p = 0.02; CI = 0.74 – 10.25; d = 1.05), MF 

(~6.43°; p = 0.01; CI = 1.55 – 11.31; d = 1.22), and WMF (~4.99°; p = 0.04; CI = 0.18 – 9.80; 

d = 1.21). However, there was no significant effect of match day on the sagittal trunk inclination 

(F(12, 32) = 0.81; p = 0.64; ηp2 = 0.23) so no significant differences in the trunk inclination (p > 

0.05) were observed between match days for any playing position. 
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Figure 27. Sagittal trunk inclination of professional soccer players based on playing 

position and match half. *Significant differences (p < 0.05) between halves. 

G-forces 

The G-forces experienced by the players in match play (Figure 28) were significantly 

influenced by the match half (F(1, 32) = 182.58; p < 0.001; ηp2 = 0.85) and the playing position 

(F(4, 32) = 14.56; p < 0.001; ηp2 = 0.65). The interaction between match half and playing position 

was also significant (F(4, 32) = 5.15; p = 0.003; ηp2 = 0.39). In this regard, the G-forces were 

lower during the second half of the matches compared to the first half for CD (~0.02 G; p = 

0.01; CI = 0.013 – 0.021; d = 0.87), FB (~0.01 G; p = 0.01; CI = 0.002 – 0.012; d = 0.40), FW 

(~0.02 G; p = 0.01; CI = 0.015 – 0.026; d = 0.93), MF (~0.02 G; p = 0.01; CI = 0.013 – 0.024; 

d = 1.01), and WMF (~0.01 G; p = 0.01; CI = 0.007 – 0.018; d = 0.41).  

During the first half of the matches, CD reported significantly lower G-forces than FB (~0.03 

G; p = 0.03; CI = 0.002 – 0.049; d = 1.43), MF (~0.04 G; p = 0.001; CI = 0.014 – 0.063; d = 
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2.05), WMF (~0.06 G; p = 0.001; CI = 0.029 – 0.078; d = 2.03), and FW (~0.03 G; p = 0.03; 

CI = 0.002 – 0.054; d = 1.47). In addition, WMF showed significantly greater G-forces than FB 

(~0.03 G; p = 0.03; CI = 0.002 – 0.055; d = 0.97) in the first half. During the second half of the 

matches, CD reported significantly lower G-forces than FB (~0.04 G; p = 0.001; CI = 0.013 – 

0.058; d = 1.91), MF (~0.04 G; p = 0.001; CI = 0.013 – 0.058; d = 1.57), and WMF (~0.06 G; 

p = 0.001; CI = 0.035 – 0.080; d = 2.28). Also, WMF showed significantly greater G-forces 

than FW (~0.03 G; p = 0.01; CI = 0.01 – 0.06; d = 1.12) during the second half. However, the 

G-forces experienced by the players did not significantly differ between match days (F(12, 32) = 

1.41; p = 0.21; ηp2 = 0.35). 

 

Figure 28. G-forces experienced by professional soccer players based on playing position 

and match half. *Significant differences (p < 0.05) between halves. 

Locomotor efficiency ratio 

Figure 29 shows the locomotor efficiency ratio by playing position and match half. Although 

the match half (F(1, 32) = 9.67; p = 0.004; ηp2 = 0.23) had a significant effect on the locomotor 
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efficiency ratio, the effect of playing position (F(4, 32) = 2.12; p = 0.10; ηp2 = 0.21) and the 

interaction between match half and playing position was not significant (F(4, 32) = 1.03; p = 0.41; 

ηp2 = 0.11). No differences (p > 0.05) were found between playing positions. In addition, match 

day had no significant effect on the locomotor efficiency ratio experienced by the soccer players 

(F(12, 32) = 0.47; p = 0.92; ηp2 = 0.15). 

 

Figure 29. Locomotor efficiency ratio from professional soccer players based on playing 

position and match half. *Significant differences (p < 0.05) between halves 

12.6. Discussion 

The main purpose of this investigation was to analyze the effect of playing position, match half, 

and match day on trunk kinematics of professional soccer players in match play. This 

investigation, which is one of the first steps towards enhancing the understanding of trunk 

kinematics from professional soccer players, presents several key findings. Firstly, positional 

differences were found on the sagittal trunk inclination and the G-forces experienced by the 

players. However, there were no positional differences on the locomotor efficiency ratio. 

Secondly, the sagittal trunk inclination and the G-forces experienced by the players were 
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significantly greater during the first half of the matches, while no differences were found for 

the locomotor efficiency ratio. Finally, no significant differences between matches were 

observed on the sagittal trunk inclination, G-forces, and locomotor efficiency ratio. 

When it comes to the positional differences observed for the trunk inclination and the G-forces 

experienced by professional soccer players, it is important to mention that soccer is a team sport 

in which the positional role has a significant influence on the physical demands of the players 

(Di Salvo et al., 2007; Martín-García, Casamichana, et al., 2018; Oliva-Lozano, Fortes, 

Krustrup, et al., 2020; Riboli, Semeria, et al., 2021). The results showed trunk inclination values 

lower (i.e., more upright postures) than other team sports such as field hockey, in which the 

mean trunk inclination in match play was ~45° and little differences between the playing 

positions were observed (defenders: ~43.5°; midfielders: ~44.2°; strikers: ~46.4°) (Warman et 

al., 2019). The trunk flexion position lets the players carry out soccer-specific movements (e.g., 

running, passing, or controlling the ball) but these actions may move the field of regard down 

and limit the visual exploration (Lim et al., 2017; Warman et al., 2019). In addition, soccer is a 

team sport with continuous running actions, accelerations, decelerations, and changes of 

directions for each position (Granero-Gil et al., 2020; Oliva-Lozano, Rojas-Valverde, Gómez-

Carmona, et al., 2020d), which induce constant trunk accelerations. Then, the differences on 

the activity-profile from each position may explain why there were positional differences in G-

forces in match play. In consequence, the development of position-specific training drills 

considering the trunk inclination and G-forces experienced by the players is necessary so as to 

prepare not only for the physical demands (e.g., training trunk flexion postures with constant 

G-forces, which may avoid low back pain) (Grosdent et al., 2016) but also for a successful 

performance in the field of regard (Lim et al., 2017; Warman et al., 2019). However, this 

consideration does not seem to be so important for the locomotor efficiency ratio since no 

positional differences were found, which confirms the results reported by a previous 

investigation (Barrett, Midgley, Reeves, et al., 2016). 

Regarding the effect of match half on the trunk kinematics variables, this study showed that 

professional soccer players reported greater sagittal trunk inclination and G-forces during the 

first half of the matches while no differences between halves were found for the locomotor 

efficiency ratio. Previous studies, which have analyzed the influence of match half on the 

activity-profile of professional soccer players, observed that the physical performance 

decreased during the second half of the matches (Carling & Dupont, 2011; Castellano et al., 
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2011; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; Mark Russell et al., 

2016). For example, the performance in high-intensity actions, which increase trunk inclination 

angle, is reduced during the second half of the matches (Castellano et al., 2011; Oliva-Lozano, 

Rojas-Valverde, Gómez-Carmona, et al., 2020e). This may be one of the reasons why our CD, 

MF, and WMF adopted significantly more upright postures during the second half. In this 

regard, the declines in physical performance have been linked to a depletion of muscle glycogen 

towards the end of the match (Carling & Dupont, 2011; Reilly et al., 2008). These observations 

have significant practical implications for strength and conditioning coaches since the 

resistance to fatigue needs to be trained through trunk strength exercises, trunk mobility (e.g., 

spine sparing exercises) in addition to lumbopelvic control exercises (Grosdent et al., 2016; 

Oliva-Lozano & Muyor, 2020). However, match half did not significantly affect the locomotor 

efficiency ratio of the players and these results are in line with the only investigation on this 

ratio available to date (Barrett, Midgley, Reeves, et al., 2016). This study found that specific 

phases of the match led to different locomotor efficiency ratios but it did not report differences 

between halves (Barrett, Midgley, Reeves, et al., 2016). For instance, the ratio was greater 

during the last 15 minutes of the first half compared to the first 15 minutes of the second half, 

but this ratio was greater during the last 30 minutes of the match compared to first 15 minutes. 

In this regard, a previous study also concluded that the skill-related performance measures did 

not significantly change between halves (Carling & Dupont, 2011). Therefore, future 

investigations are necessary in order to examine the relationship between locomotor efficiency 

ratio and the physiological response of professional soccer players. 

In addition, this study found that the match day had no effect on the sagittal trunk inclination, 

G-forces, or locomotor efficiency ratio since there were no significant differences between 

matches. There results imply that these variables may be closely related to the player’s 

biomechanics and other contextual variables (e.g., match day, opponent team) may have not 

played a significant role in the sample investigated. For example, the match-to-match variability 

on total distance covered (~5%) is usually lower than the variability on high-speed running 

distance (~53%) (Haddad et al., 2018). Unfortunately, these research questions regarding the 

effects of match day on trunk kinematics have limited answers to date since no study has 

previously analyzed the influence of match day on the sagittal trunk inclination or G-forces 

experienced by professional soccer players, and only one study on the locomotor efficiency 

ratio is available (Barrett, Midgley, Reeves, et al., 2016). In fact, contrary to what was 

previously shown in our results, a significant variability (~21%) on the locomotor efficiency 
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between matches was observed (Barrett, Midgley, Reeves, et al., 2016). The reason for these 

contradictory results is not clear, but it is worth mentioning that there was an important 

difference on the total of matches analyzed since this study included 86 matches (Barrett, 

Midgley, Reeves, et al., 2016) while ours was limited to 13 league matches.  

Unfortunately, limited data is available to date regarding the trunk kinematics of soccer players 

in the course of a match. The analysis of the trunk inclination, G-forces experienced by the 

players and locomotor efficiency when running or sprinting should be indispensable for 

hamstring injury prevention (Schuermans et al., 2017). The reason is that excessive trunk and 

pelvic motion in addition to the lack of lumbopelvic control during the swing phase of the 

running action is closely related to the injury risk (Schuermans et al., 2017). Most studies 

usually analyze the amount of horizontal trunk accelerations per intensity zones based on the 

activity-demands profile of the sport (e.g., soccer: 0-5 G, 5-6 G, >9 G; basketball: 0-3 G, 3-5 

G, 5-8 G, >8 G; rugby: 0-6 G, 6-7 G, 7-8 G, 8-10 G, 10-12 G, >12 G; endurance trail running: 

1G ranges from 0 G to 30 G) (Cummins & Orr, 2015; Fernández-Leo et al., 2020; Gómez-

Carmona et al., 2018; Rojas-Valverde, Sánchez-Ureña, et al., 2019). However, these studies 

neither analyzed the total of trunk accelerations nor the average magnitude of these trunk 

accelerations (i.e., triaxial G-forces), which has been considered as a key external load indicator 

in professional soccer by a principal component analysis (Oliva-Lozano, Rojas-Valverde, 

Gómez-Carmona, et al., 2020d).  

Therefore, the lack of investigations on the trunk kinematics of soccer player limited the 

discussion of our results. Nevertheless, this study has several limitations, which need to be 

considered. For example, the sample included in this study was specific to one men’s 

professional soccer team during 13 league matches. In addition, not all the team players could 

be included because only those who played the total match were considered for the analysis. 

Also, other playing positions such goalkeepers were not analyzed. Goalkeepers were excluded 

from the analysis given the differences in the activity-profile. In consequence, further 

investigations are needed to be done considering these limitations in addition to other 

physiological variables (e.g., heart rate), which may help to understand the role of fatigue on 

the sagittal trunk inclination, G-forces and locomotor efficiency experienced by the players.  

Furthermore, it is to mention that the data were collected by inertial sensors and GPS technology 

instead of optical tracking systems. Although the tracking systems used in this study have been 
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considered as valid, reliable and suitable instruments to measure position-related variables 

(Bastida Castillo et al., 2018; Muñoz-López et al., 2017) and trunk inclination in the sagittal 

plane (Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b), the gold standard technology for 

measuring position and orientation of human body segments are optical tracking systems (Fasel 

et al., 2018; Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b; Poitras et al., 2019). However, 

the use of optical tracking systems is limited to laboratory settings for technical reasons (Fasel 

et al., 2018; Oliva-Lozano, Martín-Fuentes, & Muyor, 2020b; Poitras et al., 2019) and thus, 

tracking systems with inertial sensors and GPS technology have vast implications for human 

activity monitoring. In consequence, future investigations analyzing the trunk kinematics and 

postural demands should consider the advantages of using these wearable sensors as well as 

their validity and reliability for measuring each parameter. For example, these wearables should 

include methods that compensate the drift error (e.g., multi-sensor fusion from accelerometers, 

gyroscopes, and magnetometers) in order to provide more accurate data (Fong & Chan, 2010; 

Guiry et al., 2014; Oliva-Lozano, Martín-Fuentes, & Muyor, 2020a; Qiu et al., 2018). In this 

regard, an investigation suggested the use of several inertial sensors, which were placed on both 

shanks, thighs, sacrum, and sternum, as a successful method for reducing the drift error in 

highly dynamic movements (Fasel et al., 2018). Nevertheless, this last method does not seem 

to be useful from a practical perspective in professional soccer since wearing different sensors 

around the body may be uncomfortable and dangerous for the players (Medina et al., 2017). 

12.7. Conclusion 

The data collected by inertial measurement units and global positioning systems may be used 

for having a better understanding of the postural demands of professional soccer players. This 

may be considered as the first study analyzing the trunk kinematics of professional soccer 

players in official matches. In addition, a novel approach was conducted by analyzing the effect 

that different contextual variables (e.g., playing position, match half, and match day) had on the 

postural demands. Although the only investigations that have analyzed the trunk kinematics 

have been carried out in field hockey players, our study with soccer players tried to improve 

the applied methodology since these investigations presented two major limitations: the sample 

of matches (6 matches and 1 match, respectively) (Warman et al., 2018, 2019) and the use of 

different instruments for data collection within the same investigation (Warman et al., 2019). 
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The positional differences found on the sagittal trunk inclination and the G-forces experienced 

by the players imply that the development of position-specific training drills considering the 

postural demands is necessary so as to prepare the players not only for the physical demands 

(e.g., training trunk flexion postures with constant G-forces) but also for a successful 

performance in the field of regard. Also, it is important that strength and conditioning coaches 

include trunk strength exercises with special focus on flexion positions as well as other 

compensatory exercises for trunk extension muscles, which balance trunk flexors and trunk 

extensors, before and after match days. Specifically, it would be important to add perturbations 

so as to stimulate trunk accelerations (~1-2 G) during trunk strength exercises. In addition, the 

resistance to fatigue needs to be trained given the differences on the postural demands observed 

between halves. Finally, it is recommended that the soccer players exercise trunk mobility (e.g., 

spine sparing exercises) before and after the match with special focus on the posterior chain. 
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CHAPTER 13 

 

Study XI. Differences in worst-case scenarios 

calculated by fixed length and rolling average 

methods in professional soccer match-play   
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13. DIFFERENCES IN WORST-CASE SCENARIOS CALCULATED BY FIXED 

LENGTH AND ROLLING AVERAGE METHODS IN PROFESSIONAL SOCCER 

MATCH-PLAY 

13.1. Abstract 

The aims of this study were to describe the WCS in professional soccer players calculated by 

fixed length and rolling average methods with regards to each playing position. This was done 

firstly, by comparing total distance (TD covered in the WCS; secondly, by comparing high-

speed running distance (HSRD); and thirdly, by comparing sprint distance (SPD). The study 

was conducted over a three-mesocycle competitive period. The WCS of three distance-related 

variables (TD, HSRD, SPD) in four-time windows (1, 3, 5, 10 minutes) were calculated by 

playing position (central defender; full-back; midfielder, wide-midfielder, and forward) using 

fixed length and rolling averages methods. A significant effect of the type of method used to 

calculate the WCS in TD (F(1, 142) = 151.49, p < 0.001, ηp2 = 0.52), HSRD (F(1, 138) = 336.95, p 

< 0.001, ηp2 = 0.71) and SPD (F(1, 138) = 76.74, p < 0.001, ηp2 = 0.36) was observed. In addition, 

there was a significant interaction between type of method and WCS duration in TD (F(1.36, 

193.53) = 41.95, p < 0.001, ηp2 = 0.23), HSRD (F(2.28, 315.11) = 21.77, p < 0.001, ηp2 = 0.14) and 

SPD (F(2.59, 358.41) = 6.93, p < 0.001, ηp2 = 0.05). In conclusion, the use of fixed length methods 

of different durations significantly underestimated the WCS of TD, HSRD and SPD across the 

most common playing positions in professional soccer players. Therefore, the application of 

rolling averages is recommended for an appropriate WCS analysis in professional soccer 

match-play. 

13.2. Keywords 

External load, GPS, most demanding passage, football, performance. 
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13.3. Introduction 

New methods have been developed recently aimed at quantifying peak intensity periods, which 

are also known as the most demanding passages (MDP) (Martín-García, Casamichana, et al., 

2018) or worst-case scenarios (WCS) (Cunningham et al., 2018). The WCS are defined as the 

periods of 1, 3, 5 or 10 minutes of maximum physical output (distance covered at high speed 

running) throughout a match (Delaney et al., 2018; Reardon et al., 2017). The fixed length 

method was the first attempt to quantify the WCS (Bradley et al., 2009) and consisted of 

splitting the total match in fixed periods from the start to the end of the match. For example, 

periods of 1 minute (0 - 59’’, 1 - 1.59’’, 2 - 2.59’’… until the end of the match); 3 minutes (0 - 

2.59’’, 3 - 5.59’’… until the end of the match); 5 minutes (0 - 4.59’’, 5 - 9.59’’… until the end 

of the match) and 10 minutes (0 - 9.59’’, 10 - 19.59’’… until the end of the match). 

Nevertheless, the use of the rolling average method is currently considered more accurate for 

quantifying WCS (Martín-García, Casamichana, et al., 2018) as this method detects the exact 

period (depending on the time selected for the analysis) in which the player is at peak intensity 

(Cunningham et al., 2018). Thus, the WCS could be detected, for example, from the period 

2’53’’ to 3’53’’ (1-minute WCS), from 2’53’’ to 5’53’’ (3-minutes), from 2’53’’ to 7’53’’ (5-

minute WCS) or from 2’53’’ to 12’53’’ (10-minutes) (Cunningham et al., 2018). 

In addition, the performance in the WCS is associated with different contextual variables (e.g., 

playing position, match location, match outcome, match half or congested calendars) 

(Casamichana et al., 2019; Castellano et al., 2020; Delaney et al., 2018; Martín-García, 

Casamichana, et al., 2018; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; 

Oliva-Lozano, Fortes, & Muyor, 2020). For example, the WCS in soccer matches could be 

specifically analyzed with regards to the playing position (Delaney et al., 2018; Martín-García, 

Casamichana, et al., 2018; Oliva-Lozano, Rojas-Valverde, Gómez-Carmona, et al., 2020e; 

Oliva-Lozano, Fortes, & Muyor, 2020). It has been recently been observed that midfielders 

(MF) and wide-midfielders cover greater distance in WCS than other positions (Delaney et al., 

2018; Martín-García, Casamichana, et al., 2018), and when longer periods of WCS are 

analyzed, there are even greater differences between playing positions (Martín-García, 

Casamichana, et al., 2018). Consequently, these differences are deemed important to optimally 

prescribe position-specific training load and therefore methodological studies are needed to 

analyze which analysis technique is more accurate to assess the physical demands of soccer 

players. 
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Despite the studies mentioned above, research on WCS has, to date, been limited. 

Methodological works on the comparison between the use of fixed length and rolling averages 

methods are scarce in the literature. For example, a recent study found that the use of fixed 

length methods may underestimate WCS running demands (Fereday et al., 2020). However, 

variables including very speed running actions such as sprinting distance (i.e., distance covered 

above 25.2 km/h), which are less frequent (Martín-García, Casamichana, et al., 2018; Oliva-

Lozano, Fortes, Krustrup, et al., 2020; Palucci-Vieira et al., 2019), were not analyzed. 

Consequently, there is a risk of results misinterpretation since the use of fixed length methods 

may underestimate WCS in low- or medium-speed actions (Cunningham et al., 2018; Fereday 

et al., 2020) but it may be useful for high-speed actions. 

Therefore, the main purpose of this study is to describe the WCS, in professional soccer players, 

calculated by fixed length and rolling average methods with regards to each playing position. 

This was done, firstly, by comparing total distance covered in the WCS; secondly, by 

comparing high-speed running distance covered; and thirdly, by comparing sprint distance 

covered. 

13.4. Methods 

Study design 

A cohort study was conducted over an in-season three-mesocycle competitive period in LaLiga 

123 with a total of twelve official professional soccer matches. The soccer matches were 

consecutive (one match per week) and played at home or away on Friday, Saturday or Sunday 

depending on the official calendar. The data was collected through wearable sensors (RealTrack 

Systems, Almería, Spain) to calculate players’ WCS. Four WCS periods were analyzed: 1, 3, 5 

and 10 minutes. Every soccer player was categorized according to their playing position: 

forward (FW), midfielder (MF), wide-midfielder (WMF), full-back (FB) and central defender 

(CD). 

Participants 

Nineteen professional soccer players (mean ± SD; age, 26.78 ± 3.77 years old; body mass index, 

23.1 ± 0.19) voluntarily participated in the study. The team playing formation was 4-2-3-1. 

Soccer players who did not complete the full match and goalkeepers were not included in the 
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analysis. The data was derived from daily monitoring over the season and the club provided 

informed consent to use the dataset for research purposes. The study was also approved by the 

University of Almeria’s Ethics Board. 

Procedures 

Total distance (TD), high speed running distance (HSRD, above 19.8 km/h) and sprint distance 

(SPD, above 25.2 km/h) (Martín-García, Casamichana, et al., 2018) were collected using 

WIMU Pro (RealTrack Systems, Almería, Spain). This is an inertial device with 3D 

accelerometers, gyroscopes and magnetometers which collects positioning data through a 10Hz 

Global Positioning System (GPS). These tracking systems are considered as valid (bias in mean 

speed: 1.2 – 1.3 km/h; bias in distance: 2.3 – 4.3 m) and reliable (intraclass correlation 

coefficients: above 0.93) instruments for the analysis of time-motion parameters in soccer 

(Bastida Castillo et al., 2018). The devices were calibrated 30 minutes before the start of each 

match following the manufacturer’s instructions: first, the units were placed on a steady surface; 

then turned on and finally, waited for 30 seconds before starting the recording of the session. 

The devices were then placed in a vertical position in the back pocket of a chest vest (Rasán, 

Valencia, Spain) designed for the players. Each player wore the same device in every match in 

order to avoid inter-unit error. Once the match had finished, the players returned the devices to 

the research team. The devices were placed on Smart Station (RealTrack Systems, Almeria, 

Spain) and the data was transferred to the analysis software. 

The data was analyzed using SPro software (RealTrack Systems, Almeria, Spain). This 

software analyzes GPS Speed raw data and the application of the two methods of analysis: 

fixed-length and rolling-average. First, fixed length scenarios were obtained by splitting the 

total match into fixed periods, from the start to the end of the match, of 1, 3, 5 and 10 minutes 

(Figure 30a). Secondly, the rolling average method was used by means of an algorithm that 

detected and calculated the WCS of each variable at the four WCS durations (1, 3, 5 and 10 

minutes). Given the 10Hz sample frequency of the device (RealTrack Systems, Almería, Spain) 

and 1-minute WCS for instance (Figure 30b), the rolling average algorithm found the moment 

(60 seconds = 600 samples) when the player covered the greatest distance. Thus, the fixed 

length method calculated the WCS in static period samples (1 - 600, 601 - 1200, and so on). 
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Figure 30. Difference between fixed length (a) and rolling average method (b) for WCS 

detection 

Statistical analysis 

Descriptive statistics were calculated for both methods (fixed length and rolling averages) based 

on playing positions (CD, FB, FW, MF, WMF) and WCS duration (1, 3, 5, 10 minutes). 

Secondly, the hypothesis of normality in each variable was analyzed using the Shapiro-Wilk 

test. Thirdly, linear mixed models were performed using a design ANOVA 2 x 5 x 4 

(methods*playing positions*WCS duration) to determine the difference between fixed and 

rolling average methods while accounting for potential effects and interactions with playing 

position and WCS duration. This analysis compares different means when there are two or more 

independent variables or factors but, at least, one of the factors should be an intra-subject factor 

(e.g., method or WCS duration) and between-subjects factor (e.g., playing position). In 

addition, to assess assumptions of variance, Mauchly’s test of sphericity was performed using 

all the ANOVA results. A Greenhouse–Geisser correction was performed to adjust the degrees 

of freedom if an assumption was violated, while pairwise comparisons using a Bonferroni 

adjustment were employed if a significant main effect was observed. Effect sizes were also 

reported using partial eta-squared (ηp2). The level of significance was set at p ≤ 0.05 and the 

statistical analysis was carried out using IBM SPSS Statistics version 26 (SPSS Inc., Chicago, 

IL, USA). 
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13.5. Results 

Figure 31 shows TD covered in meters for each WCS duration (1, 3, 5 and 10 minutes), which 

were calculated by fixed and rolling averages methods. The rolling averages method reported 

significantly greater TD (p < 0.05) than the fixed length method in all positions at each WCS 

duration. A significant effect of the type of method used to calculate the WCS in TD covered 

was observed (F(1, 142) = 151.49, p < 0.001, ηp2 = 0.52). In addition, there was a significant 

interaction between type of method and WCS duration (F(1.36, 193.53) = 41.95, p < 0.001, ηp2 = 

0.23). The interaction was not significant between type of method and playing position (F(5, 142) 

= 1.13, p = 0.35, ηp2 = 0.04) or between method, playing position and WCS duration (F(6.81, 142) 

= 1.74, p = 0.11, ηp2 = 0.06). 

 

Figure 31. Total distance (TD) covered in every WCS duration calculated for each playing 

position using fixed length and rolling averages. 

HSRD covered in meters for each WCS duration by fixed and rolling averages methods is 

represented in Figure 32. The rolling averages method reported significantly greater HSRD (p 
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< 0.05) than the fixed length method in all positions at each WCS duration. A significant effect 

of the type of method used to calculate the WCS in HSRD covered was observed (F(1, 138) = 

336.95, p < 0.001, ηp2 = 0.71). There was a significant interaction between method and playing 

position (F(5, 138) = 2.63, p = 0.03, ηp2 = 0.09) and between method and WCS duration (F(2.28, 

315.11) = 21.77, p < 0.001, ηp2 = 0.14). However, the interaction method, playing position and 

WCS duration was not significant (F(11.41, 138) = 1.16, p = 0.30, ηp2 = 0.04). 

 

Figure 32. High-speed running distance (HSRD) in every WCS duration calculated for each 

playing position using fixed length and rolling averages. 

Subsequently and with regards to SPD covered (Figure 33), significant differences between 

fixed length and rolling averages were found for each WCS duration in all playing positions (p 

< 0.05). A significant effect of the type of method used to calculate the WCS in TD covered 

was found (F(1, 138) = 76.74, p < 0.001, ηp2 = 0.36). In addition, there was a significant interaction 

between type of method and WCS duration (F(2.59, 358.41) = 6.93, p < 0.001, ηp2 = 0.05). The 

interaction was not significant between type of method and playing position (F(5, 138) = 0.54, p 
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= 0.75, ηp2 = 0.02) or between method, playing position and WCS duration (F(12.99, 138) = 0.91, 

p = 0.54, ηp2 = 0.03). 

 

Figure 33. Sprint distance (SPD) covered in every WCS duration calculated for each playing 

position using fixed length and rolling averages. 

13.6. Discussion 

This study compared the WCS calculated by fixed length and rolling averages methods taking 

into consideration soccer playing positions and four WCS durations (1, 3, 5 and 10 minutes) in 

professional matches. From a practical perspective, it was necessary to investigate the 

interchangeability of both methods for the analysis of WCS in TD, HSRD and SPD, a 

methodology which had never been conducted in the scientific literature in relation to soccer. 

The main finding was that the use of fixed length methods of different durations significantly 

underestimated the WCS of TD, HSRD and SPD in all playing positions. In addition, a 

significant interaction between WCS duration and the method used to calculate the WCS was 

observed in all the external load variables. 
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Rolling averages calculated significantly greater TD (p < 0.05) than fixed length epochs in all 

positions at each WCS duration. Previous studies, which compared both methods in soccer 

players, also concluded that fixed method reported significantly lower values compared to 

rolling averages in TD (10.1% difference) for 1 minute (Fereday et al., 2020), 3 minutes (8.2% 

difference) (Fereday et al., 2020), 5 minutes (7.5% difference and 25.2%, respectively) 

(Fereday et al., 2020; M. C. Varley et al., 2012), and 10 minutes (6.7% difference). This 

comparison has also been applied to rugby players and fixed length method underestimated the 

rolling averages WCS of TD for 1 minute (11.8% difference), 3 minutes (12.2% difference) 

and 5 minutes (11.4% difference) (Cunningham et al., 2018). One of the main findings of this 

study was that WCS duration had a significant interaction with the method used to calculate the 

WCS (F(1.36, 193.53) = 41.95, p < 0.001, ηp2 = 0.23). Contrary to the findings of Ferraday et al. 

(Fereday et al., 2020), which reported that the longer the WCS the lower the differences 

between methods, this study observed that the longer the WCS the greater the differences 

between fixed and length method in all playing positions. Since the same interaction was found 

but with different conclusions, future studies could investigate the association WCS duration 

and type of method used to calculate the WCS and  therefore, replicate the results in a larger 

sample size. 

In addition, MF, WMF and FB positions experienced higher peak demands in TD covered in 

soccer matches than positions such as FW and CD. This is consistent with previous research on 

the WCS of soccer matches which showed that there were positional differences in TD covered 

in 1-minute WCS (MF: ~204m; WMF: ~201m; FB: ~194m; CD: ~181m; FW: ~181m), 3-

minute WCS (MF: ~483m; WMF: ~471m; FB: ~453m; CD: ~429m; FW: ~414m), 5-minute 

WCS (MF: ~750m; WMF: ~730m; FB: ~695m; CD: ~665m; FW: ~640m) and 10-minute WCS 

(MF: ~1400m; WMF: ~1350m; FB: ~1280m; ~CD: 1270m; FW: ~1170m) (Martín-García, 

Casamichana, et al., 2018). However, the results from our study showed that the interaction was 

not significant between the method used to calculate the WCS and playing position. Since the 

same results were obtained in a previous investigation (Fereday et al., 2020), this suggests that 

soccer playing position does not have any significant influence on the method applied to 

calculate the WCS. Therefore, rolling averages are considered as the most appropriate method 

to quantify TD covered in WCS (Delaney et al., 2018; Fereday et al., 2020; Martin-Garcia et 

al., 2019). 
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Regarding HSRD, a significant effect of the method was observed (F(1, 138) = 336.95, p < 0.001, 

ηp2 = 0.71). Rolling averages method reported significantly greater HSRD covered (p < 0.05) 

than the fixed length method in all positions at each WCS duration. Few studies have previously 

compared HSRD using both methods in team sport matches (Cunningham et al., 2018; Fereday 

et al., 2020) but these authors found similar results to the current study. For example, HSRD 

was underestimated in WCS of 1 minute (10.6% and 11.7% difference, respectively) 

(Cunningham et al., 2018; Fereday et al., 2020), 3 minutes (19.5% and 21.1% difference, 

respectively) (Cunningham et al., 2018; Fereday et al., 2020), 5 minutes (21.3% and 22% 

difference, respectively) (Cunningham et al., 2018; Fereday et al., 2020), and 10 minutes 

(14.2% difference). Although there was a significant interaction between method and playing 

position, the effect size was low (F(5, 138) = 2.63, p = 0.03, ηp2 = 0.09). This implies that playing 

position doesn’t have a meaningful impact on the differences between methods even though the 

effect of position on HSRD is higher than on TD. Perhaps, this could be explained the influence 

of high-speed variables on decreasing distance covered (Martín-García, Casamichana, et al., 

2018). However, the interaction between method and WCS duration was significant (F(2.28, 315.11) 

= 21.77, p < 0.001, ηp2 = 0.14). The differences between methods were greater in longer WCS 

(p < 0.001), specially from 1 to 10 minutes. Consequently, the use of rolling averages for HSRD 

WCS detection is recommended and supported not only by previous research (Cunningham et 

al., 2018; Delaney et al., 2018; Fereday et al., 2020; Lacome et al., 2018; Martín-García, 

Casamichana, et al., 2018) but also by this study, which showed how HSRD was always 

underestimated using fixed length method across all positions in every WCS duration. 

Additionally, when SPD was analyzed, rolling averages once again attained greater values than 

fixed length method with statistically significant differences for each WCS duration and playing 

position. This is the first study to compare both methods of WCS in SPD covered and it is 

relevant to highlight that the only  significant interaction observed was between WCS duration 

and method (F(2.59, 358.41) = 6.93, p < 0.001, ηp2 = 0.05). Given the nature of sprinting actions, 

in which the player needs to overcome 25.2 km/h, SPD might be time-dependent (Delaney et 

al., 2018; Lacome et al., 2018; Martín-García, Casamichana, et al., 2018), which could explain 

why the effect of WCS duration on the differences between methods is lower in SPD compared 

to TD or HSRD. In addition, SPD might be position-dependent (Martín-García, Casamichana, 

et al., 2018). However, the results from our study showed that the interaction was not significant 

between the method used to calculate the WCS and playing position (F(5, 138) = 0.54, p = 0.75, 

ηp2 = 0.02), which implies that playing position does not have any significant effect on the 
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method applied to calculate the WCS. Therefore, it could be concluded that SPD covered in 

WCS was directly dependent on the method used, suggesting rolling averages as the most 

appropriate method to quantify SPD. 

This research has several limitations since it only analyzes WCS of professional soccer players 

in four WCS durations (1, 3, 5 and 10 minutes) which were based on three variables (TD, HSRD 

and SPD).  As this is the first research on the comparison between fixed length and rolling 

averages method, future studies are needed to provide more details about this analysis. Future 

research could focus on the analysis of shorter or longer WCS durations, analyze a different 

population (e.g., youth players) or include other variables such as accelerations/decelerations 

(Aamot et al., 2016) and total of high intensity actions (Aquino, Munhoz-Martins, et al., 2017). 

13.7. Conclusion 

This study showed that fixed length methods underestimated the TD, HSRD and SPD covered 

in 1-minute, 3-minutes, 5-minutes, and 10-minutes WCS across the most common playing 

positions in professional soccer players. Therefore, the use of rolling-averages is recommended. 

Gaining knowledge on how technology is used to quantify WCS is important for applied 

practitioners who daily attempt to optimize performance through position-specific load 

management. For example, the values reported by rolling averages for TD, HSRD or SPD could 

serve as a reference when prescribing a 5-minute training drill trying to meet match WCS 

demands. However, the values reported by fixed-length method would underestimate WCS 

across all playing positions. Thus, the results of this study also help to understand competitive 

match-play demands and plan strategies to prepare the players for official soccer matches. 
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Study XII. Understanding the FIFA Quality 

performance reports for electronic 

performance and tracking systems: from 
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14. UNDERSTANDING THE FIFA QUALITY PERFORMANCE REPORTS FOR 

ELECTRONIC PERFORMANCE AND TRACKING SYSTEMS: FROM SCIENCE 

TO PRACTICE 

14.1. Abstract 

The world’s soccer-governing body, FIFA, developed the FIFA Quality Programme to set 

internationally recognized industry standards for electronic performance and tracking systems 

(EPTS). The positioning and velocity data from different EPTS, discretized into velocity bands, 

were validated against criteria measures. Discussions have been ongoing between practitioners 

regarding the FIFA quality performance reports, particularly when the findings are used to 

compare accuracy between systems. However, there are important methodological issues that 

should be addressed when interpreting these findings. The aim of this article is to provide 

practitioners with guidance on interpreting the results of FIFA’s EPTS quality performance 

reports. We demonstrate that several methodological factors should be considered. For 

example, EPTS reports evaluate individual systems against criteria measures but systems are 

often not evaluated concurrently (e.g., on the same day using the same participants). 

Furthermore, technical considerations such as the total number of cameras used for optical 

(OPT) systems, the total number of antennas used by local positioning systems (LPS), the total 

number of satellites available for global navigation satellite systems (GNSS) and the velocity 

bands should be considered before interpreting the post-test results reported for each EPTS. 

Specifically, comparisons between GNSS, LPS and/or OPT systems are inadvisable unless they 

are used within the same observation. 

14.2. Keywords 

Accuracy, Validity, Soccer.  
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14.3. Introduction 

The sport industry has developed a wide variety of EPTS, including optical tracking systems 

(OPT), local positioning systems (LPS) and global navigation satellite systems (GNSS) (Linke 

et al., 2018). Sports organizations require EPTS to meet their needs and fall within their budget, 

but also crucially that the data generated are of acceptable quality (i.e., valid and reliable) (Linke 

et al., 2018; Malone et al., 2017). An instrument’s validity indicates if it measures what it is 

intended to measure (Currell & Jeukendrup, 2008) while its reliability refers to the measurement 

consistency (Weir, 2005). 

Recently, FIFA has developed the FIFA Quality Programme to set internationally-recognized 

EPTS industry standards (FIFA, 2017). In this regard, FIFA invited all interested EPTS 

providers to take part in a new testing and certification event - the FIFA Quality Programme. 

Developed in collaboration with researchers, the program serves to establish the concurrent 

validity of EPTS positioning and velocity data (discretized into velocity bands) by comparing 

them to criteria measures (FIFA, 2017). These include the gold standard system for motion 

capture (Vicon Motion Systems Ltd, Oxford, United Kingdom), which is set in a 30x30m area, 

and the Vision Kit system (Victoria University, Melbourne, Australia), used to track players 

over the full area of the pitch (FIFA, 2019). The data collection protocols were conducted in 

soccer stadia and each protocol was characterized by circuits with self-paced walking, self-

paced jogging, maximal accelerations and changes of direction as well as small-sided games, 

series of maximal sprints and jogging along the internal lines of the pitch to ensure the entire 

pitch is covered (FIFA, 2019).  

The data collection was conducted in collaboration with the manufacturers, who submitted their 

data once the session ended. Although the manufacturers could submit their data at different 

sample rates, they were assessed at 10 Hz. Additionally, the motion capture data were provided 

at a 100 Hz sample rate while the computer vision data were provided at 25 Hz (FIFA, 2019). 

Since different sample rates were used, the data from the reference systems were imported and 

synchronized with the manufacturers’ data. Specifically, these data were analyzed following 

the protocol described in the “Handbook of test methods for EPTS devices” (FIFA, 2019). 

Finally, the FIFA quality performance reports for EPTS were listed online using a color-coded 

scale, ranking the results for both the positioning and velocity data in different velocity bands 

(FIFA, 2020). Box plot values were used to determine thresholds which informed such grading 



194 

 

based on current industry standards (Well Above: Q1 - 1.5 * IQR to 25th percentile; Above: 25th 

percentile to median; Standard: median to 75th; Below: 75th percentile to Q3 + 1.5 * IQR; Well-

Below: everything greater than the Below level) (FIFA, 2019).  

Currently, researchers, sport scientists, fitness coaches and other professionals share 

information and openly debate the FIFA quality performance reports (through social networks 

etc.). Unfortunately, many professionals do not interpret them according to how the data are 

collected: for example, comparing EPTS systems or ranking individual products against one 

another (Carolan, 2019; Dahl, 2020; Sporttechie, 2019). Furthermore, EPTS manufacturers, 

who continually look for competitive advantages, promote their products as “the best GPS on 

the market” (Catapult Sports, 2019). Although the data collection procedures standardized the 

practical measures (i.e., EPTS) and the criteria measures, there are important methodological 

considerations related to the validation conditions when comparing EPTS that were evaluated 

on different days at different stadia. Therefore, the aim of this article is to provide practitioners 

with guidance in understanding the EPTS results from FIFA quality performance reports. 

14.4. Methods 

This commentary article reviews the FIFA quality performance reports for EPTS, which are 

published online (FIFA, 2020). The last review was conducted on 3rd August 2020 to obtain 

the most up-to-date version of the reports. All the reports provided by FIFA on OPT, GNSS, 

and LPS system performance were examined.  

Two researchers read each report, extracting the following data: name of the product tested and 

its manufacturer, testing day, testing venue, time required by the manufacturer after the test to 

submit the data collected on its product, characteristics of the sample participating in the test, 

drills performed by the participants, velocity bands assessed, total of satellites for GNSS, total 

of LPS antennas, and total of cameras for OPT systems.  

14.5. Results 

A total of 11 EPTS performance reports were found (FIFA, 2020). These included 5 GNSS 

(Table 13), 2 LPS (Table 14), and 4 OPT systems (Table 15). 
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GNSS 

Table 13 details the GNSS testing conditions. Although the data from all the GNSS were 

submitted following a similar deadline, two different testing venues were used (Camp Nou and 

Miniestadi). The GNSS were tested on three different dates (21st November 2018, 22nd 

November 2018 and 10th October 2019) with different satellite availability being observed for 

Apex on 21st November 2018 (STATSports, Newry, Northern Ireland). Regarding the 

participants’ age, this was not specified for OhCoach Cell B (Fitogether Inc., Seoul, South 

Korea) or Vector (Catapult Sports, Melbourne, Australia). Different drills were included in 

addition to the 3v3 game, some of which were tested in 2018 but not included in the 2019 tests, 

for example, the sprinting drill. Finally, only two GNSS (OhCoach Cell B and Vector) reported 

results for all velocity bands. One report from the GNSS group (STATSports, Newry, Northern 

Ireland) showed no results for several high-velocity zones (20-25 km/h and above 25 km/h). 
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Table 13. FIFA Quality Programme testing conditions for Global Navigation Satellite Systems (GNSS)  

Product 
OhCoach        

Cell B 
S5 Vector Apex WIMU Pro 

Manufacturer Fitogether Inc1 Catapult2  Catapult2  STATSports3 
RealTrack 

Systems4 

Testing day 
10th October 

2019 

21st November 

2018 
10th October 2019 

21st November 

2018 

22nd November 

2018 

Testing venue 
Camp Nou 

(Barcelona) 

Miniestadi 

(Barcelona) 

Camp Nou 

(Barcelona) 

Miniestadi 

(Barcelona) 

Miniestadi 

(Barcelona) 

Total satellites 13 - 16 13 - 16 13 - 16 12 - 14 13 - 16 

Submission 

time 
1 hour 1 hour 1 hour 1 hour 1 hour 

Participants Unspecified Under 13 Unspecified Under 13 Under 13 

Drills 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

3v3 game, 

5v5 game, 

FPC 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

3v3 game, 

 5v5 game, 

FPC 

Circuit,  

2v2 game, 

3v3 game, 

5v5 game, 

FPC 

Velocity bands 

assessed  

0-7 km/h,  

7-15 km/h, 

15-20 km/h, 

20-25 km/h, 

>25 km/h, 

* 

0-7 km/h,  

7-15 km/h, 

15-20 km/h, 

20-25 km/h, 

 

* 

0-7 km/h,  

7-15 km/h, 

15-20 km/h, 

20-25 km/h, 

>25 km/h, 

* 

0-7 km/h,  

7-15 km/h, 

15-20 km/h, 

 

 

* 

0-7 km/h,  

7-15 km/h, 

15-20 km/h, 

20-25 km/h, 

 

* 

Note:  FPC, full pitch coverage; *, only velocity data were analyzed; 1Fitogether Inc., Seoul, South Korea; 2Catapult 

Sports, Melbourne, Australia; 3STATSports, Newry, Northern Ireland; 4RealTrack Systems, Almería, Spain; Data 

retrieved: 3rd August 2020 (FIFA, 2020) 

LPS 

Table 14 details the LPS testing conditions. These LPS were tested on different dates (22nd 

November 2018 and 10th October 2019) and venues (Miniestadi and Camp Nou). Regarding 

the participants’ age, under-13 players were selected for WIMU Pro (RealTrack Systems, 

Almeria, Spain) while the age was unspecified for Vector. Moreover, different drills were 

observed; for instance, the 3v3 game was tested in the first test but not included in the second.  

Instead, the 2019 test included a new sprinting drill. Finally, no results for actions above 25 

km/h were available for WIMU Pro. 
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Table 14. FIFA Quality Programme testing conditions for Local Positioning Systems (LPS)  

Product Vector WIMU Pro 

Manufacturer Catapult1 RealTrack Systems2 

Testing day 10th October 2019 22nd November 2018 

Testing venue Camp Nou (Barcelona) Miniestadi (Barcelona) 

Total antennas 24 8 

Submission time 1 hour 1 hour 

Participants Unspecified Under 13 

Drills 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

3v3 game, 

5v5 game, 

FPC  

Velocity bands 

assessed 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h,  

>25 km/h 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h, 

Note: FPC, full pitch coverage; 1Catapult Sports, Melbourne, Australia; 2RealTrack Systems, Almeria, Spain; Data 

retrieved: 3rd August 2020 (FIFA, 2020) 

OPT 

Table 15 details the testing conditions for the OPT systems (FIFA, 2020). These OPT were 

tested at different venues (Camp Nou and Miniestadi) and dates (22nd November 2018, 10th and 

11th October 2019). The sample for TRACAB Gen5 (ChyronHego AB2, Stockholm, Sweden) 

was collected from under-13 players while the reports did not specify the age of the participants 

for Coach160 (TRACK160 Ltd., Tel Aviv, Israel), InStat Fitness (Instat, Dublin, Ireland) or 

Ball & Player Tracking (Hawk-eye, Basingstoke, England). Furthermore, different drills were 

observed - the 3v3 game, tested in 2018, was not included in the 2019 tests. In addition, 

TRACAB Gen5 did not report data for the full pitch coverage drill, nor did they provide results 

for velocities above 25 km/h. Finally, the data submission deadlines were significantly different 

(1 hour and 24 hours post testing). 
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Table 15. FIFA Quality Programme testing conditions for Optical Tracking Systems (OPT)  

Product InStat Fitness Coach160 Ball & Player Tracking TRACAB Gen5 

Manufacturer InStat1 TRACK160 Ltd.2 Hawk-Eye.3 ChyronHego AB4 

Testing day 10th October 2019 11th October 2019 11th October 2019 
22nd November   

2018 

Testing venue 
Camp Nou 

(Barcelona) 
Camp Nou (Barcelona) Camp Nou (Barcelona) 

Miniestadi 

(Barcelona) 

Total cameras 3 3 12 16 

Submission time 24 hours 24 hours 1 hour 1 hour 

Participants Unspecified Unspecified Unspecified Under 13 

Drills 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

5v5 game, 

sprints,  

FPC 

Circuit,  

2v2 game, 

3v3 game, 

5v5 game 

Velocity bands 

assessed 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h,  

>25 km/h 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h,  

>25 km/h 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h,  

>25 km/h 

0-7 km/h,  

7-15 km/h,  

15-20 km/h,  

20-25 km/h 

Note: FPC, full pitch coverage; 1InStat, Dublin, Ireland;  2TRACK160 Ltd., Tel Aviv, Israel; 3Hawk-eye, Basingstoke, 

England; 4ChyronHego AB, Stockholm, Sweden; Data retrieved: 3rd August 2020 

14.6. Discussion 

The FIFA quality performance reports quantify the accuracy of the EPTS positioning and 

velocity data in different velocity bands. However, there are methodological issues that may 

significantly affect the results’ interpretation. Although these issues are limited to the 

information available in the existing FIFA quality performance reports (FIFA, 2020), a total of 

six important methodological issues can be identified to help practitioners interpret EPTS 

reports. 

Testing day 

Given the number of EPTS available, it would impossible to test all of them on the same days 

or exactly replicate the test conditions. For example, if an EPTS is tested on a different day 

from another EPTS, the calibration procedures should be carried out on days other than the test 

days. Although motion capture systems have demonstrated high levels of accuracy, any minor 

modifications to the calibration procedure may affect the results (Windolf et al., 2008). A 
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previous study, analyzing the influence of different calibration procedures on the data accuracy 

of the Vicon-460 motion capture system reported greater accuracy when the wand motion was 

performed by a robot rather than manually by a human in a tiny capture space (Windolf et al., 

2008). Other studies suggested that lighting and weather conditions should be considered when 

standardizing the experiment since these factors might also affect data accuracy (Gray et al., 

2010; Terrier & Schutz, 2005; van der Kruk & Reijne, 2018; Windolf et al., 2008). For instance, 

optical-passive motion capture systems, which use retro-reflective markers, depend on lighting 

conditions since they work by reflecting light back to the sensor (van der Kruk & Reijne, 2018). 

Consequently, this does not necessarily reduce the validity of the within-trial comparisons (i.e., 

single EPTS vs criteria measures, which is the aim of the FIFA quality performance reports) 

but it does influence the ability to compare findings between EPTS systems if the calibration 

procedure is carried out on separate days and other testing conditions change (as occurred 

during these tests). Nonetheless, the calibration process was carried out before the start of the 

testing process to ensure that the errors fell within suitable values. The “Handbook of test 

methods for EPTS devices” (FIFA, 2019) states that the error values should be less than 1 mm 

for the Vicon motion capture system while the test area dimensions should be as accurate as 

possible to calibrate the computer vision software.  

Testing venue 

Although there are very good reasons for testing EPTS in different venues, since these systems 

are used in many stadium-types globally, EPTS may be affected by the testing venue since the 

stadium structures vary. For example, the positioning of OPT system cameras changes from 

one stadium to another because the best place to locate them varies in each; this requires 

manufacturers to establish individual software processing parameters for each data collection 

(Barros et al., 2007). The literature scarcely considers this since manufacturers’ procedures are 

subject to intellectual property protection and there are details they do not disclose to users 

(Malone et al., 2017). Likewise, the positioning of LPS antennas varies, and different metal 

structures may interfere with the accuracy of the data collected (Alarifi et al., 2016; H. Liu et 

al., 2007). Regarding GNSS, the main concern is the stadia roofs because GNSS satellites 

transmit two low-power radio signals that travel by line of sight (Terrier & Schutz, 2005). The 

signals can pass through clouds but not through most solid objects (Terrier & Schutz, 2005). 

Consequently, stadia with high walls and curved roofs may have an impact on the data quality 

(Cummins et al., 2013).  
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Therefore, comparing EPTS that have been tested in different stadia is not recommended. 

Furthermore, the testing area on the field should be considered since it may have a significant 

effect on the data quality. For example, it is not advisable to compare two GNSS if one was 

tested on a 30m2 center area of the pitch while the other was tested on a 30m2 corner area or 

closer to the stadium roof (e.g., Miniestadi or Camp Nou) given the above-mentioned reasons 

(Cummins et al., 2013; Terrier & Schutz, 2005). Previous research showed that factors such as 

satellite availability (Cummins et al., 2013; Malone et al., 2017; Witte & Wilson, 2004) or 

playing area (e.g., due to the proximity of nearby buildings such as the stadia roof) (Larsson, 

2003; Taberner et al., 2020; Williams & Morgan, 2009) should be considered when interpreting 

data obtained by GNSS. 

Regarding the total number of available cameras, antennas for local positioning systems or 

satellites, this is also a methodological issue related to the testing venue. For example, the 

stadium size may lead to difficulties collecting data on the opposite side of the field from the 

cameras (Barros et al., 2007). Hence, more cameras should be placed around the stadium to 

improve accuracy (Barros et al., 2007; Manafifard et al., 2017). In addition, the number of 

available satellites that interact with the EPTS receivers influences the data accuracy (Cummins 

et al., 2013; Malone et al., 2017; Witte & Wilson, 2004). For instance, the velocity error may 

increase when less satellites are available (Witte & Wilson, 2004). Similarly, the number of 

antennas used with local positioning systems may vary depending on the testing area (Bastida-

Castillo et al., 2019; Bastida Castillo et al., 2018; Frencken et al., 2010; Ogris et al., 2012).  

Perhaps the variation in the number of cameras used in different OPT systems, or the number 

of antennas used in different LPS, is closely related to the stadium structure itself and the 

manufacturer's ability to adapt to such conditions. What is certain is that GNSS technology is 

fundamentally dependent on environmental conditions. This does not preclude the possibility 

of GNSS validity testing taking place, but comparing different EPTS is not recommended if 

this methodological issue may influence data accuracy. Although the reports indicate the 

minimum number of satellites required for system accuracy, this only allows one to conclude 

that an EPTS is valid, it is not advisable to make comparisons between EPTS.  

Data submission deadline 

This part of the testing process informs on how quickly data can be delivered. There are two 

main reasons why this methodological consideration is important. Firstly, if the FIFA quality 
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performance report shows that the data were submitted to the research team at different time 

intervals, it suggests that there may be significant differences in the data processing. Secondly, 

and with this in mind, the submission deadlines can highlight how quickly the performance 

reports will be available; this can be an important factor since coaching staff usually require 

them at the end of each session (or within a couple of hours). Consequently, it would not be 

practical to compare the results from an EPTS that submitted its data one hour post testing to 

an EPTS that submitted them 24-hours post testing. 

Drills, velocity bands, and sample characteristics 

Although the data were not collected under real match conditions (e.g., 11 vs 11), all the EPTS 

need to be tested for the same drills and velocity bands as set in the protocol. However, certain 

EPTS presented no results for several high-velocity zones (20-25 km/h or above 25 km/h) and 

not all the EPTS were tested for the same drills. This methodological issue is important since 

the magnitude of error increases at greater speeds (Bastida Castillo et al., 2018; Linke et al., 

2018; Pons et al., 2019) and different demands may be observed based on the testing drill 

(Clemente, Sarmento, et al., 2019). If a report provides the EPTS accuracy for each velocity 

band, one also needs to know how many actions were tested and/or the percentage of time spent 

in each band. The effect of different drills being completed by players of different standards 

means variability is possible between testing conditions for the number of actions/speed of 

samples recorded at each speed threshold.  

Consequently, the characteristics of the sample included in a study are another key aspect since 

factors such as height, age, and fitness may influence the data collected. On the one hand, there 

are EPTS (e.g., OPT systems) in which the occlusion phenomenon is a primary concern even 

though multiple cameras are used (Manafifard et al., 2017). This occurs when players hide each 

other from view, either partially or completely, and it may be challenging to track soccer players 

because sometimes not even the human observer can see the occluded player (Manafifard et al., 

2017). Therefore, the player’s height may influence the camera positioning and the resulting 

data accuracy (Manafifard et al., 2017). If the data is collected from under-15 players, their 

height and fitness are likely to vary from professional soccer players; for example, the sprint 

and acceleration profiles are different (Loturco et al., 2018; Mendez-Villanueva et al., 2011). 

Professional soccer players reach higher sprinting speeds and their acceleration capacity is 

greater than younger players (e.g., under-15s) (Loturco et al., 2018). However, these types of 
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actions usually increase the magnitude of EPTS error (Bastida Castillo et al., 2018; Linke et al., 

2018; Pons et al., 2019). This implies that if the test is conducted on a young under-15 player 

sample, the accuracy of the EPTS data reported is specific to that sample. Therefore, the results 

from each EPTS carried out in the FIFA tests are only suitable for comparing the reference 

systems; comparisons between EPTS should not be made.  

14.7. Conclusion 

The FIFA quality performance reports serve as a method for quantifying the accuracy of EPTS 

positioning and velocity data in different velocity bands. While these reports can certainly be 

commended for their intentions, there are several methodological issues regarding the testing 

conditions that need to be considered before interpreting the results from each EPTS. 

Specifically, comparisons between GNSS, LPS and/or OPT systems are not advisable. 

Consequently, practitioners should consider the main aim of this FIFA testing process and place 

greater importance on comparing the different EPTS to the gold standard rather than directly 

comparing between the results obtained from each EPTS. 
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CHAPTER 15 

 

Study XIII. Monitoring professional soccer 

players physical performance using real-time 

data generated by electronic performance and 

tracking systems   
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15. MONITORING PROFESSIONAL SOCCER PLAYERS PHYSICAL 

PERFORMANCE USING REAL-TIME DATA GENERATED BY ELECTRONIC 

PERFORMANCE AND TRACKING SYSTEMS 

15.1. Abstract 

The aims of this technical report were to analyze the validity of real-time data collected by 

electronic performance and tracking systems (EPTS) and investigate the effect of varying real-

time receiver’s position on the real-time data collected. Physical performance data were 

collected from professional soccer players using EPTS. In addition, three real-time receivers, 

which were placed in different positions (i.e., central area of the stadium stands and right and 

left technical areas), were used to collect real-time data. The real-time data collected by each 

receiver were visualized on SVivo (RealTrack Systems, Almeria, Spain) and compared to the 

data downloaded directly from the device on SPro (RealTrack Systems, Almeria, Spain). The 

results showed no statistically significant differences between the data collected by the real-

time receivers compared to post-session data in any variable (p > 0.05), except for total distance 

(TD) and high-speed running distance (HSRD) covered, which showed significant differences 

but trivial effect size (p < 0.05; d = 0.01). The coefficient of determination (R2) and intraclass 

correlation coefficient (ICC) were greater than 0.97 and 0.99, respectively. Regarding the 

analysis of varying the receiver’s position on the real-time data collected, the results showed 

that there was no significant effect of the receiver’s position on any variable (p > 0.05). 

Therefore, valid physical performance data may be obtained by real-time tracking systems such 

as SVivo, regardless of the position of the real-time receivers and distance to the players. 

Specifically, high-intensity running actions, distances covered at low and high speed as well as 

accelerometer-derived variables such as player load may be accurately tracked by this real-time 

tracking software.  

15.2. Keywords 

Accuracy, validation, training, tracking, performance.  
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15.3. Introduction 

The data collected by EPTS are usually analyzed at the end of each session (Oliva-Lozano, 

Fortes, & Muyor, 2020; Rojas-Valverde, Gómez-Carmona, et al., 2019). However, some EPTS 

provide these physical performance parameters in real time, which may be very useful for 

practitioners since some decisions may be made during the session (Barrett, 2017; Rojas-

Valverde, Gómez-Carmona, et al., 2019). For example, coaches can compare the live data to 

the training objectives and may adjust the session volume or intensity accordingly (Weaving et 

al., 2017). In consequence, these data may assist coaching and medical staff to maximize fitness 

and minimize the risk of injury or overtraining (Cummins et al., 2013; Oliva-Lozano, Rago, 

Fortes, et al., 2021). 

Nevertheless, EPTS manufacturers use different protocols to obtain real-time data and post-

session data (Weaving et al., 2017). For example, real-time data arrives at the end-user through 

a specific receiver (e.g., ANT+ technology, which is based on a wireless protocol for sending 

information from one device to another) while post-session data are directly downloaded from 

the EPTS (Barrett, 2017; Weaving et al., 2017). This implies that the real-time data depends on 

the quality of connection between the EPTS and the real-time receiver. In this regard, previous 

investigations suggested that caution should be taken when interpreting real-time data given the 

mean typical measurement errors observed in real-time compared to post-session reports 

(Barrett, 2017). For instance, the error for high-speed variables such as sprinting distance was 

greater compared to total distance (Barrett, 2017).  

In addition, there is little information regarding the effect of varying the position of the real-

time receivers on the accuracy of the real-time data collected. The protocol for real-time 

receivers positioning varies across all the studies that have been published to date (Barrett, 

2017; Johnston et al., 2020; Weaving et al., 2017). One study followed the manufacturers’ 

recommendations and the receiver was positioned 5 meters away from the in-goal line of a 

rugby pitch (Weaving et al., 2017). However, the receiver was positioned 2 meters behind the 

half-way line in another study with rugby players (Johnston et al., 2020). In addition, a previous 

study on professional soccer only specified that the receiver was placed close to the half-way 

line (Barrett, 2017). This implies that none of the investigations considered the influence of 

varying the receiver’s location, which may be important to analyze given the differences in the 
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radius of distance between the receiver and the EPTS or possible occlusion that may occur 

between players during the game. 

However, this is important from a practical perspective. If the receiver’s location or playing 

areas have a significant impact on the data reported by the real-time software, the sport scientist 

or fitness coach may make wrong decisions because of inaccurate data. Therefore, the aims of 

this technical report were to analyze the validity of real-time data collected by EPTS and 

investigate the effect of varying real-time receiver’s position on the real-time data collected.  

15.4. Methods 

Study design 

An observational research design was conducted to collect data from professional soccer 

players, who voluntarily participated in the testing session. Tracking systems were used to 

collect performance-related variables. In addition, real-time data were collected during the 

session by three receivers, which were placed in different locations. This study was conducted 

ethically based on the Declaration of Helsinki and it was approved by the Institutional Ethics 

Committee. 

Participants 

A total of 17 professional soccer players (age: 25.25 ± 6.71 years old; height: 1.81 ± 0.07 m; 

weight; 72.75 ± 7.72 kg) took part in the study. This sample was selected in order to ensure that 

size and intensity of the movements in the testing tasks were representative of high-level 

players. In this regard, only players, who were available to compete in the following match, 

were included. Thus, players who reported any injury before the start of the session were not 

included. The club and players were informed of the aims, procedures, risks, and benefits before 

data collection. Then, informed consent was given by the club and players to conduct this 

research. 

Procedures 

The testing session took place in a local soccer stadium with official pitch dimensions. The real-

time receivers were positioned in three different areas of the soccer stadium (Figure 34). The 
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receiver 1 (R1) was positioned in the central area of the stadium stands (from a greater height) 

and the receivers 2 (R2) and 3 (R3) were positioned in the technical areas. 

 

Figure 34. Real-time receivers’ location in the soccer stadium. R1: receiver positioned in the 

central area of the stadium stands; R2: receiver positioned in the right technical area; R3: 

receiver positioned in the left technical area. 

WIMU Pro units (RealTrack Systems, Almeria, Spain), which were placed on the player’s chest 

vest, were used to collect the physical performance data. These EPTS have been certified by 

the FIFA Quality Programme (FIFA, 2020) and according to previous investigations also 

considered as valid and reliable instruments for the collection of time-motion variables in soccer 

(Bastida Castillo et al., 2018). The EPTS were calibrated 20 minutes before the start of the 

sessions following these steps (Oliva-Lozano, Fortes, Krustrup, et al., 2020): 1) the tracking 

systems were placed in the Smart Station (RealTrack Systems, Almería, Spain); 2) this station 

was placed on a flat surface without nearby magnetic devices; 3) the devices were turned on 

and sixty seconds later, the recording button was pressed; 4) the devices were placed on the 

chest vests. 

The real-time receivers were ANT+ USB sticks (Garmin Ltd., Olathe, Kansas, United States), 

which were placed on the different areas of the soccer stadium (bench on the right technical 

area, bench on the left technical area, and central area of the stadium stands) and connected to 

three different ASUS X541U laptops (ASUSTeK Computer, Inc., Taipei, Taiwan). The real-

time data collected by each receiver were visualized on SVivo (RealTrack Systems, Almeria, 

Spain) and post-session data on SPro (RealTrack Systems, Almeria, Spain), which showed the 
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data downloaded directly from the device. Both physical performance reports were downloaded 

in order to compare the differences between real-time and post-session data from a training 

session consisting of two main parts. Firstly, small-sided games and transitional drills and 

secondly, 11 v 11 match. Specifically, the following external load variables, which are 

commonly used in applied practice and research related to physical performance monitoring in 

soccer, were selected: total distance covered (TD), high-speed running distance (HSRD, above 

21 km/h), high-speed running actions (HSRA, above 21 km/h), sprinting distance (SPD, above 

24 km/h), sprinting actions (SPA, above 24 km/h), total of high intensity accelerations 

(ACCHIGH, above 3 m/s2), total of high-intensity decelerations (DECHIGH, below -3 m/s2) and 

player load (PL, which is measured in arbitrary units and combines the accelerations in anterior-

posterior, medial-lateral, and vertical axis) (Gómez-Carmona et al., 2020; Oliva-Lozano, Rojas-

Valverde, Gómez-Carmona, et al., 2020d; Oliva-Lozano, Fortes, Krustrup, et al., 2020). PL was 

calculated using the formula from Figure 35. 

 

Figure 35. Player Load formula (Gómez-Carmona et al., 2020) 

Statistical analysis 

The descriptive statistics from each performance-related variable were reported based on the 

real-time data collected from each receiver on SVivo and post-session data from SPro. The 

Shapiro-Wilk test was used to test the normality of the data. Then, the sphericity was obtained 

through Mauchly’s test. A linear model with analysis of variance for repeated measures was 

performed. The external load variables were set as dependent variables while the data collection 

method (i.e., real-time data collected from SVivo or post-session data from SPro) was 

considered as the independent variable. Specifically, the comparisons between real-time and 

post-session data were obtained through Bonferroni post hoc. The effect size for the multiple 

comparisons were calculated using Cohen’s d and categorized as trivial (0-0.19), small (0.20-

0.49), moderate (0.50-0.79), and large (≥ 0.80) (Cohen, 1988). A 95% confidence interval was 

reported to display the range of values that the reader may be 95% certain contains the true 
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mean of the sample population. The statistical analysis was run on SPSS Statistics (IBM Corp., 

Armonk, NY, USA) and the level of significance set at p ≤ 0.05. 

15.5. Results 

Table 16 shows the validity of the data collected by real-time receivers compared to the data 

directly downloaded from the device. There were no significant differences between the data 

collected by the real-time receivers compared to post-session data in any variable (p > 0.05), 

except for TD and HSRD covered, which showed significant differences but trivial effect size 

(p < 0.05; d = 0.01). In addition, the coefficient of determination (R2 > 0.97) and the intraclass 

correlation coefficient (ICC > 0.99) were very close to 1. 
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Table 16. Validity of data collected by real-time receivers compared to post-session data from SPRO software 

Variables Receiver SPRO p d SEM R2 ICC (95% CI) 

TD (m) 

R1: 6344.2 ± 1666.1 6362.1 ± 1661.2 0.001 0.01 3.43 1.00 1.000 (0.998-1.000) 

R2: 6345.7 ± 1666.2 6362.1 ± 1661.2 0.001 0.01 3.41 1.00 1.000 (0.999-1.000) 

R3: 6341.6 ± 1665.1 6362.1 ± 1661.2 0.001 0.01 3.41 1.00 1.000 (0.996-1.000) 

HSRD (m) 

R1: 124.76 ± 91.46 125.28 ± 91.44 0.001 0.01 0.07 1.00 1.000 (0.999-1.000) 

R2: 124.76 ± 91.46 125.28 ± 91.44 0.001 0.01 0.07 1.00 1.000 (0.999-1.000) 

R3: 124.76 ± 91.46 125.28 ± 91.44 0.001 0.01 0.07 1.00 1.000 (0.999-1.000) 

HSRA 

(count) 

R1: 10.24 ± 5.67 10.24 ± 5.67 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R2: 10.24 ± 5.67 10.24 ± 5.67 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R3: 10.24 ± 5.67 10.24 ± 5.67 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

SPD (m) 

R1: 40.71 ± 54.33 40.80 ± 54.61 1.00 0.00 0.37 0.99 1.000 (0.999-1.000) 

R2: 40.71 ± 54.33 40.80 ± 54.61 1.00 0.00 0.37 0.99 1.000 (0.999-1.000) 

R3: 40.71 ± 54.33 40.80 ± 54.61 1.00 0.00 0.37 0.99 1.000 (0.999-1.000) 

SPA 

(count) 

R1: 2.88 ± 3.20 2.82 ± 3.21 1.00 0.02 0.06 0.99 0.997 (0.992-0.999) 

R2: 2.88 ± 3.20 2.82 ± 3.21 1.00 0.02 0.06 0.99 0.997 (0.992-0.999) 

R3: 2.88 ± 3.20 2.82 ± 3.21 1.00 0.02 0.06 0.99 0.997 (0.996-0.999) 

ACCHIGH 

(count) 

R1: 40.82 ± 11.23 40.82 ± 11.23 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R2: 40.82 ± 11.23 40.82 ± 11.23 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R3: 40.82 ± 11.23 40.82 ± 11.23 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

DECHIGH 

(count) 

R1: 52.35 ± 18.97 52.35 ± 18.97 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R2: 52.35 ± 18.97 52.35 ± 18.97 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

R3: 52.35 ± 18.97 52.35 ± 18.97 1.00 0.00 0.00 1.00 1.000 (1.000-1.000) 

PL (a.u.) 

R1: 80.09 ± 22.96 80.17 ± 22.92 0.26 0.00 0.04 1.00 1.000 (1.000-1.000) 

R2: 80.09 ± 22.96 80.17 ± 22.92 0.47 0.00 0.04 1.00 1.000 (1.000-1.000) 

R3: 80.05 ± 22.96 80.17 ± 22.92 0.06 0.01 0.04 1.00 1.000 (1.000-1.000) 

Note: SEM = standard error of measurement; ICC = intraclass correlation coefficient; CI = confidence interval; 

R1 = receiver positioned in the central area of the stadium stands; R2 = receiver positioned in the right technical 

area; R3 = receiver positioned in the left technical area; Values in bold indicate significant difference (p < 0.05). 
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Regarding the analysis of varying the receiver’s position on the real-time data collected, the 

results show that there was no significant effect of the receiver’s position on the TD (F(1, 17) = 

3.22; p = 0.09; ηp2 = 0.17), PL (F(2, 32) = 1.21; p = 0.31; ηp2 = 0.07), ACCHIGH, DECHIGH, HSRA, 

HSRD, SPA, or SPD (F(2, 32) =0.00; p = 1.00; ηp2 = 0.00). 

15.6. Discussion 

The purpose of this study was to analyze the validity of real-time data collected by EPTS and 

investigate the effect of varying the receivers’ positions on the real-time data collected. Given 

the high accuracy of the real-time data in comparison to post-session data, the main findings 

were that valid physical performance data may be obtained by real-time tracking systems such 

as SVivo, regardless of the three positions of the real-time receivers investigated and distance 

to the players. In addition, these are novel findings considering that no previous study analyzed 

the influence of varying receiver position on the real-time data collected and no validation 

studies for SVivo software, which is commonly used for physical performance analysis, were 

available to date. 

The results showed that real-time data visualized on SVivo software may be used for monitoring 

professional soccer player’s physical performance. This is explained by the very low systematic 

bias and SEM between instruments as well as the R2 and ICC very close to 1 in all the variables 

during a testing session which include a wide range of low and high intensity actions. This is 

consistent with two previous studies which observed that real-time data was strongly correlated 

with the data downloaded directly from the device (Barrett, 2017; Johnston et al., 2020). 

However, other investigations found that the difference between instruments might increase 

when running at high-intensity (e.g., running above ~18 km/h or ~25 km/h) (Aughey & Falloon, 

2010; Weaving et al., 2017). Considering that soccer players continually perform high-intensity 

actions (Oliva-Lozano, Fortes, Krustrup, et al., 2020), our study showed significant differences 

for TD and HSRD. However, these differences were rated as trivial based on the effect size, so 

practitioners may be confident when interpreting these variables. In addition, a previous study 

concluded that caution should be taken with accelerometer-derived variables such as PL, which 

are registered at different sampling frequencies than GPS-related variables (e.g., 

accelerometers: 100 Hz vs GPS: 10 Hz) (Weaving et al., 2017). Regarding the data collected 
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using the SVivo software for our study, the type of variable (i.e., GPS-derived variables such 

as HSRA or accelerometer-derived variables such as PL) was not of main concern. 

Another novel finding of the study was the analysis of the receiver’s position, which had no 

influence on the real-time data. This may have significant practical implications because the 

performance analysts may sit in the bench of the right or left technical areas during matches, 

while they may stay in the stadium stands (i.e., from a greater height and distance to the players) 

during training sessions. Real-time data arrives at the end-user through a specific receiver (e.g., 

ANT+ technology) and possible occlusion that may occur between players during the game as 

well as the differences in the radius of distance between the receiver and the EPTS might 

influence the results. Previous studies positioned the receivers close to the players (e.g., 5 

meters away from the goal line or 2 meters behind the half-way line of rugby pitches) (Johnston 

et al., 2020; Weaving et al., 2017) and this is the reason why this study included a real-time 

receiver (i.e., R1) which was placed in the stadium stands at a greater distance from the players. 

However, future studies should analyze the influence of varying the receiver position on the 

real-time data for other tracking systems which are commonly used in the context of physical 

performance analysis. 

In addition, it is important to acknowledge some limitations of this study. For example, no 

internal load (e.g., mean heart rate) or tactical parameters (e.g., team length and width) were 

included in the analysis (Folgado, Lemmink, et al., 2014; B. Gonçalves et al., 2017). Also, 

position-related metrics (e.g., TD, HSRD, HSRA, SPD, SPA, ACCHIGH, or DECHIGH) were only 

collected by GPS technology while ultra-wideband data may be used as well (Pino-Ortega et 

al., 2021). In this regard, future studies may also analyze the validity of real-time data provided 

by other tracking instruments such as optical tracking systems (Pons et al., 2019). Moreover, 

the data were only compared for totals across the entire session, so no raw data were obtained 

(Linke et al., 2018). In addition, the real-time receivers were placed in three different positions, 

where the performance analyst usually stays in training and match days. However, there may 

be other positions, which may be of interest for the collection of real-time data (e.g., suites at 

the top of the stadium stands for broadcasters), as well as other contextual factors (e.g., 

characteristics of the stadium), which need to be considered. 
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15.7. Conclusion 

Practitioners can be confident that the real-time data collected by this tracking software are 

valid for load monitoring purposes. Specifically, high-intensity running actions (e.g., HSRA, 

SPA, ACCHIGH, and DECHIGH), distances covered at low and high speed (e.g., TD, HSRD, SPD) 

as well as accelerometer-derived variables (e.g., PL) may be accurately tracked. In addition, 

these real-time receivers may be placed in the bench of the right or left technical areas while 

they may stay in the stadium stands behind the technical areas. Furthermore, it is important to 

note that using ANT+ USB sticks as real-time receivers is recommended given their portability 

(size: 1.9 cm x 1.1 cm x 0.4 cm; weight: ~5 g).  
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THESIS CONCLUSION 

This thesis analyzed the physical performance of professional soccer players with an approach 

based on load monitoring through EPTS. The first aim of the thesis was to analyze the key load 

indicators of professional soccer players in match and training sessions. In this regard, the 

results suggest that strength and conditioning coaches may use the performance indicators 

obtained by the PCA for load monitoring purposes. It is recommended to use the PCA in the 

context of team sports in order to reduce the large number of variables, which are daily managed 

by strength and conditioning coaches. The PCA may help coaches visualize and interpret large 

training and match load data. Also, the PCA may help coaches select key load indicators in the 

context of each team (e.g., team level, team formation, style of play, etc.), regardless of the 

tracking system used for data collection.  

The second aim of the study was to analyze the load variability of professional soccer players 

in training and match. This thesis explained why the analysis of load variability of each training 

and match day within the microcycle is also recommended. For instance, coaches should be 

cautious in post-match training sessions (e.g., +1MD) given the high load variability. 

Competitive fixtures present as the most demanding sessions within a professional soccer 

microcycle. The results showed that individual changes in representative GPS-derived 

measures of match physical performance (TD, TAcc and VMAX) of ±~10–15% can be 

considered practically significant. That is, beyond the normal match-to-match variability and 

by a magnitude greater than the smallest worthwhile change. This was with the exception of 

HSRD, where thresholds were considerably higher (⪆ 60%). However, physical performance 

may also depend on match-related contextual variables since these had an impact on the 

subsequent weekly training load. 

When it comes to the analysis of physical performance considering high-intensity actions and 

most demanding passages of play in professional soccer players, the findings provide 

meaningful information for practitioners. Positional differences exist across playing positions 

in both the sprint and acceleration profiles, which should be considered by strength and 

conditioning coaches when designing effective match-based drills in training sessions. Despite 

strength and conditioning coaches still focusing on training sprint actions starting at zero speed, 

most of these actions are performed at 5-6 km/h in match-play. In addition, different Vo were 
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observed between high-intensity and low-intensity accelerations as well as high-intensity and 

low-intensity decelerations.  

In addition, this thesis showed the type of passage (i.e., first, second or third MDP of play) had 

a significant effect on all the variables included in the study (DIS, HSRD, SPD, ACCHIGH, 

DECHIGH). Significant differences in the physical demands existed between the first, second, 

and third MDP of play in all playing positions and passage durations. However, there were 

some cases (e.g., DIS and ACCHIGH) in which no significant differences were found between 

the first, second, and third MDP of play. 

Furthermore, this thesis investigated contextual variables associated with high-intensity actions 

and most demanding passages of play in professional soccer players. The first 15-minute period 

of the matches (0’-15’) elicited the MDP of play for DIS, SPD, HMLD, ACCHIGH and DECHIGH. 

Given the observed decline in physical performance during the MDP of play as the matches 

progressed, strength and conditioning coaches should design specific training drills (e.g., from 

1-minute to 10-minute passages considering area per player) in order to prepare the players for 

match’s high intensity periods. In addition, another study of this thesis showed that the first 

period of each match half (i.e., period 1 and period 4) elicited the greatest amount of maximum 

intensity sprints in competitive match play, regardless of playing position.  

Nevertheless, the playing position had a significant effect on the role of the maximum intensity 

sprint and the field area in which the sprint occurred. When it comes to the effect of different 

contextual variables on the sprint-related performance variables, no significant effect from any 

contextual variable on ACCMAX, DECMAX or Vo was observed. However, the contextual 

variables had a significant effect on SPD (from ball possession, sprint trajectory, and role of the 

sprint action) and VMAX (from ball possession and playing position). In addition, although non-

linear sprints are the most frequent maximum speed actions and special focus should be put on 

sprints with different trajectories, linear sprint training is also positive since it may lead to 

improvements in non-linear sprints too (Fílter et al., 2020). Overall, the training drills should 

be based on the demands of match-play. For instance, players need to be prepared for sprints 

longer than 30 m, achieving speeds above 30 km/h as well as high intensity accelerations and 

decelerations (accelerations above 3 m/s2 and decelerations below -4 m/s2. Furthermore, the 

sprints need to be trained with starting speeds about 7-10 km/h. 
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Moreover, this thesis highlighted the importance of a 3-dimensional analysis of the locomotor 

load experienced by the players.  For example, PLTOTAL and the triaxial data provided by 

performance tracking systems (i.e., PLV, PLAP, PLML) may be used for load monitoring purposes 

in training sessions and matches. Given the differences observed between each axis of 

movement, training strategies need to be adopted in order to tolerate the load experienced by 

professional soccer players. However, given the large contribution of PLV to PLTOTAL, special 

focus should be placed on the vertical component. In addition, given the relationship between 

distance covered and PLTOTAL, and that PLTOTAL is a triaxial accelerometry-based metric which 

combines the accelerations in anterior-posterior, medial-lateral, and vertical movements, 

strength and conditioning coaches are encouraged to use this parameter as a measure of total 

body load. 

In addition, our studies showed how the data collected by EPTS may be used for the analysis 

of the postural demands of professional soccer players. For example, the volume of trunk 

flexion observed implies that soccer players may unconsciously move the field of regard down 

and position-specific training drills at different speeds are necessary in order to properly prepare 

the players for the perception-action demands (i.e., visual exploration and decision making) of 

the match. This may be considered as the first investigation analyzing the trunk kinematics of 

professional soccer players in official matches. In addition, a novel approach was conducted by 

analyzing the effect that different contextual variables (e.g., playing position, match half, and 

match day) had on the postural demands.  

Finally, this thesis explained why some methodological issues related to load monitoring using 

EPTS are important. For instance, the application of rolling averages is recommended for an 

appropriate analysis of the MDP of play. In addition, practitioners are encouraged to test the 

accuracy of the real-time data collected by their tracking software since this may help coaches 

make decisions during the course of a match or training session. Moreover, when reading the 

FIFA quality performance reports, practitioners need to understand the methodological issues 

regarding the testing conditions before interpreting the results from each EPTS. 
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LIMITATIONS AND FUTURE INVESTIGATIONS 

All studies, which were included in the thesis, highlighted the main limitations and suggestions 

for future investigations in the discussion section. However, it is important to mention that the 

analysis of physical performance in professional soccer is limited to the context itself. In other 

words, the physical performance may vary based on multiple contextual variables (e.g., 

physical fitness and wellbeing of the player, team level, style of play, team formation, 

characteristics of the training session, etc.) and, unfortunately, not all the variables can be under 

control.  

This thesis is just an approach to the analysis of physical performance using EPTS. Different 

research questions have been investigated and given the complexity of this team sport, future 

investigations are necessary to have a better understanding of physical performance in 

professional soccer. For example, this thesis was mainly focused on external load variables 

while the analysis of internal load is a research topic that may have key practical implications 

for sports performance and medical practitioners. Nonetheless, one of the main conclusions 

after completing the thesis is that future studies should keep a contextualized perspective when 

trying to analyze physical performance.  
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