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Featured Application: This manuscript performs an electromyographic analysis of two exercises
for conditioning the upper muscle extremities. Thus, a greater knowledge for prescribing these
exercises in strengthening or functional recovery programs will be obtained.

Abstract: Pullover and straight arm pulldown exercises are commonly used in resistance exercise
programs to improve sports performance or in physical activity health programs. This study aimed to
evaluate the individual electromyographic (EMG) activity of the pectoralis major (clavicular, sternal,
and costal portions), latissimus dorsi, anterior deltoid, triceps brachii, and rectus abdominis muscles
in a barbell pullover exercise at a 100% biacromial width and a straight arm pulldown exercise
at a 100% and 150% biacromial width and to compare the EMG activity in these selected muscles
and exercises. Twenty healthy and physically active adults performed a set of eight repetitions
of each exercise against 30% of their body mass. The barbell pullover exercise presented a higher
EMG activity (p < 0.01) than the straight arm pulldown exercise in both biacromial widths in all
evaluated muscles except for the latissimus dorsi and the triceps brachii. These muscles showed
the highest EMG activity in the straight arm pulldown exercise at both biacromial widths. In all
of the exercises and muscles evaluated, the concentric phase showed a greater EMG activity than
the eccentric phase. In conclusion, the barbell pullover exercise can highlight muscle activity in the
pectoralis major (mainly in the sternal and lower portions), triceps brachii, and rectus abdominis
muscles. However, the straight arm pulldown exercise at 100% and 150% biacromial widths could be
a better exercise to stimulate the latissimus dorsi and triceps brachii muscles. Moreover, all exercises
showed significantly greater EMG activity (p < 0.001) in the concentric phase than in the eccentric
phase for all the evaluated muscles.
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1. Introduction

Upper limb strength training is essential in sports performance [1,2] and in improving
autonomy for the activities of daily living [3,4].

Specifically, pullover exercises are commonly used in resistance exercise programs
to improve sports performance, such as in swimming [5], skiing [6,7], handball [7,8], vol-
leyball [9], and ice sledge hockey [10], or for improving health in sedentary people [11].
Additionally, the straight arm pulldown is another frequently performed upper body
strengthening exercise [12,13]. In this sense, depending on the training objectives, choosing
the most appropriate exercise to stimulate the desired musculature is necessary. This mea-
surement of muscle activity has been extensively evaluated by electromyography [14-16].

Thus, some studies have attempted to evaluate the electromyographic (EMG) activity
in both pullover and pulldown exercises [17-20]. Marchetti and Uchida [20] evaluated the
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EMG activity of the pectoralis major and latissimus dorsi muscles during pullover exercises.
These authors reported that barbell pullover exercises produced a greater EMG activity in
the pectoralis major than in the latissimus dorsi. However, these authors did not compare
the pullover exercise with any other exercise. In this regard, Campos and da Silva [19]
compared the EMG activity of the pectoralis major, triceps brachii, anterior deltoid, and
latissimus dorsi muscles between the barbell pullover and horizontal bench press exercises.
These authors found a higher EMG activity for the triceps brachii and latissimus dorsi
muscles in the pullover exercise than in the horizontal bench press. However, the EMG
activity for the pectoralis major and anterior deltoid muscles was higher for the bench press
exercise. Similar results were found by Rabelo Mota et al. [17]. These authors observed that
there were no significant differences in the EMG activity of the pectoralis major between
the pullover and horizontal bench press exercises, but there was a greater EMG activity
with the anterior deltoid in the bench press when the exercises were performed until
concentric failure.

However, it is necessary to highlight that there are many differences in shoulder
movement between these exercises [21]. For instance, the horizontal bench press involves
the flexion and extension of the elbow and adduction of the shoulder in the horizontal plane,
whereas the barbell pullover involves shoulder flexion and extension while maintaining
a slight elbow angle. Therefore, it would be interesting to compare the EMG activity of
the pullover exercise with another exercise involving a similar upper limb movement, for
instance, the pulldown exercise. In this sense, Teixeira et al. [18] compared the EMG activity
and peak force between the pullover and pulldown exercises at different shoulder joint
positions during the maximum isometric contraction. These authors reported that the
pectoralis major and latissimus dorsi muscles showed similar maximal EMG activity in
both pullover and pulldown exercises, with higher values between 90° and 135° for the
pectorals major and between 0° and 45° for the latissimus dorsi.

Most studies, such as those cited above, have focused on evaluating the EMG activity
of the upper extremity musculature. However, no studies have assessed the EMG activity of
the abdomen. In the literature, there are different proposed exercises, called pullover passes,
oriented toward conditioning the abdominal musculature [22]. In addition, it is known
that in exercises such as crunches, when the arms are placed above the head, the EMG
activity of the anterior rectus abdominis muscle significantly increases [23]. This position
would be similar to that adopted at the end of the eccentric phase and the beginning of
the concentric phase in the pullover and pulldown exercises. However, to date, we are
not aware of any study that has analyzed the EMG activity of this abdominal muscle in
pullover and pulldown exercises.

Therefore, the purpose of this study was to evaluate the EMG activity of the pectoralis
major (clavicular -upper-, sternal -middle-, and costal -lower- portion), latissimus dorsi,
anterior deltoid, triceps brachii, and rectus abdominis muscles in the barbell pullover at a
100% biacromial width, and straight arm pulldown exercises at a 100% and 150% biacromial
width; this study also aims to (1) analyze which exercise generates the highest EMG activity
in the selected muscles; (2) compare the EMG activity between the concentric and eccentric
phases; and (3) determine the EMG activity of each muscle for each exercise.

2. Materials and Methods
2.1. Participants

Twenty physically active and healthy adults voluntarily participated in this study.
Table 1 shows the descriptive characteristics of the participants. To participate in this study,
the inclusion criteria were as follows: (1) at least 1 year of resistance training experience
with a minimum frequency of twice a week; and (2) no musculoskeletal injuries or physical
limitations during the 12 months prior to assessment. The participants were requested
not to take stimulants or perform vigorous exercise during the 24 h period prior to the
study. If any participant did not comply with any of the instructions above, they were
removed from the study sample. This study was approved by the Bioethical Committee of
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the University of Almeria, according to the Declaration of Helsinki. Before the beginning
of the measurements, all participants were informed about the study protocol and signed
an informed consent form.

Table 1. General characteristics of the participants.

Variables Values
Age (years) 26.33 + 1.95
Body mass (kg) 74.84 + 6.14
Height (m) 1.77 £ 0.07
Body mass index (kg~m*2) 23.86 £+ 1.69
100% biacromial width (cm) 44.05 £ 2.18
150% biacromial width (cm) 66.07 + 3.28
Load at 30% of body mass (kg) 2245+ 1.84

Values are shown as the mean and standard deviation (SD).

2.2. Procedures

The procedure began with the determination of the body mass of each participant
using an electronic weighing scale (Tanita, BF-350, Tokyo, Japan), their height with a
stadiometer (Seca, Hamburg, Germany), and their biacromial distance (Table 1). Prior to the
test, each participant completed a 10 min warm-up aerobic activity on an elliptical machine.
Then, they performed joint mobility exercises and dynamic stretching exercises of the body
segments involved in the pullover and pulldown exercises [24,25]. Afterward, as a specific
warm-up, participants performed fifteen repetitions of the pullover exercise using two
dumbbells of 5 kg each. These repetitions served to make the participants feel confident
and comfortable with the exercise and to ensure that the researchers were satisfied with the
technique performed.

Next, the skin was cleaned with cotton and 96% alcohol. According to the manufac-
turer’s specifications, bipolar Ag/AgCl disposable electrodes (Medico Lead-Lok, Noida,
India) were attached in parallel to the muscle fibers. The distance between the electrodes
was two centimeters. Moreover, a reference electrode was separated as much as possible
from the electrode pair. The placement of all the electrodes followed the surface electromyo-
graphy for the noninvasive assessment of muscles (SENIAM) recommendations [26] on
the dominant side of each participant. In particular, the electrodes were positioned as such
with: the clavicular head of the pectoralis major (PMUP), between the first and second
rib [27]; the sternal head of the pectoralis major (PMMP) horizontal to the muscle mass of
the chest wall (approximately two centimeters from the axillary crease) [27,28]; the costal
head of the pectoralis major (PMLP) at the middle clavicular line between the fifth and sixth
rib [27]; the latissimus dorsi (LD) at four centimeters under the lower tip of the scapula and
half of the distance between the spinal column and the lateral edge of the torso, with an
oblique angle of ~25° [29]; the anterior deltoid (AD) at 1.5 cm from the distal end and at the
anterior part of the acromion process [30]; the triceps brachii (TB) medial head at the middle
point between the posterior part of the acromion and the olecranon protuberance [31]; and
the rectus abdominis (RA) placed 3 cm lateral to the middle line and at a middle distance
between the xiphoid process and the umbilicus [32]. All the electrodes were covered with
adhesive tape to avoid the possibility of the electrodes moving during the execution of
the exercises.

Then, in each muscle, the maximum voluntary isometric contraction (MVIC) was
recorded to subsequently normalize the electromyographic signal for each exercise and
in the grip amplitude. To this end, the MVICs were performed twice, for three seconds
each time, with ten seconds of rest between each contraction and two minutes of rest
between each MVIC assessment [25]. In particular, the MVIC maneuvers were conducted
as follows: for the pectoralis major (clavicular, sternal, and costal portions), a standing
posture was assumed, with the shoulders and elbows flexed at 90° (in the horizontal
plane), participants had to bring their elbows to the middle line of the body against manual
resistance performed in the opposite direction. For the latissimus dorsi, in a standing
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posture, with the shoulders and elbows flexed to 90° (in the horizontal plane), participants
had to perform a scapular-humeral adduction, leading the humerus to the trunk against
manual resistance performed in the opposite direction. For the anterior deltoid, in a seated
position with an erect posture and no back support, participants had to perform a deltoid
flexion at 90° against manual resistance performed in the opposite direction. For the triceps
brachii, in a seated position with an erect posture and no back support, participants had to
perform a forearm extension with the elbows at 90° against manual resistance performed
in the opposite direction. For the rectus abdominis, the participants were positioned in a
supine posture with the soles of the feet resting on the floor; they were required to perform
a resisted curl-up exercise against manual resistance performed in the opposite direction.
All the muscles were randomly tested to avoid fatigue. To keep consistent efforts while the
MVIC maneuvers were performed, a tester verbally encouraged each participant.

Later, the participants performed a more specific warm-up that consisted of 20 rep-
etitions, with a relative load of 10% of their body weight, according to the exercise to be
evaluated. Finally, after 5 min of rest, the electromyographic activity recording began
during the barbell pullover and straight arm pulldown exercises. The barbell pullover
started with the participant lying in a supine position on a bench, with their feet on the
floor, holding a barbell with a pronated grip, and with their upper limbs perpendicular to
their body. Then, with the participant lying down, through a shoulder flexion and keeping
the elbows slightly flexed, the arms had to be brought to the earlobe (at the end of the
eccentric phase). Subsequently, through shoulder extensions, the arms had to return to the
initial position (at the end of the concentric phase) (Figure 1a). In this pullover exercise, the
grip distance was determined by the biacromial width of each participant (100% biacromial
width) [19]. The straight arm pulldown exercise was performed in a standing posture
with the trunk in a vertical position by gripping a bar that was connected by a cable to a
pulley [18] (Figure 1b). At the beginning of the exercise, the participants, keeping their
elbows extended, had to lower the bar until it reached the level of the navel (at the end of
the concentric phase). Subsequently, in a controlled manner, the bar had to be raised to
the height of the earlobe (at the end of the eccentric phase). The straight arm pulldown
exercise was performed in two situations: (1) with a grip distance of 100% of the biacromial
width and (2) with a grip distance of 150% of the biacromial width. Participants performed
a set of 8 repetitions of each exercise against 30% of their body mass [20] at a thythm of
2 s for the eccentric phase and 2 s for the concentric phase. A total of 4 s was used for the
movement of 1 repetition [19,25]. The repetition velocity was measured by a metronome
(KORG MA-1, Keio Electronic Laboratories, Tokyo, Japan).

2.3. Electromyography

To record the electromyographic signals of each muscle, a WBA Mega device (Mega
Electronics, Ltd., Kuopio, Finland) was used with a sampling of 1000 Hz. Then, a digital
signal was filtered by bandwidth (12450 Hz) using a fourth-order Butterworth filter
with the LabView software program (National Instruments, Austin, TX, USA). The root
mean square (RMS) signals in microvolts (V) were used for further analysis using the
MEGAWIN software program (Mega Electronics, Ltd.). Of the eight repetitions recorded,
only six were analyzed; the first and last repetitions were discarded to eliminate movement
variability due to the initiation and termination of the exercise [24].

2.4. Statistical Analysis

Before the statistical analysis and comparisons among the dependent variables, the
normality and homogeneity of the variances were confirmed with the Shapiro-Wilk, and
Brown-Forsythe tests. As all variables followed a normal distribution, parametric tests were
performed. A 3 x 7 ANOVA design (exercise*muscle) was applied to measure differences
in the EMG activity (% MVIC) among the exercises and among the muscles in each exercise.
A 3 x 7 x 2 ANOVA design (exercise*muscle*contraction type) was performed to assess
differences in the EMG activity according to the different contraction types (concentric
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and eccentric) in each exercise. Pairwise comparisons were performed using a Bonferroni
adjustment in order to observe if a significant main effect was observed. The effect sizes
(ES) were calculated by partial eta-squared (np2).

To compare the EMG values, expressed in microvolts (uV), during the concentric
and eccentric phases, Student’s t-test was performed for the paired samples. In this
case, the effect size was calculated through Cohen’s d using the combined standard
deviation formula [33].

The IBM SPSS software (v. 28) was used for statistical analyses, and the significance

level was set at p < 0.05.
/L Eccentric phase

@ Concentric phase
i .

Figure 1. Phases of the pullover (a) and straight arm pulldown exercises (b).
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3. Results

The ANOVA showed a significant main effect of exercise on EMG activity
(F(4.03,76.65) = 26.06, p < 0.001; np2 = 0.58). The barbell pullover exercise, at a 100%
biacromial width, presented a statistically higher EMG activity (p < 0.01) than the straight
arm pulldown exercises at 100% and 150% biacromial widths in all muscles except for
the latissimus dorsi, which reported a significantly lower EMG activity (p < 0.001), and
the triceps brachii, which did not show any significant differences among the exercises
(p > 0.05) (Figure 2).

Subsection

Tables 2—-4 compare the EMG activity between the concentric and eccentric phases
in each exercise (the barbell pullover at a 100% biacromial width; and the straight arm
pulldown exercise at 100% and 150% biacromial widths). The ANOVAs showed the sta-
tistically significant main effects for exercise (F(1.16,22.02) = 4.33, p = 0.044; np2 = 0.18),
muscle (F(2.01,38.32) = 103.72, p < 0.001; np2 = 0.84), and contraction phase (F(1,19) = 111.78,
p < 0.001; np2 = 0.85), as well as for the exercise*muscle (F(2.41,1.32) = 10.71, p < 0.001;
np2 = 0.36), exercise*contraction phase (F(1.32,25.08) = 7.80, p = 0.006; np2 = 0.29), mus-
cle*contraction phase (F(2.91,55.41) = 48.93, p < 0.001; np2 = 0.72), and exercise*muscle*contrac-
tion phases (F(3.35,63.78) = 14.12, p < 0.001; np2 = 0.42). All the exercises showed a signifi-
cantly greater EMG activity (p < 0.001) in the concentric phase than in the eccentric phase
for all the evaluated muscles (Tables 2—4).
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Figure 2. Comparison of the EMG activity among the evaluated exercises: pullover and straight arm
pulldown (expressed in %MVIC). PMUP—pectoralis major upper portion; PMMP—pectoralis major
middle portion; PMLP—pectoralis major lower portion; LD—latissimus dorsi; AD—anterior deltoid;
TB—triceps brachii; RA—rectus abdominis. ** p < 0.01; *** p < 0.001.

Table 2. Comparison of EMG activity (expressed in itV) during the concentric and eccentric phases in

the pullover exercise. Mean =+ standard deviation (SD).

Muscle Concentric Eccentric Mean Difference (95% CI) p-Value d-Cohen
pPMUP 165.23 4= 59.20 118.93 & 51.77 46.30 £ 32.51 <0.001 1.42
PMMP 159.86 + 57.10 125.38 £ 52.49 34.47 £ 31.57 <0.001 1.09
PMLP 191.97 &+ 61.74 143.11 & 44.49 48.86 £ 41.08 <0.001 1.18
LD 54.12 £ 14.04 39.33 £13.48 14.78 4+ 11.60 <0.001 1.27
AD 67.50 £ 29.45 45.26 £+ 20.74 22.23 £+ 24.12 0.001 0.92
TB 460.75 £ 250.66 401.97 £194.35 58.77 £ 99.56 0.016 0.59
RA 155.70 4 132.21 137.20 & 83.06 18.50 & 66.50 0.029 0.27
PMUP—pectoralis major upper portion; PMMP—pectoralis major middle portion; PMLP—pectoralis major lower
portion; LD—latissimus dorsi; AD—anterior deltoid; TB—triceps brachii; RA—rectus abdominis.
Table 3. Comparison of EMG activity (expressed in |tV) during the concentric and eccentric phases in
the straight arm pulldown exercise at 100% biacromial width. Mean =+ standard deviation (SD).
Muscle Concentric Eccentric Mean Difference (95% CI) p-Value d-Cohen
pPMUP 57.07 £ 23.96 35.41 £12.29 21.66 £ 14.86 <0.001 1.45
PMMP 62.95 + 41.31 31.03 £ 21.16 31.91 £ 24.90 <0.001 1.28
PMLP 104.46 & 90.94 52.47 £ 39.98 51.98 £ 55.71 0.001 0.93
LD 151.26 4 65.13 92.97 £ 32.49 58.28 £ 40.12 <0.001 1.45
AD 37.56 £+ 14.21 27.96 £ 9.45 9.60 £7.17 <0.001 1.33
TB 711.28 4 368.72 374.58 £+ 151.76 336.70 + 246.70 <0.001 1.36
RA 82.45 £ 108.31 42.51 £ 36.93 39.93 £74.74 0.027 0.53

PMUP—pectoralis major upper portion; PMMP—pectoralis major middle portion; PMLP—pectoralis major lower
portion; LD—latissimus dorsi; AD—anterior deltoid; TB—triceps brachii; RA—rectus abdominis.
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Table 4. Comparison of EMG activity (expressed in V) during the concentric and eccentric phases in
the straight arm pulldown exercise at 150% biacromial width. Mean =+ standard deviation (SD).

Muscle Concentric Eccentric Mean Difference (95% CI) p-Value d-Cohen
PMUP 60.60 = 22.91 40.38 £ 13.72 20.21 £+ 14.54 <0.001 1.39
PMMP 70.66 £ 53.01 36.65 &= 25.00 34.01 & 33.55 <0.001 1.01
PMLP 117.03 £117.97 59.76 £+ 48.76 57.27 £ 74.58 0.003 0.76
LD 159.40 £ 79.56 109.71 £ 48.31 49.68 £ 41.59 <0.001 1.19
AD 38.60 &= 14.39 29.43 +9.14 9.16 & 6.55 <0.001 1.39
TB 680.17 £+ 357.56 393.76 £ 173.24 286.41 £+ 205.26 <0.001 1.39
RA 82.45 £ 108.31 48.91 £ 76.25 33.53 = 35.64 <0.001 0.94

PMUP—pectoralis major upper portion; PMMP—pectoralis major middle portion; PMLP—pectoralis major lower
portion; LD—latissimus dorsi; AD—anterior deltoid; TB—triceps brachii; RA—rectus abdominis.

When comparing the EMG activity of each muscle in each exercise, the ANOVA
showed that in the barbell pullover exercise, at a 100% biacromial width, the PMMP, PMLP,
TB, and RA showed the highest EMG activity. In the straight arm pulldown exercises
at 100% and 150% biacromial widths, the greatest EMG activity appeared in the LD and
TB muscles. The AD showed the lowest EMG activity in the three evaluated exercises

(Figure 3).
B PMUP B PMMP [ PMLP [ LD Bm AD B 1B B RA
* *k
| * | | *kk |
T wk | ke
sokok — ——
T | — —
40 *%
* I — = ok
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Figure 3. Mean EMG activity and standard deviation normalized to the maximal voluntary isometric
contraction (MVIC) in the barbell pullover at 100% biacromial width and straight arm pulldown
exercises at 100% and 150% biacromial widths. * p < 0.05; ** p < 0.01; *** p < 0.001.
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4. Discussion

The strength training of the upper limbs is essential, both for sports and for the
activities of daily life. In this regard, pullovers and straight-arm pulldowns are two
frequently used exercises. Additionally, straight-arm pulldown exercises are sometimes
performed with different grip distances. However, to date, little scientific evidence has
analyzed the muscular activity of these exercises and their variants with a bar grip distance.
Therefore, the main purpose of the current study was to evaluate the EMG activity of the
pectoralis major (upper, middle, and lower portion), latissimus dorsi, anterior deltoid,
triceps brachii, and rectus abdominis muscles during barbell pullover exercises at a 100%
biacromial width and straight-arm pulldown exercises at 100% and 150% biacromial widths.

The current study found that the barbell pullover exercise, at a 100% biacromial width,
presented statistically higher EMG activity than the straight arm pulldown exercise at 100%
and 150% biacromial widths in all the evaluated muscles except for the latissimus dorsi
and the triceps brachii. Recently, Teixeira et al. [18] reported that the pectoralis major and
the latissimus dorsi muscles showed similar maximal EMG activity in both pullover and
pulldown exercises. However, the differences concerning our results could be because
these authors recorded the maximum voluntary isometric contractions at different angles
and compared them between exercises. By contrast, in our study, the EMG activity was
evaluated dynamically at 30% of the participant’s body mass in both exercises. Similarly,
our findings are consistent with those of Marchetti and Uchida [20], who reported that the
pectoralis major presented a higher activation than the latissimus dorsi during all movement
cycles of a pullover exercise. However, these authors only analyzed and compared the
EMG activity of the pectoralis major in the sternal portion versus the latissimus dorsi. Our
results show that in addition to the EMG activity of the sternal portion of the pectoralis
major, the EMG activity of the upper and lower portions and the EMG activity of the triceps
brachii and rectus abdominis were also significantly higher than that of the latissimus dorsi.

Furthermore, it was observed that in the pullover exercise and in the straight arm
pulldown at 100% and 150% biacromial widths, the EMG activity was significantly greater
in the concentric phase than in the eccentric phase in all the evaluated muscles. These
results are in agreement with previous studies [20,27,34].

A novel finding of the present study, which has not been reported to date, is that in the
pullover exercise, the rectus abdominis presented the highest EMG activity (=18% MVIC)
of all the muscles evaluated, although without statistically significant differences compared
with the triceps brachii or pectoralis major (in its three portions). The EMG activity of
the rectus abdominis could be due to its stabilizing function of the lumbar spine in both
the concentric and eccentric phases of the pullover exercise. In the eccentric phase, as
the barbell descends, the arm resistance increases [35], and with it, there is an increase in
lumbar lordosis. In this case, the rectus abdominis would be activated to fix and stabilize the
lumbar curvature to maintain the pelvis in retroversion [36]. In the concentric phase, during
the lifting of the barbell, the rectus abdominis acts as an auxiliary muscle, performing a
light flexion of the trunk (shrinkage) to overcome the generated torque [23,37]. However,
in the straight arm pulldown at 100% and 150% biacromial widths, as it was performed
with the participant in a standing position pulling the load perpendicular to the position
of the trunk, the arm resistance was lower, and therefore, the EMG activity of the rectus
abdominis was lower. In this case, the muscles with the greatest EMG activity in the straight
arm pulldown exercise were the triceps brachii (~19% MVIC), to maintain the elbow join in
extension [35], and the latissimus dorsi (=18% MVIC), to perform the shoulder extension
with an internal rotation of the humerus [38].

This study had some limitations, including the load intensity that we used to evaluate
the EMG activity (30% of the body mass). This load was chosen to individualize and
standardize, as much as possible, the load lifted by each participant. This load was also
chosen to ensure correct execution by the participants, avoiding possible injuries to the
glenohumeral joint [20,39]. Furthermore, this load has been used in previous studies
which analyzed EMG activity in the pullover exercise and is therefore considered safe
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and effective [20]. Future studies could evaluate the EMG activity at different percentages
with a 1 repetition maximum (1 RM) to compare whether different loads affect the EMG
activity in these exercises. Another limitation is the velocity of the movement, which was
performed for 2 s in the concentric phase and 2 s in the eccentric phase. This velocity was
chosen to obtain a clearer EMG signal and greater movement control, as has been proposed
by previous studies [20,24,25,34]. Further research is required at several velocities of these
exercises to determine the influence on EMG activity [40]. A final limitation is that the
pullover exercise was only evaluated at 100% of the biacromial width and not 150%. This
is because participants indicated that they were uncomfortable with their performance at
the widest width in this exercise. For the safety of the participants, it was decided to only
evaluate the width shown in the study (100% of the biacromial width).

5. Conclusions

In conclusion, the current findings show that the barbell pullover exercise emphasizes
the muscle activity of the pectoralis major (mainly in the sternal and lower portions), the
triceps brachii, and the rectus abdominis. However, the straight-arm pulldown exercise
at 100% and 150% biacromial widths could be a better exercise to stimulate the latissimus
dorsi and triceps brachii muscles. Furthermore, in the straight-arm pulldown exercise, the
width of the grip did not significantly influence the EMG activity of the tested musculature.
Thus, in both exercises, there was significantly higher EMG activity in the concentric phase
than in the eccentric phase.
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