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Abstract. Mashup user interfaces provides their functionality through the combination of dif-
ferent services. The integration of such services can be solved by using reusable and third-party
components. Furthermore, these interfaces must be adapted to user preferences, context changes,
user interactions and component availability. Model transformation is a useful mechanism to ad-
dress this adaptation but normally these operations only focus on the functional requirements.
In this sense, quality attributes should be included in the adaptation process to obtain the best
adapted mashup user interface. This paper proposes a generic quality-aware transformation pro-
cess to support the adaptation of software architectures. The transformation process has been
applied in ENIA, a geographic information system, by constructing a specific quality model for
the adaptation of mashup user interfaces. This model is taken into account for evaluating the dif-
ferent transformation alternatives and choosing the one that maximizes the quality assessments.
The approach has been validated by a set of adaptation scenarios that are intended to maximize
different quality factors and therefore apply distinct combinations of metrics.
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1. Introduction

A particular type of component-based user interfaces (UIs) are those made up of coarse or large
grained components, such as widgets or little applications. These UIs within the web domain are called
mashup UIs because they integrate different services under web technologies [1]. Some examples
are offered by Netvibes (https://www.netvibes.com), Cyfe (http://www.cyfe.com), Dasheroo
(https://www.dasheroo.com), freeboard (https://freeboard.io), Geckoboard (https://www.
geckoboard.com) and ENIA (http://acg.ual.es/enia) applications. This kind of software is
usually adapted at run-time depending on user preferences, interactions, or other evolution needs.

Previous studies have shown that model transformation is a good approach to adapt component-
based architectures [2]. Existing transformation processes focus on the functionalities of systems,
giving less importance to the Quality Attributes (QA). This means that model transformations do not
distinguish iso-functional transformation alternatives, although these alternatives fulfill QAs differ-
ently. In this sense, if one UI is adapted by only considering its functionalities, such UI may have a
less flexible interaction (e.g., complex UI with a greater number of components) or worse maintain-
ability (e.g., costly evolution from introducing unnecessary dependencies among components) than
if we consider QAs at run-time. Actually, some QAs (e.g., availability or performance) can only be
measured only at run-time since off-line circumstances provide an estimation and not a real value.
For example, a user interface of a GIS (Geographic Information System) domain composed by a map
and a layer list must be adapted to incorporate a new map with additional information layers. Let
us suppose that the system applies a transformation process generating two equal alternatives from a
functional point of view but different from the the non-functional perspective. One of them adds a new
map with the new information but the other one merges the information offered by the two maps. The
former is better in terms of interoperability and accessibility and the latter improves the performance
and fault tolerance. Which one should the system choose?

The goal of this paper is to study whether model transformations can be improved by considering
QAs at run-time. To this end, we present a QA-aware transformation approach to adapt component-
based software systems by measuring the quality of different transformation alternatives. Then, we
validate the suitability of such QA-aware transformation approach in four scenarios for the ENIA
(ENviromental Information Agent) software. ENIA is a GIS whose UIs are based on coarse-grained
components and adapted at run-time depending on user preferences, interactions, system requirements,
or other evolution needs [3]. Nevertheless, the approach can be applied to other applications offering
their functionality as a mashup or a dashboard.

We propose a set of metrics to measure QAs of ENIA at run-time. We use these metrics to evaluate
various alternative architectures (each one obtained by executing a different transformation). As a
result, we decide which is the best transformation based on the considered QAs. This article is an
extension of the paper originally published in [4]. The contributions of the present research work can
be summarized in the next statements:

• A quality-aware transformation has been proposed to support the adaptation of mashup UIs.

• ISO/IEC 25010 quality model has been used to identify the relevant attributes in the ENIA
domain from an abstract perspective.
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• GQM+StrategiesTM has been used for supporting the elicitation of the relevant quality factors
and appropriate metrics for accomplishing the ENIA goals.

• QUAMOCO approach has been applied to construct the links between the abstract definitions
of the quality factors and the concrete metrics.

• A quality model for the particular domain of ENIA has been built.

• The approach has been validated through four scenarios focused on different quality goals,
factors and measures.

This article is structured as follows. Section 2 introduces a background about adapting component-
based systems by model transformation. Section 3 reviews the related work present in the literature.
Section 4 presents our QA-aware model transformation approach. Sections 5 and 6 exemplify the
approach in the ENIA case. Specifically, Section 5 describes the construction of the quality model and
the measures in an analysis phase; and next, Section 6 applies these metrics at run-time in different
ENIA scenarios. Section 7 discusses the contributions and limitations of the approach. Finally, Section
8 draws the conclusions and proposes some future work.

2. Background

In this section we include the required background for contextualizing the approach of quality-aware
architectural transformations at run-time presented in this paper. First, it is important to clarify the
particular domain application of our approach, i.e., the adaptation of component based software sys-
tems. In the second place, we need to state that this adaptation is carried out by model transformations.
Finally, we introduce the specific system which fosters this research work.

Component-based systems are a type of software which facilitates the execution of adaptation and
evolution operations. In this sense, well-known mechanisms of Component-Based Software Engineer-
ing (CBSE), such as modularization, encapsulation and reuse, favor the development of self-adaptive
systems [5]. This software paradigm allows us to manage the components as black-boxes by de-
scribing their syntax, semantic, and properties through formal specifications, as in the case of COTS
components [6]. Thus, a component can be replaced by other element that matches its specification.
Consequently, an architecture can be modified by replacing the parts which need to be adapted.

Model transformation is a common approach to adapt the component-based architecture of soft-
ware systems [2]. In this context, Model-Based Engineering (MBE) techniques facilitate the develop-
ment of software architectures, defining them (including the structure, components’ specifications, and
run-time interaction) by models. Moreover, manipulating architecture models at run-time allows us to
generate different alternatives based on the same definition [7]. Depending on the model transforma-
tion nature (e.g., vertical, horizontal, endogenous, and exogenous) and within the context of software
architectures, it is possible to develop refactoring transformations for obtaining different software al-
ternatives. Our goal is to modify the transformation schema proposed in [2] for generating more than
one alternative and consider quality information to select the best transformation.

We addressed this research work focusing on component-based software systems for human-
computer interaction. More specifically, we validated our approach by using the scenario of ENIA
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UIs, which are used for managing a GIS through coarse-grained components implemented as widgets.
Some examples of these components are maps showing geographic layers, visual charts representing
datasets, or social widgets enabling the communication with other GIS entities and the community.

ENIA UIs development highlighted the different alternatives that exist when a new architecture
is constructed, whether it is determined at design time or it is generated dynamically at run-time.
Moreover, such alternatives may be equally valid depending on the quality factors that are taken into
account for its construction. For this reason, a quality-aware transformation approach is addressed.
Hence, ENIA has been chosen as our test scenario, since the UIs offered by this system are repre-
sented and managed as architectures of coarse-grained components (see Figure 1). Each component
in ENIA architectures contains the required functionality to perform a task by itself or using its de-
pendencies with other components, e.g., a UI can be formed by a clock, a twitter, a map with rural
roads, a map with sea temperature information and a map displaying the water resources. Then, UIs
in ENIA are reconfigured at run-time with the aim of adapting their structure to the user interactions,
profile preferences, context changes and pro-active system decisions. Since UIs are represented by
models conforming to a set of domain-specific languages (DSLs), this adaptation process is based
on model-to-model (M2M) transformations (written in ATL transformation language) of component-
based architectures (see [2] for further details).

Model transformations in charge of adapting ENIA’s UIs are not preset. On the contrary, these
operations are dynamically built depending on the initial UI, context information, adaptation rules
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and available components. In this sense, it is possible to build different transformation operations
for the same inputs. The transformed models are correct with respect to (a) the source model, (b)
the adaptation purposes and (c) the metamodel due to the rule selection and the constraints of the
adaptation process. In our previous work [2] we proposed a transformation process that generates a
set of possible architectures ensuring the functional resolution of the reference architecture. A tool1

available as a web application can be used to test this transformation process through an example. In
the present paper, we propose a mechanism to rank the iso-functional transformations by incorporating
additional quality information thus improving the result obtained from the adaptation process.

3. Related Work

This work covers two fundamental areas of research: Model-Based Engineering and software archi-
tecture design. In particular, for these two areas, the contribution of this paper is oriented to the use
of quality attributes as the main driver of the adaptations that occur in run-time. In this section we
mention works related to our contribution for these identified areas of research.

3.1. Handling Quality Attributes in Model-Based Engineering

Most of the existing model transformation processes focus on the functionalities of systems, giving
less importance to the QA, also known as non-functional requirements or -ilities [8]. A notable ex-
ception are the guidelines for quality-driven model transformations [9], in which quality is introduced
early on the design of the transformation process, avoiding quality evaluation as a separate activity
once a model has been transformed. A more recent work presented a model transformation framework
designed to automate the selection and composition of competing architectural model transformations
[10]. However, up to our knowledge, there are few initiatives to select among alternative architectural
adaptations at run-time. For instance, a recent European project, SUPERSEDE2, covers some of these
aspects using MBE, but in this case the adaptations are driven by end-used feedback and monitored
data rather than the quality attributes. Moreover, there is a lack of empirical evidence of the current
situation in the state of the practice regarding the role of quality attributes in the companies adopting
MBE approaches (Ameller et al. [11] are working towards such evidence).

Some approaches enable the annotation of model transformations [12] and can be applied for
describing QAs in transformation rules. Other proposals extend existing languages with the aim of
expressing alternatives and their impact to quality properties at design time [13]. Furthermore, not
all QAs share the same importance while adapting or evolving software systems. A recent literature
review shows that self-adaptation is primarily used to improve performance, reliability, and flexibility
[14]. In this context, an important challenge is to find software architecture metrics that measure
quality attributes. The awareness of this problem by the software engineering community is increasing
and even dedicated events have been organized [15]. For instance, dependency structure matrix metric
has been used to measure maintainability [16, 17]. Another examples are the number of components,
connections, symbols, and interfaces to measure architectural understandability [18, 19].

1Adaptation Tool – http://acg.ual.es/projects/isoleres/adaptation
2European project SUPERSEDE – http://www.supersede.eu
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3.2. The Role of Quality Attributes in Software Architecture Design

Quality attributes have an important role in software architecture design. In particular, the architectural
decision making is many times based upon the expected quality attributes of the system. This topic has
been studied empirically by Ameller et al. [20] in which 12 organizations were surveyed to understand
how they use the non-functional requirements to make architectural decisions. There are some works
to support software architects in handling quality attributes during the architectural design. For ex-
ample, Ameller and Franch [21] proposed a process based on an ontology of architectural knowledge
to provide alternative architectural solutions depending on the most important quality attributes. The
main difference is that in Ameller’s work the architectural decisions are planned at design-time, while
in the present paper our focus is on architectural adaptations that occurring at run-time. However, there
is a recent European project, Q-Rapids3 [22], working on the integration of quality attributes into the
development process from a more general perspective (including both, design-time and run-time).

With regard to component-based software metrics which can be analyzed during the development
process, there are different approaches in the literature. Some of them are used for evaluating in-
dividual components in isolation, instead of measure the whole system. From other point of view,
some proposals are focused on specific technologies, address the measurements of different parts of
an architecture, or the granularity level of the architecture elements is not the same [23]. For example,
the research work in [24] is focused on CORBA components. The authors of [25] describes metrics
related to the interface methods. Concerning the granularity, the approaches in [26, 27, 28] treat the
components as large or coarse grained elements which can be managed from the perspective of COTS
software. Other approaches not strictly belonging to this perspective but treating the components as
black boxes are presented in [29, 30, 31]. Furthermore, there are also proposals of metrics that must
be calculated at run-time [32].

4. Quality-Aware Approach for Architectural Transformations

This section presents the proposed QA-aware transformation approach to adapt and evolve software
systems by measuring the quality of different transformation alternatives. Such QA-aware transfor-
mation approach consists of three steps:

(1) Analyze the relevant QAs and constraints by asking to developers, architects, and experts in the
application domain and performing an study of the underlying quality model.

(2) Measuring QAs and constraints at run-time.

(3) Ranking iso-functional alternative software architectures of the model transformation by consid-
ering the relevant QAs and constraints at run-time. With this ranking, the software architecture
with the best values in architecture metrics is selected.

Next subsections describe the aforementioned steps respectively, which are also depicted in Figure
2. Once the last step is finished and the transformation alternatives have been ranked, the transforma-
tion artifact with the best value is executed for adapting the software architecture.
3European project Q-Rapids – http://www.q-rapids.eu



J. Criado et al. / Quality-Aware Architectural Model Transformations in Adaptive Mashups User Interfaces 7

Step 1. Identifying  

the relevant QAs  

and constraints

Quality Models
(ISO 25010 and QUAMOCO)

Expert knowledge from 
stakeholders (software architects, 

developers, clients and final users)

Relevant QAs 

and constraints 

for the system

Step 2. Measuring 

QAs and constraints 

at run-time

Software architecture metrics to 
measure QAs and constraints

Metamodels and models of components and architectures (stored in DB)

Alternative architectures from the model transformation process

Step 3. Raking 

alternative software 

architectures

Values measuring 

relevant QAs and 

constraints for each 

software architecture

Priority of metrics Ranked iso-

functional model 

transformations

repeat steps 2
and 3 for each 
transformation 

process

: step

: generated information

: flow of information/artifact

: flow of the approach

GQM 

approach
run-time 

analysis

Figure 2. Steps of the QA-based Transformation Approach

4.1. Step 1: Analyze relevant QAs and Constraints

Depending on a system’s targeted goals and architecturally-significant QAs (e.g., improve its flexibil-
ity, maximize the modifiability, minimize the cost, or optimize the execution performance), architec-
tural design decisions can be oriented in different ways. Therefore, decisions about the construction of
software architectures, such as component selection, may differ from each other by considering them.
For this reason, the first step of the approach is to gather the architecturally-significant QAs as part of
the rationale to make such decisions.

There are several techniques that can be used in this step in different levels of abstraction: from the
GQM paradigm [33], to standards proposing QAs that should be studied (e.g., ISO/IEC 25010 standard
[34]), to scenario-based approaches to elicit and refine important QAs and architectural decisions (e.g.,
the Architecture Tradeoff and Analysis Method (ATAM), which has been highly used in the last 15
years [35, 36]), and to recent metrics and data-driven approaches (e.g., Quamoco approach [37]). Due
to its capability to construct the traceability from the abstract definition to concrete measurements, we
propose to run a workshop in which the stakeholders aims to build a useful quality model following the
existing techniques such as the GQM approach and the operationalization techniques of the Quamoco
approach to later define concrete metrics from available data sources. This workshop, based on GQM,
ISO/IEC 25010 standard, and Quamoco and detailed in Section 5.1, has already been used successfully
in other projects4. However, other existing techniques such as ATAM could be used in those cases in
which operationalizing the relevant QAs by finding concrete measurements is not challenging.

This step requires two inputs: stakeholders who know the system’s targeted QAs, and the adequate
quality models to help the stakeholders to reason about QAs. With regard to the stakeholders, they are
the key elements of the chosen approach to gather the architecturally-significant QAs. They evince

4http://blog.iese.fraunhofer.de/competitive-software-improvement/
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the relevant adaptation goals in a particular domain. On the other hand, The reason for using existing
quality models such as the ISO/IEC standard provides inspiration with the required definitions to
identify the relevant attributes related to the quality product (from an abstract procedure perspective).

4.2. Step 2: Measuring QAs and Constraints at Run-Time

Once the set of relevant QAs and constraints are elicited, the result of the first step and the starting point
of the second step is to find specific software architecture metrics to measure QAs. As mentioned in
the Step 1 and depicted in Figure 2, the metrics have been elicited following the GQM approach. This
enables to quantitatively evaluate several alternative software architectures, since the QA satisfaction
of these alternative architectures is measured at run-time. Such alternatives are obtained by a dynamic
transformation approach [2] which generates different adapted architectures from a common starting
architecture (see Figure 3).

The metrics identified in this paper are focused on our particular domain of component-based sys-
tems (i.e., ENIA), but they can be adapted according to the needs. Furthermore, some metrics have a
generic nature (in this case, generic means applicable to most component-based systems). For exam-
ple, Table 1 shows a subsets of metrics identified in [4] that are not fixed to a specific domain. Apart
from these QA metrics, the mentioned paper also identifies some generic constraints that can be han-
dled in the QA-aware transformation approach. An example of these constrains is the homogenization
of components’ technology, provider or type. With these constrains it is possible to filter, for example,
the software architectures that do not meet a homogenization of 80% in the implementation technol-
ogy. Other research has also identified generic software metrics as, for example, provided services
utilization (PSU), the interface complexity metrics (ICM) and the ratio of component observability
(RCO) [23]; or the intra-modular coupling density (ICD), the external relations penalty (ERP) and the
groups/components ratio (GCR) [38].

This step requires three inputs: the set of alternative software architectures (generated by the
default model transformation process), a set of metrics to measure QAs and constraints, and the spec-
ification of the components to feed the metrics at run-time (stored in the component and architecture
models [39, 2]). It is noteworthy to clarify that all the required information to calculate the set of
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QA Metric Description Derived Expression

m

c Number of components no c
pro Number of provided interfaces no pro
req Number of required interfaces no req

hpro Homogenization of provided interfaces yes 1− σ2
pro

mdep Number of mandatory dependencies no mdep
odep Number of optional dependencies no odep
dep Total number of dependencies yes mdep+ odep

rmdep Ratio of mandatory dependencies yes mdep/dep
rodep Ratio of optional dependencies yes odep/dep
dsm Dependency structure matrix yes (described in [16])
pc Propagation cost yes (described in [16])

f

r Number of resizable components no r
m The highest c from all alternatives yes max(c1, ... , cn)
rc Ratio of components according tom yes rc = c/m
rr Ratio of resizable components yes rr = r/c

r/a
er Error rate (and type of error) no er
ec Error cost no ec

p
extm Execution time of a component no extm
rextm Ratio of execution time of all components yes

∑
(extmi)/c

t
ndiag Num. of ops. (in pro) intended for diagnostics no ndiag
ntest Num. of ops. (in pro) intended for tests no ntest

cr
tsize Total size of components (in KB) no tsize
avgsize Ratio of components’ sizes (in KB) yes tsize/c

QAs: m: modifiability – f : flexibility – r/a: reliability/analizability – p: performance – t: testability – cr: consumed resources

Table 1. Example of generic software architecture metrics to measure QAs

metrics must be allocated in these models. Some of this data will be established by the component
developer and other data will be initialized and/or updated at run-time during the execution of the
software architectures. Relevant metrics and constraints in our approach are described in Section 5.
Simple and realistic metrics allow easier adoption in industry [17]. Also, the proposed metrics are
just an indicator of a QA, and their improvement must not be seen as a complete satisfaction of any
QA. The output of this step is a set of quantitative values measuring the targeted QAs and constraints
supporting the selection of the best transformation.

4.3. Step 3: Ordering Alternative Software Architectures

In our approach, we first generate the various possible architectures by applying alternative transfor-
mation processes, and then we assess the quality of each architecture. After computing at run-time the
corresponding metrics to measure the QAs and constraints, it becomes necessary to rank the alterna-
tive software architectures considering the relevant QAs and constraints. Thus, the goal of the third
step is to select the “best” software architecture. Consequently, the operation responsible for obtaining
this architecture, i.e., the corresponding model transformation, is selected as the best alternative.

This step requires one input: the priority of the architecturally-significant QAs and constraints.
This order of importance can be established by system’s developers or by users for describing their
own priorities. In all cases, it must be specified before the adaptation process starts and could be sub-
sequently modified at run-time to vary this priority. The output is a ranked list of iso-functional model
transformation. Finally, the model transformation with the best software architecture is performed.
The second and third steps of the approach can be performed at run-time if the number of relevant
QAs and alternative architectures to be analyzed is delimited in order to guarantee a proper execution.
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5. Applying the Analysis Phase in ENIA

In order to demonstrate the feasibility of the analysis phase of the QA-aware transformation process,
this section applies it to ENIA. Next subsections respectively report how the quality model for ENIA
has been built, as well as how such model has been operationalized into metrics.

5.1. Building a Quality Model for ENIA

As the Step 1 of the approach indicates, the relevant QAs for the ENIA scenario should be considered
for constructing and adapting the UIs. We followed an integrated approach for the creation of a
measurable quality model starting from the business’ strategic goals, down to quantifiable metrics.
The approach is integrated because it shows a workflow and respective moderation methods enabling
the use of GQM+StrategiesTM [40], QUAMOCO [37], and GQM [33] to build such a quality model,
and to visualize the findings. To illustrate the integrating approach, the ENIA case was studied in a
workshop with five stakeholders of ENIA.

First, GQM+StrategiesTM aligns goals and strategies of an organization across different units
through measurement [40]. Besides a clear understanding of what the organization aims at, the use
of GQM+Strategies enables communication between different units by getting a common understand-
ing. It helps the development to show their contribution to the higher level key performance indicators.
Usually, there are sufficient goals or strategies, which depend on a product quality. During the work-
shop we identified the following organizational goals behinds software quality:

(a) Scope: the UIs must be used by different kind of people, belonging to different profiles and
requiring different sources of information.

(b) Visibility: the UIs must be used by the greatest possible number of people.

(c) Customization: the UIs must allow the modifications and adaptations to the users.

(d) Ease of use: the UIs must be interacted in a friendly way.

(e) Adaptability: the UIs must be adaptable to different platforms and context situations.

(f) Cataloging: the use of the component repository must be optimized by offering the most suitable
elements to each user profile and prioritizing the use of the newest components.

(g) Availability: the components and third-party services that are part of the UIs must be available.

(h) Attractiveness: the UIs must be as attractive as possible from the point of view of visual and
technical properties.

Second, QUAMOCO solves the problem of traditional software quality models, which provide ei-
ther abstract quality characteristics or concrete quality measurements, by integrating these two aspects
[37]. It provides a generic quality model that needs to be adopted to a company’s specific strategic
goals. We used the ISO/IEC 25010 [34] as the generic model to match the specific quality goals iden-
tified during our workshop sessions. During the workshop, nine product factors were prioritized: (i)
Response time of the components, (ii) Size of the architecture, (iii) Degree of promotion of updated
components, (iv) Stability of architecture, since changes in an architecture indicate that this architec-
ture is not suitable, (v) Error rate, (vi) Degree of fault recovery, (vii) Flexibility, (viii) Adaptation to
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similar platforms, and (ix) Similarity, because if a component has similar components in the reposi-
tory may be easier to replace it. Figure 4 summarizes the goals and the product factors which were
identified during the construction of the quality model for ENIA. It also includes the relationship with
the quality factor of the ISO/IEC 25010 standard.

5.2. Measuring Quality in ENIA

GQM provides an approach for goal-oriented measurement. Starting from the goals, questions are
derived that have to be answered to know which extend to the goals to be achieved. For quantifying
the answers, respective metrics are defined. GQM thus provides the way of how to define a metric and
also how to interpret it. We show how we make quality aspects measurable and where to get the data
from. Therefore, in our workshop, we ask how to integrate the model, i.e., the measurement, analysis,
and derived feedback into their processes.

Focusing on one product factor as an example, we dealt with the flexibility as follows. First, we
identified the object, purpose, viewpoint and context around this quality focus by defining a GQM
goal: “We must analyze the components and the architectures for the purpose of maximizing the
flexibility from the point of view of the user in the context of ENIA UIs interaction”. Next, for this
quality focus, we proposed a series of question to be answered in the form of metrics. For example,
what determines the flexibility of a component? A component is flexible if it is resizable, maximizable
and/or if the component allows the grouping. How we can measure the flexibility of an architecture?
An indicator is the number of direct and indirect dependencies between components and, in addition,
the distribution of the interfaces impacts on the flexibility.

MaintainabilityReliability

Stability of 

architecture

Adaptability 

(to profile)

Q
u

a
li
ty

 F
a

c
to

rs

Ease of use Cataloging
Visibility

(of info)
Customization

Scope 

(of info)
AvailabilityAttractiveness

Portability
Functional 

Suitability

Performance 

Efficiency
Usability

Error rate

Degree of 

promotion of new 

components

Degree of fault 

recovery

Size of the 

architecture
Flexibility

Response 

time

Distribution and 

degree of 

synthesis

Adaptation to 

different

platforms

Similarity

P
ro

d
u

c
t 

F
a

c
to

rs
G

o
a

ls

Figure 4. Quality model with related factors



12 J. Criado et al. / Quality-Aware Architectural Model Transformations in Adaptive Mashups User Interfaces

This mechanism to define measurement goals is repeated for each product factor. Tables 2 and
3 describe the metrics that have been identified as valuable and relevant for measuring the quality in
ENIA. The first column contains the different product factors (PF) and the second column recalls their
relationships with the quality factors (QF) of the ISO/IEC 25010 quality model. The third column
establishes the name of the metric, the fourth column identifies the artifact to which it is related, and
the fifth and the sixth columns contain the description and the interpretation, respectively.

PF QF Metric Artifact Description Calculation / Interpretation
Stability
of the
architecture

fs,
r

Number of
changes (nch)

Architecture
model

Number of times that an
architecture is changed
(any modification not re-
lated to visual properties)

For each architectural configuration, a counter is
stored and incremented each time the architecture is
changed. Architectures with a low nch are preferred

Elapsed time
between changes
(etch)

Architecture
model

Average time that an ar-
chitecture is not changed
by the user (in ms)

For each architectural configuration, an attribute
stores the total time (tt) that it is deployed and of-
fered to the user. Then, etch = tt/nch. Architec-
tures with a high etch are preferred

Size of the
architecture

pe,
m,
p

Number of
components (c)

Architecture
model

The total number of com-
ponents present in the ar-
chitecture

Any type of component (container or not) counts for
calculating this metric. Normally, architecture with a
high c are preferred, but it depends on other metrics

Ratio of
components (rc)

Architecture
model

Ratio of components ac-
cording to the maximum
value from the alternatives

When different alternatives are available,m indicates
the highest c from all the architectures. Then, rc =
c/m. Architectures with a high rc are preferred

Total size of
components (tsize)

Architecture
model

The addition of the sizes
from all the components
(in KB)

The size of a component affects negatively the de-
ployment. Architectures with a low tsize are pre-
ferred

Ratio of total
size (rsize)

Component
model

Ratio of a component size
with regard to the archi-
tecture size

The relative size of a component (csize) related to
the total size tsize. Then, rsize = csize/tsize.
Components with a low value of rsize are preferred

Response
time

pe,
u

Time for
deployment (dtime)

Component
model

Average time in which a
component is deployed (in
ms)

This value is initialized by the developer and is up-
dated each time a component is deployed in a UI.
Components with a low value of dtime are preferred

Execution time of
components’ methods
(etime)

Component
model

Average time calculated
from all the operation ex-
ecution (in ms)

This value is initialized by the developer and updated
each time an operation is executed. Components with
a low value of etime are preferred

Response time of
components’ methods
(rtime)

Component
model

Average time calculated
from all the operation re-
quests (in ms)

This value is initialized by the developer and updated
each time an operation is requested and the response
is obtained. Components with a low value of rtime
are preferred

Distribution
and degree
of synthesis

u Number of changes
related to the layout
(nlch)

Architecture
model

Number of interactions re-
lated to changes in the UI
layout

These changes are different from (nch), they are re-
lated to visual properties, e.g., width or position in
x-axis. Architectures with a low value of (nlch) are
preferred

Error rate u,
r

Number of timeouts
(ntout)

Component
model

Number of timeouts that a
component produces in its
execution

This value is updated each time a component pro-
duces a timeout error. Components with a low value
of ntout are preferred

Number of times
it is not available
(nunav)

Component
model

Number of unavailability
errors that a component
produces in its execution

This value is updated each time a component pro-
duces this kind of error. Components with a low
value of nunav are preferred

Number of console
errors (nce)

Component
model

Number of console errors
(different fromntout and
nunav)

This value is updated when a component outputs an
error in the console. Components with a low value of
nce are preferred

Degree of
promotion
of new
components

r Ratio of new
components (rnewc)

Architecture
model

Ratio of components
which have been updated
in the last month

It indicates the ratio of new components (newc) in
relation to c. Then, rnewc = newc/c. Architec-
tures with a high value of rnewc are preferred

Last update (lupdt) Component
model

Elapsed time since the last
update (in days)

This value is updated when a new version of the com-
ponent is registered. Components with a low value of
lupdt are preferred

Amount of usage
time (utime)

Component
model

The total time that a com-
ponent is used by any UI
(in s)

This value is updated each time a component ends its
deployment in a UI. Components with a high level of
utime are preferred

QFs → fs: functional suitability — pe: performance efficiency — u: usability — r: reliability — m: maintainability — p: portability

Table 2. Metrics to measure QAs identified during the quality workshop for ENIA (part I)
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PF QF Metric Artifact Description Calculation / Interpretation

Degree
of fault
recovery

r Degree of fail-proof
(dfp)

Architecture
model

Number of components
with a total value of er-
ror rate under a specific
value

The total amount of error rate can be calculated from the
addition of ntout, nunav and nce. Architectures with
a high value of dfp are preferred

Ratio of low level
errors solved (les)

Component
model

Ratio of solved error
related to console out-
puts

This value is updated when a developer fixes the compo-
nent. Components with a low value of les are preferred

Ratio of medium
level errors solved
(mes)

Component
model

Ratio of solved error
related to timeouts

This value is updated when a developer fixes component.
Components with a low value ofmes are preferred

Ratio of high level
errors solved (hes)

Component
model

Ratio of solved error
related to unavailability

This value is updated when a developer fixes component.
Components with a low value of hes are preferred

Flexibility u,
m

Ratio of resizable
components (rr)

Architecture
model

Ratio of resizable com-
ponents in an architec-
ture

This value depends on the number of resizable compo-
nents (r) and the number of components (c). Then,
rr = r/c. Architectures with a high rr are preferred

Ratio of maximizable
components (rm)

Architecture
model

Ratio of maximizable
components in an ar-
chitecture

This value depends on the number of maximizable com-
ponents (max) and the number of components (c).
Then, rm = max/c. Architectures with a high rm
are preferred

Ratio of groupable
components (rg)

Architecture
model

Ratio of groupable
components in an
architecture

This value depends on the number of groupable com-
ponents (g) and the number of components (c). Then,
rg = g/c. Architectures with a high rg are preferred

Homogenization of
provided interfaces
(hpro)

Architecture
model

Degree of distribution
in the number of pro-
vided interfaces

This value is calculated from the number of provided
interfaces (pro) of each component. Then, hpro =

1 − σ2
pro. Architectures with a high value of hpro are

preferred
Propagation cost (pc) Architecture

model
Indirect dependencies
between components
of an architecture

This value depends on the dependency structure matrix
of an architecture. The calculation of pc is described in
[16]. Architectures with a low value of pc are preferred

Similarity r,
m

Ratio of similarity
between two
components (rsim)

Component
model

Degree of proximity
between two compo-
nent definitions

This value is a tuple, rsim = {f, nf, p,m}, calcu-
lated from the matching of two component models distin-
guishing the functional (f ), non-functional (nf ), pack-
aging (p) and marketing (m) parts. High values of the
tuple terms are preferred

Number of similar
components (nsim)

Component
model

Number of components
with a value of rsim
over an specific value

This value indicates the number of ‘alternatives’ to a
component. A component can be considered similar to
other when, for example, the value of rsim is greater
than of equal to {1.0, 0.8, 0.5, 0.0}. Components with
a high value of nsim are preferred

Homogenization of
providers (hp)

Architecture
model

Degree of common
providers in an archi-
tecture

This value is calculated from the number of components
sharing the same provided (sp) and the total (c). Then,
hp = max(sp/c). Normally, architectures with a high
value of hp are preferred

Homogenization of
types (htype)

Architecture
model

Degree of common
component types in an
architecture

This value is calculated from the number of components
sharing the same type (stype) and the total (c). Then,
htype = max(stype/c). Normally, architectures
with a high value of htype are preferred

Adaptation
to different
platforms

p Number of valid
platforms (vplt)

Component
model

Number of platforms
for which a component
is adapted

This value is established by the developer. Components
with a high value of vplt are preferred

Degree of adaptability
to other platforms
(dadp)

Architecture
model

Ratio of components
which are valid for at
least two platforms

This value is calculated from the value of vplt for each
component and the number of components (c). Architec-
tures with a high value of dadp are preferred

QFs → fs: functional suitability — pe: performance efficiency — u: usability — r: reliability — m: maintainability — p: portability

Table 3. Metrics to measure QAs identified during the quality workshop for ENIA (part II)

In the next section, we present four scenarios in the context of ENIA. In the first scenario, we
analyzed three metrics related to functional suitability, usability and portability to maximize the scope
of the UIs. The second scenario is intended to maximize the attractiveness by means of three met-
rics related to performance efficiency, usability and reliability. The third scenario uses four metrics
to maximize the customization, and finally, in the last scenario, we applied three constraints for max-
imizing the efficiency of the catalog. Both scenarios share components related to the GIS domain,
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for example, a map (M ) for displaying geographical information layers, a component showing the
messages of a Twitter account (T ), or a layer list for selecting the information to be displayed on the
map (LL). Otherwise, the number of the component name represents different alternatives of the same
component type, i.e., M1, M2 and M3 are different alternatives of the map component type M .

6. Using the Quality Model and Measures in the Run-Time Phase

At the end, the model has to be used at run-time to support our transformation of architectures, in-
tended for adapting our ENIA UIs. As mentioned in Section 4, the run-time stage of our approach
calculates the values for the selected metrics and ranks the alternatives of architectures with the aim
of ranking the corresponding transformations and select the best one (steps 2 and 3 of Figure 2). In
order to illustrate these steps, this section presents four scenarios for applying the quality model and
the metrics in ENIA. Each scenario focuses on reaching different goals and, consequently, different
kind of metrics. Moreover, a example subset from all the possible metrics presented in Tables 2 and 3
have been applied, and each scenario describes the criteria to prioritize the metrics.

6.1. Scenario 1: maximizing the scope

The first scenario starts from a UI made up of three components (see Figure 5). The first component
is a map providing the functionalities of showing geographic information (provided interface M ) and
showing the corresponding legend (provided interface L). The second component is a configurator
of the legend settings (e.g., colors or show/hide text labels) and the third component is a Twitter
widget showing relevant information for the REDIAM users. Then, the UI requires to be adapted
by removing the functionality of the legend configurator. The motivation of the adaptation can be a
pro-active decision of the user or because the system initiates the change [2], nevertheless it is out of
the scope of this paper, and we focus on the transformation process to obtain the new architecture.

T1

LC3

M4

A0

L

LC

T

M

Figure 5. Initial UI of scenario 1 and its architecture
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This adaptation process can be simple from the functional point of view, because the transforma-
tion could be accomplished by removing the LC3 component. Nevertheless, our approach is intended
to take into account the rest of non-functional features related to the new version of the architecture.
In this case, our goal is to maximize the scope and, as depicted in Figure 4, the quality factors related
to this goal are: functional suitability, usability and portability. Furthermore, we have chosen three
product factors having impact on this quality factors: stability of the architecture, distribution and
degree of synthesis and adaptation to different platforms. In particular, we have chosen the following
metrics of Tables 2 and 3:

(a) etch – The elapsed time between changes must be maximized because the more time an archi-
tecture is not changed, the more stability can be assumed. As a consequence, the stability of
the architecture is greater, impacting positively on the functional suitability and improving the
possible scope by offering a more stable UI.

(b) nlch – The number of changes related to the UI layout must be minimized because a high value
of this measure indicates that the distribution and degree of synthesis are not adequate. Therefore,
it affects negatively the usability and it can reduce the number of final user interacting with the UI
(i.e., the scope).

(c) dadp – The degree of adaptability to other platforms must be maximized since it can have a
positive influence to the scope due to the improvement of the portability of the UI. The more
platforms that can correctly deploy the architecture, the greater scope of that UI.

Figure 6 shows the three transformations alternatives that are generated from the initial UI de-
scribed in the architecture A0. Such alternatives are specific for this scenario of removing the legend
configurator. The notation of the architectures is depicted in the key inside the figure and the semantics
of this notation is the common use of software architectures [41]. The first alternative A11 replaces
the map component M4 by a new one (M1) which have no legend functionality. As a consequence,
a new legend is inserted (L1). The alternative A12 replace the map component too but, in this case,
the new map (M2) and the new legend (L2) require to be wrapped by a container (C1). The third
architecture A13 is the alternative of removing the component LC2 from the UI.

Then, the selected metrics are applied to be able to rank the model transformation processes
(MT1, MT2 and MT3). For example, the value of etch for A11 is 10 seconds because the to-
tal time without changes (tt) is 20 seconds and the number of changes (nch) is 2. The values
of the three alternatives are normalized to combine their values. In the case of etch, the normal-
ized value is calculated by dividing each value by the maximum of the three alternatives (because
it must be maximized). Therefore, the normalized value of etch for A11 is 0.77 resulting from
(tt/nch)/maxetch = (20/2)/12.86. Regarding the metric nlch, the normalized value is obtained by
the expression 1−nlch/maxnlch, where maxnlch represents the maximum of the three alternatives
(because it must be minimized). For example, the value of the normalized value of nlch for A11 is
0.67 obtained from 10/30. The value of dadp for A11 is 0.33 resulting from dividing the total of
components that are valid for at least two platforms by the number of components (1/3). The best
transformation alternative is selected by ranking the average of the three normalized values (because
the weight for each metric is the same). It is 0.59, 0.33, and 0.67, corresponding to MT1, MT2
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MT1 MT2 MT3

etch = 20/2 = 10 → 0.77

nlch = 10 → 0.67

dadp = 1/3 = 0.33 → 0.33

etch = 2/1 = 2 → 0.16

nlch = 20 → 0.33

dadp = 2/4 = 0.50 → 0.50

etch = 90/7 = 12.86 → 1.00

nlch = 30 → 0.00

dadp = 1/1 = 1.00 → 1.00

C component

provided interface

required interface

interface connection

interface delegation

Figure 6. Transformation alternatives of scenario 1

and MT3, respectively. Therefore, MT3 is executed and the UI related to the architecture A13 is
deployed and shown to the user.

6.2. Scenario 2: maximizing the attractiveness

Starting from the user interface obtained in the scenario 1, the second example shows the usage of
our approach in the case that a list of the geographical information layers is added to the UI. For this
scenario, we are going to focus on the goal of maximize the attractiveness of the interface. Thus, the
related quality factors are performance efficiency, usability and reliability; and we select a subset of
products factors related to them and to the goal: response time, error rate and degree of promotion of
new components. Next, we choose some metrics which have been identified in the quality model:

(a) dtime – The deployment of the components must be minimized since it affects negatively the
performance efficiency and, consequently, the attractiveness of a UI.

(b) nunav – A high value for the number of times that a component cause an error of unavailability
has a negative impact on the usability and reliability, and derived from that, the UI would be less
attractive for users. Therefore, the nunav must be minimized.

(c) lupdt – The last update performed in the components must be minimized because the presence of
new components affect positively the reliability and the goal of attractiveness, if we assume that
updates always improve some feature of a component.

The four alternatives of architectures to resolve the required functionality starting from A13 are
shown in Figure 7. The alternative A21 replaces the map by M1 and provided the legend (L) and
layer list (LL) functionalities in a new component LL1. The architecture A22 is similar to A21
but it provides the L and LL functionalities in two separated components (L1 and LL2). The third
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A13

MT4 MT5 MT6 MT7

dtime = 350 → 0.08

nunav = 3 → 0.40

lupdt = 10 → 0.67

dtime = 380 → 0.00

nunav = 1 → 0.80

lupdt = 20 → 0.33

dtime = 280 → 0.26

nunav = 0 → 1.00

lupdt = 30 → 0.00

dtime = 300 → 0.21

nunav = 5 → 0.00

lupdt = 5 → 0.83

Figure 7. Transformation alternatives of scenario 2

possible architecture A23 is the simplest alternative because it solves the functional requirements by
incorporating a new component LL2. The last alternative gathers the M , L and LL functionalities in
one component M3.

When the mentioned metrics are calculated for the four alternative architectures, we obtain the
values summarized in Figure 7. The first value for each metric shows the stored data for each compo-
nent. The second value shows the normalized data to operate with the three metrics in the same range.
In this case, because all the value must be minimized to maximize the attractiveness, the operation to
normalize the values is similar: 1 − val/maxval; where val corresponds to the value of the metric
and maxval represents the maximum value for this metric from all the alternatives.

If we give the same importance to the three metrics and perform their average, the results are
0.383, 0.377, 0.420 and 0.347, corresponding to MT4, MT5, MT6 and MT7, respectively. But, in
this scenario, the weights of the three product factors are 10% for the response time, 50% for the error
rate and 40% for the degree of promotion of new components. In this case, there is only one metric
related to each product factor and therefore, the eeight of each metric with respect to its product factor
is 100%. Based on the QUAMOCO approach, the metrics are first calculated, then normalized and
finally the weights are applied for aggregation. Figure 8 shows the approach to calculate the value of
attractiveness for the architecture A21. Consequently, the values of attractiveness calculated for the
four transformations are 0.476 (MT4), 0.532 (MT5), 0.526 (MT6) and 0.353 (MT7). Hence, the
best transformation is MT5 and the architecture A22 is deployed as shown to the user (see Figure 9).

6.3. Scenario 3: maximizing the customization

The third example to describe our approach and validate the proposed quality model is focused on
the goal of maximizing the customization of the UI. In this example, the transformation process is
aimed to incorporate a new functionality for managing the session of the interface and, moreover, the
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Figure 8. Applying QUAMOCO [37] to structure the measures and perform quality assessments

session information must be used by the social component (Twitter) to show the corresponding profile
information. Due to the selected goal, we must deal with the usability and maintainability quality
factors. Specifically, we have selected the size of architecture and flexibility product factors. Then,
we have focused on a subset of metrics among all the available ones of the constructed quality model:

(a) rc – The ratio of components must be maximized because the more pieces constitute a UI, the
more reconfiguration and modification operations can be performed on its architecture.

(b) rr – The ratio of resizable components must be maximized since this property favors the flexibility
of a UI due to it allows the modification of the components’ sizes.

T1

L1

M1

LL2

A22

M

L

LL

T

Figure 9. Resulting UI of scenario 2 and initial UI of scenario 3
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(c) hpro – The homogenization of the distribution of provided interfaces must be maximized because
this property avoids the imbalance in the functionality which is offered by each component and
fosters the modifiability of the architecture.

(d) pc – The propagation cost must be minimized due to indirect dependencies between components
of an architecture affect the modifiability in a negative manner.

Figure 10 shows the four alternatives that can be obtained from the initial UI represented by A22.
The architecture A31 incorporates a session component S1, replaces the previous twitter by T2 and
connects both elements. A32 is similar to A31 but the session component S2 has an optional required
interface for querying geo-localization information. The alternative A33 gathers a session component
S3 and a geo-localization component LC1 in a container C2. In A34, the component S4 in A34
provides some geo-localization and weather information apart from the session functional interface.

In order to select the best model transformation alternative among MT8, MT9, MT10 and
MT11, the bottom of Figure 10 depicts the values of the metrics calculated for A31, A32, A33 and
A34. Note that components M1, T2, L1, C2, S1 and S4 are resizable, and components LL2, S2, S3,
and LC1 cannot be resized. Moreover, delegation of interfaces is considered as a dependency, similar
to the connections between required and provided interfaces.

Focusing only on rc, the architecture A33 has the best value because it owns the maximum num-
ber of components among all the alternatives. In the case of rr, architectures A31 and A34 are the
best alternatives since both gathers four resizable components among the five possible. Architectures
A31 and A32 have the best value for the hpro metric because each component provides one functional
interface. On the contrary, the distribution of provided interfaces in A34 is the worst possible alter-
native. With regard to the propagation cost, pc, the architecture A33 is the best alternative, as shown
in the values obtained from dependency structure matrices (DSMs). The calculation of these matrices
depends on the connection (direct and indirect) between components [16]. We normalized pc value
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LL2 0 0 4 0 1

M4 S4 T2 M1 L1 LL2

S4 1 0 0 0 0

T2 4 1 0 0 0

M1 0 0 1 0 0

L1 0 0 4 1 0

LL2 0 0 4 0 1

M4 S3 LC1 C2 T2 M1 L1 LL2

S3 1 4 0 0 0 0 0

LC1 0 1 0 0 0 0 0

C2 4 10 1 0 0 0 0

T2 6 10 4 1 0 0 0

M1 0 0 0 0 1 0 0

L1 0 0 0 0 4 1 0

LL2 0 0 0 0 4 0 1
average = 0.68

average = 0.79

average = 0.75average = 0.80

rc = 5/7 = 0.71 → 0.71

rr = 3/5 = 0.60 → 0.60

hpro = 1 - 0 = 1.00 → 1.00

pc = 8/25 = 0.32 → 0.68

dsm =

rc = 7/7 = 1.00 → 1.00

rr = 4/7 = 0.57 → 0.57

hpro = 1 – 0.12 = 0.88 → 0.88

pc = 15/49 = 0.31 → 0.69

dsm =

rc = 5/7 = 0.71 → 0.71

rr = 4/5 = 0.80 → 0.80

hpro = 1 – 0.46 = 0.54 → 0.54

pc = 8/25 = 0.32 → 0.68

dsm =

Figure 10. Transformation alternatives of scenario 3
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with respect to the rest of metrics with the expression npc = 1− pc because in this scenario we try to
maximize the customization of an architecture and the pc has a negative impact on his reconfiguration.

Finally, we select the best alternative by calculating the average of the four normalized metrics
because in this scenario, the weights given for each metric and product factor are the same. As an ex-
ample, the average for A31 is calculated from the math expression (0.71+0.80+1.00+(1−0.32))/4.
Therefore, the resulting values for A31, A32, A33 and A34 are 0.80, 0.75, 0.79 and 0.68, respectively.
As a consequence, we select MT8 as the best transformation that can be performed to adapt the UI
and get the best customization value considering this subset of metrics in the transformation process.

6.4. Scenario 4: maximizing the cataloging

Continuing with the UI represented by A31, the next transformation process is intended to incorporate
a new map into the workspace. Since the presence of the new map may generate confusion about what
is the relationship between the layer list, the legend and the two maps, the components in the UI must
be restructured accordingly. Figure 11 shows the three alternatives that can be reached from A31. The
architecture A41 replaces the previous map M1 by M2 and uses C3 for containing it. In addition, C3
also contains LL2 and L2 components. The new map is resolved with an M1 component. The second
alternative, A42, replaces the initial map M1 by M3, a map which includes the layer list and legend
functionality. The new map is M1 type. The alternative A43 includes the same replacement of A31
but, in this case, the new map is M2 type and it is contained in a C3 component.

In this scenario, we want to maximize the correct use of the catalog of ENIA services (i.e., cata-
loging of the component repository). Thus, we focus on the maintainability quality factor taking into
account that the main related product factor is the similarity. In this case, the chosen metrics are going

A31

L1

LL2

M1

T2S1

A41

T2S1

M3

A42

T2S1

M1

L2

C3

LL2

M2
M1

Provider 1 :   S1, T2, C3

Provider 2 :   M1, M2, M3, L2, LL2

S1 : 400 KB

T2 :     75 KB 

C3 : 100 KB 

M1 : 200 KB

M2 :   200 KB

M3 :   250 KB

L2 :   120 KB

LL2 :     50 KB

M
L

LL

T
S

A43

T2S1

C3

M2

LL

LL

L

L

M

M

M

T
S

T
S

T
S

L2

C3

LL2

M2

LL

LL

L

L

M

M
M

M

LL

M

L

M

tsize = 1145

hp = max(3/7, 4/7) = 0.5714

htype = 0/7 = 0.0
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Figure 11. Transformation alternatives of scenario 4
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to be managed as constraints to filter and select the best transformation. In this sense, we have also
considered the size of the architecture to limit the maximum size of the alternative architectures:

(a) tsize – The total size of components must be minimized and architectures with a value over 5MB
will be rejected. Thus, we try to improve the performance efficiency of the browser by reducing
the payload of the web components that must be initialized in the UI.

(b) hp – The homogenization among components’ providers must be maximized because UIs with
similar representation are preferred over components with heterogeneous representations. The
use of the same provider does not guarantee the pursued homogenization, but the possibilities are
greater if the entity providing the components is the same.

(c) htype – The homogenization among components’ types must be maximized because it is impor-
tant to offer the maximum degree of consistency in the structure and representation of the UI’s
components. Therefore, components of the same type offer their functionality in the same manner.

Regarding the alternatives of Figure 11, each architecture accomplishes the best value for a differ-
ent metric. In the case of tsize, the value of 925 MB from A42 is the best alternative. Focusing on
hp, the best alternative is the architecture A41 because it gathers four components (M1, M2, L2 and
LL2) from the same provider among the total of seven. With respect to htype, the best alternative is
A43, because it contains four components (M2 * 2 and C3 * 2) having elements of the same type in
the architecture. Therefore model transformation MT12 is chosen in the case of prioritize hp, whereas
MT13 and MT14 are selected if tsize and htype are prioritized, respectively. Figure 12 shows the
generated UI in the first case.

7. Discussions

This section discusses the benefits and drawbacks of applying the Quality-Aware transformation ap-
proach in ENIA, and the use of the GQM approach for the elicitation of QAs is also justified.

A41
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Figure 12. Resulting UI of scenario 4
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7.1. What were the benefits and drawbacks of using the approach in ENIA?

Considering QAs at run-time improved the value of four quality assessments with regard to the gener-
ated architectures by model transformations in the ENIA case. The main advantage of using metrics
related to QAs and constraints in ENIA is the incorporation of quality information in the process of
selecting the best transformation operation that can be applied in UI adaptation. This allows us to
use additional information (to functional interfaces) for solving the transformation process. In this
sense, if these metrics are not applied, the transformation can generate architectures which may result
in some drawbacks for the present use or future modifications.

For example, looking at the third scenario (see Figure 10), it is possible to obtain A32 as a solution
instead of A31. In this case, we are ‘loosing’ the capability of having a session component which can
be resized. On the contrary, using our approach we are able to offer ‘resizability’ of the components
through the maximization of the rr metric. If we do not give the maximum priority to rr but we take
it into account in the adaptation, at least the transformation at run-time will be enriched to improve the
flexibility of generated UIs.

With regard to the future modifications, let us suppose that in the scenario 4 none of the metrics
are applied and consequently, the generated transformation is equivalent to MT13 and the resulting
architecture is A42. In this case, if the next adaptation step is aimed to remove the capability of
selecting the layers to be displayed on the map (i.e., LL provided interface), we faced two options: (1)
the component M3 must be modified for hiding this interface and disabling its functionality, or (2) the
component M3 must be replaced by other map which does not include this functionality, such as M1
or M2. In both options, we have to perform additional operations compared to those required in the
case of starting the adaptation from the architectures A41 or A43, scenario in which we only should
remove the component LL2.

Apart from these advantages, nothing is free in software engineering, and the performance of the
QA-aware model transformation approach is an important trade-off that must be noted. Performance is
related to the computation time necessary to (a) build each transformation alternative, (b) execute them
obtaining the resulting architecture, and (c) measure each architecture to decide which transformation
alternative is the best in terms of the quality information. The cost of these three execution times must
be incorporated to the evaluation of the adaptation process described in [2] and, consequently, may
not be possible to evaluate a large number of alternatives at run-time, having to limit the number of
architectures evaluated to satisfy performance requirements. In addition, the size of the alternatives is
limited to architectures whose size is smaller than twenty components [2]. Nevertheless the granularity
of the components and the application domain imply that this is a valid limit size for our proposal.

7.2. Why to follow the Goal Question Metric Approach for steps 1 and 2?

One important difference between our previous work [4] and this paper is the way to conduct the
analysis phase of our approach (i.e., step 1).

On the one hand, our previous work studied the highest priorities of ENIA in an unsystematic
manner with informal meetings with two software architects of ENIA. The important QAs and con-
straints were selected considering the perspective of two stakeholders, which stated that: “ENIA UIs
must be reconfigurable and provide a friendly interaction by accomplishing the following objectives”.
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Therefore, the view of the quality in ENIA was partial, only identifying a subset of its important QAs.
Among these QAs, we found: the modifiability attribute of the product quality model and the flexibil-
ity attribute of the quality in use model of the ISO/IEC 25010 standard, the total size of the UI, the
homogenization of the components’ providers, and the homogenization of the components’ types.

On the other hand, in the current work we have conducted a software quality workshop designed
at Fraunhofer IESE considering GQM+StrategiesTM [40], QUAMOCO [37], and GQM [33]. In the
workshop a total of five stakeholders participated. Among the benefits, we could create an specific
quality model of ENIA, and operationalize it with metrics.

8. Conclusions and Future Work

Software architects must take into account the functional requirements as the main issue to build
software. Nevertheless, it is well accepted in the software architecture community that QAs are the
most important drivers of architecture design [20]. Therefore, QAs should guide the selection of
alternative software architectures from a model transformation process, considering the synergies and
conflicts among them [42].

This work has analyzed how considering QAs at run-time can improve model transformation pro-
cesses. Results in the ENIA case (a GIS interacted by mashup UIs), show that using a quality-aware
architectural transformation at run-time can improve architectural-significant QAs. Four scenarios
demonstrate how this approach can be applied to maximize the scope, the attractiveness, the cus-
tomization or the cataloging, among other possible examples. The main contribution of this paper
is a quality-aware transformation approach which consists of three steps: identifying relevant QAs
and constraints, measuring them at run-time, and selecting the best alternative model transformation.
To be able to perform this approach, first, a quality model has bee built from the application of the
ISO/IEC 25010 standard and the QUAMOCO approach by applying the GQM strategy.

As future work, we will intend to perform more experimentations and reports in other adaptive
domains besides mashup UIs. Moreover, we will study the possibility of handling the QAs during
the generation of the alternative architectures to reduce the number of variants. In addition, a for-
mal validation process in terms of execution times and model checking of the generated architectures
could improve the proposed approach. The development of a tool supporting the execution of the QA-
based transformation will support the automation of the proposed approach by selecting a subset of
metrics that will be calculated depending on the pursued goal and the corresponding priority of met-
rics. Another open research line related to validation and evaluation issues is to carry out a controlled
experiment with end users of ENIA and students of the software engineering course at University of
Almeria and TU Kaiserslautern to study the impact of the proposed metrics (i.e., if they provide mean-
ingful and correct assessments) and approach into the selection of candidate architectures or variants
(i.e., if the approach is reliable). Such experiment would have two groups: one selecting the transfor-
mations based on relevant QAs, and another one selecting the transformations based on relevant QAs
and the metrics that we propose for those.
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