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Abstract: Mediterranean high-mountain endemic species are particularly vulnerable to climatic
changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiver-
sity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity.
Moehringia fontqueri is a threatened endemic plant restricted to north-facing siliceous rocks along a
few ridges of the eastern Sierra Nevada. To guide conservation actions against climate change effects,
here we propose the simultaneous assessment of the current reproductive success and the possible
species’ range changes between current and future climatic conditions, assessing separately different
subpopulations by altitude. Reproductive success was tested through the seed-set data analysis. The
species’ current habitat suitability was modeled in Maxent using species occurrences, topographic,
satellite and climatic variables. Future habitat suitability was carried out for two climatic scenarios
(RCP 2.6 and 8.5). The results showed the lowest reproductive success at the lowest altitudes, and
vice versa at the highest altitudes. Habitat suitability decreased by 80% from current conditions to the
worst-case scenario (RCP 8.5). The lowest subpopulations were identified as the most vulnerable to
climate change effects while the highest ones were the nearest to future suitable habitats. Our simul-
taneous assessment of reproductive success and habitat suitability aims to serve as a model to guide
conservation, management and climate change mitigation strategies through adaptive management
to safeguard the persistence of the maximum genetic pool of Mediterranean high-mountain plants
threatened by climate change.

Keywords: diversity loss; fine-scale ecological niche modeling; global change; Moehringia fontqueri;
mountain cliff escarpments; reproductive success; Sierra Nevada (Spain)

1. Introduction

High mountains account for 15% of the World’s temperate-zone surface [1], harboring
one-third of terrestrial species [2], and more than three times the number of plants estimated
by their extent [3]. Furthermore, they constitute half of the 34 global macro-hotspots [4,5],
due to the high rate of richness and endemicity resulting from the biogeographic isolation
of these ecosystems [6]. However, alpine biomes are particularly sensitive to changes
in climatic conditions [7], both in the altitudinal gradient and over small geographic
distances, since they are characterized by very strong contrasts in the living conditions for
organisms [8,9].

Ongoing climate change has been reported to affect the phenology and physiology
of organisms [8], the range of species [10,11], the interactions within communities and
the structure and dynamics of ecosystems [12]. Mountain ecosystems, particularly in
Mediterranean-climate areas, are sensitive to changes in environmental conditions across
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geographical and altitudinal gradients [9,13-16]. The effects of global warming can cause
ecological imbalances affecting individual species and communities, most notably in the
form of temperature-driven range shifts [12,17-19]. Mediterranean high mountains are ex-
periencing longer summer droughts [20] and thermophilization [21,22] which can promote
the spread of thermophilic species up to high mountains [10,23,24]. However, a critical
aspect of biodiversity conservation is to understand how species with narrow ecological
requirements (e.g., habitat specialists) and restricted distribution ranges (e.g., endemics)
are altered by changes in environmental conditions.

One of the major focuses in conservation must be endemic and threatened species from
regions with high biodiversity, a high degree of endemism and sensitivity to environmental
changes [25]. Factors such as the small number of occupied habitat patches, restricted area
of distribution and limitations of suitable habitat around their current populations [26] may
determine a higher sensitivity to a threat factor. In this sense, taxa restricted to ‘high-altitude
islands’ are less likely to survive a stochastic event, despite the habitat heterogeneity may
provide micro-refuge [27,28]. Especially endemic species could be pushed to the brink
of extinction.

Addressing uncertainty in the adaptative behavior of high mountain plants requires
fundamental data on demography to assess population dynamics [29], information on
genetic variability as an estimate of the ability to cope with change [30,31] and forecasting
possible alterations in their distribution patterns [26,32-34]. For the latter assumption,
species distribution models (SDMs) are useful tools to ascertain the potential distribution
possibilities and allow to set the strategic conservation targets [35,36] in a climate change
context [37,38]. However, knowing the potential shifts in habitat suitability should also be
accompanied by an assessment of the actual reproduction potential and possible coloniza-
tion of new areas of the species, particularly of island-habitat endemics. Hence, attention
should be paid to reproductive biology, conservation genetics and the threats and direct
effects of climate change on species distribution range [31,35,39].

Sierra Nevada is an isolated Mediterranean high massif that takes part of a heteroge-
neous group of Mediterranean high mountains [40]. It comprises 2348 vascular plant taxa,
where 362 taxa inhabit the alpine area, 75 endemic species (62 endemic plus 13 sub-endemic)
among them, constituting ca. 79% of the endemism of the entire area [41]. For this rea-
son, Sierra Nevada is considered one of the most important plant hotspots within the
Mediterranean region [42—44]. Restricted to the alpine belt of Sierra Nevada the species
Moehringia fontqueri Pau (=Arenaria funiculata Fior & P.O. Karis) (Caryophyllaceae) is found
(Figure 1) [45]. It is a threatened narrow endemic inhabiting crevices in siliceous shady cliffs
along ridges of eastern Sierra Nevada (Almeria). It is categorized as Endangered (EN) in the
Spanish National Red List [46] and is protected at regional, national and international levels.
Moreover, habitat 8220* ‘Siliceous rocky slopes with chasmophytic vegetation’ is included
in the European Habitat Directive as a priority habitat for conservation (DIR 92/43/EEC).
Its strict ecological requirements, high habitat specificity, and its vulnerability due to cli-
mate change constitute important risk factors [47]. The preservation of M. fontqueri is an
example of the efforts needed for designing appropriate conservation strategies for species
in Mediterranean mountain areas facing climate change.

In this study, we aimed to (1) assess the variability in reproductive success of M. fontqueri
along the entire altitudinal range and its reproductive trends over time; (2) quantify the
environmental variables that explain its narrow ecological habitat requirements and distri-
bution range, and forecast trends in habitat suitability considering future climate change
scenarios; and (3) integrate the mentioned points to assess risks and improve M. fontqueri
conservation as model species of Mediterranean high mountain endemics.
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Figure 1. Moehringia fontqueri, plant detail (left) and sample collection method (right).

2. Results
2.1. Reproductive Performance

The production of seed primordia and viable seeds was conditioned by altitude
and year, with different reproductive responses among subpopulations depending on
the year, as revealed by a significant interaction between year and site in our analysis
(Table 1 and Figure 2). Nevertheless, both reproductive variables exhibited an increasing
homogenization over time at the three sites. In general, the species performed better (i.e.,
more seed primordia per flower and seeds per fruit) at the upper sites S2 and S3, which
exhibited a more similar and consistent reproductive response over time. The number of
seed primordia per flower and number of viable seeds per fruit reached maximum values
and minimum aborts per fruit at S3 (Figure 2). In turn, S1 exhibited a worse performance for
all reproductive variables and larger variation over time, suggesting a stronger dependence
on the yearly climatic conditions. The number of aborts differed among the three sites
and four years, without interaction (Table 1), and reached its maximum value at lower
altitudes (Figure 2).

The species, accounting for the variation among sites, exhibited a slight decrease in
the number of primordia over time (—0.31 £ 0.1, p = 0.04) as well as in the number of
aborts (—0.72 = 0.2, p = 0.004), whereas no trend was evident in the number of seeds
(0.24 £ 0.2, p = 0.3). Subpopulations differed in their reproductive output accounting for
the interannual variation. The two higher subpopulations had a greater production of
seed primordia per flower (particularly at S3), and were more similar to each other than
to the lowest subpopulation (x? = 7576.60, df = 3, p < 0.001). All subpopulations differed
significantly in the number of viable seeds produced per fruit (x> = 1413.30, df = 3, p < 0.001),
which increased with elevation. The number of aborts only differed at the extremes of the
elevation gradient (x> = 397.08, df = 3, p < 0.001) and the proportion of aborts-primordia
was consistently higher in the lower site.

Table 1. Generalized linear models testing the effects of site, year, and their interaction on the number
of seed primordia per flower, number of viable seeds per fruit, and number of aborted seeds per fruit.
Results with p < 0.05 in bold.

Seed Primordia per Flower Viable Seeds per Flower Aborted Seeds per Fruit
df X p X r X P
Site 2 23.11 <0.001 63.69 <0.001 9.73 0.01
Year 1 4.05 0.04 2.69 0.10 11.31 <0.001
Site x Year 2 38.74 <0.001 11.06 <0.001 191 0.39
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Figure 2. (a) Means of seed primordia per flower, (b) viable seeds per fruit, and (c) aborts per fruit
by studied site over time (£SE). Different letters represent significant differences between sites at
p < 0.01 in the post hoc Tukey tests after GLMs.

Moreover, the maximum mean values obtained for seed primordia per flower corre-
sponded to site S3 in 2005 (20.1), while in 2020 values found in all three sites were slightly
higher than 17.15 (Figure 2a). Regarding the ratio of viable seeds per fruit, the highest
mean values were found in S3 in all sampling years followed by site S2, and site S1. It was
striking that the mean number of viable seeds appeared to slightly increase over time at
site S1, recording its highest value (7.67) in 2020 while it was the opposite for S3, which
recorded the lowest mean value (9.96) in 2020 from all the periods sampled (Figure 2b).

On the other hand, the results of the ANOVA analysis showed statistically significant
differences in the values of seed primordia per flower between sampling sites S1 and S3
in 2005, 2013, and 2014. However, this condition was not met for the 2020 data (Table 2).
Similarly, Table 3 shows that there were significant differences in the data for viable seeds
between sites S1 and S3 in the years 2005, 2013, and 2014. These differences were not found
for the 2020 data. However, the 2020 data for S3 showed statistically significant differences
to those for S1 in 2005, 2013, and 2014.

Regarding reproductive success results, the optimum efficiency in seed production
related to the seed primordia was at site S3 for all periods (Table 4). The lowest reproductive
success corresponded to site S1 in all the samplings, being the minimum value in the year
2014, with 36.73%, this also occurred for S2 and S3, whose minimums were 41.92% and
55.2%, respectively.

Table 2. Statistically significant differences from ANOVA analysis for seed primordia data. p < 0.05.

Hypothesis 95% Confidence Intervals for Group Differences p-Value
512005-52 2013 —7.2610-—0.6388 0.0036
51 2005-53 2013 —7.9930-—1.2820 <0.001
S12005-52 2014 —6.9620-—0.2504 0.0156
51 2005-53 2014 —7.7090-—1.0440 <0.001
S12005-51 2020 —6.3550-0.0526 0.0428
S12005-53 2005 1.6570-9.9430 <0.001
53 2005-51 2013 0.8281-7.5650 0.0017
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Table 2. Cont.

Hypothesis 95% Confidence Intervals for Group Differences p-Value
53 2005-S1 2014 0.5510-7.3160 0.0053
512013-52 2013 —4.6160-—0.0771 0.0248
512013-53 2013 —5.3690-—0.6999 <0.001
51 2013-S3 2014 —5.0740-—0.4729 0.0030
52 2013-52 2020 —0.0423-4.0420 0.0447
53 2013-S1 2014 0.4168-5.1250 0.0044
53 2013-52 2020 0.5735-4.8010 0.0012
53 2013-S3 2020 —0.0489-4.2350 0.0457
S12014-S3 2014 —4.8300-—0.1895 0.0143
53 2014-52 2020 0.3501-4.5030 0.0049

Table 3. Statistically significant differences from ANOVA analysis of viable seeds data. p < 0.05.

95% Confidence Intervals for Group

Hypothesis Differences p-Value
51 2005-S3 2005 2.1290-13.6700 <0.001
53 2005-51 2013 —0.0250-9.3610 0.0379
53 2005-S1 2014 —0.1120-9.3120 0.0459
51 2005-S1 2020 —9.4800-—0.2536 0.0196
S12005-52 2013 —10.4500-—1.0210 0.0026
S12005-S2 2020 —9.9770-—0.4227 0.0133
51 2005-S3 2013 —13.2400-—3.6820 <0.001
51 2005-S3 2014 —12.2400-—2.7780 <0.001
S12005-S3 2020 —11.9600-—2.3590 <0.001
512013-S3 2013 —8.6240-—1.8300 <0.001
S12013-S3 2014 —7.6120-—0.9441 0.0010
S12013-S3 2020 —7.3610-—0.4974 0.0066
S12014-S3 2013 —8.5830-—1.7360 <0.001
S12014-S3 2014 —7.5710-—-0.8496 0.0016
S12014-S3 2020 —7.3190-—0.4036 0.0094
51 2020-S3 2013 —6.8780-—0.3071 0.0125
52 2014-5S3 2013 —7.3980-—0.6040 0.0044

Table 4. Percentage of reproductive effectiveness (seed-set) for each year at the three sites sampled.

Seed-Set 2005 2013 2014 2020
S1 20.84 37.38 36.73 44.00
S2 45.32 49.55 41.92 49.23
S3 57.10 59.45 55.20 59.14

2.2. Current SDMs for M. fontqueri

The segmented modeling of occurrences in the three elevational ranges corresponding

to sites S1, S2, and S3 served for fine-tuning the selection of predictor variables. On the
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other hand, the total distribution area of the species was modeled with all the available
occurrences and the most explanatory environmental variables.

The model obtained for the subpopulation at a lower altitude (Figure 3A) got an
Area Under the Curve (AUC) value of 0.972. Thirteen occurrences of the species recorded
in this altitudinal range were used. The variable that relatively contributed the most to
explaining the model was the Enhanced Vegetation Index (EVI) with 75%, followed by
SLOPE (9%) and Normalized Difference Snow Index (NDSI) (7.5%). In the jackknife test,
the variables EVI, NDSI, and SLOPE were the most explanatory; however, the regularized
training gain values of the environmental variables were, in general, lower than for the
other two subpopulations at higher altitudes.
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Figure 3. Models of current potential distribution of Moehringia fontqueri derived from occurrences
segregated by elevational ranges 3A (S1), 3B (S2), 3C (S3). Regularized training gain values of the
jackknife tests.

The model for occurrences in the intermediate altitudinal band (Figure 3B) had an
AUC of 0.989. In this case, 99 occurrence records were used. The variable that relatively
contributed the most to the model was Average Summer Precipitation (ASP) (38%), followed
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by Average Annual Temperature (AAT) (15%), EVI (13%), and NDSI (8%). In the jackknife
test, the variables that explained the most in isolation were ASP, followed by AAP (Average
Annual Precipitation), AAT (Average Annual Temperature), and AST (Average Summer
Temperature) with slightly lower values, and the altitude (Digital Elevation Model: DEM).

The model for the upper altitudinal range was run with 66 occurrences of the species
(Figure 3C) and yielded an AUC of 0.991. The relatively highest contributing variable was
ASP (59%). In the jackknife test the variable that isolated and explained most of the model
gain was ASP followed by altitude (DEM) and the climatic variables AAP, AST, AAT, and
Potential Evapotranspiration (PET).

The model for the current potential distribution range of the species (i.e., combining
the three subpopulations) obtained an AUC of 0.975. The relatively highest-contributing
variable to the model was ASP with 39%, followed by NDVI (15%) and NDSI (8.4%). The
jackknife test result showed NDSI was the variable with the highest self-explanatory gain,
followed by EVI and ASP, closely followed by winter temperature (Figure 4).
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Figure 4. Current potential distribution model of Moehringia fontqueri for all occurrences throughout
the distribution range. Regularized training gain values of the jackknife tests. Most explanatory
variables (ASP: Summerrainfall (mm) AWT: WinterTemp (°C)).

Table 5 shows the results for the area (km?) occupied by the pixels of maximum
suitability for the models run according to elevational ranges and for the total distribution
area. The largest area of maximum suitability was obtained from the model for the total
occurrence (79.98 km?). Counterintuitively, when comparing the three elevational ranges,
the highest habitat suitability and the largest area were found in the model for the lowest
altitude belt (0.30 and 44.30 km?, respectively).

Table 5. Results for area (km?) and mean suitability of potential habitat included in the polygon of
the current models.

Average Potential Habitat

Elevational ranges Area (km?) Suitability SD Variance
S1 (1600-1900 m asl) 44.30 0.30 0.24 0.05
52 (1900-2200 m asl) 36.58 0.16 0.18 0.03
S3 (2200-2500 m asl) 34.41 0.16 0.17 0.03

Total study area 79.98 0.15 0.18 0.03
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2.3. SDMs for M. fontqueri in Future Scenarios

Figure 5 shows the modeling results of the potential habitat distribution of M. fontqueri
considering increases in both temperature and precipitation (RCP 2.6, RCP 8.5) for the years
2035 and 2100. All AUC values of the future models were above 0.987 (Table 6).

8 J B 2100rcp85Precipitation

I 2100rcp26Temperature

m 2035rcp85Temperature
: 2035rcp26Temperature

Figure 5. Reduction estimation of the maximum potential habitat suitability for Moehringia fontqueri.
Temperature-based RCP 2.6 and precipitation-based RCP 8.5 scenarios for the years 2035 and 2100.

Table 6. Area (km?2) occupied by the polygons of maximum current and future habitat suitability.
Occurrences that would be found within each delimited area. Minimum altitude at which suitable
habitat would be found for the species. Average suitability of the habitat in the subsequent polygons
for each model (+standard deviation). AUC of each model.

Occurrences in .. .
Minimum Altitude

Scenarios Area (km?) Maximum Suitability (m asl) Average Suitability = SD AUC
Areas

Current 96.75 177 1637 0.1330 + 0.0200 0.975

2035 RCP 2.6 49.00 128 (—49) 2051 0.0039 + 0.0004 0.988

2035 RCP 8.5 41.6 110 (—67) 2113 0.0035 + 0.0004 0.987

2100 RCP 2.6 37.47 103 (—74) 2113 0.0029 =+ 0.0005 0.987

2100 RCP 8.5 18.09 35 (—142) 2259 0.0140 + 0.0123 0.991

Table 6 shows how in the most optimistic scenario the potentially suitable habitat
could be reduced to 49 km?2, with 28% of the occurrences excluded from this area. This
reduction increased as more pessimistic and longer-term scenarios were analyzed, up to
the period 2100 when habitat could decrease to 18.09 km? (18% of current potential habitat),
which would result in 81% of occurrences being excluded from the area of maximum
suitability. The minimum altitude at which the subpopulations are found in the case of
the polygon corresponding to the current model was 1637 m asl while its value increases
to 2051 m asl for the most optimistic scenario in 2035, rising to 2259 m asl in the most
pessimistic scenario modeled for the year 2100.

3. Discussion

Climate change is altering the global biota, potentially leading to individual adaptation
and natural selection to the new environmental conditions (metabolism, phenology, etc.),
or causing local extinctions and migration altering species’ spatial distribution [8,10-12].
Our study contributes to understanding how species with narrow ecological requirements
and restricted distribution ranges (i.e., a local endemic of a high mountain island-habitat)
are altered in their reproductive fitness and spatial distribution range by changes in envi-
ronmental conditions. In addition, as Lee-Yaw et al. [48] proposed, demographic studies
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are performed to complement SDMs when the goal is to identify populations with the best
chance of long-term persistence.

3.1. Reproductive Fitness of M. fontqueri

Analyses of reproductive fitness showed the biological optimum for M. fontqueri occurs
in its upper distribution range, suggesting that an expected rise in temperatures is likely to
compromise the viability of subpopulations at lower elevations. The studied subpopulation
always exhibited the worse performance at the lowest altitude for all reproductive variables,
in line with other studies [49,50], suggesting a higher sensitivity to year-to-year fluctuations
of the climatic conditions. This has been observed previously in the seedling recruitment of
other Mediterranean mountain plants [50].

Although ANOVA showed significant reproductive differences at the altitudinal
extremes of the population, a slight increase in S1 (lowest altitude) values was observed
from 2005 to 2020. This suggests a potential convergence in the reproductive fitness between
the extremes of the population.

This closer reproductive fitness could be due to an acceleration of phenology at lower
altitudes. This phenological disparity could increase over time if environmental effects
were more intense in subpopulations at lower altitudes that would advance their phenology.
This pattern has been reported in other mountains [51,52] generally affecting the species
for which climatic conditions differ strongly across populations. It is worth noting that
accelerated phenology (i.e., flowering earlier) does not necessarily improve reproductive
success [49] as reproductive structures can be exposed to inadequate conditions (e.g., drastic
temperature drops following early reproductive onset or sustained high temperatures for
optimal maturation) [51] affecting all subpopulations across their altitudinal range [53].

However, the seed-set results for S3 showed the highest mean production in all cases.
The slight decrease in the production of reproductive structures on average in S3 appeared
not to represent a decrease in reproductive success compared to S1 and S2. Thus, although
fewer primordia and viable seeds might be produced on average at site S3, the produced
primordia eventually reach maturity in a higher proportion than at the other sites sampled.
This confirms that S3 is the optimal site for the reproductive effectiveness of the species.

The study on reproductive success would require further monitoring to confirm the
observed trends, as well as to extend the sampling to several dates to cover the phenological
optima of the different locations. In the current context, it is important to pay attention
to the reproductive trends (e.g., advanced flowering and fruit set) of subpopulations,
especially in the face of climate change effects [31].

3.2. Current and Future Habitat Suitability

Modeling the ecological niche of flora species with such a narrow habitat specificity
is particularly challenging, as variations in microenvironments can strongly influence
habitat suitability [54,55]. In this sense, obtaining detailed information about physiological
and ecological factors affecting the species can improve the selection of the most relevant
predictor variables in a biological sense, as well as the interpretation of the models results.
Likewise, a sufficiently representative number of occurrences guarantees the stabilization
of the model results [56]. It is therefore essential to have a broad knowledge of the species,
which in this case comes from fieldwork carried out over more than 30 years [57].

A key issue for modeling is to know the ecology of the species [58] in order to choose
the environmental variables that best explain its occurrence [35,59]. Another essential issue
is to handle such information at the optimal resolution when forecasting habitat suitability
at the local scale, especially if the species requires very specific ecological conditions and
is restricted to narrow areas [23,54,60]. Due to its characteristics, the ecological niche of
M. fontqueri can be considered extremely sensitive to spatial changes in the factors control-
ling its distribution [58,61]. Here, we used the highest pixel resolution available [35,54,58]
and detailed information on the actual distribution range of the species, both necessary to
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model on a local scale the habitat suitability of rare species with very narrow ecological
requirements [54,62,63].

The model results by elevation showed a large area meeting suitable environmental
conditions at 1600-1900 m asl. This result can be explained simply because the available
area at lower elevations is larger than at upper elevations. Additionally, this lowest-
elevation model (Figure 3A) excluded the highest elevations as suitable habitats where
the species has been confirmed, probably due to the small number of occurrences used
and contrasting environmental conditions at the extremes of the species’ range [9,64]. In
turn, model results for higher altitudes suggested that the effect of other topographic
or vegetation-related variables could be diluted with altitude, and that climate variables
combined with altitude itself became more important. This was the case for summer
precipitation (ASP), which is considered a limiting factor, especially in Mediterranean
regions [20,33,65]. The variable NDSI, which depends on the snowfall period, the amount
of snowfall, and the time of melting [51,66,67], appeared among the four that contributed
most to the explanation for the models and could be a relevant predictor of the behavior
and potential distribution of the species. The variable SLOPE was also highly explanatory,
consistent with the habitat preference of M. fontqueri for vertical cliff walls and overhangs,
mainly on northern exposures.

The results of the model calculated with all occurrences largely overlapped with the
sum of the models for each altitudinal range; however, a larger area with optimal habitat
suitability was observed. Moreover, it was consistent with the information obtained in the
reproductive biology results. The optimum for potential habitat suitability was found in
the higher distribution margins, consistently with the maximum reproductive effectiveness
(S3). The easternmost area and northern exposure were confirmed as the most suitable
for potential habitat. The minimum altitude of the potential habitat was restricted to
approximately 1600-1900 m asl, confirming that its optimum is above this range. The
most important variable contributing to the model was summer precipitation (ASP), in
addition to EVI and NDSI. EVI was the most relevant variable for the lower altitudinal
range and the second for the intermediate range, contributing also to the total model,
together with NDSI, which appeared as the third most relevant variable. This result is
congruent with previous studies and again highlights the importance of the presence of
snow and summer precipitation for the presence of M. fontqueri. Engler et al. [16] showed
that projected habitat loss is higher for species distributed in high mountains; in this case
study, it was scenario-dependent, namely, 80% habitat loss for 36-55% of alpine species
between 2070 and 2100. The results of the modeling of the future habitat for M. fontqueri
concurred with these results, showing that the maximum potential suitable habitat could
be reduced by up to 80% by 2100. The minimum altitude where the presence was estimated
for the different scenarios indicates the loss of suitable conditions at lower altitudes and
the contraction of the habitat. These results agree with several studies warning about the
possible local extinction of populations due to the contraction of the lower limit of their
habitat [1,26,45,68-70], partly explained in the context of climate change by the movement
of species towards optimal conditions [71].

The contraction of species ranges in the current climate scenario is mainly owed to the
variation in precipitation and temperatures [68]. Particularly, in the Mediterranean region,
summer temperatures and mean annual precipitation appear as the most relevant variables
that, in the future, could determine the ability of species to withstand environmental
conditions, especially at their lower limits of distribution [23,26].

It has been found that changes in environmental variables can affect the growth of
populations [72]. Temperature, radiation, photoperiod, or timing of snowmelt are impor-
tant signals to optimize flowering, especially in alpine plants [66]. Several studies suggest
that some plant species are experiencing an acceleration in their phenological processes,
which would mean that they have less time after snowmelt to acquire resources before en-
vironmental signals trigger the onset of flowering [49,51,67]. In addition, under conditions
of reduced water availability, flower longevity tends to decrease to optimize water loss [73],
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reducing reproductive effectiveness. In the studied case of M. fontqueri the environmental
variables NDSI (snow index), AST (summer temperature), AWT (winter temperature), and
AAP (annual precipitation) contributed significantly to the results of the SDMs and could,
therefore, be assumed to be decisive factors for both the distribution of potential habitat
and the reproductive mechanism of the species. Nonetheless, the uncertainty of remote
sensing data, including EVI and LST [74-76], may affect the research results.

4. Materials and Methods
4.1. Study Area

The study area is located in the eastern part of Sierra Nevada (SE Spain; latitude
37.0275° N; longitude —2.9232° W) (Figure 6). Sierra Nevada has a complex orography
and soil composition distributed along 2100 km?, comprising altitudinal ranges from
200 to 3482 m asl. The climate is Mediterranean, characterized by cold and wet winters
and hot and dry summers. The average annual rainfall is highly variable ranging from
300 to 1000 mm, with a high spatial variability due to topographic effects [77]. Average
temperatures are below 0 °C during winter with a snow cover that can persist up to
8 months in the highest areas (occasionally up to 10 months in small snow patches) [24].
The region has experienced an increase in temperatures and a greater variation in rainfall
during the last decades [77].

~

Legend
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Figure 6. Distribution range map of Moehringia fontqueri. Detail of the distribution of occurrences in
Sierra Nevada divided by altitude (S1, S2 and S3).

4.2. Study Species

Moehringia fontqueri is an endangered caespitose hemycriptophyte strictly endemic to
the Eastern part of Sierra Nevada (Almeria) occupying a range from 1600-2430 m asl (data
in this study) in the oromediterranean bioclimatic belt under subhumid ombroclimate (pre-
cipitation between 600-1000 mm). It grows in crevices of north-faced cliffs under no direct
sunlight, being part of chasmophytic vegetation (Centrantho nevadensis-Sedetum brevifolii in
Quézel 1953). This species germinates and sprouts in mid-May, and blooms from early June
(at lower altitudes) to early August (at higher altitudes), with flowering peaking around
mid-July. Most individuals fruit in August and seeds are dispersed thereafter [61]. This
species has one single known population (115,000 estimated individuals) fragmented into
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approximately 70 subpopulations with a possible genetic exchange. Its geographic range
is 200 km?, and its estimated area of occupancy (AOO) is between 2.4 and 10 km?. The
species has been categorized as Endangered (En Blac (iv) + 2ac (iv)) [47].

4.3. Reproductive Biology

Field surveys were carried out on foot by expert staff who regularly visited the
different subpopulations. In this work, 178 presence records were located in the study
area, distributed in three main elevations, with 13 records between 1600-1900 m asl (S1),
99 between 1900-2200 m asl (52), and 66 between 2200-2500 m asl (S3) (Figure 6). Field
surveys for reproductive data were distributed in three main elevational ranges, 1960 m
asl (51), 2150 m asl (S2), and 2430 m asl (S3). On each elevational range, in summers
of 2013, 2014, and 2020, at least 30 flowers and 26 fruits were collected from several
individuals and preserved in the field in Kew Mix (53% methanol, 37% deionized water, 5%
formaldehyde solution, and 5% glycerol), fruits were harvested individually in cellophane
bags, to allow transpiration and dry (preventing them from rotting). Flowers and fruits were
dissected individually using a Motic binocular stereo-microscope (10x-30x). Reproductive
structures were counted evaluating the numbers of seed primordia per flower and viable
seeds per fruit (Figure 7 and Table 7).

Two reproductive variables were calculated considering each location by the altitudinal
range and sampling year to assess reproductive success [78]: Method calculations of the
seed-set as in Equation (1), and abortion rate as in Equation (2) (where “Sx” is the site under
study (x =1, 2, 3), and ‘a’ the year (a = 2005, 2013, 2014, 2020)).

Figure 7. Images of the dissection process of flowers and fruits during the study of seed primordia
and mature seeds.
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Table 7. Number of flowers and fruits collected at each elevational range per year.
Number of Flowers Number of Fruits
Main Locations Name and Elevational Ranges 2005 2013 2014 2020 2005 2013 2014 2020
Elevation (m asl)
S1: Barranco de la Campana (1960)  S1: 1600-1900 10 31 30 52 10 36 32 36
S2: Between La Polarda and El
Buitre (2150) S2: 19002200 10 36 32 48 10 30 31 27
S3: Under El Buitre summit (2430)  S3: 2200-2500 10 32 34 45 10 27 29 26

[[Z Viable seeds in S (x,a) /N Fruits in S(x,a)]/ [Z Seed primordia in S(x,a)/N Flowers in S(x,a)]] x 100 (1)
[[2 Aborted seeds in S (x,a)/N Fruits in S(x,a)]/ [Z Seed primordia in S(x,a)/N Flowers in S(x,a)]] x 100 2)

4.4. Data Analyses

Temporal trends in the reproductive variables across sites were evaluated by fitting
General Linear Models (GLMs) including the effects of the site, year, and their interaction as
explanatory variables. Linear models were built with a Gaussian family error distribution
using the R package ‘stats’ [79]. Significant interactions were compared with Tukey’s post
hoc analysis using the R package ‘agricolae’ [80]. Anova analyses helped to further identify
reproductive differences between particular sites and years. Graphs were produced using

‘ggplot2’ in the R package ‘tidyverse’ [81].

We tested the general trends over time for the reproductive variables of M. fontqueri
considering all subpopulations together. Alternatively, we determined whether there were
reproductive differences between subpopulations accounting for the variation between
years. Thus, we fitted Linear Mixed Models (LMMs) considering the year as a fixed factor
and site as a random effect, and conversely, with the site as a fixed factor and year as
a random effect. The use of LMMs allowed us to determine the effect of year and site
controlling, respectively for spatial or temporal pseudo-replication. All mixed-effects
models were built with a Gaussian error distribution, and identity-link function using the
R package ‘glmmTMB’ [82]. Multiple comparisons were performed with the R package

‘multcomp’ [83].

For all models, time was used as a continuous variable. Appropriate distribution for
the reproductive variables was determined by inspecting the histograms of the data values
with the R package ‘graphics’ and likelihood ratio tests between models using different
distribution families with the R package ‘stats” [80]. We used the R package ‘DHARMa’ [84]
to test for uniformity, outliers, and overdispersion on the scaled residuals and validate
the goodness of the models. All statistical analyses were performed using R version 4.1.0,
R Foundation for Statistical Computing (Vienna, Austria) [79].

4.5. Current and Future Predictor Variables

This process was used to try to discriminate potentially suitable sites for this ecological
requirement of the species. Environmental variables (30 m? resolution) were generated on
the Google Earth Engine platform (https://earthengine.google.com (accessed on 21 July
2021)). The variables Aspect (ASP), Hillshade (HSD), and Hillshadow (HSW) were obtained
from a Digital Elevation Model (DEM) [85,86]. Considering the ecology of the species
(which occupies steep microsites), the Slope variable (SLP) was generated in QGIS from
the DEM at 5 m? resolution (available at https:/ /www.ign.es/web /seccion-elevaciones
(accessed on 10 November 2020)). The plugin ‘ZonalStatistics’” was used to obtain the
maximum slope values in the 5 m? pixel size raster. A downscaling process was performed
by the ‘Polygon To Raster” tool to obtain a 30 m? pixel scale grid, to which the maximum
SLP value for all the 5 m? pixels contained in each 30 m? grid was assigned.

On the other hand, satellite variables were preprocessed and generated on Google
Earth Engine from Landsat 8 satellite image collections (USGS Landsat 8 Level 2, Collec-
tion 2, Tier 1, 2013 to 2021). Enhanced Vegetation Index (EVI) layers [87] were produced
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using the 8-day Landsat8 images, while Normalized Difference Snow Index (NDSI) for the
winter period [88], Normalized Difference Water Index (NDWI) for the summer period [89],
and Land Surface Temperature (LST) [90] were calculated from annual Landsat8 images.
For these indices, interannual mean, median, and SD values for the pixel information were
calculated independently.

The scarcity of meteorological information at the chosen resolution, which is common
in high mountain areas [64], led to the production of climate layers, as they are considered es-
sential for forecasting species behavior [39,91]. Meteorological data from 17 virtual stations
located in the study area were downloaded from the website
http:/ /diagramasbioclimaticos.com (accessed on 17 April 2021). Temperature, precip-
itation, and potential evapotranspiration data were interpolated on QGIS by ‘krigging
regression’ plugin with height (DEM altitude) as the covariate. For the estimation of future
conditions, the different raster layers of climate variables were modified by adjusting the
values to the change predicted by the global change scenarios [37], RCP 2.6 and RCP 8.5 in
2035 and 2100 (Table 8).

Table 8. Calculation of temperature and precipitation variation for each Global Change scenario
studied.

. Average Annual Average Winter Average Summer Average Annual Average Winter
Scenario © e e
Temperature Temperature Temperature Precipitation Temperature
2035 RCP2.6 +0.98 +0.80 +1.32 —1.40% —1.50%
2035 RCP8.5 +1.16 +0.86 +1.48 —1.20% —1.80%
2100 RCP2.6 +1.18 +0.82 +1.58 —3.00% —2.80%
2100 RCP8.5 +4.88 +3.96 +6.18 —18.40% —14.40%

To avoid collinearity issues in the sets of predictor variables, and in order to select
only non-redundant ones, a Variance Inflation Factors (VIF) analysis was performed on R
software [92-98]. According to this methodology, the value for the VIF analysis must be
less than 5 (or additional variables with a high VIF may be excluded until all remaining
variables had VIF < 10), and in agreement with Dormann et al. [99], a correlation below 70
in the environmental variables can be considered as an acceptable value (see Appendix A).
This analysis was used to discern between predictor variables in modeling processes both
for current and future conditions.

For the current models, predictor variables SLP, EVI, HSD, DEM, NDSI, THL, and
NDVI were selected. Due to the high correlation of climate variables, an isolated VIF
analysis was required to discriminate between them. PET (Potential Evapotranspiration),
AAP (Average Annual Precipitation), AWP (Average Winter Precipitation), ASP (Aver-
age Summer Precipitation), AAT (Average Annual Temperature), AWT (Average Winter
Temperature), and AST (Average Summer Temperature) were selected as well.

4.6. SDMs and Ecological Niche

We modeled habitat suitability for M. fontqueri using MaxEnt (based on the maximum
entropy principle) version 3.4.1k, American Museum of Natural History, Center for Bio-
diversity and Conservation (New York, EEUU) [100]. This software generates empirical
models based on statistical or theoretical response surfaces [32], also defined as statistical
models that use observed distribution data to infer ecological requirements and map their
current potential distribution [101], and project into the future under conditions of climate
change [102]. The probability of suitability for each pixel given a sample of the background
is calculated following the idea that the expected value for each variable must be equal to
the empirical average value of current occurrences of the species [100,102,103]. We used
MaxEnt given its suitability for presence-only data (see Elith et al. [102]). The default values
were kept by default, following the methodology of most related publications [104], except
that the value of 1000 iterations were entered, and the program was required to output
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response curves for the variables, assessed with a jackknife test [105]. Initially, we ran
models using three groups of presence records corresponding to the altitudinal ranges (51,
52, S3) for model calibration using the whole set of environmental variables (see above).
This step allowed us to evaluate a diverse array of candidate models, selecting the best
models. To estimate the predictive capacity of each model and the effect of each predictor
variable, the area under the curve (AUC), which indicates how far the result departs from a
null model, was evaluated following the scale recommended by Swets [106]: AUC < 0.5 low
accuracy; 0.5 probability with no effect of the variables; 0.5-0.6 not predictive; 0.6-0.7 poor
accuracy; 0.7-0.8 fair accuracy; 0.8-0.9 good accuracy; >0.9 excellent accuracy. The fact
that the AUC decreases when a predictor variable is excluded might suggest that the other
predictors are not able to explain the projected distribution as accurately as if it is retained.
Conversely, it suggests that its inclusion has caused the model to over-fit the field data, and
therefore, explains no more than the other factors do [107].

The Logistic output format was chosen (habitat suitability between 0-1 for each pixel).
Both plots of predictor variables gains and jackknife tests determined how much each
variable could explain changes in model outcomes. A table with percentages of the relative
importance of each variable was also produced. To compare the changes between the
different models, shape layers with vector information were created in QGIS [108]. Polygons
were generated using the criterion of including only pixels with values in the first four
quartiles of potential habitat suitability based on the model results for M. fontqueri. The area
(km?), mean polygon suitability, SD, and variance were calculated for the different polygons
of the highest suitability, so that an absolute comparison could be made between them.

5. Conclusions

Multidisciplinary studies considering reproductive biology and the use of SDMs under
different climate change scenarios are key tools to understand the status and performance
over time of plant species populations in the Mediterranean highlands [31,69]. These
studies are able to generate relevant information for the design of conservation plans
adapted to the context of global change [1,20,32,36,101,109] prioritizing especially endemic
orophilous taxa [27,54].

M. fontqueri subpopulations at the lowest altitudinal ranges appeared to experience
a decrease in their reproductive success while the highest subpopulations seemed to
reproduce effectively. Although the decrease in reproductive success in the long term cannot
be confirmed, our results showed that M. fontqueri strongly depends on the environmental
conditions, suggesting that the alteration of climate under future scenarios poses a risk to
its conservation, as forecasted by the species distribution models.

Regarding the models generated for current conditions, the amount of snowfall was
an explanatory variable present in all models. In addition, the variables ASP (summer
precipitation), NDSI (amount of snowfall), and EVI (vegetation index) contributed more
significantly than others to the distribution model of M. fontqueri. According to current
models, the highest values of potential habitat suitability would be found at higher altitudes,
while habitat suitability at lower altitudes is expected to decrease. Furthermore, according
to these models, the predictor variables explaining future habitat suitability are mean
summer temperature, mean winter temperature and mean annual precipitation.

The projections showed a drastic decline in the distribution range of the species that
would mainly affect subpopulations at lower elevations. This is consistent with studies
indicating that peripheral populations of a species or in their distribution limit are more
sensitive to any alteration since they meet their optimum ecological requirements with
more difficulty [110,111]. This could cause the limit of the distribution to shift upwards
in the future, as widely reported for other species [10,11], increasing the probability of
extinction by depletion of suitable habitat.

The analysis of the predictions of changes in climatic conditions, and the coincidence
of the area of greatest reproductive success with the areas where, according to the models,
the species will have ideal conditions for the longest time suggests that the high areas
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could serve as the main refuge for the species and a reservoir of a greater gene pool in the
future. In turn, at lower altitudes, the persistence of the species will be compromised due to
declining habitat suitability resulting from the decreasing reproductive success and altered
phenology of the species. However, long-term monitoring would be necessary to assess
these trends in the future.

Threatened species and rich biodiversity areas have been protected by law in the past,
although this protection has failed to consider climate as a modeler of biodiversity over
time. In this sense, protection planning should consider the potential future constraints,
implying not just current but future patterns of biodiversity [112].

Our simultaneous assessment of reproductive success and habitat suitability aims
to serve as a model to guide conservation, management and climate change mitigation
strategies through adaptive management to safeguard the persistence of the maximum
genetic pool of Mediterranean high-mountain plants threatened by climate change. For
this reason, we emphasize the need to devote effort to the conservation of other mountain
species with a perspective for the future, that as M. fontqueri, may see their status worsened
by potential environmental changes due to climate change.
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Figure A1. Cluster of correlation values obtained in the environmental variables VIF analysis.
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