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SpatialHadoop is an extended MapReduce framework supporting global indexing techniques that
partition spatial datasets across several machines and improve spatial query processing performance
compared to traditional Hadoop systems. SpatialHadoop supports several spatial operations (e.g., K
Nearest Neighbor search, range query, spatial intersection join, etc.) and seven spatial partitioning
techniques (Grid, Quadtree, STR, STR+, k-d tree, Z-curve and Hilbert-curve). Distance-Join Queries
(DJQs), like the K Nearest Neighbors Join Query (KNNJQ) and K Closest Pairs Query (KCPQ), are
common operations used in numerous spatial applications. DJQs are costly operations, since they
combine spatial joins with distance-based search. Data partitioning improves the management of
large datasets and speeds up query performance. Therefore, performing DJQs efficiently with new
partitioning methods in SpatialHadoop is a challenging task. In this paper, a new data partitioning
technique based on Voronoi-Diagrams is designed and implemented in SpatialHadoop. Moreover,
improved KNNJQ and KCPQ MapReduce algorithms, using the new partitioning mechanism, are also
designed and developed for SpatialHadoop. Finally, the results of an extensive set of experiments
with real-world datasets are presented, demonstrating that the new partitioning technique and the

improved DJQ MapReduce algorithms are efficient, scalable and robust in SpatialHadoop.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the age of smart cities and mobile environments, the in-
crease of the volume of available spatial data (e.g., location, rout-
ing, etc.) is huge all over the world. Recent developments of
spatial big data systems have motivated the emergence of novel
technologies for processing large-scale spatial data on shared-
nothing clusters in a distributed environment. SpatialHadoop [1]
is a disk-based Distributed Spatial Data Management System
(DSDMS) based on Hadoop-MapReduce that allows users to work
on distributed spatial data without worrying about computation
distribution and fault-tolerance. SpatialHadoop is a full-fledged
MapReduce [2] framework with native support for spatial data.
SpatialHadoop injects spatial data awareness in each Hadoop
layer (i.e., language, storage, MapReduce and operations layers).

Data partitioning is a powerful mechanism for improving effi-
ciency of data management systems, and it is a standard feature
in modern database systems. Aside from the fact that data par-
titioning improves the overall manageability of large datasets, it
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also speeds up query performance. By partitioning such datasets
into smaller units, it enables processing of a query in parallel
and reduces the I/O activity by only scanning a few partitions
that contain data relevant to the query constraints. Spatial data
partitioning is challenging, especially due to several important
properties that are particular to spatial data and query processing,
like spatial data skew and boundary object handling [3]. Spatial-
Hadoop [1] supports seven spatial partitioning strategies to han-
dle large-scale spatial data [4]. They are classified as space-based
(Grid and Quadtree), data-based (STR, STR+ and k-d tree) and
space filling curve-based (Z-curve and Hilbert-curve) partitioning
strategies.

The Voronoi-Diagram is a partitioning of a geometric space
that contains points data. Each partition of the Voronoi-Diagram,
called Voronoi-Cell, is associated with a point p (pivot), such
that any point inside p’s cell has p as its nearest neighbor [5,6].
The resulting data structure from the Voronoi-Diagram is very
efficient in exploring a local neighborhood in a geometric space.
Voronoi-Diagrams are used in many algorithmic applications,
like closest-site problems (nearest neighbor queries and clos-
est pairs), clustering point sites (partitioning and hierarchical
clustering methods), placement and motion planning, triangu-
lating sites, connectivity graphs for sites, etc. [6]. In our case,
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the points dataset is divided into partitions based on a Voronoi-
Diagram with a careful method for selecting a set of suitable
pivots. Then, these data partitions (Voronoi-Cells) are clustered
into groups only if the distances between them are restricted by
a specific distance bound. The pivot selection strategy is crucial
for the creation of Voronoi-Diagrams and therefore for the DJQ
processing. In [7], three pivot selection strategies were proposed:
random selection, furthest selection and k-means selection. Ran-
dom selection was faster than k-means, but during the KNN join
phase, the performance of k-means selection was better. Hence,
the use of a clustering algorithm improves the quality of the
selected pivots, which separate the whole datasets more evenly,
and also improves the power of the pruning rules for DJQs. This
is because the clustering algorithms aim at grouping objects in
such a way that similar ones belong to the same cluster and
are different from the ones which belong to other clusters [8,9].
Finally, to optimize and speed up existing clustering algorithms,
sampling is a very interesting technique when large datasets are
managed [10]. It can be considered as a preprocessing step for
clustering algorithms, and we will use a sampling method for
providing a representative and relevant set of samples before
executing the clustering algorithm.

Distance-Join Queries (D]Qs) in spatial databases have received
considerable attention from the database community, due to
their importance in numerous applications, such as geographical
information systems (GIS), location-based systems, continuous
monitoring in streaming data settings and processing of road
network constrained data, among others. DJQs are costly queries
because they combine two datasets, taking into account a cer-
tain distance metric. Two of the most representative and known
DJQs are the K Nearest Neighbor Join Query (KNNJQ) and the
K Closest Pairs Query (KCPQ). Given two points datasets P and
Q, the KNNJQ finds, for each point of P, its K nearest neigh-
bors in Q. The KCPQ finds the K pairs of points that have the
K smallest distances between all possible pairs of points (P x
Q) that can be formed by choosing one point of P and one
point of Q. All these DJQ algorithms require spatial join query
processing techniques [11], for example, the plane-sweep tech-
nique is used when neither datasets are indexed. Several research
works have been devoted to improve the performance of these
DJQs by proposing efficient algorithms in centralized environ-
ments, e.g., for KNNJQ [12-14] and for KCPQ [15-17]. However,
with the fast increase in the scale of the big input datasets,
processing large-scale data in a parallel and distributed way is
becoming a popular practice. For this reason, a number of par-
allel and distributed DJQ algorithms in MapReduce have been
designed and implemented for KNNJQ [7,18,19]. KCPQ MapRe-
duce algorithms [20,21] have been also developed particularly
in SpatialHadoop. In [22], a data partitioning technique using
Voronoi-Diagrams is included in SpatialHadoop to improve the
performance of the KNNJQ and KCPQ.

This paper substantially extends our previous work [22] with
the following novel contributions:

1. We analyze existing parallel and distributed DJQs algo-
rithms in MapReduce, using Voronoi-Diagram based par-
titioning techniques, and identify possible improvements
and optimizations.

2. We improve the data partitioning technique based on
Voronoi-Diagrams in SpatialHadoop by using new sam-
pling methods and clustering algorithms to produce high
quality partitions, making the DJQ MapReduce algorithms
faster.

3. We improve the KNNJQ and KCPQ MapReduce algorithms
by using the new partitioning method, new pruning rules
and techniques for reducing the replication and shuffled
data.

4. In experiments of DJQ MapReduce algorithms, we use the
best spatial partitioning technique available in Spatial-
Hadoop for joins [4,21] (i.e., Quadtree) to compare their
performance against our improved Voronoi-Diagram based
partitioning technique.

5. We present results of an extensive experimental study that
compares the performance of the proposed DJQ MapRe-
duce algorithms in SpatialHadoop and their improvements
in terms of efficiency, extensibility and scalability, using big
real-world spatial datasets [1].

The current research work differs from [7] in that we use
the MapReduce algorithmic scheme presented in [18] for KNNJQ.
Here, we have also improved the Voronoi-Diagram based parti-
tioning technique of [7] by using new sampling methods and clus-
tering algorithms for obtaining better quality of the selected piv-
ots. Moreover, new pruning rules [23] and processing enhance-
ments have been incorporated to speed up the response time of
the KNNJQ in SpatialHadoop. Additionally, the treatment of the
largest and densest partitions in [7] is handled by the geometric
grouping technique (bottom-up way) and we use the reparti-
tioning technique (top-down way) [11]. Finally, we have com-
pared experimentally the proposed partitioning method based on
Voronoi-Diagrams with other spatial partitioning techniques, as
the Quadtree [4], proving its excellent performance.

This paper is organized as follows. Section 2 reviews re-
lated work. Section 3 gives the preliminary concepts related to
DJQ, SpatialHadoop and data partitioning techniques based on
Voronoi-Diagrams. Section 4 proposes a data partitioning tech-
nique based on Voronoi-Diagrams in SpatialHadoop. In Section 5,
the parallel and distributed algorithms for processing KNNJQ and
KCPQ in SpatialHadoop are presented. Section 6 describes several
potential improvements of the proposed distributed algorithms.
In Section 7, we present the most representative results of an
extensive set of experiments that we have performed, using
real-world datasets, for comparing the new data partitioning
technique and the improved DJQ MapReduce algorithms in Spa-
tialHadoop. Finally, Section 8 gives an overview of the conclusions
and results from our paper and indicates research directions for
future work.

2. Related work

Nowadays, researchers, developers and practitioners world-
wide have started to take advantage of the Hadoop-MapReduce
framework to support massive-scale geospatial data processing.
The most representative research prototypes of Hadoop-based
systems for scalable spatial data processing are the following:

- Parallel-Secondo [24] is a parallel spatial DBMS that uses
Hadoop as a distributed task scheduler. It integrates Hadoop
with SECONDO [25], a database that can handle non-
standard data types, like spatial data, usually not supported
by standard systems. It only supports uniform spatial data
partitioning techniques, which cannot handle efficiently the
spatial data skewness problem.

- Hadoop-GIS [26] extends Hive [27], a data warehouse in-
frastructure built on top of Hadoop with a uniform grid
index for range queries, spatial joins and other spatial opera-
tions. It adopts Hadoop Streaming framework and integrates
several open source software packages for spatial indexing
and geometry computation. It utilizes SATO spatial parti-
tioning [28] (similar to k-d tree) and local spatial indexing
to achieve efficient query processing.

- SpatialHadoop [1] is a full-fledged MapReduce framework
with native support for spatial data. It tightly integrates
well-known spatial operations (including range queries,
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KNN query, spatial join and CG_Hadoop [29]) into Hadoop.
It supports various spatial data types (point, line string,
polygon, multi-point, etc.), several spatial partitioning tech-
niques [4] (uniform Grids, SRT, Quadtree, k-d tree, Hilbert-
curve and Z-curve) and local spatial indexes (Grid file, R-tree
and R*-tree). In addition, SpatialHadoop has an excellent
performance and it is one of the best maintained Hadoop-
based Distributed Spatial Data Management System [30]. For
all these reasons, we have focused on SpatialHadoop and not
in other Hadoop-based DSDMSs.

In [3], an extension of SATO [28], that is a spatial data par-
titioning framework for scalable query processing, is presented.
The main objective of [3] is to provide a comprehensive guidance
for spatial data partitioning to support scalable and fast spatial
data processing in distributed computing environments such as
MapReduce. To accomplish this, the authors provide a system-
atic evaluation of six spatial partitioning methods with a set of
different partitioning strategies and study their implications on
the performance of spatial queries in MapReduce. In particular,
the proposed spatial partitioning algorithms were Binary Split
Partitioning (BSP), Fixed Grid Partitioning (FG), Strip Partitioning
(SLC), Boundary Optimized Strip Partitioning (BOS), Sort-Tile-
Recursive Partitioning (STR) and Hilbert Curve Partitioning (HC).
The most important results are the runtime cost of the parti-
tioning algorithms (there are three categories: fast -FG, BSP-,
medium -HC, STR- and slow -SLC, BOS-) and spatial join query
performance between two datasets, where BSP and STR have the
best performance in terms of running time and, FG and HC are
the worst.

In [4], seven different spatial partitioning techniques in Spa-
tialHadoop are presented, and an extensive experimental study
on the quality of the generated index and the performance of
range and spatial join queries is reported. These seven parti-
tioning techniques are also classified in two categories according
to boundary object handling: replication-based techniques (Grid,
Quadtree, STR+ and k-d tree) and distribution-based techniques
(STR, Z-curve and Hilbert-curve) [4]. The distribution-based tech-
niques assign an object to exactly one overlapping partition and
the partition has to be expanded to enclose all contained points.
The replication-based techniques avoid expanding partitions by
replicating each point to all overlapping partitions, but the query
processor has to employ a duplicate avoidance technique to ac-
count for replicated elements. The most important conclusions
of [4] for distributed join processing, using the overlap spatial
predicate, are the following: (1) the smallest running time is
obtained when the same partitioning technique is used for the
join processing, (2) Quadtree outperforms all other techniques
with respect to running time, since it minimizes the number
of overlapping partitions between the two files by employing a
regular space partitioning, (3) Z-Curve reports the worst running
times, and (4) k-d tree gets very similar results to STR.

The most representative papers that adopt the Voronoi-
Diagram based partitioning technique within MapReduce are [7,
22,23,31,32]. In [31], a distributed Voronoi-Diagram index is pro-
posed to answer geospatial (range and KNN) queries in 2d spaces.
In [7], the problem of answering the KNNJ using MapReduce is
studied. This is accomplished by exploiting the Voronoi-Diagram
based partitioning method, that divides the input datasets into
groups, such that KNN]J can answer by only checking object pairs
within each group. Moreover, several pruning rules to reduce the
shuffling cost as well as the computation cost are developed in
the PGB]J (Partitioning and Grouping Block Join) algorithm, which
works with two MapReduce phases. In [32], the vector projection
pruning technique is proposed to process efficiently KNN]J, since
it enables to prune non-KNN points and reduce the cost of
distance computation. A new algorithm, KNN-MR, using this new

pruning technique, that performs slightly better than PGBJ, is
presented. [23] presents a new multi-round computation strategy
for parallel KNNQ that exploits pivot-based data partitioning,
by using data-driven bounds and a tiered support discovery
technique which effectively limit data duplication. Finally, in [22],
a new KNNJQ MapReduce algorithm and an improved KCPQ
MapReduce algorithm, using Voronoi-Diagram based partitioning
technique, are also developed for SpatialHadoop.

The main differences of these papers that use the Voronoi-
Diagram based partitioning technique within MapReduce with
respect to the current research work are the following: With
respect to [7], [23] and [32], we have utilized a different algorith-
mic scheme for the KNNJQ MapReduce algorithm, better sampling
methods for improved clustering algorithms, adapted pruning
rules from [23], the less data technique for reducing the size of
shuffled data and a repartitioning technique for the treatment of
the densest areas. Moreover, we have implemented an improved
algorithm for KCPQ, and we have performed many experiments,
even comparing with other spatial partitioning techniques in-
cluded in SpatialHadoop. Finally, in [31], MapReduce algorithms
for range query, KNNQ and Reverse KNNQ have been proposed,
but there is no design and implementation for DJQ MapReduce
algorithms.

The research work of [7] and [22] have shown that the use
of a suitable pivot selection strategy is very influential in the DJQ
performance over distributed frameworks. The best performance
was obtained by using k-means clustering algorithm [33], and
for this reason the use of clustering algorithms is worth to be
studied for the pivot selection strategy. Schemes to improve
the pivot selection have been studied actively in the context
of metric space indexes [34]. For instance, iDistance [35] selects
pivots based on the clustering results of k-means. There are many
existing clustering algorithms in the literature [8,9], and they
can be classified into five categories: (1) partition-based cluster-
ing algorithms (e.g., k-means, k-medoids, etc.), (2) hierarchical
clustering algorithms (e.g., BIRCH, CURE, etc.), (3) density-based
clustering algorithms (e.g., DBSCAN, OPTICS, etc.); (4) grid-based
clustering algorithms (e.g., STING, PROCLUS, etc.), and (5) model-
based clustering algorithms (e.g., EM, COBWEB, etc.). Due to these,
we expect that the use of an appropriate clustering algorithm will
have an important influence on the pivot selection strategy and
therefore on query performance, we will use such algorithms in
this research work.

Apart of [7,22,23,31,32], other parallel and distributed KNNJQ
algorithms that do not use Voronoi-Diagram based partition-
ing technique have been published in the literature. The most
remarkable ones are [18,19,36-38]. In [36] the RankReduce ap-
proach for processing large amounts of data for KNNQ is pro-
posed, using Locality Sensitive Hashing (LSH). The LSH algorithm
implemented in MapReduce assigns similar objects to one frag-
ment in the distributed file system enabling an effective selection
of potential candidate neighbors reduced to a set of K nearest
neighbors. In [19], novel (exact and approximate) algorithms in
MapReduce to perform efficient parallel KNNJQ on large datasets
are proposed, and they use the R-tree and Z-value-based par-
tition joins to implement them. In [37], the existing solutions
that perform the KNNJ operation in the context of MapReduce
are reviewed and studied from the theoretical and experimental
point of view. In [38], the Spitfire approach was presented; it
improves over the duplication rate of [7] by utilizing grid-based
partitioning to divide the data and bound the support set. Finally,
the only DJQ algorithm already included in SpatialHadoop is the
KCPQ MapReduce algorithm [20,21], that consists of a MapReduce
job, adopting the plane-sweep technique [11] and improving the
computation of an upper bound of the distance value of the Kth
closest pair from sampled data as a global or local preprocessing
phase.
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3. Preliminaries and background

In this section, we first present the basic definitions of the
KNNJQ and KCPQ, followed by a brief introduction of Spatial-
Hadoop, and finally the main concepts and properties of the
Voronoi-Diagrams.

3.1. Distance-Join Queries

To introduce the details of the semantics of the DJQs studied
in this paper, we define the KNNJ and KCP queries, assuming that
the Euclidean distance (satisfying the properties of non-negativity,
identity, symmetry and triangular inequality), dist, is the distance
used along the article. Moreover, we also define the distance-
based query that is the basis of KNNJQ, the K Nearest Neighbor
(KNN) query, where just one dataset is processed.

Given one points dataset, the KNNQ discovers the K closest
points to a given query point (i.e., it reports only the top K points).
It is one of the most important and studied spatial operations,
where one spatial dataset and a distance function are involved.
The formal definition of the KNNQ for points is the following:

Definition 1 (KNearest Neighbor Query, KNN Query). Let P =
{p1, P2, ..., pa} a set of points in E? (d-dimensional Euclidean
space), a query point q in E¢, and a number K € N*. Then, the
result of the K Nearest Neighbor Query with respect to the query
point q is an ordered collection, KNN(P, q, K) € P, which contains
the K (1 < K < |P|) different points of P, with the K smallest
distances from q: KNN(P, q, K) = {p1, p2, ..., px} C P, such that
Vp € P\ KNN(P, q, K) we have dist(p;, q) < dist(p,q),1 <i<K.

When two datasets (P and Q) are combined, two of the most
studied DJQs are the K Nearest Neighbor Join (KNNJ) and the K
Closest Pairs (KCP) queries.

The KNNJQ, given two points datasets (P and Q) and a positive
number K, finds for each point of P, its K nearest neighbors in Q.
The formal definition of this kind of DJQ is given below.

Definition 2 (KNearest Neighbor Join Query, KNN]J Query). Let
P = {p1,p2,...,pn} and Q = {q1,q2,...,qm} be two sets of
points in E¢, and a natural number K € N*. Then, the result of
the K Nearest Neighbor Join query is a set KNNJ(P, Q,K) C Px Q,
which contains for each point of P (p; € P) its K nearest neighbors
in Q: KNNJ(P, Q, K) = {(pi, g;) : ¥ pi € P, gj € KNN(Q, pi, K)}

The most important properties of KNNJQ are the following: (1)
KNN]JQ is asymmetric, i.e., KNNJ(P, Q, K) # KNNJ(Q, P, K), since
KNNQ is asymmetric (i.e., if KNN(P, g, 1) = {p}, there may exist
another ¢ € Q (¢' # q) such that dist(p, q') < dist(p, q) and
KNN(Q, p, 1) = {q'}). Moreover, given P # Q (|P| # |Q]|), the
cardinality of KNNJ(P, Q, K) is K x |P| (similarly [KNNJ(Q, P, K)| =
K x |Q|), and therefore the results are different. In the case of
IP| = |Q| (P # Q), although the cardinalities of the results are
the same, the content is different, KNNJ(P, Q, K) # KNNJ(Q, P, K),
due to KNNQ is asymmetric. (2) Given K < |Q|, the cardinality of
KNNJ(P, Q, K) is predictable (|P| x K), since it returns K nearest
neighbors in Q for each point of P. (3) The distance from each
point of P to its K nearest neighbors is unknown a priori.

The KCPQ discovers the K pairs of points formed from two
datasets (P and Q) having the K smallest distances between them
(i.e., it reports only the top K pairs). The formal definition of this
DJQ is as follows.

Definition 3 (KClosest Pairs Query, KCP Query). Let P = {p4, p2,

..,pn) and Q = {q1,q2, ..., qm} be two sets of points in E¢,
and a natural number K € NT. Then, the result of the K Closest
Pairs query is an ordered collection, KCP(P, Q, K), containing K

different pairs of points from P x Q, ordered by distance, with
the K smallest distances between all possible pairs:

KCP(]P)» Q7 K) = {(p17 q1)7 (sz q2)7 RN} (pl(» QK)} CPx Qv such
that for any (p;, q;) € P x Q \ KCP(PP, Q, K) we have dist(p;, q;) <
dist(pi, q;), 1 <1 < K.

KCPQ has the following properties: (1) KCPQ is symmetric,
i.e.,, KCP(P, Q, K) = KCP(Q, P, K), since it discovers the K pairs of
points with the K smallest distances from all possible pairs that
can be formed from the join of two datasets, and the Euclidean
distance is symmetric dist(p;, q;) = dist(qj, p;). (2) The cardinality
of the result is known beforehand |KCP(P, Q, K)| = K. (3) The
distance of the K closest pairs of points is unknown a priori.

3.2. SpatialHadoop

SpatialHadoop [1] is a full-fledged MapReduce framework
with native support for spatial data. It is an efficient disk-based
distributed spatial query processing system. Note that MapRe-
duce [2] is a scalable, flexible and fault-tolerant programming
framework for distributed large-scale data analysis (i.e., MapRe-
duce is a shared-nothing platform for processing large-scale
datasets). A task to be performed using the MapReduce frame-
work consists of two phases: the map phase which is specified by
a map function that takes input typically from Hadoop Distributed
File System (HDES) files, possibly performs some computations
on this input, and distributes the result to worker nodes; and
the reduce phase which processes these results as specified by
a reduce function. An important aspect of MapReduce is that both
the input and the output of the map step are represented as key-
value pairs, and that pairs with the same key will be processed as
one group by the reducer. Additionally, a combiner function can be
used to run on the output of the map phase and perform some
filtering or aggregation to reduce the number of keys passed to
the reducer.

SpatialHadoop is a comprehensive extension to Hadoop that
injects spatial data awareness in each Hadoop layer, namely,
language, storage, MapReduce, and operations layers. MapReduce
layer is the query processing layer that runs MapReduce pro-
grams, taking into account that SpatialHadoop supports spatially
indexed input files. The Operation layer enables the efficient im-
plementation of spatial operations, considering the combination
of the spatial indexing in the storage layer with the new spatial
functionality in the MapReduce layer. In general, a spatial query
processing in SpatialHadoop consists of four steps [1,20,21], as we
can observe in Fig. 1 for D]Qs:

1. Preprocessing, where the dataset is partitioned according
to a specific partitioning technique (e.g., Grid, Quadtree,
STR, Hilbert-curve, etc.) [4], generating a set of partitions
or cells. In this partitioning process, spatial data locality is
obeyed, since spatially nearby objects are assigned to the
same partition [1]. Each partition corresponds to a HDFS
block, and the HDFS blocks in each file are globally indexed,
generating a spatially indexed file (indexing).

2. Pruning, when the query is issued, this is the step where
the master node examines all partitions and prunes (by a
filter function) those ones that are guaranteed not to include
in any possible result of the spatial query. SpatialHadoop
enriches traditional Hadoop systems in this step with the
SpatialFileSplitter component, that is, an extended splitter
that exploits the global index(es) on input file(s) to prune
easily file partitions not contributing to the answer [1].

3. Local Spatial Query Processing, where a local spatial query
is performed on each non-pruned partition in parallel on
different machines. SpatialHadoop also enriches traditional
Hadoop systems in this step by the SpatialRecordReader,
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Fig. 1. Spatial query processing for DJQs in SpatialHadoop.

which reads a split originating from the spatially indexed
input file(s) and exploits local index(es) to efficiently pro-
cesses the spatial queries [1]. In this step, if we do not use
the SpatialRecordReader component (i.e., we do not exploit
the advantages of the local index(es)), we only use a Recor-
dReader that extracts records as key-value pairs which are
passed to the map function to perform, for example, a
plane-sweep-based algorithm.

4. Global Processing, where the results are collected from all
nodes (machines) in the previous step and the final result
of the concerned spatial query is computed. A combine
function can be applied in order to decrease the volume
of data that is sent from the map task. The reduce function
can be omitted when the results from the map phase are
final.

3.3. Data partitioning technique based on Voronoi-Diagrams

Our proposed approach to address the new data partitioning
technique in SpatialHadoop is based on Voronoi-Diagrams, and
according to [37] it is a distance based partitioning strategy. A
Voronoi-Diagram divides space into disjoint polygons where the
nearest neighbor of any point inside a polygon is the generator
or pivot of the polygon. Let R = {ry,r;,...,1:} be a set of ¢
distinct points in the plane; these points can be called generators
or pivots. We define the Voronoi-Diagram of R as the subdivision
of the plane into r cells, one for each pivot r; in R, with the
property that a point p lies in the cell corresponding to a pivot
r; if and only if dist(p, ;) < dist(p,r;) for each r; € R with
j # i. We can denote the Voronoi-Diagram generated by R as
VD(R). The cell of VD(R) that corresponds to a pivot r; is called
the Voronoi-Cell of r; and is denoted by VC(r;) or V; for short. The
Voronoi-Diagram of a set of point R, VD(R), is unique and it also
satisfies the following property: VD(R) = Ufl V; and ﬂf:] Vi =0,
where V; = {p : dist(p, r;) < dist(p, rj) for j # i}.

According to [7], given a set of points P, the main idea of
Voronoi-Diagram based partitioning technique is to select a set R
of points (which may not necessarily belong to ) as pivots, and
then split the points of P into |R| disjoint partitions, where each
point is assigned to the partition of its closest pivot r; in R. In the
case of multiple pivots that are closest to a particular point, then
that point is assigned to the partition with the smallest number of
points. In this way, the whole data space is split into |R| disjoint
Voronoi-Cells. In summary, the set of points are divided into
partitions based on a Voronoi-Diagram with carefully selected
pivots. Then, data partitions (i.e., Voronoi-Cells) are clustered into
groups only if the distances between them are restricted by a
specific bound.

Moreover, two distance metrics are defined, U(PF) and L(P}),
to be used in the MapReduce DJQ algorithms. Let R be the set

Table 1

Symbols and their meanings.
Symbol Definition
K Number of the NNs or the CPs, K > 1
k Number of clusters or partitions, k > 1
P (resp. Q) Set of points P (resp. Q)

Distance from p; to g;
Sample set from P
Sampling ratio, 0 < p <1

dist(pi, q)
SP

rF Set of selected pivots from P

Ti A pivot in R”

Vi A Voronoi-Cell of r;

HP(V;, V)) Hyperplane dividing two adjacent cells
V;.core Core points of a Voronoi-Cell V;
V;.support Support set of Voronoi-Cell V;
corDist(V;) Core-distance of a Voronoi-Cell V;
supDist(V;) Support-distance of a Voronoi-Cell V;

PP Set of partitions from P
P Subset from P, having r; as its closest pivot

u(ry) Maximum dist. from r; to the points of P}
L(Pf) Minimum dist. from r; to the points of P}
MBR(P}) MBR covering the points of P}

minDist() Minimum distance between two elements
MmDist() max. min. dist. between two partitions

of selected pivots, Vr; € R, 7931” denotes the set of points from P
that has r; as its closest pivot. We denote U(P) and L(PF) as the
maximum and minimum distance from the pivot r; to the points
of Pf, respectively. That is, U(P]) = max{dist(p, ;) : Vp € P{}
and L(P) = min{dist(p,1;) : Vp € Pr}). Table 1 shows the
symbols and their meanings used throughout this paper.

4. Voronoi-Diagram based partitioning technique in Spatial-
Hadoop

In SpatialHadoop, the Partitioning phase of the indexing al-
gorithm runs in three steps [1,4]. The first step computes the
number of desired partitions x based on file size and HDFS block
capacity, which are both fixed for all partitioning techniques. The
second step reads a random sample (Sampling), with a sampling
ratio p, from the input file and uses this sample to partition
the space (Space subdivision) into x cells/partitions, such that the
number of sample points in each partition is at most |s/x], where
s is the sample size. Finally, the third step partitions the file by
assigning each point to one or more partitions (Indexing), i.e., ev-
ery partition becomes a file that is duplicated to the number of
nodes defined by the Hadoop cluster replication factor. Actually,
SpatialHadoop supports seven spatial partitioning techniques:
Grid, Quadtree, STR, STR+, k-d tree, Z-Curve and Hilbert-Curve.

Similarly, to include into SpatialHadoop the new data par-
titioning technique based on Voronoi-Diagram, we have imple-
mented the following steps:
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1. Sampling. A set ST of samples from an input dataset P is
provided.

2. Space subdivision. A set RF of pivots is obtained from the
sample set S¥, using some pivot selection technique.

3. Indexing. The points from the input dataset P are assigned
to their closest pivot r; € RF and some properties of the
pivot are calculated and stored in the global index.

4.1. Sampling large datasets

Sampling is an effective way to deal with large datasets, which
attempts to find a small but representative profile of the dataset.
The sample set is required to be small enough to satisfy the
dataset size constraints and, and at the same time, the result
of the sampling should be reliable and close enough to approxi-
mately represent the whole dataset. However, sampling methods
cannot take into account the correlation among the data, hence
it is hard to obtain the perfect sample. For example, if we have
an input dataset that contains k clusters, ideally, the sample set
should also contain k clusters. For this reason, ideal clustering re-
sult is difficult to obtain since the clusters cannot be determined
easily.

In this research work, we will use three sampling methods:
(1) uniform random sampling [1], it is the simplest and the most
popular; (2) partition-based sampling [10], where the sampling is
carried out according to a split of the dataset into a number of dis-
joint partitions that optimize a criterion function; and (3) density-
based sampling [39], where distance concepts are managed for
sampling to ensure space coverage and fit cluster shapes.

For uniform random sampling on large datasets, the size of the
sample is usually set to a ratio between the sample dataset size
and its original dataset size [1], that is |S®| = p x |P|, where
0 < p < 1 is the ratio of the sampled dataset. In [40], when
0.01 < p < 0.02, the execution times are minimized for KNNJQ,
since both small and large sample sizes tend to deteriorate the
performance (i.e., small ratios are unable to accurately estimate
dataset distribution and large ratios lead to high sampling over-
head). In our experiments, we have chosen by default p = 0.01
(1%), since it was the best ratio value for real datasets when
KNNJQ is executed [40], also for the KCPQ performance [21],
and it produces high quality partitions in SpatialHadoop [4]. To
generate the random sample efficiently when the input file is
very large, SpatialHadoop provides a MapReduce job that scans all
records and outputs each one with a probability of 1% (p = 0.01).

For partition-based sampling, k-means has also been success-
fully used as a preprocessing sampling step for sophisticated and
expensive clustering techniques. It is executed with k = |S¥|,
where |SF| is the desired sample size of P, such as |SF| «
|P| [10]. For this reason, we can use k-means++ [41] for sampling
purposes. To generate this kind of sample efficiently from a large
dataset, we have implemented a MapReduce job, where the input
dataset is split into a number of necessary parts to fit in the
main memory of the mappers. Therefore, in the map phase, each
mapper; performs the k-means++ algorithm from ELKI library [42]
on its part with k; = s;, where s; is the number of points resulting
from applying the ratio p on the number of points that such
mapper; receives. The final result of this MapReduce job is the
combination of the partial results of applying k-means++ in each
mappers.

The study of the theoretical analysis of error bounds of sam-
pling to select the pivots for partitions in metric similarity join in
MapReduce can be found in [43]. In addition, in [44], the study
of the seeding methods for the k-means algorithm is presented,
providing also the lower bound on the expected error of picking k
initial centers for the k-means algorithm. According to [41], the k-
means method does not perform well, since the random seeding

will inevitably merge clusters together, and the algorithm will
never be able to split them apart. The careful seeding method of
k-means++ avoids this problem altogether, and it almost always
attains the optimal results.

For density-based sampling, we will use the DENDIS algo-
rithm [39], since it combines both DENsity and DIStance concepts
to ensure space coverage and fit cluster shapes. In general, at each
step of the algorithm a new point is added to the sample, choos-
ing the furthest from the representative in the most important
group. Like the previous sampling cases, we have implemented
a MapReduce job, where the input dataset is also split into a
number of necessary parts whose size can be processed by each
mapper. Then, each mapper; executes the DENDIS algorithm on
each part, using granularity gr = 0.001, as recommended in [39]
to get a good accuracy. Finally, the individual results of each
mapper are combined to obtain the final result.

4.2. Pivot selection techniques for space subdivision

The Voronoi-Diagram based partitioning technique is well-
known for maintaining data proximity, and it is especially ap-
propriate for distance-based queries. For the creation of Voronoi-
Diagrams, the method to select suitable pivots is very important
and therefore, in the Partitioning process of the Preprocessing
step (see Fig. 1) a module for selecting a set of pivots should be
executed. In [7] three pivot selection strategies are proposed: ran-
dom selection, furthest selection and k-means selection. Random
selection was faster than k-means, but during the KNN join phase,
the performance of k-means selection was better. For this reason,
we have adapted random selection and k-means selection strategies
to be included in SpatialHadoop. For the random selection tech-
nique, ||S¥|/k| random sets of points are generated, then for each
set, the total sum of the distances between every two points are
computed and the points from the set with the largest total sum
of distances are chosen as the pivots.

Taking into account the results of [7] and [22], the use of a
clustering algorithm improves the quality of the selected pivots
for splitting the whole dataset more evenly, and the partition-
based and density-based clustering algorithms are the most ap-
propriate for spatial big data [45]. Partition-based clustering at-
tempts to directly decompose the dataset into a set of disjoint
clusters. More specifically, this type of clustering algorithms at-
tempts to determine an integer number of partitions that opti-
mize a certain criterion function. On the other hand, the key idea
of density-based clustering is to group neighboring objects of a
dataset into clusters based on density conditions.

For the partition-based clustering category we have chosen
the k-means algorithm [33], leading to the k-means selection
technique. We have used the best recommendation for the k-
means family in ELKI library [42], this is Sort-Means [46], which
accelerates k-means, exploiting the triangle inequality and pair-
wise distances of means to prune candidate means (with sorting).
Moreover, it uses k-means++ [41] to initialize means. When the k
clusters have been generated, the center point of each cluster is
chosen as a pivot for the Voronoi-Diagram based partitioning.

For the density-based clustering class, we have chosen the
OPTICS algorithm [47], resulting the OPTICS selection technique.
OPTICS is a density-based algorithm that attempts to overcome
some of the drawbacks of its most famous counterpart DB-
SCAN [48]. The major weaknesses of DBSCAN are the inability
to detect clusters in zones of varying density and, the choice
of parameter values, for which it is very sensitive. The main
difference between them is the ¢ value; in OPTICS it is an upper
bound instead of an specific distance value. We have used the
best recommendation for the density-based clustering family in
ELKI library [42], this is OPTICSxi [49] with the implementation of
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Fig. 2. Overview of Voronoi-Index in SpatialHadoop.

FASTOptics [50]. In general terms, OPTICSxi generates a hierarchi-
cal classification of the clusters obtained when OPTICS is applied.
The main parameters of OPTICSxi are € (an upper bound of the
distance to be considered), minpts (the minimum number of
points required to form a cluster) and xi (contrast parameter that
establishes the relative decrease in density). For our experiments,
we have used ¢ = 2, minpts = 100 and xi = 0.025. Since the
output of the algorithm is a hierarchical structure, we have to find
a level where at most k clusters are stored. When the k clusters
have been selected, the center point of each cluster is chosen as
a pivot.

4.3. Indexing data

The main idea of this step of Voronoi-Diagram based parti-
tioning technique is to allocate each point of PP to the partition
with its closest pivot in RF. That is, the points from the input
dataset P are assigned to their closest pivot r; € R, leading
to |RF| possible partitions. Moreover, some properties of the
pivot r; are calculated and stored for each partition, such as
the number of points |7} |, the MBR(P!') which is the Minimum
Bounding Rectangle (MBR) covering the points of PF, U(PF) and
L(’P}P ). Fig. 2 illustrates the result of applying the Voronoi-Diagram
based partitioning technique (Voronoi-Index) in SpatialHadoop.
For more details, in the left chart, the data partitions, using the
Voronoi-Diagram based partitioning technique from the selected
pivots, are shown. The chart in the center shows the same data
partitions, represented as pivots with their MBRs, in the same way
that other spatial partitioning techniques are represented in Spa-
tialHadoop. Finally, on the right, there is a table that summarizes
the data available for each partition.

5. DJQ MapReduce algorithms in SpatialHadoop

In this section, we first present a MapReduce algorithm for
KNN]JQ in SpatialHadoop, adapted to the Voronoi-Diagram based
partitioning technique. Next, an existing KCPQ MapReduce al-
gorithm in SpatialHadoop is briefly reviewed and improved by
Voronoi-Diagram based partitioning.

5.1. KNNJQ MapReduce Algorithm in SpatialHadoop

KNN]JQ is an expensive operation, since it is a combination of
the KNNQ and the join operation. The naive implementation of
KNN]JQ requires scanning Q once for each point p; € P (computing
the distance between each pair of points from P and P), easily
leading to a complexity of O(|P| x |Q|) in the worst case. If points
in datasets P and Q are sorted, the time complexity is reduced
to O(|P| x log,|Q|). Overall, for each p; € P, to find the K nearest
points in Q to p; is reduced to O(log,|Q|), since we use a plane-
sweep algorithm to solve KNNQ, and O(|P| x log,|Q]|) in total for
KNNJQ.

From the definition of KNNJQ, we can observe that it can be
formulated on the basis of KNNQ. In [1], a KNNQ operation on
SpatialHadoop was presented. The proposed KNNQ MapReduce

algorithm is composed of the three steps: the initial answer, the
correctness check and the answer refinement. Keeping this in mind,
to develop a KNNJQ MapReduce algorithm in SpatialHadoop,
we have followed the KNNJQ algorithm presented in [18]. The
proposed KNNJQ algorithm in [18], on two datasets P and Q,
consists of four phases of MapReduce jobs: information distribu-
tion phase, primitive computation phase, update lists phase and
unify lists phase. In the information distribution phase, a uniform
partitioning of the dataset Q is made and the number of elements
from P that are inside the partitions of Q are counted. Then, in
the primitive computation phase, an initial response is provided
by calculating the KNNQ for each point p; of P with the points
of Q of the partition in which p; is located. Once this phase is
completed, it is necessary to refine these initial KNN lists for each
point of P, if there have been found less than K neighbors, or if
there are nearby partitions that overlap with the distance to each
Kth nearest neighbor. All this refinement is done in the update
lists phase where new non final KNN lists are obtained. Finally, in
the unify lists phase, the merge of the all the KNN lists resulting
from previous phases is performed, obtaining the final answer.

To adapt and implement the previous KNNJQ MapReduce al-
gorithm in SpatialHadoop, we have to carry out several exten-
sions and improvements that are the following: (1) The infor-
mation distribution phase is implemented using the spatial par-
titioning techniques provided by SpatialHadoop, allowing us to
use non-uniform partitions such as STR, Quadtree, Hilbert, etc.
with the different improvements and particularities that they can
offer. (2) The information distribution phase is performed only
once for each dataset and is reused for further KNN] queries.
(3) SpatialHadoop indices are used in each of these phases to
accelerate the processing of the partitions. (4) An implementation
of new KNNQ based on a plane-sweep algorithm is carried out,
which reduces the number of distance calculations obtaining a
higher performance join operation. (5) Finally, a new Repartition-
ing phase is added as a first step to speed up the algorithm.
This new phase uses Grid or Quadtree partitioning so as to split
the largest partitions in smaller ones, dealing with skew data
problems and getting smaller tasks.

Fig. 3 shows the phases of the proposed KNNJQ MapReduce
algorithm in SpatialHadoop: Repartitioning, Bin KNNJ, KNNJ on
Overlapping Partitions and Merge Results. First phase, called Repar-
titioning, uses an existing spatial partitioning technique, e.g., Grid
or Quadtree, to subdivide the largest partitions from dataset Q
and saves the information for further use in subsequent phases.
Therefore, in the map function, the points of the largest partitions
are sent to their corresponding reducer and in the reduce function,
the partitioning technique is applied in order to have an index per
repartitioned partition. Then in the Bin KNNJ phase (information
distribution and primitive computation in [18]), a Bin-Spatial Join of
the two input datasets, in which the join operator is the KNNQ, is
accomplished. As described in Algorithm 1, in the map function
of the Bin KNNJ phase, each point p; € P is combined with the
partition in which it is located in the dataset Q, so that in the
reduce function, the plane-sweep KNNQ (PSKNNQ algorithm) of
that point with the points of Q in the same partition is executed.
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Fig. 3. Overview of the KNNJQ MapReduce algorithm in SpatialHadoop.

The result of this phase is a KNN list for each point p; € P.
Then a completeness check is made to find which of the previous
KNN lists are not final and therefore it is necessary to continue
with their processing. As shown in Algorithm 2, for the KNNJ
on Overlapping Partitions phase (update lists in [18]), in the map
function is checked, using the GetOverlappedPartitions function, if
the previous KNN lists for each point p; € P contain less than
K results (line 21) and also if there are neighboring partitions
that overlap with the circular range, centered on p; € P and
with radius the distance to the current Kth nearest neighbor
(line 24). These points are then sent together with the calculated
neighboring partitions to the reduce phase where another plane-
sweep KNNQ will be performed for each partition. Finally, the
Merge Results phase (unify lists in [18]) consists of collecting
the non final KNN lists of the two previous phases in the map
function, obtaining the final KNNQ results for each point p; € P
in the reduce function.

Algorithm 1 Bin KNNJ Algorithm

1: function MAP(p: point from P or Q, PQ: set of partitions from Q)
2: partition < FINDPARTITION(P@, p)
3: ouTPUT(partition.id, p)

4: function REDUCE(partitionld: current partition, PQ: set of points in partition, K:
number of neighbors)
P < GETPOINTSFROMP(PQ)
Q <« GETPOINTSFROMQ(PQ)
for all p € P do
INITIALIZE(KNNList, K)
KNNList < PSKNNQ(Q, p, K)
ouTtPUT(p, KNNList)

QLUIENRU

—_

Algorithm 2 KNNJ on Overlapping Partitions Algorithm

1: function MAP(p: point from P or Q, P@: set of partitions from Q, K: number
of neighbors)
origin < IsFROMPORQ(p)
if origin is from Q then
partition < FINDPARTITION(PQ, p)
OUTPUT(partition.id, p)
else
overlappedParts < GETOVERLAPPEDPARTITIONS(P2, p, K)
for all partition € overlappedParts do
OUTPUT(partition.id, p)

OO A WN

10: function REDUCE(partitionld: current partition, PQ: set of points in partition, K:
number of neighbors)

11: P < GETPOINTSFROMP(PQ)

12: Q <« GETPOINTSFROMQ(PQ)

13: for all p € P do

14: INITIALIZE(KNNList, K)
15: KNNList < PSKNNQ(Q, p, K)
16: ouTtPUT(p, KNNList)

17: function GETOVERLAPPEDPARTITIONS(PQ: set of partitions from Q, p: point from
P, K: number of neighbors)

18: KNNList < GETKNNLIST(p)

19: nnNumber < KNNList .size

20: radius <— GETKTHDISTANCE(KNNList )

21: while nnNumber < K do

22: radius < INCREASE(radius)

23: nnNumber < GETNUMBEROFNEIGHBORS(PY, p, radius)
24: overlappedPartitions < RANGEQUERY(P, p, radius)

25: return overlappedPartitions

Voronoi-Diagram based partitioning can be incorporated, as
shown in Fig. 4(a), into the proposed KNNJQ MapReduce algo-
rithm in two ways: (1) performing the initial Partitioning process
of the datasets in the Preprocessing step (see Fig. 1), and/or (2)
subdividing the partitions from Q in the Repartitioning phase indi-
vidually and then using its properties on the KNNJ on Overlapping
Partitions phase. With the first one, we can take advantage of
the characteristics of this technique globally, using the defaults
parameters given by SpatialHadoop, in the same way that it is
done for any built-in query. For the second way, we can accelerate
the KNNJQ processing by decomposing the initial partitioning,
by using the Voronoi-Diagram based partitioning technique, in
smaller partitions given a maximum number of elements to solve
skew data problems (Repartitioning phase) and reduce the num-
ber and size of the tasks of the Bin KNNJ and KNNJ on Overlapping
Partitions phases. Furthermore, when calculating the overlapping
partitions, the coordinates of each pivot r; and the U(72’j»P ) and
L(P}P’ ) values can be used to get better performance and accuracy
than using only the MBR of each partition P}, MBR(P} ). Fig. 4(b)
shows that only the shaded part can contain points within the
MBR(P}P ), and therefore there is no overlap with the distance of
the current Kth nearest neighbor of p;.

In our KNNJQ MapReduce algorithm, for the theoretical analy-
sis, we divide the datasets P and Q into w partitions according to
the Voronoi-Diagram based partitioning technique, where P} €
PPl e @1 i< w PPN =0 PENnP = 0
(i # j). When the ith partition (Pﬁp or P,Q) is sorted and each
partition is concurrently processed by a computing node, the time
complexity of the parallel KNNJQ is the maximum time of a slow
computing node that handles more data than the other nodes.
Thus, the time complexity is maxlfigw{0(|7??| X log2|7>l@|)}. If the
datasets P and Q can be well divided, the running time of the
worst partition will be reduced. Theoretically speaking, short-
ening processing time of the worst partition tends to speed up
the performance of KNNJQ MapReduce algorithms. Moreover, we
have to take into account the communication overhead, according
to [7] it is O(|P| + |Q| + |RepQ| x w), being |RepQ| the total
number of replications for the whole dataset Q that is needed
for the computation of KNNJQ.

5.2. KCPQ MapReduce Algorithm in SpatialHadoop

The theoretical analysis for KCPQ is similar to the one of
KNNJQ, since in the worst case, each point of one dataset (P) is
combined against each point of the other dataset (Q), computing
the distance between each pair of points and leading to a com-
plexity of O(|P| x |Q|). If points in datasets P and Q are sorted,
as is in our case to apply an efficient plane-sweep algorithm for
KCPQ [17], the time complexity is reduced to O(|P| x log>|Q]).

In general, the KCPQ MapReduce algorithm [20,21] in Spatial-
Hadoop consists of a MapReduce job as is described in Algorithm
3. The map function aims to find the KCP between each local pair
of partitions from P and Q with a plane-sweep KCPQ algorithm
and the result is stored in a binary max heap (called LocalKMax-
Heap). The reduce function aims to examine the candidate pairs
of points from each LocalKMaxHeap and return the final set of
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the K closest pairs in another binary max heap (called GlobalK-
MaxHeap). To improve this approach, for reducing the number of
possible combinations of pairs of partitions, we need to find in
advance an upper bound of the distance value of the Kth closest
pair of the joined datasets, called B. This B computation (lines
14-23) can be carried out by sampling globally from both datasets
or by sampling locally for an appropriate pair of partitions and,
then executing a plane-sweep KCPQ algorithm [17] (PSKCPQ, see
Fig. 5(a)) over both samples. The filter function (PartitionsFilter)
takes as input each combination of pairs of partitions in which
the input set of points are partitioned and the distance value 3,
and it is used to prune pairs of partitions which have minimum
distances (minDist(MBR(P}), MBR(P{*)) [16]) larger than 8.

Using Voronoi-Diagram based partitioning, as shown in
Fig. 5(a), the KCPQ MapReduce algorithm can be improved by
modifying its local 8 computation and the filter function. For
the computation of 8, the most appropriate partitions, where an
initial KCPQ is performed, are those whose pivots are closer to
each other and have both higher density of points and area of
intersection. Fig. 5(b) shows that for each partition P of this
partitioning technique, we have both its MBR(P}) and its U(P})
and L(P}P’ ) values, allowing to detect areas of the former in which
there are no points.

For the filter function (PartitionsFilter) two new distances met-
ric can be used, the minimum distance between two pivots from
two different partitions minDist(r;, r;) and the maximum mini-
mum distance between two partitions MmDist(?D}P’ , 7>]Q), they are
exposed in Definitions 4 and 5, respectively. Therefore, as shown
in Fig. 5(b), this function prunes pairs of partitions which have
MmDist(P}P’ , P]Q) larger than B, as we can see in the pruning
Rule 1.

Definition 4. minimum distance between two pivots, minDist(r;,
)

Given two pivots, r; € RF and r; € R? i # j that generate two
partitions P} and PJQ, the minimum distance between two pivots,

minDist(r;, ;), is defined as
minDist(r;, ;) = dist(r;, 1;) — U(PF) — U(PJQ)

Definition 5. maximum minimum distance between two parti-
tions, MmDist(Py, PJQ )

Given two partitions, P}P and PJQ i # j, the maximum min-
imum distance between two partitions, MmDist(P}P , 7>]Q), is de-
fined as

MmDist(Pf, P?) =  max{minDist(MBR(P}), MBR(P")),
minDist(r;, 17)}

Rule 1. Pair of Partitions Pruning

Given two partitions P} and PJQ i # j, if MmDist(Py, 73}@) > B,
then the pair of partitions (P}P , PJQ) can be pruned, because they do
not have any pair of points with distance < B.

The Rule 1 allows us to prune combinations of partitions
from P and Q, reducing the number of map tasks that the KCPQ
MapReduce algorithm needs to perform to get the final result.

Algorithm 3 KCPQ MapReduce Algorithm

1: function MAP(P: set of points, Q: set of points, K: number of pairs)
2: SORTX(P)

3: SORTX(Q)

4: LocalKMaxHeap < PSKCPQ(P, Q, K)

5: if LocalKkMaxHeap is not empty then

6: for all DistanceAndPair € LocalKMaxHeap do

7: outpuT(null, DistanceAndPair)

8: function COMBINE, REDUCE(null, D: set of DistanceAndPair, K: number of pairs)
9: INITIALIZE(GlobalKMaxHeap, K)
10: for all DistanceAndPair € D do
11: INSErT(GlobalKMaxHeap, DistanceAndPair)
12: for all candidate € GlobalKMaxHeap do
13: outpuT(null, candidate)

14: function CALCULATEB(P: set of points, Q: set of points, p: sampling ratio,
K: number of pairs)

15: SampledP < SAMPLINGSORTX(PP, p x |P|)

16: SampledQ <« SAMPLINGSORTX(Q, p x |Q])

17: LocalKMaxHeap < PSKCPQ(SampledP, SampledQ , K)
18: if LocalKMaxHeap is full then

19: BDistanceAndPair <— poP(LocalKMaxHeap)

20: B < BDistanceAndPair .Distance

21: ouTPUT(S)

22: else

23: OUTPUT(00)

24: function PARTITIONSFILTER(PF: set of partitions from P, PQ: set of partitions
from Q, B: upper bound distance)
25: for all c € PF do

26: for all d € PC do
27: minDistance <— MINDISTANCE(c, d) > MmbDist for Voronoi
28: if minDistance < $ then > Rule 1
29: ouTPUT(C, d)

For the theoretical analysis, in our KCPQ MapReduce algo-
rithm, we divide the datasets P and Q into w and v partitions
respectively, according to the Voronoi-Diagram based partition-
ing technique, where P € P; 1 <i < w; P NP} =& (i # )
and P € @1 <i<v;PPNPY =@ (i #j). When the
partitions (P and PJQ) are sorted, for applying the KCPQ plane-

sweep algorithm [17], and each pair of partitions is concurrently
processed by a computing node, the time complexity of the
parallel KCPQ is the maximum time of a slow computing node
that handles more data than the other nodes. Thus, the time
complexity is maxls,'gwaﬁjg,,{O(lpﬂ X log2|7>]Q|)}. Moreover, in

this case, the communication overhead is O(|P| + |Q]).

6. Improvements for KNNJQ

In this section, we first adapt the distance metrics and pruning
rules [23] for KNNJQ MapReduce algorithm in SpatialHadoop,
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(@)

(b)

PSKCPQ

Fig. 5. B computation using Voronoi-Diagram based partitioning by sampling locally from both datasets (a), and partition refinement by its MBR, U(P}P ) and L(Pi? )

properties and maximum minimum distance calculation (b).

and next, we incorporate into SpatialHadoop the less data tech-
nique [51] to try to move as less data as possible between com-
puting nodes.

6.1. Pruning rules for KNNJQ

The points inside each Voronoi-Cell V; are denoted as V;.core =
{p : p € V;}. The support set of a Voronoi-Cell V;, called V;.support,
contains at least all data points that satisfy the following two
conditions: (1) Vq € V;.support, q ¢ V;.core, and (2) there exists
at least one point p € Vi.core such that g € KNN(V;, p, K). The
Vi.support must be sufficient to guarantee that the KNN of all core
points in each cell V; can be found among V;.core and V;.support.

A large number of support points increases the computation
costs per partition since many more points must be searched.
To minimize the number of support points, in [23] two distance
metrics and two pruning rules were defined.

The core-distance of a given Voronoi-Cell V; represents the
maximum distance from a core point p of V; to its Kth nearest
core neighbor gq. It defines an upper bound on the distance be-
tween any core point of V; and the possible support points. That
is, given a point q outside V;, it is guaranteed not to be a support
point of V; if its distance to any core point of V; is larger than the
corDist(V;).

Definition 6. core-distance of V;, corDist(V;), [23]
corDist(V;) = max(dist(p,q)) Vp,q € Vi.core where q €
KNN(V;, p, K) € Vj.core

The support-distance takes the pivot r; of cell V; into consid-
eration, and it represents the maximum distance of a possible
support point of V; to the pivot r; of V;.

Definition 7. support-distance of V;, supDist(V;), [23]
supDist(V;) = max(dist(p, r;) + dist(p, q)) Vp, q € V;.core where
q € KNN(V;, p, K) € Vj.core

Now, we will remind the two pruning rules proposed in [23]
at Voronoi-Cell and point levels. The first pruning rule, Rule 2,
which is applied in the map function of the KNNJ on Overlapping
Partitions phase, avoids unnecessary data duplication (Algorithm
4, line 4), and also reduces the number of Voronoi-Cells each
point must be checked against when mapping points to support
sets (Algorithm 4, line 17).

Rule 2. Support Cell Granularity Pruning, [23]

Given two Voronoi-Cells V;, V; and their corresponding pivots r;,
rj, i # j, if the supDist(V;) < dist(r;, 1j)/2, then V; does not contain
any support points of V.

The second one, Rule 3, allows us to prune, in the map phase of
the KNNJ on Overlapping Partitions phase (Algorithm 4, line 7), the
points of the support cells that are not part of any partial KNN list.
This allows to reduce even more the shuffled data (fewer points
are transferred to the reduce phase) and the complexity of the
final KNN calculation for each point (the size of the set of support
points is smaller).

Rule 3. Support Point Granularity Pruning, [23]
Given any point p € V;, q € V;, , i # ], if dist(q, HP(V;, V})) >
corDist(V;), then q ¢ KNN(V;, p, K).

That is, Rule 3 allows us to prune points within the support
cells that have not been already discarded by Rule 2. Furthermore,
according to [52], the following lower bound can be used in place
of the exact value of dist(q, HP(V;, V})) in pruning Rule 3.

Definition 8. Lower bound of dist(q, HP(V;, V})), [23]

Given two Voronoi-Cells V; and V; and their corresponding
pivots 1, 1, i # j, and a point q € V,, dist(q, HP(V;, V;)) >
dist(q,r,-)fdist(q.rj)

2

Thanks to Definition 8 we can use a lower bound whose
calculation is less complex than dist(q, HP(V;, V;)) leading to the
pruning Rule 4, which reduces the calculation time, preventing it
from penalizing the application of this pruning rule.

Rule 4. Support Point Granularity Pruning by a Lower bound, [23]
Given any pointp € Vi, q € V;, , i # ], ifw >
corDist(V;), then q ¢ KNN(V}, p, K).

6.2. Less data technique

In [51], the less data technique is introduced for All-KNNQ in
order to reduce the size of the shuffled data and the size of the
output data of the KNNJ on Overlapping Partitions phase. Applying
this technique in our KNNJQ MapReduce algorithm, each com-
puting node will calculate and return a KNN list for every query
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Algorithm 4 Improved KNNJ on Overlapping Partitions Algorithm

1: function MAP(p: point from P or Q, P2: set of partitions from Q, K: number
of neighbors)
origin < ISFROMPORQ(p)
if origin is from Q then
filteredParts < PRUNEPARTITIONS(P, p, K)
partition <— FINDPARTITION(filteredParts, p)
if partition is not NULL then
if PRUNEPoINT(filteredParts, p) == false then
OUTPUT(partition.id, p)

> Rule 2

> Rule 4

else

overlappedParts < GETOVERLAPPEDPARTITIONS(’P@, p,K)
11: for all partition € overlappedParts do
12: OUTPUT(partition.id,p)

-
URNQURLN

13: function GETOVERLAPPEDPARTITIONS(PQ: set of partitions from Q, p: point from
P, K: number of neighbors)

14: KNNList < GETKNNLIST(p)

15: nnNumber < KNNList.size

16: radius < GETKTHDISTANCE(KNNList)

17: supParts < GETSUPPORTPARTITIONS(P @, p, radius) > Rule 2
18: nnNumber < GETNUMBEROFNEIGHBORS(supParts, p, radius)

19: while nnNumber < K do

20: supParts <— GETSUPPORTPARTITIONS(supParts, p, radius)

21: nnNumber <— GETNUMBEROFNEIGHBORS(supParts, p, radius)

22: return supParts

point in the Bin KNNJ phase, based on its local data. Then some
additional phases are needed to exchange data among nodes and
find possible misses of nearer neighboring points, while trying
to move as less data as possible between nodes. In the original
algorithm, every point, that it is still not finished, is moved to its
reducer of the KNNJ on Overlapping Partitions phase with its KNN
list. Therefore, it adds a significant load to the network, especially
for large K values. We decided to replace the KNN list with the
distance to the Kth neighbor as a bound, which is really the only
info needed in the reducer. The partial KNN lists will be finally
merged on the last Merge Results phase.

Continuing with the idea of reducing the size of the data that
is handled in the different phases of the algorithm, the pruning
Rule 5 allows determining which of the KNN lists have turned out
to be final.

Rule 5. Final KNN List Pruning

Given any point p € Vi, q € KNN(V;,p,K), if
dist(r;, p) + dist(p, q) ¥V V; N Vi.support # @, then KNN(V;, p, K)
is final.

dist(r,-.rj)
— >

Therefore, with this new pruning rule (Rule 5) we can split the
output of the reducers of the Bin KNNJ phase into different group
of files (final KNN lists and non-final KNN lists) thus reducing the
input data size of the KNNJ on Overlapping Partitions and Merge
Results phases. As a consequence of this reduction on the input
data, the size of the shuffled data between the map and reduce
tasks of these phases is also considerably smaller.

7. Experimental results

This section provides the results of an extensive experimental
study aiming at measuring and evaluating the efficiency of the
DJQ MapReduce algorithms proposed in Sections 5 and 6. In
particular, Section 7.1 describes the experimental settings for
this performance study in SpatialHadoop. Sections 7.2 and 7.3
show experimentally the advantages of the use of sampling and
space subdivision in the building of the Voronoi index. Section 7.4
presents all experiments for KNNJQ using the Voronoi-Diagram
based partitioning technique, paying special attention to the re-
sults in the different phases that are needed to perform this D]Q,
the increment of K value and the use of some improvements to

Table 2

Configuration parameters used in our experiments.
Parameter Values (default)
K for KNNJQ (10), 25, 50, 75, 100
K for KCPQ 1, 10, (10%), 103, 104, 10°
Sampling Random, k-means++, DENDIS
Pivot selection Random, k-means, OPTICS
% P area, y 25, 50, 75, (100)

Number of nodes 1,2, 4,68, 10, (12)

reduce the execution time and the shuffling cost. These results are
compared with Quadtree-based partitioning. Section 7.5 exposes
all experiments related to KCPQ, comparing Quadtree, which is
the best spatial partitioning method in SpatialHadoop for DJQs,
with the proposed data partitioning technique, and analyzing the
increment of K value. Section 7.6 evaluates the extensibility of
the DJQ MapReduce algorithms by increasing the dataset sizes.
Section 7.7 shows the scalability of the proposed DJQ MapReduce
algorithms, varying the number of computing nodes. Finally, in
Section 7.8 a summary of the most important conclusions from
the experimental results is reported.

7.1. Experimental setup

For the experimental evaluation, we have used real-world 2d
point datasets to test our DJQ MapReduce algorithms in Spatial-
Hadoop. We have used datasets from OpenStreetMap': LAKES (L)
which contains 8.4M records (8.6 GB) of boundaries of water
areas (polygons), PARKS (P) which contains 10M records (9.3
GB) of boundaries of parks or green areas (polygons), ROADS
(R) which contains 72M records (24 GB) of roads and streets
around the world (line-strings), BUILDINGS (B) which contains
115M records (26 GB) of boundaries of all buildings (polygons),
and ROAD_NETWORKS (RN) which contains 717M records (137
GB) of road networks represented as individual road segments
(line-strings) [1]. To create sets of points from these five spa-
tial datasets, we have transformed the MBRs of line-strings into
points by taking the center of each MBR. In particular, we have
considered the centroid of each polygon to generate individual
points for each kind of spatial object.

The main performance measure that we have used in our
experiments has been the total execution time (i.e., total response
time), that represents the time spent by the execution of each
distributed DJQ algorithm. Another performance metric used in
our experiments is the shuffled data, which refers to the amount
of information produced in the mapper tasks and moved to the
nodes where the reducer tasks will run. This measurement has
been used to obtain more information about the behavior of the
different phases of KNNJQ and it is shown in Gigabytes (GB).
Table 2 summarizes the configuration parameters used in our
experiments. Default parameters (in parentheses) are used unless
otherwise mentioned.

All experiments were conducted on a cluster of 12 nodes on an
OpenStack environment. Each node has 4 vCPU with 8GB of main
memory running Linux operating systems and Hadoop 2.7.1.2.3.
Each node has a capacity of 3 vCores for MapReduce2/YARN use.
Finally, we used the latest code available in the repositories of
SpatialHadoop.?

In [40], three data partitioning strategies for managing the
data skewness problem in KNNJQ were proposed. They depend
on whether (1) the first dataset of the join is partitioned and
the second dataset is split according to the boundaries of such

1 http://spatialhadoop.cs.umn.edu/datasets.html.
2 https://github.com/aseldawy/spatialhadoop?2.
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Fig. 6. KNNJQ cost (in sec) for the combination of the datasets, LAKES x
BUILDINGS, considering different sampling methods and pivot selection
techniques for K = 10.

partition; (2) the second dataset is partitioned and the first is
split based on that partition, or (3) the union of both datasets
is partitioned. In our case, we have divided the largest dataset,
trying to get the same number of points in each partition, and
then the smallest dataset is partitioned according to the bound-
aries of each partition of the largest one. For instance, if we
have KNNJ(P, Q, K), such that |P| < |Q|, we divide Q into
|PQ| partitions, trying to get the same number of points in each
one of them, and then P dataset is partitioned according to
the boundaries of each partition of Q, generating P with |P?|
partitions.

7.2. Effect of sampling methods

During the Partitioning phase, in the Sampling step, we collect
a set of samples (e.g., |S¥| = 0.01 x |P|) from the input dataset
to capture its distribution as best as possible, since this sample
set will affect query performance. In this experiment, we eval-
uate three sampling techniques for the building of the Voronoi
index (Random, k-means++ and DENDIS) for KNN]JQ (Fig. 6) and
KCPQ (Fig. 7) by considering the three pivot selection techniques:
Random (Vg), k-means (V) and OPTICS (Vo). Fig. 6 shows that on
average k-means++ sampling exhibits the best global performance
(execution time) for KNNJQ, although Random and DENDIS report
good results with V. Random sampling is the fastest, but it
has a great component of randomness that exists between two
different executions of the same query. DENDIS needs more time
than k-means++ to be run, since it requires many distance com-
putations and consumes many resources in its implementation.
For KCPQ, Fig. 7 reveals again that k-means++ sampling shows the
best global performance, mainly for V. Random and DENDIS with
V. get good results as well, but they have the previous drawbacks.
The main conclusion of these results indicates that k-means++ is
the best sampling technique (partition-based sampling) for the
creation of Voronoi indexes in SpatialHadoop for DJQs.

7.3. Effect of space subdivision and indexing

In this experiment, we will compare our new proposed
Voronoi-Diagram based partitioning algorithms with the Quadtree
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Fig. 7. KCPQ cost (in sec) for the combination of the datasets, LAKES x
BUILDINGS, considering different sampling methods and pivot selection
techniques for K = 100.

(Q) built-in partitioning technique which has shown to obtain
the best performance results with the different spatial queries
present in SpatialHadoop [1,4,20,21]. We will consider the k-
means++ sampling (the best one of the previous experiment), and
the three pivot selection techniques: random selection (Voronoiyg,
Vir), k-means selection (Voronoiy, Vix) and OPTICS selection
(Voronoiyg, Vio)) for the Space subdivision step, and the Indexing
data step.

In Fig. 8, the partitioning cost of different datasets is shown
with respect to the execution time, for both the Space subdivision
and Indexing phases. The first conclusion we can draw is that
the execution times for Voronoig and Quadtree grow similarly as
the size of the datasets is increased. For Voronoiy, the increase
in execution times is larger, since a k-means algorithm is used in
the Space subdivision phase. This k-means algorithm takes longer
times to converge towards a solution as the size of the datasets
increases. The costliest pivot selection technique is Voronoiyo,
because the execution of OPTICSxi clustering algorithm is more
expensive than k-means, being the number of partitions smaller.
Finally, Voronoiz presents the fastest execution times, mainly
because it consumes the smallest time in the Indexing phase
of the data, since in the Space subdivision phase the times are
very similar to those of Quadtree. In Table 3, we can observe
information of data distribution (points per partition) about the
partitioning of RN dataset for each partitioning technique. On
one hand, Voronoiyy presents a higher mean value due to hav-
ing a lower number of partitions than the other techniques. On
the other hand, Voronoiy, has a much lower standard deviation
that allows better handling of data skew problems by having a
more proportional distribution of the points in all partitions. This
metric provides information about the gap between the different
partitioning techniques and how it affects the performance of the
DJQs, since the skewed data is a main factor for the increasing
of the execution time. In addition, this result is aligned with the
behavior obtained in Figs. 6 and 7, where the best execution times
are obtained by applying k-means++ algorithm, either in sampling
or partitioning phases, confirming that the results are close to the
optimal values.

7.4. KNNJQ experiments

These experiments for KNNJQ MapReduce algorithm aim to
measure the variation of different parameters like the dataset
sizes to be joined, partitioning techniques (Vik, Vikr, Vio and
Quadtree) and the increment of K value.

https://doi.org/10.1016/j.future.2019.10.037
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Table 3
Information of data distribution (points per partition) of RN dataset per
partitioning techniques.

Num Mean Min Max Stdev
Voronoiyy 512 1400 486 19914 3684694 623909
Voronoigg 512 1400 486 18 347 6228 082 985 297
Voronoiyg 72 9959011 1149113 40703 435 8512796
Quadtree 430 1667 555 218 4275451 1130277
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Fig. 8. Partitioning cost (total execution time) per phase, considering different
partitioning techniques and datasets.
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Fig. 9. Total execution time of KNNJQ, considering different partitioning
techniques (upper) and varying the K values (lower).

7.4.1. Effect of pivot selection techniques

This experiment compares the three pivot selection techniques
(Random, k-means and OPTICS) with k-means++ as the sampling
method and Quadtree (Q) for the KNNJQ in SpatialHadoop, based
on the execution time, in each of the phases. They are denoted as
Voronoiy, (Vik), Voronoiyg (Vig) and Voronoiyo (Vo). In Fig. 9, upper
chart, the KNNJQ for the combination of different datasets (L x P,
LxR,LxBand L xRN) is shown for each pivot selection technique
and for a fixed K = 10. We can observe that Voronoiy, exhibits
the best performance in all cases. Moreover, Quadtree is much
slower, especially in the KNNJ on Overlapping Partitions phase.
This is due to the fact that with the three Voronoi techniques,
every point of P is assigned to Q partition that contains at least
K elements, so after the Bin KNNJ phase there are more final
KNN lists and therefore the processing time of the next phase
is reduced. Note that the KNNJ on Overlapping Partitions phase
is usually more expensive if the number of final KNN lists, from
the previous phase, is lower, because when the range query on
the nearby partitions is executed, there is a large growth of
the number of partitions to search for KNN candidates. Notice
the high execution time needed for L x RN using Vi, this is
because the OPTICS algorithm does not generate a fixed number
of clusters, but it depends strongly on the data distribution (and
the number of clusters is less than k). In this figure we can also
highlight that the differences in execution time between the four
partitioning techniques are reduced with the combination of the
larger dataset, L x RN, mainly because the Quadtree technique
returns more final KNN lists. As the volume and size of Q are
much greater, the volume of points of P that fall into partitions of
Q is also greater, obtaining final results that reduce the execution
time of the KNNJQ algorithm. Another conclusion that can be
obtained from the results is that Quadtree is the fastest while
Voronoiy, is slower for the Repartitioning phase. This is due to
the use of an algorithm based on k-means that makes the time
increase slightly, in the same way to the Indexing time in previ-
ous experiment. However, thanks to this preprocessing, the best
results are obtained, due to the good handling of the skewed data
(e.g., the time spent in the Bin KNNJ phase is the smallest).

Moreover, similar behavior can be observed in Fig. 9, lower
chart, where, as the K value is increased for the combination of
the datasets, LAKES x ROADS. The execution time of the KNNJ
on Overlapping Partitions phase is also higher. We have also to
emphasize the high execution time needed for K = 75 using Vg,
this is mainly due to the random nature of the random selection
technique. Note that the increase of the Repartitioning phase time
for Voronoiy is less than that shown in the Indexing process. This
is due to the fact that the former is done within each partition
using a MapReduce job, while the latter is carried out in the
master node. Finally, in the Merge Results phase, we can observe
how Quadtree exchanges more information than both Voronoi
techniques, since in the previous phase more KNN lists have been
generated for all the dataset combinations.

7.4.2. Effect of including the improvements
This experiment compares the best KNNJQ MapReduce algo-
rithm in SpatialHadoop designed so far (Vj), with the enhanced
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version including all the improvements proposed in Section 6
(Vkur), based on the execution time, in each of the phases. In
Fig. 10, upper chart, the KNNJQ for the combination of different
datasets (LxP,LxR, LxB and L x RN) is shown for a fixed K = 10.
We can observe that the Voronoiy, exhibits the best performance
in all cases. This is due to the fact that the execution times of
phases 3 (KNNJ on Overlapping Partitions) and 4 (Merge Results)
have been considerably reduced by the pruning rules (2 and 4)
that eliminate points from the dataset Q that are not part of the
final result and by the less data technique that decreases the size
of the input set (only those points of P that have not finished)
as well as the size of the shuffled data between the MapReduce
phases.

Moreover, similar behavior can be observed in Fig. 10, lower
chart, where, as the K value is increased for the combination
of the datasets, LAKES x ROADS. The execution time of the Vi
increases less than for Vi. This time difference grows with the
increment of the K value, due mainly to the increase in the size
of the partial results (KNN lists). In the improved version, Vi,
only non-final KNN lists are used in phases 3 and 4, causing that
when K increases, the non-improved version works with more
intermediate data.

These time differences are even larger when the size of the
smallest dataset increases as can be seen in Fig. 11, upper chart.
For the combination ROADS x BUILDINGS (72M points x 115M
points), we observe how the times are higher for the unimproved
version (Viy 2860 s vs. Vi 3746 s), especially in the phases 3
(KNNJ on Overlapping Partitions) and 4 (Merge Results). This is
shown in Fig. 11, lower chart, which shows that the size of the
shuffled data of these phases is greater than double for the non-
improved version. It should be noted that the calculation of the
Rule 5 increases the time of the phase Bin KNNJ, although it is
worth it for the best obtained results.

7.5. KCPQ experiments

These experiments aim to measure the behavior of the KCPQ
MapReduce algorithm in SpatialHadoop, varying different param-
eters as the dataset sizes to be joined, the partitioning techniques
and the values of K. In Fig. 12, upper chart, the KCPQ for a fixed
K = 100 and for real spatial datasets (L x P, P x R, R x B and
B x RN) is shown with respect to the execution time for the
different partitioning techniques (Voronoiy,, Voronoigg, Voronoiyg
and Quadtree). We can observe that the execution times in all
partitioning techniques grow almost linearly as the size of the
datasets is increased, except Voronoiyo that for P x R the time is
very high due to mainly the high preprocessing cost. For KCPQ,
the best partitioning technique is Quadtree, which is approxi-
mately 18% faster than Voronoiy,. Moreover, for the combinations
of L x P and P x R, Voronoiy, is slightly faster than Quadtree
(e.g., for L x P Voronoiy, is 14 s faster than Quadtree), but for the
combinations of the biggest datasets (R x B and B x RN) Quadtree
is the fastest, e.g., for B x RN Quadtree is 18% (254 s) faster than
Voronoiy,. That is, Voronoiy, exhibits smaller runtime values for
smaller dataset sizes, since it produces a slightly larger number of
partition combinations (e.g., 24 vs. 23 partition pairs for Lx P) that
are better distributed in tasks for this cluster of nodes. But for big
dataset sizes, Quadtree is the fastest for KCPQ, since it minimizes
the number of partitions for each dataset and the number of
the ones that overlap between each other. For instance, for the
combination of B x RN, Quadtree obtains 78 x 430 = 33540
possible pairs of partitions, remaining 711 pairs of partitions (2%)
after applying the Rule 1, with a total execution time of 1220 s
In the case of Voronoiy, it generates 81 x 512 = 41472 pairs of
partitions, remaining 1191 pairs of partitions (2.8%) after applying
Rule 1, with a total execution time of 1474 s, that is slightly
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Fig. 10. Total execution time of KNNJQ, considering the improvements (upper)
and varying the K values (lower).

higher than for Quadtree due to the increase on the number of
map tasks. Finally, Voronoi,o shows the worst results, noting that
the indexing time of Voronoiyy is much higher and the number
of partitions is smaller. Fig. 12, lower chart, shows the effect
of increasing the K value for the combination of the biggest
datasets (BUILDINGS x ROAD_NETWORKS) for KCPQ. This exper-
iment shows that the total execution time grows slowly as the
number of results to be obtained (K) increases. All partitioning
techniques report very stable execution times, even for large K
values (e.g., K = 10°), although, we can see that Quadtree still
exhibits the lowest execution times.

7.6. Extensibility varying the P dataset area

In this experiment, we evaluate the extensibility of the pro-
posed DJQ MapReduce algorithms (KNNJQ and KCPQ), consider-
ing different percentages (y ) of the P dataset and keeping Q fixed.
We aim to assess the performance of DJQs when the amount of
data is massive, varying the smallest dataset (P) by executing a
Window Query centered on the MBR of P with a percentage (y)
of the original MBR. In the case of ROADS and the y values of 25%
50% 75% and 100%, we have obtained a percentage of points of 2%,
27% 70% and 100% from the original dataset P.

In Fig. 13 it is shown that, for KNNJQ, when the size of the data
is small, Quadtree works better because the cost of the calculation
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Fig. 11. KNNJQ cost per phase considering the improvements on the combi-
nation ROADS x BUILDINGS. Total execution time (upper) and shuffled data in
GBytes (lower).

of rules is almost insignificant for the pruning data (very few
points are pruned from the dataset). As the size of the query win-
dow increases, the time differences also increase for Voronoiyy,
because although the running time of the Bin KNNJ phase is
slightly higher for the calculation of the rules, the execution times
of phases 3 and 4 decrease considerably thanks to the fact that the
size of the input data (shuffled data) through the use of pruning
rules is decreased.

For the case of KCPQ, Fig. 14 shows that Voronoiy, presents
smaller execution times when the size of the datasets is smaller,
since the pruning rule with MmbDist works better and there is
still a higher number of partitions. However, as shown in the
experiments of Section 7.5, Quadtree minimizes the number of
partitions and therefore obtains better results for high y values.

7.7. Scalability varying the number of computing nodes

This new experiment aims to measure the speedup of the
proposed DJQ MapReduce algorithms (KNNJQ and KCPQ), with
respect to the number of computing nodes (). To evaluate the
scalability performance, we compare our best approach using
the Voronoi-Diagram based partitioning technique to the same
MapReduce algorithms using the Quadtree partitioning scheme.
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Fig. 12. Total execution time of KCPQ, considering different partitioning
techniques (upper) and varying the K values (lower).
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Fig. 13. KNNJQ cost (in sec) for the combination of the datasets, ROADS x
BUILDINGS, considering different y values for K = 10.

The upper chart of Fig. 15 shows the impact of different num-
ber of computing nodes on the performance of distributed KNNJQ
algorithm, for LAKES x PARKS with the default configuration val-
ues. From this chart, we can conclude that the performance of our
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Fig. 14. Total execution time of KCPQ for the combination of the datasets,
ROADS x BUILDINGS, considering different y values for K = 100.

approach has a direct relationship with the number of computing
nodes. It could also be deduced that better performance would
be obtained if more computing nodes are added, but when the
number of computing nodes exceeds the number of map tasks
no improvement is obtained. Voronoiy is still showing a better
behavior than Quadtree. In the lower chart of Fig. 15 shows
smaller execution times for KCPQ than for KNNJQ, mainly since
it is a less complex algorithm and it does not consist of several
MapReduce phases. However, the trend of the behavior of both
partitioning techniques for the combination BUILDINGS x PARKS
is very similar to the one shown in KNNJQ, but exhibiting the
lowest execution times for Quadtree.

7.8. Discussion of the results

The main conclusions extracted for this set of experiments on
the proposed Voronoi-Diagram based partitioning techniques in
SpatialHadoop for DJQ MapReduce algorithms are the following:

1. The best sampling technique to find a small but represen-
tative profile of the big spatial dataset for DJQ processing
in SpatialHadoop is k-means++, which is a partition-based
sampling method.

2. Using the k-means++ sampling, we have compared three
clustering algorithms (Random, k-means and OPTICS) for
the pivot selection. The partitioning execution times for
Vir are the smallest and grow almost linearly as the size
of the datasets, while, for Vj, this increment is larger due
to the use of this clustering algorithm. The use of OPTICS,
Vio, is the slowest. But Vj, exhibits the best global perfor-
mance in all cases for KNNJQ, because this combination
of k-means algorithms indexes the data appropriately for
the next phases in the KNNJQ MapReduce algorithm in
SpatialHadoop, and the time consumed by k-means algo-
rithm in the Repartitioning phase (it is a MapReduce job)
is compensated by the gain in performance in subsequent
phases of the query processing.

3. For KNNJQ (it follows a multiple nearest neighbor query
processing schema), Vy is faster than Quadtree, because it
deals better with skewed data and it gets more final results
in the Bin KNNJ phase.
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Fig. 15. Query cost with respect to the number of computing nodes n (Speed
up).

4, The improved version of Vi, Vi, has been designed to
decrease considerably the execution time, especially in the
KNNJ on Overlapping Partitions and Merge Results phases, by
reducing the size of the input data, the shuffled data and
the data that is handled in the KNN computation through
the use of different pruning rules.

5. Quadtree outperforms all other techniques with respect to
the execution time for the KCPQ (it follows a global query
processing schema), although Voronoiy, or Vi, technique
presents slightly better performance, for the combinations
of the smallest datasets.

6. Each partitioning method is better for certain spatial
queries since their performance depends strongly on the
processing scheme. For our DJQs, KCPQ is favored by
Quadtree partitioning and KNNJQ by Voronoiy, partitioning.
For KNNJQ with Voronoiy, partitioning, the two datasets
use the same partitions/pivots, so some properties and
pruning rules can be applied on them. But for KCPQ with
Voronoiy, partitioning, the two datasets use different parti-
tions/pivots, so those same properties cannot be applied
and the required time to repartition one of the datasets
with the pivots of the other one will be very expensive. It
means KCPQ with Voronoiy, partitioning is penalized, but
with Quadtree partitioning KCPQ is favored, since Quadtree
uses a regular decomposition of space, which reduces the
number of partitions.

7. In the experiments of varying the y values (extensibility),
if the size of the MBR of P is very small compared to Q,
Quadtree presents a better behavior for KNNJQ than Vi
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due to a lower efficiency of the pruning rules. But when the
MBR is large enough, then Vi, shows better performance
than Quadtree. For the case of KCPQ, when y is small,
Voronoiy, is slightly better than Quadtree, but for medium
and large y values, Quadtree gets the best performance.

8. Both Voronoiy, and Quadtree show better performance
when the number of computing nodes (7) is increased, but
if there are not enough tasks available for a certain value
of nodes, no performance improvements are obtained.

8. Conclusions and future work

Distance-Join Queries (DJQs) are important and common op-
erations used in numerous spatial applications. DJQs are costly
operations, since they combine spatial joins with distance-based
search, and therefore, their efficient execution is a challenging
task. For this reason, in this paper, a new data partitioning tech-
nique based on Voronoi-Diagrams in SpatialHadoop is designed
and implemented. The best combination for the partitioning pro-
cess is to use the k-means algorithm both in the sampling of
datasets and in the space subdivision step (pivot selection), re-
sulting in the Vj variant. Improved KNNJQ and KCPQ MapReduce
algorithms, using this new partitioning mechanism and the repar-
titioning technique, have also been proposed. KNNJQ MapReduce
algorithm has been also improved by using adapted pruning
rules and the less data technique to try to move as less data as
possible between computing nodes, resulting in Vjy. The execu-
tion of an extensive set of experiments on real-world datasets
has demonstrated that distributed DJQ algorithms using Voronoi-
Diagram based partitioning (Vj, is the best one) have shown
excellent results in terms of running times and shuffled data,
compared to other spatial partitioning techniques implemented
already in SpatialHadoop (e.g., Quadtree). For KCPQ, Quadtree
shows slightly better performance than Vj,, mainly for large
dataset sizes. However, in the case of KNNJQ, the use of these
new techniques to repartition the data leads to a great improve-
ment in performance, especially through the use of k-means
and the other improvements. Both Vi, (KNNJQ) and Quadtree
(KCPQ) show better performance when the number of computing
nodes is increased. Finally, this experimental study on both real-
world datasets demonstrates that our proposed data partitioning
based on Voronoi-Diagrams for KNNJQ and KCPQ MapReduce
algorithms are efficient, robust and scalable in SpatialHadoop.

Our proposal is a good foundation for the development of
further improvements in this research line, and as part of our
future work, we are planning to extend the current results in
several contexts:

- include LSH (Locality Sensitive Hashing) partitioning tech-
nique [36,40] in SpatialHadoop and compare it with
Voronoi-Diagram based partitioning technique.

- handle data skew [40] in these DJQs (mainly for KCPQ) in
SpatialHadoop.

- implement other complex DJQs in SpatialHadoop, like multi-
way distance-join queries [53].

- implement the data partitioning technique based on
Voronoi-Diagrams and the improved DJQ MapReduce algo-
rithms in Spark-based spatial analytics systems as GeoSpark
[54] or LocationSpark [55].
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