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Abstract

New calibrated estimators of quantiles and poverty measures are proposed. These esti-

mators combine the incorporation of auxiliary information provided by auxiliary vari-

ables related to the variable of interest by calibration techniques with the selection of

optimal calibration points under simple random sampling without replacement. The

problem of selecting calibration points that minimize the asymptotic variance of the

quantile estimator is addressed. Once the problem is solved, the definition of the new

quantile estimator requires that the optimal estimator of the distribution function on

which it is based verifies the properties of the distribution function. Through a theo-

rem, the nondecreasing monotony property for the optimal estimator of the distribution

function is established and the corresponding optimal estimator can be defined. This

optimal quantile estimator is also used to define new estimators for poverty measures.

Simulation studies with real data from the Spanish living conditions survey compares

the performance of the new estimators against various methods proposed previously,

where some resampling techniques are used for the variance estimation. Based on the

results of the simulation study, the proposed estimators show a good performance and

are a reasonable alternative to other estimators.

Keywords: Optimization, calibration technique, poverty measure estimates, survey

sampling

2010 MSC: 62D05

1. Introduction

Quantile estimation is a issue of great interest because some measures and indi-

cators depend on quantiles in many fields of research such as health science ([41]);

anthropology ([6]) or economics ([14]). More specifically, in the field of economics,
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studies on the analysis of poverty and social exclusion have an increasing importance5

for governments and society in general, since some poverty measures, like the pro-

portion of people (or households) in poverty, are important measures of the country’s

overall economic welfare. Many indicators used in the poverty studies are based on

quantiles, since they analyze variables with skewed distributions such as income, and

in such cases the median is more suitable location measure than the mean. Thus, one10

of the commonly used measures in the poverty analysis is the poverty line that allows

dividing the population into poor and nonpoor and that, for example, Eurostat fixes as

60% of the median of the equivalent net income. Additionally, poverty studies incor-

porate the analysis of wage inequality and income distribution, whose measurement

is often based on percentile ratios, such as 50th/5th and 50th/25th ([16]); 50th/10th15

([33],[24], [31], [8]); 95th/50th ([24], [8]) and 90th/10th; 95th/20th; and 80th/20th

([22]).

In official surveys of living conditions, in social surveys and in sample surveys in

general, auxiliary information is often available through additional variables related to20

the study variable. When auxiliary information is available, there are several alterna-

tive methods for incorporating it into the estimation phase and obtaining more efficient

estimators ([15]; [12]; [9]); [17]). These procedures have been applied to estimate the

population mean ([35]; [38]), the distribution function ([9]; [17]; [40]; [30]) quantiles

([20]; [13]) and poverty measures [32]. Particularly, in the case of estimation of quan-25

tiles, the auxiliary information can be incorporated by means of indirect estimators.

In this case, it is necessary to have the equivalent quantile of the auxiliary variable

for a given quantile of the study variable ([23]; [34]). Another possibility considers

the incorporation of the auxiliary information to obtain estimators of the distribution

function and to obtain the estimation of the quantile through the inverse function ([9];30

[17]). This procedure requires that the estimator of the distribution function fulfills the

distribution function’s properties. Thus, based on this option, [37] obtained quantile

estimators based on calibration framework described in [36]. Similarly, also based on

the same calibration framework, [26] developed post-stratified quantile estimators. The

main advantage of the framework proposed in [36] is that the obtained estimators are35

genuine distribution functions1 under some conditions. One drawback of these esti-

1For an estimator F̂ (t) of F (t) to be a genuine distribution function it should be monotonic increasing

and such that F̂ (−∞) = 0 and F̂ (+∞) = 1
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mators, is that their efficiency depends on the selection of some calibration points ti.

Recenlty, under simple random sampling, the problem of optimal selection points in

order to obtain the best estimation is treated in [26]-[29]. Unfortunately, the quantile

estimation through the estimation of the distribution function needs the estimation for40

all value t and the optimal selection of auxiliary points depends on the point t in which

we want to estimate the distribution function. This implies that the distribution function

estimators based on optimal choice, in general, are not monotonous non-decreasing and

may take values beyond the range [0, 1].

45

In this work, we will adapt and employ the optimal selection proposals in [29] in

the estimation of quantiles. We show that the problem of optimizing the variance of a

quantile estimator is equivalent to the optimization of the variance of the distribution

function estimator at one point. We demonstrate that under certain conditions, the es-

timators obtained through the optimal selection proposed in [29] meet the distribution50

function properties and can be directly used in the quantile estimation. Due to the com-

plexity of the quantile estimation and the optimal selection for calibration estimators, a

practical mathematical expression for the variances of the quantile estimator could not

be established. Thus, some resampling techniques will be employed to obtain variance

estimation of the quantile estimators proposed. Finally, in this work we will define new55

percentile ratio estimators that can be applied in the estimation of poverty measures.

The remainder of the article is organized in four sections. After introducing the

problem of quantile estimation in Section 2, in Section 3, new calibration quantiles

estimators are proposed based on optimal selection points for the estimation of dis-60

tribution function. In Section 4, we propose the use of resampling techniques for the

variance estimation of the quantile estimators proposed in Section 4. The application

of the optimal quantile estimators in poverty measures estimation is done in Section

5. Section 6 includes two simulation studies based on real survey data obtained from

the Spanish living conditions survey in order to analyse the performance of quantile65

estimators and poverty measure estimators proposed in this work. Finally, Section 7

presents the concluding remarks.

2. Estimation of the distribution function and quantiles in survey sampling

Consider a finite population U = {1, . . . , N} with N different units where a sam-

pling design p(·) is defined with first and second-order inclusion probabilities πk > 070
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and πkl > 0 k, l ∈ U . A random sample s = {1, 2, . . . , n} of fixed size n is selected

according to the sampling design p(·) and dk = π−1
k denotes the sampling design-basic

weight for unit k ∈ U which is known. We denote by yk the study variable and by xk

a vector of auxiliary variables at unit k. The values xk are assumed to be known for all

population units but the value yk is assumed to be known only if the sample s includes75

the kth unit. The distribution function Fy(t) of the study variable y is given by

Fy(t) =
1

N

∑
k∈U

∆(t− yk) (1)

where

∆(t− yk) =

{
1 si t ≥ yk

0 si t < yk.

Based on Fy(t), the finite population α-quantile of y is defined as minimum value of t

for which at least 100 · α% of the y’s values are less than or equal to that value, that is

Qy(α) = inf{t : Fy(t) ≥ α} = F−1
y (α).

A general procedure to obtain an indirect estimator for Qy(α) is based on the incorpo-80

ration of auxiliary information in the estimation of Fy(t) to obtain an estimator F̂y(t)

that fulfills the distribution function’s properties, that is, F̂y(t) is a genuine distribution

function. Under this assumption, the quantile Qy(α) can be estimated by taking the

inverse of F̂y(t) in the following way:

Q̂y(α) = inf{t : F̂y(t) ≥ α} = F̂−1
y (α).

The usual estimator of the distribution function Fy(t) is the Horvitz-Thompson esti-85

mator given by:

F̂Y HT (t) =
1

N

∑
k∈s

dk∆(t− yk). (2)

The estimator F̂Y HT (t) is unbiased and under simple random sampling, it verifies the

distribution function properties, but generally it is not a genuine distribution function

and does not use the auxiliary information provided by the vector x.

Recently, to incorporate the auxiliary information in the estimation of Fy(t), some90

authors (([20], [36], [37], [40] and [3])) have used the calibration method in the estima-

tion of the distribution function and quantiles. Specifically,[36] modified the estima-

tor F̂Y HT (t) by the calibration method. To do so, they considered a pseudo-variable

gk = β̂
′
xk for k = 1, 2, ...N, where

β̂ =

(∑
k∈s

dkxkx
′

k

)−1

·
∑
k∈s

dkxkyk (3)
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and they replaced the basic weights dk by new calibrated weights ωk by means of the95

minimization of the chi-square distance measure

Φs =
∑
k∈s

(ωk − dk)
2

dkqk
(4)

subject to the calibration equations

1

N

∑
k∈s

ωk∆(tj − gk) = Fg(tj) j = 1, 2, . . . , P (5)

where qk are known positive constants unrelated to dk, Fg(tj) denotes the finite distri-

bution function of the pseudo-variable gk evaluated at the points tj j = 1, 2, . . . , P

and it is assumed, with no loss in generality, that t1 < t2 < . . . tP .100

The resulting estimator ([36]) is given by

F̂yc(t) = F̂Y HT (t) +
(
Fg(tg)− F̂GHT (tg)

)′
· D̂(tg) (6)

where F̂GHT (tg) is the Horvitz-Thompson estimator of Fg(tg) evaluated at tg =

(t1, . . . , tP )
′

and

D̂(tg) = T−1 ·
∑
k∈s

dkqk∆(tg − gk)∆(t− yk)

assuming that the matrix T , given by∑
k∈s

dkqk∆(tg − gk)∆(tg − gk)
′

is nonsingular.105

Under some conditions ([36]) the estimator F̂yc(t) is a genuine distribution function

and based on this framework, [37] developed a new estimator for quantiles Qy(α).

3. Optimal quantile estimators based on calibration estimation

In this section we will consider the search for quantile calibration estimators that110

are optimal in the sense of least error.

3.1. The optimization problem

A quantile estimator Q̂y(α) can be expressed asymptotically as a linear function

of the estimated distribution function evaluated at the quantile Qy(α) by the Bahadur

representation (see [9]):115

Q̂y =
1

fy(Qy(α))
(α− F̂y(Qy(α))) +O(n−1/2), (7)
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where fy(·) denotes the derivative of the limiting value of Fy(·) as N −→ ∞. This

linear approximation previously used by [23] and [4] helps to study the asymptotic

properties of the estimator. Using this approximation we can express the asymptotic

variance of Q̂y(α) as

Vasym(Q̂y(α)) =

(
1

fy(Qy(α))

)2

V (F̂y(Qy(α)))

then the problem of minimizing the variance of the quantile’s estimator Qy(α) is the120

same as minimizing the variance of the estimator of the distribution function F̂y(Qy(α))

on which it is based. Since the value Qy(α) is unknown, it is not possible to obtain

the optimal points for the estimation of F̂yc(Qy(α)) following the approach developed

in [29]. Consequently, for the optimal estimate of Qy(α), we consider the optimal

estimation of Fy(t) for each point t.125

Following [36], the asymptotic variance of F̂yc(t) is given by:

AV (F̂yc(t)) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (8)

where Ek = ∆(t− yk)−∆(tg − gk) ·D(tg), with

D(tg) =

(∑
k∈U

qk∆(tg − gk)∆(tg − gk)
′

)−1

·

(∑
k∈U

qk∆(tg − gk)∆(t− yk)

)
.

Thus, the selection of the auxiliary vector tg changes the precision of the calibration

estimator Q̂y(α).

130

Following [28], under simple random sampling without replacement, the minimiza-

tion of asymptotic variance (8) is equivalent to the minimization of the function:

Qt(γ1, . . . , γP ) = 2NFy(t) ·Kt(γP )−
P∑

j=1

(
Kt(γj)−Kt(γj−1)

)2
(Fg(γj)− Fg(γj−1))

−
(
Kt(γP )

)2
with Kt(γ) =

∑
k∈U

∆(γ − gk)∆(t− yk).

Under simple random sampling without replacement, the function Qt(γ1, . . . , γP )135

has its minimum at a vector tP = (γt1, . . . , γtP ) with γtj ∈ At ∪ Bt, j = 1, . . . , P

where

At = {gk : k ∈ U ; yk ≤ t} = {at1, at2, . . . , atMt
} with ath < ath+1 for h = 1, . . . ,Mt−1

(9)
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where Mt is the number of elements in the set At and

Bt = {bt1, bt2, . . . , btM}

with

bt1 = maxl∈U1{gl} where U1 = {l ∈ U : gl < at1}
bth = maxl∈Uh

{gl} where Uh = {l ∈ U : ath−1 ≤ gl < ath} h = 2, 3, . . . ,Mt

and bth ≤ bth+1 for h = 1, . . . ,Mt − 1.140

Under simple random sampling without replacement [29] found that the auxiliary

vector tg has optimal dimension P = 2mt when bt1 exists and for all j = 2, . . . ,mt,

btj ̸= atj−1 and the optimal vector is given by

tOPT(t) = (bt1, a
t
1, . . . , b

t
mt

, atMt
). (10)

In the case that for some values jt1, j
t
2, . . . j

t
pt

∈ {1, . . . ,mt}; atj1−1 = btj1 with pt ≤145

mt and jth ̸= jtq if h ̸= q the optimal dimension is given by P = 2mt − pt and the

optimal auxiliary vector tOP is:

tOP(t) = (bt1, a
t
1, b

t
2, a

t
2, . . . , b

t
j1−1, a

t
j1−1, a

t
j1 , b

t
j1+1, . . . , b

t
jh−1, a

t
jh−1, a

t
jh
, btjh+1, . . . b

t
Mt

, atMt
).

(11)

Generally, the optimal vector tOPT(t) is unknown. Moreover, if its value is known,

it can produce some problems when it is used with the data of a particular sample s (it

can produce incompatible calibration restrictions in (5)). Thus, in a similar way to the150

previous cases, we consider a estimated vector t̂OP(t) based on the set Ast and Bst

defined as:

Ast = {gk : k ∈ s; yk ≤ t} = {at1, at2, . . . , atmt
}

with ath < ath+1 for h = 1, . . . ,mt − 1 and Bst is defined, based on the sample s, in a

similar way that Bt.

Then we define the calibration estimator for the distribution function estimator:155

F̂Y O(t) = F̂Y HT (t) +
(
Fg(t̂OP)− F̂GHT (t̂OP)

)′
· D̂(t̂OP) (12)

where

D̂(t̂OP) =

∑
k∈s

dkqk∆(t̂OP − gk)∆(t− yk)∑
k∈s

dkqk∆(t̂OP − gk)
.

8



Since the optimal vector t̂OP depends on t, the estimator F̂Y O(t) considers different

calibration equations for each value of t. Consequently, the conditions developed in

[36] for F̂yc(t) in general do not guarantee that F̂Y O(t) is a genuine distribution func-

tion. In the next subsection we will see that F̂Y O(t) meets the conditions of a true160

distribution function.

3.2. Defining the optimal quantile estimator.

In order to define the optimal quantile estimator, we must first demonstrate that the

estimator F̂Y O(t) is a genuine distribution function and a key property is nondecreas-

ing monotony property. We consider the usual weights qk = 1 (the uniform weighting165

is likely to dominate in applications [15]). The following theorem establish the nonde-

creasing monotony property for F̂Y O(t).

Theorem. The calibration estimator F̂Y O(t) is monotone nondecreasing.

Proof. If we consider values t ≤ z with y[i] ≤ t ≤ z < y[i+1] , and we denote by

Bsi = Bsy[i]
, it is clear that170

Ast = Asz = Asi and Bst = Bsz = Bsi.

Consequently, t̂OP(t) = t̂OP(z) = t̂OP(y[i]) and calibration weights ωk in (5) are

obtained with the same auxiliary vector for t and z and following ([36]), since qk = 1

for all k ∈ s, we have F̂Y O(t) ≤ F̂Y O(z).

Now, we consider the case where t ≤ z with y[i] ≤ t < y[i+1] and y[i+1] ≤ z <175

y[i+2]; i = 1, . . . , l − 2. For y[i] ≤ t < y[i+ 1], we have:

Asi = {ai1, . . . , aimi
} ; Bsi = {bi1, . . . , bimi

}.

We denote by Rsi = {j : bij = aij−1} and R̄si = {j : bij ̸= aij−1}. It is clear that

{1, . . . ,mi} = Rsi ∪ R̄si.

Now, if we assume that Rsi = ∅, then the optimal vector t̂OPT(t) is given by the

sample-based version of (10) and following ([36]), the calibration estimator F̂Y O(t) is180

given by:

F̂Y O(t) = F̂Y HT (t) +

2mi∑
j=1

(
Fg(tj)− F̂GHT (tj)

)
·Ai(tj) (13)

9



with

Ai(a
i
j) =

∑
k∈s

dk∆(aij − gk)∆(t− yk)−
∑
k∈s

dk∆(bij − gk)∆(t− yk)

N
(
F̂GHT (a

i
j)− F̂GHT (b

i
j)
)

−

∑
k∈s

dk∆(bij+1 − gk)∆(t− yk)−
∑
k∈s

dk∆(aij − gk)∆(t− yk)

N
(
F̂GHT (b

i
j+1)− F̂GHT (a

i
j)
) =

(
k̂i(a

i
j)− k̂i(b

i
j)
)

N
(
F̂GHT (a

i
j)− F̂GHT (b

i
j)
) =

(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N
(
F̂GHT (a

i
j)− F̂GHT (b

i
j)
) ; j = 1, . . . ,mi

(14)185

Ai(b
i
j) =

∑
k∈s

dk∆(bij − gk)∆(t− yk)−
∑
k∈s

dk∆(aij−1 − gk)∆(t− yk)

N
(
F̂GHT (b

i
j)− F̂GHT (a

i
j−1)

)
−

∑
k∈s

dk∆(aij − gk)∆(t− yk)−
∑
k∈s

dk∆(bij − gk)∆(t− yk)

N
(
F̂GHT (a

i
j)− F̂GHT (b

i
j)
) = −Ai(a

i
j); j = 1, . . . ,mi

(15)

since it’s easy to see that k̂i(aij−1) = k̂i(b
i
j) (k̂ is defined similarly to K but based

on sample s) and where k̂i(a
i
0) = 0 and k̂i(b

i
mi+1) = k̂i(a

i
mi

) as we consider ai0 <

min{gk : k ∈ U} and bmi+1 > gM .

By replacing the values Ai(a
i
j) and Ai(b

i
j) in the equation (13), it could be easily seen190

how the estimator F̂Y O(t) for y[i] ≤ t < y[i+1] takes the following expression:

F̂Y O(t) =

mi∑
j=1

(
Fg(a

i
j)− Fg(b

i
j)
)
·
(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N ·

(
F̂GHT (aij)− F̂GHT (bij)

) . (16)

Now, if we suppose that R̄si = ∅, then the optimal vector tOPT(t) = (ai1, a
i
2, . . . , a

i
mi

)

and F̂Y O(t) take the following expression:

F̂Y O(t) = F̂Y HT (t) +

mi∑
j=1

(
Fg(a

i
j)− F̂GHT (a

i
j−1)

)
·Ai(a

i
j) (17)

where for j = 1, . . . ,mi − 1

Ai(a
i
j) =

(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N
(
F̂GHT (a

i
j)− F̂GHT (a

i
j−1)

) − (
k̂i(a

i
j+1)− k̂i(a

i
j)
)

N
(
F̂GHT (a

i
j+1)− F̂GHT (a

i
j)
) . (18)

From (17) and (18), the calibration estimator F̂Y O(t) for y[i] ≤ t < y[i+1] is:195

F̂Y O(t) =

mi∑
j=1

(
Fg(a

i
j)− Fg(a

i
j−1)

)
·
(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N ·

(
F̂GHT (aij)− F̂GHT (aij−1)

) . (19)

10



Finally, we consider the case where Rsi ̸= ∅ and R̄si ̸= ∅.

Be Rsi = {j1, . . . jpi
}, for all jh ∈ Rsi we have:

Ai(a
i
jh
) =

(
k̂i(a

i
jh
)− k̂i(a

i
jh−1)

)
N
(
F̂GHT (a

i
jh
)− F̂GHT (a

i
jh−1)

) . (20)

For j ∈ R̄si and j ̸= jh − 1 for all jh ∈ Rsi, Ai(a
i
j) and Ai(b

i
j) are given by (14) and

(15) while for j = jh − 1 with j ∈ R̄si, Ai(a
i
j) and Ai(b

i
j) are given by (18) and (15).200

Thus, in this case, the estimator F̂Y O(t) for y[i] ≤ t < y[i+1] is given by:

F̂Y O(t) =
∑

j∈Rsi

(
Fg(a

i
j)− Fg(a

i
j−1)

)
·
(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N ·

(
F̂GHT (aij)− F̂GHT (aij−1)

) +

∑
j∈R̄si

(
Fg(a

i
j)− Fg(b

i
j)
)
·
(
k̂i(a

i
j)− k̂i(a

i
j−1)

)
N ·

(
F̂GHT (aij)− F̂GHT (bij)

) . (21)

Now, for y[i+1] ≤ z < y[i+2], we consider the sets As(i+1) and Bs(i+1).

As(i+1) = {ai+1
1 , . . . , ai+1

mi+1
} ; Bs(i+1) = {bi+1

1 , . . . , bi+1
mi+1

}

and we define similarly the sets Rs(i+1) and R̄s(i+1).

Let be Asi = As(i+1), then we have Bsi = Bs(i+1) and t̂OP(t) = t̂OP(z) =205

t̂OP(y[i]). As in the previous case, we have F̂Y O(t) ≤ F̂Y O(z) because for both

values t and z the weights ωk in (5) are obtained with the same auxiliary vector.

If we assume that Asi ̸= As(i+1), because Asi ⊂ As(i+1) then exist a set

Hsi = {rh : h = 1, . . . ,mi} ⊂ {j : j = 1, . . .mi+1}

such that

ai1 = ai+1
r1 ; . . . ; aimi

= ai+1
rmi

(22)

with r1 < r2 < · · · < rmi
and ai+1

r(h−1)
≤ ai+1

rh−1 for all h ∈ {1, . . . ,mi}.210

We denote by H̄si the following set

H̄si = {j : j = 1, . . . ,mi+1} −Hsi.

On the other hand, since ai+1
r(h−1)

≤ ai+1
rh−1 for all h = 1, . . . ,mt

{gk : aih−1 ≤ gk < aih} = {gk : ai+1
r(h−1)

≤ gk < ai+1
rh

} =

11



{gk : ai+1
r(h−1)

≤ gk ≤ ai+1
rh−1} ∪ {gk : ai+1

rh−1 ≤ gk < ai+1
rh

}

and therefore for all h ∈ {1, . . . ,mi}

bih = max{gk : aih−1 ≤ gk < aih} = max{gk : ai+1
rh−1 ≤ gk < ai+1

rh
} = bi+1

rh
. (23)

By (22) and (23), then we have215

k̂i(a
i+1
rh

) = k̂i(a
i
h) ; k̂i(a

i+1
r(h−1)

) = k̂i(a
i
h−1) = k̂i(b

i
h) = k̂i(b

i+1
rh

). (24)

Now, we define Γh as:

Γh =
(
k̂i+1(a

i+1
rh

)− k̂i+1(a
i+1
rh−1)

)
−
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

(25)

where

k̂i+1(a
i+1
rh

) =
∑
k∈s

dk∆(ai+1
rh

− gk)∆(y[i+1] − yk) =

k̂i(a
i+1
rh

) +
∑
k∈s

dk∆(ai+1
rh

− gk)I[i+1](yk)

with

I[i](yk) =

{
0 if yk ̸= y[i]

1 if yk = y[i].

We denote by q̂i+1(z) =
∑

k∈s dk∆(z−gk)I[i+1](yk). Thus k̂i+1(a
i+1
rh

) = k̂i(a
i+1
rh

)+220

q̂i+1(a
i+1
rh

).

Similarly

k̂i+1(a
i+1
rh−1) = k̂i+1(b

i+1
rh

) = k̂i(b
i+1
rh

) + q̂i+1(b
i+1
rh

) = k̂i(a
i+1
r(h−1)

) + q̂i+1(b
i+1
rh

).

Since bi+1
rh

< ai+1
rh

for all h ∈ {1, . . . ,mi}

Γh =
(
k̂i+1(a

i+1
rh

)−k̂i+1(a
i+1
rh−1)

)
−
(
k̂i(a

i+1
rh

)−k̂i(a
i+1
r(h−1)

)
)
= q̂i+1(a

i+1
rh

)−q̂i+1(b
i+1
rh

) ≥ 0.

(26)

Based on the sets Rsi, R̄si, Rs(i+1) and R̄s(i+1) we consider several cases:

225

Case 1) Rsi = ∅.

In this case, if we assume and Rs(i+1) ̸= ∅ and R̄s(i+1) ̸= ∅, the set {j : j =

1, . . . ,mi+1} is given by:

{j : j = 1, . . . ,mi+1} = C1 ∪ C2 ∪ C3 ∪ C4 =

12
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= (Rs(i+1) ∩Hsi) ∪ (Rs(i+1) ∩ H̄si) ∪ (R̄s(i+1) ∩Hsi) ∪ (R̄s(i+1) ∩ H̄si).

For h = 1, . . . ,mi with rh ∈ C1 = Rs(i+1) ∩Hsi

ai+1
rh−1 = bi+1

rh
= bih ̸= aih−1 = ai+1

r(h−1)
(27)

while for h = 1, . . . ,mi with rh ∈ C3 = R̄s(i+1) ∩Hsi

ai+1
rh−1 ̸= bi+1

rh
= bih ̸= aih−1 = ai+1

r(h−1)
. (28)

By (16); (27) and (28), F̂Y O(t) is given by:

F̂Y O(t) =

mi∑
h=1

(
Fg(a

i
h)− Fg(b

i
h)
)(

F̂GHT (aih)− F̂GHT (bih)
) · (k̂i(aih)− k̂i(a

i
h−1)

)
N

=

=

mi∑
h=1

rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

) +

235
mi∑
h=1

rh∈C3

(
Fg(a

i+1
rh

)− Fg(b
i+1
rh

)
)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (b

i+1
rh )

) . (29)

From (21), F̂Y O(z) takes the following expression:

F̂Y O(z) =
∑

rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i+1(a

i+1
rh

)− k̂i+1(a
i+1
rh−1)

)
N ·

(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

) +

+
∑

rh∈C3

(
Fg(a

i+1
rh

)− Fg(b
i+1
rh

)
)
·
(
k̂i+1(a

i+1
rh

)− k̂i+1(a
i+1
rh−1)

)
N ·

(
F̂GHT (a

i+1
rh )− F̂GHT (b

i+1
rh )

) +Ws(z) (30)

where Ws(z) = Vs(z) + Ts(z) and

Vs(z) =
∑
j∈C2

(
Fg(a

i+1
j )− Fg(a

i+1
j−1)

)
·
(
k̂i+1(a

i+1
j )− k̂i+1(a

i+1
j−1)

)
N ·

(
F̂GHT (a

i+1
j )− F̂GHT (a

i+1
j−1)

) ≥ 0

Ts(z) =
∑
j∈C4

(
Fg(a

i+1
j )− Fg(b

i+1
j )

)
·
(
k̂i+1(a

i+1
j )− k̂i+1(a

i+1
j−1)

)
N ·

(
F̂GHT (a

i+1
j )− F̂GHT (b

i+1
j )

) ≥ 0.

Consequently, from (30) and (29), we have240

F̂Y O(z)− F̂Y O(t) = Ws(z) +
∑

rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
· Γh

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

)+
13



∑
rh∈C3

(
Fg(a

i+1
rh

)− Fg(b
i+1
rh

)
)
· Γh

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (b

i+1
rh )

) ≥ 0.

On the other hand, if we suppose that Rs(i+1) = ∅, then C1 = C2 = ∅. For all

h ∈ {1, . . . ,mi}, we have (28) and F̂Y O(t) is given by (29) with the sum in C1 null.

From (16), F̂Y O(z) is given by (30) with Vs(z) = 0 and the summation based on the

set C1 null. Similarly, we can see that F̂Y O(z)− F̂Y O(t) ≥ 0.245

Identically, it can be shown that F̂Y O(z) − F̂Y O(t) ≥ 0 in the case that R̄s(i+1) = ∅.

From (19) (27) and because the sets C3 and C4 are empty, F̂Y O(t) and F̂Y O(z)

are given by (29) and(30) respectively, with the summations based on null C3 and

Ts(z) = 0.

250

Case 2) Rsi ̸= ∅ and R̄si ̸= ∅

For h = 1, . . . ,mi with h ∈ Rsi,

aih = ai+1
rh

; bi+1
rh

= bih = aih−1 = ai+1
r(h−1)

since ai+1
r(h−1)

≤ ai+1
rh−1 ≤ bi+1

rh
= ai+1

r(h−1)
, we have

ai+1
rh−1 = bi+1

rh
= bih = aih−1 = ai+1

r(h−1)
(31)

and consequently, for h = 1, . . . ,mi with h ∈ Rsi; rh ∈ Rs(i+1) ∩Hsi = C1 and the255

set Rs(i+1) ̸= ∅. Because in this case Rs(i+1) ̸= ∅ if we assume that R̄s(i+1) ̸= ∅, then

as in Case 1) with Rs(i+1) ̸= ∅ and R̄s(i+1) ̸= ∅, the value F̂Y O(z) is given by (30).

Additionally, for h = 1, . . . ,mi with h ∈ R̄si, it is clear that rh ∈ C1 ∪ C3. For

h ∈ R̄si with rh ∈ C1 condition (27) is verified while for h ∈ R̄si with rh ∈ C3;

condition (28) is satisfied.260

From (21); (31); (27) and (28); the value F̂Y O(t) takes the following expression:

F̂Y O(t) =
∑

h∈Rsi

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

) +

+
∑

h∈R̄si
rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

)

14



+
∑

h∈R̄si
rh∈C3

(
Fg(a

i+1
rh

)− Fg(b
i+1
rh

)
)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (b

i+1
rh )

) =

265

+

mi∑
h=1

rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

)
+

mi∑
h=1

rh∈C3

(
Fg(a

i+1
rh

)− Fg(b
i+1
rh

)
)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (b

i+1
rh )

) . (32)

As in the Case 1) with Rs(i+1) ̸= ∅ and R̄s(i+1) ̸= ∅, the value F̂Y O(z)− F̂Y O(t) ≥ 0.

If we assume that R̄s(i+1) = ∅, the sets C3 and C4 are empty. For h ∈ R̄si, then

rh ∈ C1 and condition (27) is satisfied. From (19) and (27) it is easy to see that270

F̂Y O(z) is given by (30) with the sum based on null C3 and Ts(z) = 0.

Similarly, because C3 = ∅; and the conditions(31) and (27) are satisfied, by (21) the

value F̂Y O(t) is given by (32) with the sum based on null C3 . Thus, it is clear that

F̂Y O(z)− F̂Y O(t) ≥ 0.

275

Case 3) R̄si = ∅

In this case, in a similar way that in the previous case, for all h = 1, . . . ,m1; the

condition (31) is satisfied and consequently rh ∈ C1 and C3 = ∅.

By (31) and (19), we have:280

F̂Y O(t) =

mi∑
h=1

rh∈C1

(
Fg(a

i+1
rh

)− Fg(a
i+1
rh−1)

)
·
(
k̂i(a

i+1
rh

)− k̂i(a
i+1
r(h−1)

)
)

N ·
(
F̂GHT (a

i+1
rh )− F̂GHT (a

i+1
rh−1)

) .

If we assume that Rs(i+1) ̸= ∅, the value F̂Y O(z) is given by (30) with the sum based

on null C3 while if we assume that Rs(i+1) = ∅ the value F̂Y O(z) is given by (30) with

the sum based on null C3 and Ts(z) = 0. In any case, F̂Y O(z)− F̂Y O(t) ≥ 0.

Definitely, in all cases, F̂Y O(z) − F̂Y O(t) ≥ 0 if we consider t ≤ z with y[i] ≤ t <285

y[i+1] and y[i+1] ≤ z < y[i+2]; i = 1, . . . , l − 2.
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For t ≤ z with y[i] ≤ t < y[i+1] and y[q] ≤ z < y[q+1]; i = 1, . . . , l − 2 and

q = 3, . . . , l with q > i+ 1, by the previous cases, it is clear that:

F̂Y O(t) ≤ F̂Y O(y[i+1]) ≤ F̂Y O(y[i+2]) ≤ · · · ≤ F̂Y O(y[q]) ≤ F̂Y O(z)

and the nondecreasing monotony of F̂Y O(t) is proved.290

Note

The estimator F̂Y O(t) does not satisfy, in general, the condition lim
t→+∞

F̂Y O(t) = 1,

but this condition is not strictly necessary as long as the following condition is satisfied

max{F̂Y O(yi) : i ∈ s} ≥ α. (33)

Thus, we can define the following quantile estimator:295

Q̂Y O(α) = inf{t : F̂Y O(t) ≥ α} = F̂−1
Y O(α). (34)

4. Variance estimation with resampling method

In this section we employ resampling techniques for the variance estimation of the

quantile estimators proposed in Section 3 and the development of confidence intervals

for quantiles associated with the calibration estimators proposed, because it is possi-

ble that a mathematic expression for their variance could be not establish due to the300

complexity of the estimators proposed (they are not linear functions of the data). More

specifically, from a practical viewpoint we have considered the use of bootstrap tech-

niques by their applicability in many cases and under different conditions.

Initially, the bootstrap method was developed by [18] under assumptions of an305

infinity population with unknown distribution and the data is independently and iden-

tically distributed. Due to the popularity of this technique, the classical framework has

been adjusted for survey sampling and incorporate the sampling design in several stud-

ies ([19], [7], [10], [5], [10], [1] and [2]). Thus, [19], [7] and [5] developed bootstrap

methods where artificial populations are created from the sample by repeating its units310

and bootstrap samples are selected with the original sampling design from the artificial

population. On the other hand, [1] and [2] consider direct bootstrap techniques where

the bootstrap samples are obtained by units directly selected from the original sample
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under a completely different sampling scheme from the one which generated the orig-

inal sample. In this study, we consider the frameworks proposed in [7], [1] and [2].315

Given a generic quantile estimator Q̂y(α), following [7], if N = n · c + a with 0 <

a < n, the artificial population is obtained by repeating c times the initial sample s

and selecting by simple random sampling without replacement an additional sample

of size a from the original sample s. The artificial population UB is formed with this320

sample and the c replicates of s. Thus, let U j
B with j = 1, . . . ,M be M independent

artificial populations obtained from s, for each pseudo population U j
B we select K

bootstrap samples sj1, . . . , s
j
K with sample size n. Next, following ([11]), we compute

the bootstrap estimates Q̂∗
y(α)

j
h with the sample sjh for the population U j

B and we

consider:325

V̂j =
1

K − 1

K∑
h=1

(Q̂∗
y(α)

j
h − Q̂∗

y(α)
j)2 (35)

where

Q̂∗
y(α)

j =
1

K

K∑
h=1

Q̂∗
y(α)

j
h.

Now, the variance estimation for the estimator Q̂y(α) is given by:

V̂ (Q̂y(α)) =
1

M

M∑
j=1

.V̂j . (36)

Recently, [1] and [2] have proposed direct boostrap methods where it is not nec-

essary to obtain an artificial population, since the boostrap samples are obtained from

the original sample by means of a sampling design different from the original sampling330

design considered. Thus, when the original sample s is obtained with simple random

sampling without replacement, [1] has proposed a mixture sampling design where two

samples are selected from s, one obtained by simple random sampling without replace-

ment and the other sample obtained with one-one sampling design ( a sampling design

defined by the authors for resampling). Similarly, when s is obtained by simple random335

sampling without replacement, [2] has proposed a mixture sampling scheme where the

first sample is obtained with Bernoulli design while the second one is obtained with

another sampling designed for resampling called double half sampling design by the

authors. For more details on the two direct boostrap methods included in this study,

see [1] and [2].340

In both frameworks, given a generic quantile estimator Q̂y(α), for the original sample
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s, we select M bootstrap samples s∗1, . . . , s
∗
M according to the sampling schemes of

[1] and [2] respectively. The variance bootstrap estimation for the estimator Q̂y(α) is

given by:

V̂ (Q̂y(α)) =
1

M

M∑
j=1

(Q̂y(α)
∗
j − Q̄y(α)

∗)2 (37)

where Q̂y(α)
∗
j is the bootstrap estimator computed on the bootstrap sample s∗j and345

Q̄y(α)
∗ =

1

M

M∑
j=1

Q̂y(α)
∗
j .

Finally, for a quantile estimator Q̂y(α) with a variance estimation V̂ (Q̂y(α)) obtained

with a bootstrap method, we consider the 1− α level confidence interval based on the

approximation by a standard normal distribution:[
Q̂y(α)− z1−α/2 · V̂ (Q̂y(α)), Q̂y(α) + z1−α/2 · V̂ (Q̂y(α))

]
(38)

where zα denotes the α quantile of the standard normal distribution. For the three

proposed bootstrap methods included in this study, we can obtain with this procedure350

the respective confident interval.

5. Application of the optimal quantile estimators in poverty measures estimation

For governments it is of high interest the estimation of poverty and wage inequal-

ity. Inequality and life condition indicators and many social indicators related to the

measurement of poverty are based upon quantiles. Among the poverty measures com-355

monly used by institutions in their reports on poverty, we can find the poverty line and

the Head Count Index. For instance, Eurostat establishes poverty line as 60 percent

of the median of the equivalized net income. Thus, the poverty line is defined as a

threshold that divides the population into poor and nonpoor that depends on the me-

dian value. The Head Count Index (HCI) can be calculated as the proportion of persons360

(or households) with an equivalised disposable income below the poverty line. On the

other hand, some measures for wage inequality employed in several studies are based

on percentiles ratios like 50th/5th and 50th/25th ([16]); 50th/10th ([33],[24], [31], [8]);

95th/50th ([24], [8]) and 90th/10th; 95th/20th; and 80th/20th ([22]). In this study, we

focus on the estimation of the poverty measures based on percentile ratios.365
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Thus, for a finite population U = {1, . . . , N} with distribution function Fy(t) given

by (1), the percentile ratio R(α1, α2) is defined as follows:

R(α1, α2) =
Qy(α1)

Qy(α2)
=

F−1
y (α1)

F−1
y (α2)

and evidently, it can be estimated with the quantile estimator Q̃Y O(α) as follow:

R̃Y O(α1, α2) =
Q̃Y O(α1)

Q̃Y 1(α2)
.

Obviously, the variance estimation of a percentile ratio estimator present similar draw-370

backs to the estimation of variance for quantile estimator and consequently, we can

compute the estimation of variance for R̃Y O(α1, α2) and confidence intervals for R̂Y O(α1, α2)

with the resampling techniques described in the previous section.

6. Simulation study

This section provides numerical comparisons for some poverty measure estima-375

tors proposed in Sections 3 and 5. In two simulation studies the proposed estimators

are compared with the corresponding poverty measures estimators derived from previ-

ous estimators of the distribution function: the Horvitz-Thompson estimator F̂Y HT (t),

the difference estimator F̂Y D(t) (see [34]), the ratio estimator F̂Y R(t) (see [34]),

the Chambers–Dunstan estimator F̂Y CD(t) (see [9]) and the Rao,Kovar and Man-380

tel estimator (see [34]) F̂Y RKM (t). Additionally, we have included the quantile es-

timator and the estimator of poverty measures derived from the calibrated estima-

tor F̂yc(t) of the distribution function proposed in [36], with auxiliary vector tg =

(Qg(0.25), Qg(0.5), Qg(0.75)) and we denoted by F̂Y QUAR(t) the corresponding cal-

ibration estimator. Some of these estimators F̂y(t) included in the simulation study are385

not monotonically nondecreasing functions; for these estimators we have considered a

general procedure described in [34] to obtain a monotonous nondecreasing version of

the estimator F̃y(t).

For both simulation studies, the estimation of the variance provided by the bootstrap

methods included in Section 4 is also analyzed. All simulations included in this section390

have been developed with new code programmed in R.

In the first study we consider real data from the region of Cantabria of the 2008

Spanish living conditions survey carried out by the Instituto Nacional de Estadı́stica

(INE) of Spain. The survey data collected are considered as a population with size
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N = 377 and samples are selected from it. In this study we obtain estimation of395

the poverty threshold L, where L is calculated following the criteria recommended by

Eurostat, that is, the threshold L is set at 60% of the median of the equivalised net

income (the study variable). We considered the attribute “Home with own computer”

as the auxiliary variable. We selected W = 1000 samples with several sample sizes, n,

under SRSWOR and for each estimator included in the simulation study, we computed400

estimates of the poverty threshold L. The performance of each estimator is measured

by the relative bias (RB) and the relative efficiency (RE), given respectively by

RB(L̂) =
1

W

W∑
w=1

(
L̂w − L)

L
(39)

RE(L̂) =

W∑
w=1

[
L̂w − L

]2
W∑

w=1

[(
L̂HT

)
w
− L

]2 , (40)

where w indexes the wth simulation run; L̂ is a poverty threshold estimator and L̂HT

is the poverty threshold estimator based in the Horvitz-Thompson F̂Y HT (t) estimator.405

From every simulation sample, 1000 bootstrap samples were selected using the

three bootstrap methods considered in Section 4, for the variance estimation and confi-

dence intervals. We computed the following measures: the coverage probability (CP),

the lower (L) and the upper (U) tail error rates of the 95% confidence intervals, in per-410

centage and the average length (AL) of the confidence intervals for each estimator and

each bootstrap method, except for the Chambers-Dunstan estimator whose results are

only obtained with the Booth method, since this estimator needs the whole population

for its calculation and the techniques described do not obtain the whole artificial popu-

lation. Results from this simulation study are presented in Table 1 and Table 2.415

The results derived from this simulation study gave values for RB within a reason-

able range. The proposed estimator significantly improve the results of the calibrated

estimator L̂Y QUAR. With respect to efficiency, the best estimator for all sample sizes

is L̂Y CO whereas the usual calibrated estimator have an efficiency similar to L̃HT .420

With respect to the variance estimation, all estimators provide high coverages, with

values very close to 99% in the three resampling methods considered. For the resam-
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Table 1: RB and RE for several sample sizes of the estimators compared. SRSWOR from the

2008 SPANISH LIVING CONDITIONS SURVEY.

RB RE RB RE RB RE RB RE

Estimator n = 50 n = 60 n = 70 n = 80

L̂HT -0.0159 1.0000 -0.0103 1.0000 -0.0144 1.0000 -0.0118 1.0000

L̂CD 0.0452 1.2561 0.0408 1.1163 0.0332 1.0551 0.0324 1.0732

L̃d -0.0038 0.9246 -0.0010 0.8975 -0.0056 0.8796 -0.0044 0.8873

L̃r -0.0069 1.7426 -0.0072 1.5946 -0.0057 1.4706 -0.00603 1.6292

L̃RKM -0.0043 0.9456 -0.0014 0.8979 -0.0058 0.8942 -0.0041 0.8971

L̂Y QUAR -0.0159 1.0000 -0.0103 1.0000 -0.0144 1.0000 -0.0118 1.0000

L̂Y CO -0.0039 0.9165 -0.0005 0.8974 -0.0056 0.8730 -0.0043 0.8849

pling methods proposed in [7] and [2], the proposed estimators present the best average

length (AL) results for some sample sizes, whereas with the method proposed in [1],425

the proposed estimators present the best results for all the sample sizes, with the ex-

ception of size n = 60.

For the second simulation study, we consider real data from the region of Andalu-

sia of 2016 Spanish living conditions survey carried out by the Instituto Nacional de430

Estadı́stica (INE) of Spain. The survey data collected are considered as a population

with size N = 1442 and samples are selected from it. The study variable y is the

equivalised net income and the auxiliary variables included are the attribute “Can the

home afford to go on vacation away from home, at least one week a year?”, the attribute

“Home with own computer” and the attribute “Home with own washing machine” as435

the auxiliary variables. Again, we selected W = 1000 samples with several sample

sizes, n = 75, n = 95, n = 115 and n = 135, under SRSWOR and for each estimator

included in the simulation study, we computed estimates of R(α1, α2) for 95th/50th.

The performance of each estimator is measured by the values RB and RE, given by

RB(R̂(α1, α2)) =
1

W

W∑
w=1

(
R̂(α1, α2)

)
w
−R(α1, α2)

R(α1, α2)
(41)

440

RE(R̂(α1, α2)) =

W∑
w=1

[(
R̂(α1, α2)

)
w
−R(α1, α2)

]2
W∑

w=1

[(
R̂HT (α1, α2)

)
w
−R(α1, α2)

]2 , (42)

where R̂(α1, α2) is a percentile ratio estimator and R̂HT (α1, α2) is the percentile ratio
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estimator based in the Horvitz-Thompson F̂Y HT (t) estimator .

For the variance estimation and confidence intervals, we computed the coverage prob-

ability (CP), the lower (L) and the upper (U) tail error rates of the 95% confidence

intervals, in percentage and the average length (AL) of the confidence intervals for445

each percentile ratio estimator and each bootstrap method.

Concerning the variance estimation and confidence intervals, we used 1,000 bootstrap

replications from each initial sample with all bootstrap methods included in the study

to compute CP, L, U and AL of the 95% confidence intervals for each percentile ratio

considered. Result from this simulation study are presented in Table 3 and Table 4.450

Table 3: RB and RE for several sample sizes of the estimators compared. SRSWOR from the

2016 SPANISH LIVING CONDITIONS SURVEY.

RB RE% RB RE RB RE RB RE

Estimator n = 75 n = 95 n = 115 n = 135

R̂HT 0.0392 1 0.0358 1 0.0285 1 0.0234 1

R̂CD -0.1224 1.0838 -0.1152 1.0771 -0.1219 1.3093 -0.125 1.4158

R̃d 0.0407 1.0394 0.0353 1.0467 0.0269 1.0673 0.0223 1.0689

R̃r 0.0461 1.3042 0.0406 4.0376 0.018 4.4338 0.0161 3.2556

R̃RKM 0.0333 1.0384 0.033 1.0475 0.0263 1.0325 0.0208 1.0266

R̂Y QUAR 0.0251 0.948 0.0208 0.9276 0.0183 0.9635 0.0143 0.9623

R̂Y CO 0.0174 0.921 0.0157 0.8871 0.0164 0.9458 0.0126 0.9390

These tables show:

• The percentile ratio estimator based on the Chambers–Dunstan estimator has a

serious problem of bias. This is expected because the estimator F̂Y CD(t) is

biased when the relation between y and x is not linear. We found no evidence of455

any significant bias for the other estimators considered.

• In terms of efficiency the best overall performance is achieved by our proposed

calibration estimator. This estimator performs remarkably better than the other

estimators.

• The three methods of estimating the variances provide intervals with coverage460

below the nominal coverage. Although there is not much difference between the

methods it seems that the first method ([7]) provides narrower intervals.

To sum up, these simulation show how the use of the auxiliary information by the
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,Y

.(
20

14
)

R̂
H

T
3.

80
38

84
.7

6
9.

3
1.

13
58

82
.6

8.
6

8.
8

1.
75

78
85

.2
6.

7
8.

1
1.

39
28

82
.8

8.
8

8.
4

R̃
d

3.
9

85
.3

5.
2

9.
5

1.
15

34
82

.5
8.

7
8.

8
1.

47
95

84
.5

6.
5

9
1.

29
33

81
.3

8.
8

9.
9

R̃
r

4.
48

85
78

.9
7.

6
13

.5
1.

45
23

80
.8

6.
7

12
.5

2.
16

91
80

.9
6.

8
12

.3
2.

20
27

77
.9

8.
9

13
.2

R̃
R
K

M
3.

82
07

84
.8

5.
2

10
1.

20
17

82
.6

8.
7

8.
7

1.
47

95
84

.6
7.

2
8.

2
1.

46
43

82
.2

7.
8

10

R̂
Y
Q
U
A
R

3.
43

95
83

.4
5.

4
11

.2
1.

15
09

84
.3

7.
1

8.
6

1.
52

7
83

.7
7.

1
9.

2
1.

27
97

82
.9

7.
3

9.
8

R̂
Y
C
O

3.
43

95
84

.3
4.

5
11

.2
1.

13
36

84
.8

6.
5

8.
7

1.
86

41
82

.7
7.

3
10

1.
42

64
83

.1
7

9.
9

A
nt

al
,E

.,
Ti

llé
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proposed estimators can reduce the error of the usual direct and indirect estimators.

Overall, the proposed estimators L̂Y CO and R̂Y CO, appear to be good estimators.465

It is also remarkable that the bootstrap method tends to overestimate the variance

for the poverty threshold L, whenever that bootstrap variance is smaller than the vari-

ance in the case of the 95th / 50th percentile ratio. This is not surprising since the

bootstrap technique for nonlinear parameters does not provide unbiased estimators of

the variances and rescaling may be necessary to achieve exact unbiasedness (Wolter,470

2007). This same problem appears in the results obtained in the simulations performed

by [1, 2]. In these simulations the bootstrap variance estimators are also strongly biased

when applied to quantiles and poverty measures.

7. Conclusions

In this paper we investigate the optimum estimation of the quantiles in the sense of475

minimum variance. We start from the calibration estimator proposed by [37] and trans-

form the problem of minimizing the variance of this quantile estimator into a problem

of minimizing the variance of the estimator of the associated distribution function.

Besides, we obtain an optimal estimator of the distribution function F̂Y O(t) that is a

genuine function of distribution and therefore does not need the procedure to satisfy480

the non-decreasing monotony as the Q̃d and Q̃RKM estimators. The simulation stud-

ies indicate that calibrated estimators proposed in the present work are also a suitable

option for the estimation of measures for wage inequality based on percentiles ratios

and poverty lines, but the simulation also shows that the bootstrap estimators for the

poverty measures does not provide unbiased estimators of the variances and rescaling485

may be necessary to achieve exact unbiasedness.
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[28] Martı́nez, S., Rueda, M., Martı́nez, H., Arcos, A. (2015). Determining P optimum565

calibration points to construct calibration estimators of the distribution function.

Journal of Computational and Applied Mathematics, 275, 281-293.

[29] Martı́nez, S., Rueda, M., Martı́nez, H., Arcos, A. (2017). Optimal dimension

and optimal auxiliary vector to construct calibration estimators of the distribution

function. Journal of Computational and Applied Mathematics, 318, 444-459.570

[30] Mayor-Gallego, J. A., Moreno-Rebollo, J. L., Jiménez-Gamero, M. D. (2019).
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