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Abstract: The present paper investigates the optimal control of the photosynthetic growth process
in an artificial light photobioreactor operated in batch mode, the objective being to find an optimal
incident light intensity for which the consumption of light energy, for any amount of newly formed
biomass, is minimal. By using a simple and reliable model for the photosynthetic growth of mi-
croalgae of microalgae, predictions can be made on the quantity of produced biomass and on the
amount of light consumed, whose ratio gives the biomass yield on light energy. This variable is
unimodal on the allowed range of incident light intensities and has been used as objective function.
An improved objective function is proposed by using the specific growth rate and a weighing factor
that allows obtaining the desired amount of biomass while the light energy consumption is optimal.
A closed-loop control structure has been designed based on the developed optimization algorithm.
The optimal controller has been validated in simulation, comparing different lengths of the optimiza-
tion horizon and the sampling period. It was found that a bigger sampling period, for the cases
where there is no online information on the biomass concentration, does not significantly affect the
productivity. The optimization algorithm can be used either online or offline, being useful for various
experimental setups.

Keywords: microalgae; photobioreactor; optimal control; biomass yield on light energy; lumo-
static batch

1. Introduction

Microalgae are microscopic organisms found in fresh or sea water, but also in non-
aquatic habitats. The photosynthetic organisms, eukaryotic or prokaryotic, express var-
ied coloration (e.g., green, blue, brown, red) due to the wide range of intracellular pig-
ments [1,2]. Microalgae biotechnology is continuously growing based on the capacity of
these organisms to be used in industrial applications, apart from being used for human
and animal nutrition [3,4]. Added value compounds can be produced by microalgae, such
as pigments [2,5], long chain polysaturated fatty acids [6,7], proteins [3,8,9], lipids [10,11],
carbohydrates [12,13], etc. Another important role of microalgae is their involvement in
environmental applications such as wastewater treatment [14]. They can be also involved
in the production of different types of biofuels (e.g., biodiesel, biohydrogen, bioethanol,
or methane), within the context of an integrated biorefinery, to achieve economic viabil-
ity [15-17]. Furthermore, the microalgae’s ability to bio-mitigate carbon dioxide [18] is an
additional reason to count microalgae biotechnology as very promising from a scientific,
technological, and economic point of view.

Most species of microalgae are photoautotrophic, which means that they are using light
(solar or artificial) as a source of energy and some inorganic chemicals such as CO,, salts of
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nitrogen, salts of phosphorous, etc. Water photolysis is one of the most energy-demanding
reactions in nature. The water is split, the hydrogen is used in the photosynthesis transport
chain and the O, is released as residue. All of these reactions are named light-dependent
reactions. CO; is required to form primary metabolites (e.g., carbohydrates, lipids, etc.),
reactions that do not require light but require the protons and electrons produced by the
photodissociation of water. Due to the simple metabolic requirements needed for the
growth of microalgae, the photosynthetic metabolism is very attractive.

Microalgae are cultivated in photobioreactors (PBRs) which have at least one transpar-
ent side for the light to enter in contact with the culture. They have various shapes (e.g.,
flat-pate, tubular, columns, etc.), are open or closed, and serve laboratory or even industrial
purposes [19,20]. PBRs can work in discontinuous (batch), semi-continuous (fed-batch), or
continuous modes, each having advantages and disadvantages. This paper focuses on the
modeling and optimization of batch processes, these being often used in laboratory studies
and even industrial applications for developing and validating mathematical models and
control strategies.

Regardless of their low metabolic requirements, their robustness, and the versatile
reactors in which they are cultivated, there are several obstacles to overcome for making
the microalgal biotechnology economically feasible. In its support, reliable mathematical
models validated on experimental data and control strategies must be developed [21-23].
Targeting high concentrations of microalgal biomass (or high productivities) often requires
optimal control. Various studies have been made on the optimal control of continuous
photobioreactors, naturally [24-26] or artificially lighted [27], where the control variable
was the feeding flow rate (in continuous and semi-continuous operating modes). Other
key factors of the microalgae cultures, such as the pH control, have also been the subject
of optimization techniques; in this case, the input variable being the CO; flow rate [28].
This paper focuses on the batch mode operation of artificially illuminated PBRs, the control
variable being the incident light intensity on the PBR surface.

The light available inside the culture of microalgae is one of the main factors that con-
strain the growth process because it creates a heterogenous light field. Light is attenuated
along the depth of the culture, resulting in decreasing growth rates. The models that can
describe the light attenuation inside the microalgae cultures are named radiative models
and are fundamental in photobioreactor studies [23,29,30]. The radiative models must be
coupled with the biological process through kinetic growth models which result in models
that express the specific growth rate as a function of irradiance (the light available inside the
microalgae culture) [23,31,32]. Often, the photobioreactors are operated discontinuously
due to certain advantages such as obtaining a high concentration of biomass, lower risk
of contamination, etc. They are artificially lighted with efficient light sources that are
also dimmable. LED panels are more popular due to their good efficiency and robustness.
There are also commercial light growth panels specifically developed for photosynthesis,
with powerful COB LEDs (chip on board). By controlling the incident light intensity, a
new category of controllers named lumostats can be developed. Lumostatic operation of
the PBRs involve the control of variables such as light-to-microalgae ratio, biomass yield
on light energy, etc. [32-35]. The productivity of a lumostatic batch can be better when
compared with batch cultures operated at constant incident light intensity. Nevertheless,
the lumostatic operation of an artificially lighted PBR requires optimization to minimize
the amount of light consumed [34-36].

The present paper aims to find the optimal set of commands for which the consumption
of light energy, for any amount of newly formed biomass, is minimal. A closed-loop optimal
controller has been proposed and validated in simulation. The paper has four sections, and
after a brief introduction, the mathematical model used for prediction and optimization
is presented, followed by the formulation of the optimization problem. The last section
presents the optimal controller along with its validation in various scenarios.
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2. Mathematical Modeling of the Photosynthetic Growth Process
2.1. The Radiative Model

The photoautotrophic microalgae rely on light as a source of energy and can grow on
inorganic nutrients such as dissolved carbon dioxide and salts of nitrogen, phosphorous,
magnesium, etc. The mathematical modeling of their growth is, thus, closely related to the
availability of light inside the culture.

The light required for photosynthesis has a spectral region that corresponds to the
visible light (400 to 700 nm), and it is named Photosynthetically Active Radiation (PAR).
Photons with other wavelengths either have not enough or they have too much energy to
undertake photosynthesis and can damage the cell. Since the photons are the ones that inter-
act with the cell photosystems, the incident PAR, I, is measured in pmole pho’cons-nf2 g1
(to simplify pumol-m~2-s~1) and hereafter named incident light intensity. The incident light
intensity that touches the culture of microalgae at z = 0 attenuates inside the PBR due to
absorption phenomena and it is named irradiance and is denoted by I. z is the depth of the
culture, z € [0, L] and L is the depth of the PBR. The propagation of the light inside the PBR
depends on a series of factors such as medium properties, reactor geometry, the shape of
cells, the concentration of pigments [21], etc. The attenuation of light inside of a microalgae
culture (i.e., the irradiance) is generally described by the Lambert-Beer law, which relates
the irradiance to the depth of the culture, z, and the properties of the liquid environment:

I(Z) = Ip-e ¥ 1)

where the constant ¢ is an extinction coefficient specific to the aquatic environment. The
measuring unit of e is m~! so that the exponential factor is dimensionless.

The mathematical modeling of the irradiance has been approached by various au-
thors [21,29] aiming to describe more accurately the behavior of light in very dense media,
such as microalgae cultures, where it is absorbed by the pigments but also scattered by
the cells. In addition, the geometry of the PBR and the design of the lighting source are
heavily influencing the attenuation of the light inside the microalgae cultures. These types
of models are named radiative models.

The model adopted in this study relates the attenuation of light with the concentration
of biomass, X, as follows [29]:

1
I(z) = Iy-e ¥%%, with e = i “Ea 2)
20
where &« = \/E,;/(E; + 2bE;) is the linear scattering modulus. For the exponential to be

dimensionless, the measuring unit of the coefficient ¢ must be mz-kg_1 (same as E; and E;
as reported in Table 1).

The extinction coefficient, ¢, is calculated by considering the mass absorption and mass
scattering coefficients (i.e., E; and E;) and the backward scattering fraction, b. Figure 1
shows the attenuation of the light with the depth of the culture for various concentrations
of biomass. To better illustrate the attenuation of light, the normalized irradiance, I(z) /Iy
has been calculated.

The radiative model, in Equation (2), has been developed for flat-plate PBRs, and
lighted on one side. To illustrate the normalized irradiance, in Figure 1, a depth of 0.054 m
has been considered. This corresponds to an airlift rectangular PBR, used in previous
studies to obtain experimental data and to identify the mathematical models [37]. Figure 2
illustrates the airlift PBR along with its main components. The values of the parameters in
the radiative model are given subsequently in Table 1.



Energies 2022, 15, 6535

40f 15

—X=05gL"
——X=1.0gL™"
X=15gL7"
——Xx=20gL"
——xX=25gL”"

I(z)/l(J — Normalized irradiance

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0045 0.05
z — Depth of the culture [m]

Figure 1. The normalized irradiance attenuation with the depth of the culture, at an incident light

intensity of 500 umol-m~2-s~ 1.
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Figure 2. (A). Front view of an airlift PBR with a LED growth light panel and their main components [37].
(B). The lateral view of the PRB showing the attenuation of the light inside the microalgae culture.

2.2. The Kinetic Growth Model

The heterogeneous field created by the light inside the PBR results in growth rates that
are decreasing along the depth of the culture. The coupling between the radiative models
and the growth kinetics is an active research topic in PBR studies [23,31,32]. Because light
energy is the most important factor for photosynthetic growth, it is considered a substrate.
The specific growth rate related to photosynthesis, p;,, must thus be expressed as a function
of the irradiance. However, the energy absorbed by microalgae is not all used for growth, a
part of it being used for maintenance and, thus, a negative term is defined as the specific
decay rate, y;. The specific growth rate, y, has, therefore, two terms, one associated with
growth and one to decay:

H=HWp—Hd 3)

The PBR is considered a continuous stirred tank reactor (CSTR), which means that
the concentration of any component is uniform throughout the reactor volume and can be
expressed through ordinary differential equations. Nevertheless, the heterogenous light
field brings a second derivation variable, the depth z of the culture, which requires partial
differential equations. To avoid a complex mathematical formulation, an averaged growth
rate could be defined in two manners:
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- the averaged specific growth rate, u (Im,g), can be calculated with an averaged irra-
diance, I;5g. An analytical expression for the average of the irradiance (Equation (2))
along the depth z of the culture can be easily defined [30,38];

- local photosynthetic responses, u(I(z)), can be calculated for any depth z of the
culture. These local photosynthetic responses are simply averaged into an average
photosynthetic response, (1) (or average specific growth rate) [31]. The () denote an
averaged value.

The present study is based on the second approach, an averaged photosynthetic
response being calculated from 100 local photosynthetic responses. The specific growth
rate related to photosynthesis is expressed through a classical inhibition model:

I(z

L
1 )
(Hp) = por iz 4)
LO/K5+I(Z)+I(KI)2

where i, is a kinetic parameter related to the maximum specific growth rate, Kg is the
saturation constant and K is the inhibition constant. L is the depth of the PBR (z € [0 L}).

The specific decay rate, j4, is considerably smaller than y, and, even though it varies
with illumination conditions, it is considered constant here.

Figure 3 shows the specific growth rate decrease along the depth z of the culture for
a series of biomass concentrations. The averaged specific growth rates have also been
displayed in the legend. When the culture is dense (e.g., 2.0 g-L~!), the light penetrates less
than a quarter of the culture, leaving the rest of it in dark. In the dark zone of the culture
the specific growth rate is negative, p, < p3. The average specific growth rate is very
low (i.e., 0.002 h~1) for this concentration of biomass, and an incident light intensity lower
than 500 pmol-m 257! leads to the decrease of the biomass concentration. The average of
the specific growth rates is justifiable because, in a CSTR, a cell is migrating continuously
between the light and the dark zones.
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Figure 3. The decrease of the specific growth rate with the depth of the culture, at an incident light

intensity of 500 pmol-m—2.s~1.

To express the biomass as concentration, the volumetric growth rate, ry, is defined:

(re) = (W)X = (pp) X — paX (5)

2.3. The Mass Balance Model

Integrating the volumetric growth rate, the concentration of biomass, X, in g-L ! can
be obtained: I
o = () (6)
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The differential equation for biomass, Equation (6), is given for a discontinuous process
(batch). A batch process cannot be controlled because the reactor is filled with culture
medium at the beginning, and the process takes place for a specific amount of time without
any intervention. The artificially lighted PBRs, in contrast with the solar PBRs, have the
incident light intensity, Iy, as input variable and can be controlled to obtain optimal results.
These reactors are used in laboratories for data acquisition, modeling, developing and
validating control strategies, production of metabolites, etc. In most cases, a batch process
in an artificially lighted PBR takes place at a constant incident light intensity, but many light
growth panels are now dimmable and can be controlled to obtain optimal productivities or
optimal consumption of light energy.

The specific growth rate can be a function of other variables besides the light, such as
substrates, pH, temperature, etc., and more equations can be added to the model. However,
in this study, we consider that the substrates are in concentrations that are not limiting or
inhibiting the growth and the other key factors are controlled. The biomass equation can,
thus, be decoupled from other equations of substrates, for example, and be manipulated
individually.

By using the incident light intensity as the control variable, the PBRs can be operated
in lumostatic mode, which is controlling the Iy for maintaining constant certain variables
such as light-to-microalgae ratio [32,34], etc. The batch cultures with controlled incident
light intensities are termed lumostatic batches. The efficiency of a lumostatic batch can be
evaluated through the biomass yield on light energy, Y, a performance index that has the
following expression [32]:

Y = M (7)
Q
where X is the concentration of biomass, in g-L !, at the beginning of the batch (¢ = 0),
and V is the working volume of the PBR.
The total light consumed in the batch process, Q, is calculated by integrating the

incident light intensity over the batch time [to t f] :

ty

Q=4 [ ()t = Aq ®)
to

where A is the lighted surface of the PBR. Here, [y(f) is the incident light intensity that is
variable over the control horizon, while I is used for a constant incident light intensity. Y
has, thus, the meaning of grams of biomass produced per moles of photons consumed (a
conversion constant equal to 3600 x 10~ is needed to express Q in moles, where 3600 con-
verts seconds to hours and 10~ converts micromoles to moles, i.e., Q = A--3600 x 10~9).
The mathematical model used in this study consists of four ordinary differential
equations (Equation (9)) and a series of algebraic equations (Equations (2)—(5) and (7)):

% X (r)

L jCz . XT . <1’x>'V

Tl | Tl | T Ag ©)
Xy Yy Xr/Q—-Y

where x; is the concentration of biomass in g-L ™}, x; is the newly produced biomass in
grams, x3 is the amount of light consumed in moles of photons and x4 is the biomass yield
on light energy in grams per moles of photons. The fourth equation is in fact algebraic but
is expressed as a differential equation. The integration of the mass balance model must
be done with an integrator able to solve DAEs (differential-algebraic equations) such as
odel5s or ode23t in Matlab [39].
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The mathematical model for photosynthetic biomass growth has been validated on
Chlamydomonas reinhardtii [23] and Scenedesmus quadricauda [37], strains that have been
cultivated in rectangular laboratory PBRs lighted on one side. The parameters of the model
used in this study are presented in Table 1.

Table 1. The parameters of the photosynthetic growth model [23,37].

Parameter Value Unit
E, 200 m?-kg~!
Es 870 m?-kg~!
b 0.0008 -
Ho 0.17 h!
Ksg 135 pumol-m~2.s~1
K; 2500 pmol-m~2.s~1
Ha 0.01 h!
1% 5.74 x 1073 m?
A 10.2 x 1072 m?
L 0.054 m

3. The Optimal Control Problem

The objective of this paper is to find an optimal incident light intensity for which
the consumption of light energy, for any amount of newly formed biomass, is minimal.
To this end, reliable measurements for biomass must be available. There are direct (i.e.,
microscopic cell count) and indirect (e.g., dry mass, optical density, etc.) measurements of
biomass concentration. While the direct measurement of biomass concentration requires
microbiology skills, the dry mass is the most used measurement due to its simplicity,
which requires filtering known volumes of the culture and weighing the filters before and
after drying at 105 °C. The biggest disadvantage of this indirect measurement is the long
time required for drying, in most cases only one value per day being available. The need
for online biomass concentration measuring can be satisfied by hardware (e.g., turbidity
sensors, submersible spectrophotometers, etc.) or software sensors. However, both offline
and online measurements must be correlated with the dry mass.

The limited availability of online biomass measuring solutions is because the signals
of the above-mentioned sensors are influenced by many factors, such as the geometry of
the reactor, the composition of the culture medium, the shape of the cells, etc. A turbidity
sensor, for example, is an optical sensor able to measure the suspended solids, but its
signal is disturbed by the gas bubbles in the culture. Provided that it can be installed in
a zone where its signal is not disturbed, the turbidity is linearly correlated with the dry
mass [22], requiring the identification of two parameters, the slope, and the offset. Excellent
correlation can be obtained during the exponential growth phase, while the lag, stationary,
or death phases require a different set of parameters for the correlation. In a process, each
new dry mass value can be used to adjust the correlation, resulting in better estimations of
biomass concentration.

When no hardware sensor for biomass is available in the process, which is the case
for most bioprocesses, a software sensor can be used [36]. The software sensors can be
based on state estimation, regression analysis, artificial neural networks, statistical machine
learning [40], etc. However, the process mechanism can be also used to estimate the biomass
concentration. In this spirit, the mathematical model presented in the previous section can
be used. Two of its parameters could be reidentified daily on the dry mass measurements
to obtain a very good fitting, namely g and Kg (Equation (4)). To have an estimation, the
mathematical model requires the initial conditions and the current process time.

We assume from here on that a value of the biomass concentration is available. Know-
ing the biomass concentration and the volume of the reactor, V, the newly produced
biomass, X1, can be easily calculated (Equation (9)). To achieve the goal of finding the
optimal incident light intensity for which the biomass yield on light energy is maximal,
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the light source must be dimmable and controlled by the process computer. The light
sources can be calibrated with light meters, correlating the input voltage with the incident
light intensity in umol-m~2-s~!. To calculate the amount of light consumed, Q, the model
requires the incident light intensity, Iy, the lighted surface of the PBR, and the current
process time. By dividing the newly produced biomass by the amount of light consumed,
the biomass yield on light energy can be easily calculated (Y = Xt/Q).

Integrating the mathematical model over a wide range of incident light intensities, 1 to
2000 pmol-m~2-s~1, it can be found that the biomass yield on light energy, Y, is a unimodal
unidimensional function whose maximum gives the optimal incident light intensity, IO(opt)
(Figure 4). The optimization of Y can be done with unidimensional optimization meth-
ods [41] such as the golden section search, the parabolic interpolation, etc. The constraints
to which the input variable Ij is subjected have been selected from a technological point of
view, 1 umol-m~2-s~! to avoid division by zero (Equation (7)), and 2000 pmol-m~2-s~! is
the maximal sun radiation on a summer day.

10
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Figure 4. The response of the system for Iy € [1, 2000] pmol-m~2-s~! on a one-hour horizon.

Figure 4 displays the response of the system at various incident light intensities which
have been obtained on a one-hour horizon.

The simulations have been made on a horizon of one hour, mentioning that simulations
on wider horizons are similar in terms of Iy), as can be seen in Figure 5. The initial
conditions used for simulations are X(0) = 1.1386 g-L.~!, X7(0) = 4.4690 g (not displayed
in Figure 4), Q(0) = 9.18 g-mol photon~!, which means that Y (0) = X7(0)/Q(0) = 0.4868.

The mathematical model for the photosynthetic growth of microalgae can give even
more information on the process. The specific growth rate, y, provides valuable bounds for
the control variable Ij:

- alower bound, Iy(,,), under which the biomass would decrease. Below Iy, the
specific growth rate is negative (Figure 4), and
- anupper bound, Iy(,,y), which is set in Figure 4 at 80% of the maximum growth rate.

The biomass yield on light energy, Y, can thus be used in the optimization process.
The optimal control problem starts from the photosynthetic growth model which has
been presented in the second section. It consists of a system of four differential equations,
therefore the state vector is:

X)) = [X() %0 0w Y] (10)
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Figure 5. The responses of the system for Iy € [1, 2000] pmol-m~2-s~!, with three different optimiza-
tion horizons.

The input variable for the system is the incident light intensity:

u(t) = Io(t) (11)

The optimal control problem is subjected to the following constraints:

- the control horizon: tg <t <t fr where fj and ¢ ¢ are the initial and the final time of
the control horizon (the batch period),

- theinitial conditions: x(ty) = xo,

- the set of lower and upper bounds: Iyiuin) < Io(t) < Ipgmex), With tg < t < tg.
The lower bound, Iy(,;,), is critical because the biomass decreases under this value,
while the upper bound is not, and can remain constant (e.g., 2000 pmol-m~2-s~1).
Even though Iy, can inhibit the microalgae growth, it is attenuated inside the
culture. The lower and the upper bounds are required by most of the unidimensional
optimization methods [41], e.g., fminbnd function in Matlab.

The general form of the optimal control problem which searches the control u(-) that
maximizes the objective function | is:

J(x,u) = /ttf L(x(t), u(t), t)dt (12)

0

where the term L(x, u, t) is the intermediate cost function. The optimal control aims to find
the state and control trajectories x and u so that J(x, 1) is maximized:

x*, u* = arg n}}%x](x,u) such that x(t) = f(x(t),u(t)) for all ¢ (13)

Finding the optimal incident light intensity for which the consumption of light energy,
for any amount of newly formed biomass, is minimal, requires maximizing the biomass
yield on light energy, thus the optimal control input has the following form:

Ioopry = argmax Y(t) (14)

Io(t), to<t<tf
The optimization and control horizons are usually different, while the optimization can
be performed on the entire batch time {to t f} , the control horizon is usually lower, resulting
that the u(t) is the vector of input variables. If t; is the current time, ty <t <t fr the control
horizon can be [tk tkﬂ,} . Figure 5 displays the results obtained at the optimization of the

photosynthetic growth process range of incident light intensities of 1 to 2000 pmol-m~2-s~ 1.



Energies 2022, 15, 6535

10 of 15

As has been the case previously (Figure 4), the results are the final values of the states,
after the integration of the model for one hour with each Iy € [1, 2000] pmol-m~2-s~1.
Optimization on three horizons is presented, 1, 84, and 168 h, taking a seven-day cultivation
process as a reference. The initial condition for biomass is X(0) = 0.3 g-L.~!, while the
other states have been set to zero (Q(0) should be set to a very small positive value to
avoid division by zero). It can be observed that the optimal incident light intensity is
similar, regardless of the length of the optimization horizon. Comparing Figure 4 with
5, it can be observed that higher concentrations of biomass require higher concentrations
of light to reach an optimal yield, X(0) = 0.3 g-L~! requires ~ 130 pmol-m~2-s~! while
X(0) = 1.1386 g-L~! requires ~ 331 umol'-m~2-s~!. This points out the need for an
increase in the incident light intensity as the biomass grows. Working with constant light
throughout the photosynthetic growth process could require more light energy to obtain
the same amount of biomass compared to an increasing light profile. This problem has
been addressed in [32] by controlling the light-to-microalgae ratio, but the present paper
takes it a step further by investigating the optimization of a lumostatic batch (i.e., a batch
with variable incident light intensity).

The disadvantage of using the biomass yield on light energy, Y, as objective function
is that it lacks a scaling factor to push the concentration of biomass higher. Y assures that
the consumption of light energy is optimal, but this could result in low concentrations of
biomass. In this regard, the information of the specific growth rate, p1, which is already
used to determine the lower bound Iy(,,;,), can be used as follows:

Ioopry = argmax (Y(t) +w* p(t)) (15)
Io(t), to<t<ts

where w is a positive scaling factor. y(t) has the effect of shifting the optimum to the right
and, along with the scaling factor, any increasing Iy(t) profile can be obtained. Thus, higher
concentrations of biomass can be obtained, while the consumed amount of light energy
is minimal.

The desired increasing light profile can be obtained by iteratively optimizing the
process for any given current time and state. In this regard, a closed-loop control system
has been proposed in the following section.

4. The Closed-Loop Control System
4.1. The Control Structure

The objective of this work is to provide a closed-loop solution for the optimal control
problem presented in the previous section; in other words, an optimal controller that
provides an incident light intensity value to the process, for each sampling period. Figure 6
presents the closed-loop control structure proposed in this work. The optimal controller
calculates the optimal incident light intensity, Iy, ), over the optimization horizon [t ty,],
with k = 0,..., f where f; and {7 are the beginning and the end of the photosynthetic
growth process. 7 is a positive constant, expressed in hours, which is the length of the
optimization horizon. To calculate the current control variable, Ig(op 1) the optimal controller

requires the current state of the process, xx, and current time, ¢;. Thus, the optimal controller
must predict the future evolution of the process, and calculate the optimal incident light
intensity based on these predictions. This requires a process model to be included in the
optimal controller. The lower bound, Iy(;), can be found through a simple numerical
root finding method (e.g., the bisection method) because y intersects the Ox axis only
once. There is no specific method to find the upper bound, Iy(;,,4y), in Figure 4 being set at
80% of the specific growth rate obtained for 2000 pmol-m~2-s~!. The current lower and
upper bounds, I(’)‘(ml.n) < Ig(opt) < I(’)‘(max), are calculated with the process model before the
optimization procedure.
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Figure 6. The closed-loop control scheme of the photosynthetic growth process.

The sampling period of the photosynthetic growth process is {tk tk+p] ,where pisa

positive constant, expressed in hours, which is the length of the sampling period (usually
n > p). The process generates a new set of values for the state variables, xj 1, which are
used by the optimal controller to calculate a new input, along with the current time and
current bounds.

4.2. Simulation Results

A seven-day (168 h) photosynthetic batch process has been used as reference to validate
the optimal controller in simulation. The initial conditions used for all simulations in this
section are X(0) = 0.3 g-L. !, while the other three states have been set to zero (same as for
Figure 5).

Figure 7 displays the results obtained with the closed loop optimal controller on a 1-h
sampling period, p = 1, [t ty1]. The behavior observed in Figure 5 is also observed in
closed loop, and the length of the optimization horizon is not significantly influencing the
process. As the optimization horizon is bigger, slightly lower biomass values are obtained.
For example, the 20-h optimization horizon results in a biomass concentration of only 0.96%
lower in comparison with the 1-h optimization horizon. Also, lower Y values give similar
Io(opt), because Y decreases throughout the batch culture.
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Figure 7. Simulation results on a seven-day batch with different optimization horizons (1-h horizon—
blue, 20-h horizon—red and 50-h horizon—yellow).

A higher optimization horizon increases computational complexity of the algorithm
and thus a 1-h horizon is recommended.

In addition to the optimization horizon, the sampling period must be determined.
Given that the biological process is slow, a 1-h period has been considered. This period can
be shortened by the capacity of the process computer to measure the states and calculate a
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new control variable. Nevertheless, longer sampling periods have been investigated for
cases where an online biomass sensor is not available, and the optimization procedure can-
not be performed online. This would require the daily reidentification of the mathematical
model based on dry mass measurements and the optimization of the process based on the
model predictions, the operator being able to insert a new command every 12 h.

Figure 8 shows the evolution of the process with the closed loop optimal controller on 1-
h and 12-h sampling periods. Similar results are obtained in terms of biomass growth, which
proves that longer sampling periods are feasible for systems that have certain limitations.
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Figure 8. Simulation results on a 7-day batch with different sampling periods (1-h sampling period—
blue and 12-h sampling period—red).

The results presented in Figures 7 and 8 are obtained using the biomass yield on light
energy as objective function. Regardless of the optimization horizon and the sampling
period, the concentration of biomass is slightly lower than 1.5 g-L~!. Further increasing the
sampling period results in significantly lower concentrations of biomass, as can be seen in
Table 2. A constant incident light intensity of 133.17 umol-m~2-s~! throughout the entire
batch (see also Figure 5) results in a biomass concentration 35.48% lower compared with
the 1-h sampling period.

Table 2. Influence of the sampling period on the concentration of biomass.

Length of the Sampling Period Biomass Concentration [g-L~1] Decrease [%]

1-h 1.460

12-h 1.418 —2.88
24-h 1.374 -5.89
168-h 0.942 —35.48

Higher biomass concentrations can be obtained with higher incident light intensities,
and this can be achieved by using the objective function in Equation (15).

Figure 9 shows the simulation results on a seven-day batch for different weighing
factors. A higher w results in a higher concentration of biomass, providing that the amount
of light energy consumed is minimal. Because the second term of the objective function
w * u(t), is considerably smaller than Y (¢), both objective functions have generated similar
results (3rd and 4th graphs of Figure 9). The scaling factor thus provides the means to adapt
the optimization algorithm to the technological limitations of the systems (i.e., the maximal
output of the light source) and allows for the obtaining of a desired amount of biomass.
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Figure 9. Simulation results on a seven-day batch with different weighing factors (see Equation (15)).
With blue w = 1, with red w = 0.7 and with yellow w = 0.4.

5. Conclusions

The paper proposes a closed-loop control system for the process of photosynthetic
growth of microalgae. A simple mathematical model with four state variables has been
proposed for predicting the evolution of biomass concentration, the total quantity of newly
formed biomass, the total amount of consumed light, and the biomass yield on light energy.
It has been found that the biomass yield on light energy, Y, is a unimodal function on
the admissible range of incident light intensities, Iy, which can be used to optimize the
lumostatic batch culture. Maximizing Y results in finding the optimal incident light intensity
for which the consumption of light energy, for any amount of newly formed biomass, is
minimal. A second objective function has been proposed by adding a second term to Y,
which consists of using the specific growth rate along with a weighing factor. This new term
shifts the optimum to the right and allows for the obtaining of higher concentrations of
biomass. While the first objective function ensures an optimal consumption of light energy,
the second objective function also targets a higher amount of newly formed biomass. The
developed optimization algorithms have been integrated into a closed-loop structure. The
optimal controller is generating an increasing light profile which is more efficient, in terms
of consumed energy, compared with a constant light batch. It has been proven that a 1-h
optimization horizon is sufficient for obtaining good results and reducing the complexity of
the computation. The sampling period has also been investigated, providing a solution for
the processes with certain limitations. Finally, it has been shown that tuning the weighing
factor has led to the achievement of the desired increasing light profile. The results have
been validated in simulation; a reliable solution has been proposed for the optimal control
of lumostatic batches.
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