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ABSTRACT

In this paper we propose a strategy for the ossessment in economics of the overall medel fit
obtained using structural equation models. Due to goodnass-of-fit of a madel is more a relative
pracess than one with absolute criteria, evaluation requieres multiple criteria. The overal evaluation
strategy proposed is composed of two main parts: basic assumptions ond examination of the
solution, and the assessment of the overall model in iself, In bath cases, detailed formula and
measures are gl\"en.
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RESUMEN

En el presente trabajo se propone una estrategia de valoracién a nivel global de loz maodelos
obtenidos en economia mediante los madelos de ecuaciones estructurales simulidneas. Se
propanen moliples criterios debido a que la evaluacién de la bonded de un modelo es mas un
proceso relafive que una etapa con criferios determinados de forma absoluta. La estrategia
planteada consta de dos partes principales: el cumplimiento de los supuestos bdsicos y el andlisis
de lo solucidn, de una parte, vy la valoracidn propiomente dicha del meodelo a nivel giobkal. En
ambos casos, se defalian las férmulas y medidas especificadas.
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1. Infroduction

Structural  equation  modeling  (SEM) -also  called causal modeling or
covariances analysis- constitules one of the recent developments in multivariate
statistics for conducting research in economics and business.

There are three main reasons why the method is so aftractive. First, it provides
a straighforward and statistically efficient method of dealing with mulfiple
relationships simultaneously. Second, it has the ability to perform exploratory and
confirmatory analyses. And third, this method analyses an integrative function,
making other techniques such as multiple regression, path analysis, factor
analysis, canonical correlation  analysis, ANOVA, MANOVA, ANCOVA,
MANCOVA, simultaneous equation systems, the analysis of multitrait-multimethod
matrices (MTMM), and others, special cases of this more general approach.

Many research work has been done using this tecnique, but not always the
researchers evaluate properly the model that has been built. Research in social
sciences  presents  special  problems such  sampling procedures, indirect
measurement, or errors in model specifications that lead to perform a coherent
asseement agenda.

In this paper, a strategy is proposed for the assessment of the overall model fit
using this method. Then, after exposing the basics of this multivariate tecniqus, we
will mnallyse deeply different measures for evaluate the overall mode/ fit using this
method .

2. Models foundations and relations

Let Z,,, denote a vector of observable variables that is structured as a linear
function of more basic variables, some of which may be latent {Unobservable). Let
A be a matrix of parameters and £ and & vectors of respectively common and
specific {unobservable) factors, which are assumed to be uncorrelated with each
other. Then, we can consider the next factor analysis model (also called
measurement model)Q:

z=Ab+e [

Another typical model is the structural equation model, or ‘path analysis’
model, This model says that the vector z of observable variables partitions in
endogenous and exogenous variables, vector y and x respectively, in such a way
that the following linear equations holds:
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y=DBy+ Ix+u [2]

where u is 0 vector of (unobservable) equation ‘disturbances’, and B and 1" are
parameter matrices. Uncorrelation (non-necessarily independence) betwsen x and
v is to be assumed.

A very general multivariate relation is the structural equation mode! with latent
variables, so-called LISREL model, that combines equations of types [1] and [2]
into the structural form of the following three equations:

- the structural equation model: 1 = By + T + £

- the measurement modlel fory: y = A'n + ¢

- the measurement modlel for x: x = A™% + §

where:

n is @ mx 1 vector of latent endogenous variables;

Zis a nx] vector of latent exogenous variables;

Cis a mx1 vector of latent errors in equations;

B is a mxm coeficient matrix for the latent endogenous variables;
["is the mxn coefficient matrix for the latent exogenous variables;
y is a px I vector of observed indicators of n;

x is a gx | vector of observed indicators of &;

¢ is a px 1 vector of measurement errors for y;

&1 gx 1 vector of measureiment errors for x;

A" s a pxm matrix of coetficients relating y to 1;

A" is o gxn matrix of coefficients relating x to &,

Assumptions:
1] (I-B} is nonsingular, so that (I-B} " exists.;
20 E(M) = E(Z) = E(Q  Efe) - E{8) = O,
3) { is homoscedastic and non-autocorrelated;
4} ¢ is uncorrelated with 1y and &;
5] & is uncarrelated with £ and 7.

The linear relations of the model imply a specific structure for the covariance
matrix X of the ohserved variables; that is, the model expressed by the linear
equations gives rise to a covariance structure (I} for the observable variables i.e.,
to a (p+q)x(p+q)-dimensional matrix-valued function Z=2(8) of 8. This function is
generally non-linear, but smooth enocugh to be twice continuosly differentiable.
This is the fundamenta!l hypothesis for structural equation models: the covariance
matrix of the observed variables is a function of a set of parameters. £ represents
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the population covariance matrix of observed variables, 8 is a vecter that contains
the model parameters, X(8) is the covariance matrix written as a function of 8.

It can be shown (Bollen, 1989} that the covariance matrix for the observed y
and x variables as a function of the model parometers {0) is:

Z,0 2 _(®

Y o= Z(B) = __Z\) (B} E“ (e) _
CATI=B) L(IOr+Wy (- BY AT 4O AY(I-B)T T |
L AOIM(I-B ) AY A DA +0°

where:

@ is a nxr covariance matrix of £
Y is o mxm covariance matrix of {;
©' is a pxp covariancs matrix of g;
©°is a qxqg covariance matrix of &.

The problem is that given the sample covariance matrix of the observed
variables, S, we have o find a vector 8 of parameter so that Z(8) is equal to S.

The fitting of Z{B) 1o S can be framed info a least squares approach using next
methods of estimation:

» Unweighted Least Squares [ULS)

» Generalized Least Squares (GLS)

e Maximum Likelihood (ML)

e Generally Weighted Least Squares (WLS)

» Diagonally Weighted Least Squares (DWLS)

Next, we expose different concepts and steps in model assessment, which are
summarized in table 1.
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Table 1. Steps for the assessment of overall model fit in structural equation
modeling

PRIOR EVALUATION OF THE MODEL

1} Assessment of the assumptions of structural equation modeling
7} Examination of the solution:

. Offending estimates

. Standard errors
. Correlations of parameter estimates
. Squared multiple correlations and coelficients of determination

QVERALL GOODNESS-OF-FITMEASURES |
1) Ahsolute fit measures

. Chi-square test

. Power of the chi-squure-measure

- Goodness of Fit index {GFl)

. Root Mean Squared Residual (RMSR]

. Gritical NICN)

?) Incremental Fit Measures

. Bollen Index (p)

. Tucker-Lewis Index (TLI), or Non-Normed Fit Index (NNFI)
. Normed Fit Index (MFI), or Bentler and Bonett Index

. Comparative Fit Index (CFl}

. Incremental Fit Index {IFI)

* . Relative Fit Index (RFI)

3) Parsimonious Fit Measures
. Adjusted Goodness of Fit Index (AGFI)

. Normed Chi-square

. Parsimonious Normed Fit Index (PNFI)

. Akaike Informetion Criteria (AIC)

. Other parsimonious fit measures (AIC y ECVI)

3. Prior evaluation of the model: basic assumptions and examination
of the solution

There is no single measure or set of measures that have been agreed upon as
e only measures needed. The researcher is encouraged to employ one or more
mecsures from each class. Assessing the goodness-of-fit of a model is more a
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relative process than one with absolute criteria. The application of multiple
measures will enable the researcher to gain a consensus across types of measures
as to the acceptability of the proposed model,

In this section we wil analize the fulfillment of the basics assumptions and the
coherence of the solution. ‘

3.1. Assessment of the assumptions of structural equation modeling

SEM shares three assumptions with other multivariate methods {multiple
regression, factor analysis, multivariate analysis of variance, discriminant
analysis): independent observations, random sampling ot respondents, and the
linearity of all refationships. In addition, a key issue in SEM is the distributional
characteristics of the data, particularly the departure from multivariate normality.
However, the normality assumption can be relaxed using asymptotic distribution-
free methods®.

The ML and GLS fitting functions are justified when the distribution of the
observed variables has a multinormal distribution or when the distribution of the
observed variables has no excess kurtosis. Under either of these conditions and
with o valid model, 8 from ML or GLS is a consistent and asymptotic efficient
estimator and {N-1) times the minimum value of the fit function for the specified
model (¥?) has an asymptotfic chi-square distribution suitable to test the overall
model fit. ULS produces consistent estimators, althaugh these may not be the best
in terms of asymptotic efficiency.

An approach to solve the nonnormality or excessive kurtosis is o employ WLS

method of estimation. Under WLS, 8 is o consistent estimaler of 8 and may
provide  asymptotically  efficient estimators  and  an  asymptotic  chi-square
distribution suitable for tests of the overall model fit.

3.2. Examination of the solufion

Next step in assesing the overall gocodness of a model is to examine the results
of an analysis. One should pay careful attention to the following measures:

1) Offending estimates

2) Standard errors

3) Correlations of parameter estimates

4) Squared multiple correlations and coefficients of determination
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3.2.1. Offending estimates

An "offending estimate’ is any value of o parameter that exceeds its theoretical
or acceptable limits. The more common occurrences are: (1) negative error
variances  or nonsignificant error  variances for any latent variable, (2)
standardized coefficients exceeding or very close to 1.0, (3) very large stendard
errors associated with any estimated coefficient, (4) correlations greater than one,
or (5) covariance or correlation matrices which are not positive definite. If
encountered, the researcher must first resolve the problematic occurrence before
evaluating any specific results of the model, as changes in one part of the model
can have significant effects on other results.

I identification problems are corrected and the problems still exist, severall
other remedies are available. In the case of negative error variances {"Heywood
case”). The “offending estimates” issue is due probably to multicollinearity. One
possibility suggested by Bentler and Chou (1987) is to fix the offending error
variances to a very small positive value (0.005). This procedure provides o
solution of the estimation process. However, this remedy only masks the
underlying problem and mwust be considered when interpreting the results due to
the fact that this output can not be used to test hypatheses.

Classic approach are not completely satisfaciory to deal with multicoliinearity.
Anr interesting -approach is to use a “ridge regression” in model estimation {a
constant times the diagonal is added to the diagonal before estimations hegins).
This procedure has been used successfully by Jagpal {1982) and it is included in
recent versions of software such os LISREL. However, remedies against
multicollinearity are valid when it is imperfect. If multicollinearity is perfect, model
especification must be verified trying to get more information about the variable
that presents an “offending estimate”. If, anyway, it is no possible to solve the
problem, the obstacle is not the technique, but the data. When correlations in the
standardized solution exceed 1.0, or two estimates are correlated highly, then the
researcher should consider elimination of one of the latent variables or ensure
that true discriminant validity has been established among the constructs. In many
nstances, such situations are the result of atheoretical mode!s, established without
substantive theoretical justification or modified solely on the basis of empiricol
considerations.

In case of correlations lurger than one or a matrix that is not positive definite, it
is possible that there are errors in data or the model defined is not the one
intended. In the latter case, the researcher should redefine the medel again.
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3.2.2. Standard errors

Standard ercors are estimates of the precisian of cach parameter estimate. The
main diagonal of the covariance matrix contains the asymptotic variances of the
parameter estimators. When the sample estimates are substituted for the unknown
parameters, the square root of the main diagonal of the asymptotic covariance
matrix provides estimated asymptotic standard errors. Small standard errers
correspend to good precision and large standard errors to poor precision.

The standord errors for ML and GLS are correct under multivariate normality of
the observed variables and for WLS if the correct weight matrix is used. Standard
arrors for ML and GLS are robust agoinst moderate departures from normality,
Standard errors for ULS and DWLS are only approximate. A frequent situation
where the standard errors are not cccurate is when the correlation rather than the
covariance matrix is analysed.

3.2.3. Correlations of parameter estimates

An estimate of the asymptotic covariance matrix of the parameter estimates is
obtained from the information matrix. The correlations of parameter estimates are
obtained by scaling the asymptotic covariance matrix to an asymptotic correlation
matrix. This transformation draws on the definition of the correlation as the
covariance of two variables divided by the product of their standard deviations:

~ Fas

acov (8;, ;)

ASyIm p “n =

[3]
Bith s #
Ja var(6;) avar(8,)

whare:

»

B,= the ith estimated parameter

H — the jth estimaled parameter

Correlations that are extremely large indicate that the estimates of the two-
parameter estimators are very closely associated. High correlations sometimes are
a symptom of severe collinearity. Also, the model may be non-identified and
some of these parameters cannot be determined from the data.

The asymptotic correlation matrix is accurate for the analysis of covariance
matrices but not for the analysis of correlation matrices, because such an analysis
leads to unprecise estimates of the variances and covariances of parameter
estimates,
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3.2.4. Squared multiple correlations and coefficients of determination

Squared multiple correlations for each observed variable separately and also

for cach structural equation can be obtained. The squared multiple correlation s
defined as follows:
var(d,)
1-———— (4]
Oii
vehere:
B . s
var(g,) is the estimated error variance of the ith variable, and G is the fitted
variance of the ith variable.

The coetficient of determination is;

Q)]
1- N [5}
x
where;
‘('“) is determinant of © and | Z]| is the determinant of the fitted covariance

matrix X of the observed variables. These measures show how well the observed
variables serve, separately or jointly, as measurement instruments for the latent
variables. The measure should be between zero and one, large values being
associated with good models.

The squared multiple correlation (R2,) for the ith structural equation is defined
Cis:

povan)

P

var(n,)
v/here:

var({l;) and var(r,) cre the estimated variances of {; and n;, respectively.

The total coetficient of determination (R?} for all structural equations jointly is
detined as:
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\l!
Covﬁﬂi
where:
~ ~ I I
V| is the determinant of Y and [Cov(N}|i is the determinant of the estimated

covariance matrix of 11. However, this fotal coefficient has not defined limits. So,

we could use the coefficient of alienation (pa) suggested by Dhrymes (1974). This
coefticient is defined as:

coMn) oV &)
COMET)  COU®)

o]

Pa = N
cov(n)

I+ assumes the wvolue zero when the covariance between the variables in
question do not exist, and it takes the value unity when a perfect linear relafion
exists between the two variables.

4, Assessment of the overall model fit

The next step is to ossess the overall model fit with several goodness-of-fit
measures. Goodness-of-fit is a measure of the correspondence of the actual or
observed input {covariance or correlation) matrix with that predicted from the
proposed model. If the proposed model has an acceptable fit by whatever criteria
used, it has not been proved that the proposed model is correct, but only
confirmed that it is one of several possible acceptable models. Indeed, several
different models might have equally acceptable model fit.

In SEM, there must be a certain ratio between the size of the covariance or
correlation matrix and the number of estimoted coefficients. The difference
between the number of coefficients for a perfectly identified mode! (one coefficient
for each covariance/correlation) and the actual number of coefficients in the
proposed model {t) is fermed the degrees of freedom (df), that is, df =
lp+qlip+q+1}|-t. In doing so, the model achieves parsimony, that is, the
degree 1o which a model achieves model fit for ench estimated coefficient. The
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objective is not to minimize the number of coefficients or maximize the fit, but
mstead to maximize the amount of fit per estimated coefficient. The objective is 1o
avoid “overfitting” the model with additional coefficients in an attempt to make
small gains in model fit,

The goodness of fit measure for the whole model fall into one of three types:
1} Absolute fit measures
2} Incremental fit measures
3) Parsimonicus fit measures
4.1. Absolute fit measures

Absolute fit measures determine the degree to which the overall model
(structural and measurermnent model) predicts the observed covariance or
correlation matrix and does not express the quality of the model as judged by any
other internal or external criteria. Furthermore, if any of the overall measures
indicates that the model does not fit the data well, it does not tell what is wrong
with the model or which part of the model is wrong.

4.1.1. Chi-square (x?) test

For ML, GLS and WLS, the x?-measure is (N-1) times the minimum value of the
fit function for the specified model:

EaY

(N=1OF(®) [9]

The y2-measure is distributed asymptotically as a chi-square distribution under
certain conditions. For ULS and DWLS, certain adjustments are made so as to
make the x?-measure also asymplotically correct for these methods. The y2-
measure is correct for ULS, ML, GLS and DWLS under multinormality of the
abserved variables it o covariunce matrix is analyzed, With WLS, the ¥2-measure
is correct it a correct weight matrix is used. If a correlation matrix is analyzed with

Eay

ML, 32 is correct only if the model is scale-invariant and diag{X)=diag(S).

If the model is correct and the sample size is sufficiently large, the ¥2-measure
may be used as a test statistic for testing the model against the alternative that £ is
unconstrained. The null hypothesis of the chi-square test is Hy 1 £ = X (8). This
implies that the restrictions for the model are correct. Rejection of Hy suggests that
at least one restriction is wrong so that £ = £(6). Since Hy is equivalent to the
hypothesis that £ - Z{8) = O, the y2-test is a simultanecus test that all residuals in
- X{0) are zero. The chi-square measure is associated to a probability value (p).
The level of p has been set at greater than 0.05 or 0.10 to accept the model.
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Also, the chi-square measure can help us to test the statistical significance of
the differences in chi-square estimators between two nested model®.

4.1.2. Power of the: chi-square-measure

Although the x?-measure may be viewed theoretically as o test statistic for
festing the hypothesis that T is of the form implied by the model against the
alternative that £ is unconstrained, it should be emphasized that such a use of ¥”
s not valid in most applications. In most empirical work, the model is only
tentative and is regarded as an approximation o reality. From this point of view
the statistical problem is not one of testing a given hypothesis (which a prior may
be cansidered false), but rather one of fitting the model to the data and to decide
whether the fit is adequate or not.

Instead of regarding ¥? as a test statistic, one should regard it as a goodness
(or budness)-of-fit measure in the sense that large x%-values correspond to bad fit
and small ¥2-values 1o good fit. The degrees of freedom serve as a standard by
which to judge whether 7 is large or small. The ¥?-measure is sensitive to sample
size and very sensitive to departures from multivariate normality of the observed
variables. Large sample sizes and departures from multivariate normality tend to
increase x? over and above what can be expected due to specification error in the
modet. One reasonable way to use y2-measures in comparative model fitting is to
use y*-differences in the following way. If a value of %2 is obtained, which is large
compared to the number of degrees of freedom, the fit may be examined and
assessed by an inspection of the fitted residuals, the standardized residuals, and
the modification indices.

In particular, the power of the x% to detect discrepancies between T and 5(8)
particlly depends on sample size. The estimate of the %2 increases in direct
proportion to (N-1) and the power of the fest increases as N increases. A large
sample may increase our confidence that the residual matrix [E-%/6)] is not zero,
but the substantive significance of the difference may be negligible; that is, the 32-
measure becomes “too sensitive” and almost any difference is  detected.
Alternatively, a small sample can reduce the power of the test so that with a small
N we cannot detect even large differences between T and X{8). The 32 often
shows acceptable fit even when none of the model relationships are shown to be
statistically  significant.  Various analysis  establish 50 as  the minimum
recommended level of sample size for ML, but o somple this small is not
recommended. The minimum sample size to get appropiate y2-values using ML is
100. Samples exceeding 400 to 500 make ¥2 to indicate poor fit. So, the
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recommended sample size or “critical sample size” is 200, with unreliohle ¥?
outside of the range between 100 and 200.

Due o these several drawbacks, it seems reasonable to analyse the power” of
o chi-square test to assess its quality. To explain the power of the chi-square test
to evaluate the null hypothesis (i. e., Hg: £=2(8)), we can use the likelihood ratio
(LR) test statistic®. However, this test is a function of the chi-square from [9]. Then,
the strict interpretation of the LR test requires the assumptions underlying the
estimation methods be valid.

Let ¢ the chi-square obtained from [9]. Under the standard assumptions c has
an asymptotic chi-square distribution when Hg is valid. However, when the model
does not hold (EiE(B);, that is, H, is correct and Hy is tested, c is distributed as
noncentral chi-square” with df="%(p+q){p+q+1) and non-centrality parameter
A=(N-T1F[Z, Z{8)}, an unknown population quantity that may be estimated as:

A=Max 1{c-df), 0}. One can aiso set up a confidence interval for A. Let AL and

;’LU be the solutions of G(c|A, df)=0.95, Gic| Ay, df)=0.05, where Gix|%, df) is
the distribution function of the noncentral chi-square distribution with non-

centrality parameter A and df degrees of freedom. Then (AL; Au) is a 90%
confidence (1.e., power) interval for X.

Table 2. Values of the noncentral chi-square

Power to detect difference at 5% significance level

0.50 0.60 0.70 0.80 0.90
1 df test 3.84 4.90 6.17 /.85 10.51
2 df test 4.96 6.21 7.70 Q.64 12.65

From a more general point of view, If we determine the df and the
noncentrality parameter, then we know the distribution of the test statistics when
H, is valid and Hy is tested, From tabled values of the non-central chi-square, we
can estimate the power of a test. Table 2 contains values of the noncentrality
parameter required to give certain levels of power for 1 df and 2 df tests at the
5% significance level.

Once the validity of the model has been establish, one can test structural
hypotheses about the parameters 0 in the model such that:

- certain 8's have particular values (fixed parameters):

- certain 8's are equal {equality constraints);

- certain B's are specified linear or nonlinear functions of other parameter.



INDICE
196 Estudios de Economia Ap

Each of these types of hypotheses leads to a model with fewer parameters, v,
say, for u<t and with a parameter vector v of order (ux1) containing a subset of
the parameters in 8. The model with parameters v is calted the null hypothesis M,
and the model with parometers 6 is called the afternative hypothesis H,. The
likelihood ratio test statistic for testing Hy against Hy is then

LR = Cho - Ch';,

which is used as x? with t-u degrees of freedom. The degrees of freedom can also
be computed as the difference between the degrees of freedom associated with
chy and chy. For instance, in a statistical test of a single parameter, the df equals
one.

To use the test formally, one chooses a significant level o (probability of a type
1 error) and rejects Hy if LR exceeds the {1-a) percentile of the y2? distribution with
t-u degrees of freedom.

For the usual chi-square test of overall model fit where H, represents an exactly
identified ({though usually not fully described) alternative model, the df equals
alp+qlip+q+1}-t, where tis the number of free parameters for Hy,.

An illustration is given of a procedure with LR to determine the power of the
chi-square test of overall model fit. Let us suppose that the following matrices
correspond to the estimated parameters of the original model (Hg), with sample
size equal to 173:

1 [ o o 0 —0.087

?l: =

Lo.zss 0 0 0058
[12.961 0 | {1.021 7.139}
0 8488 17039 215.662

Now, we specify the values of 8 for the alternative hypothesis. To do that, we
can fit an unrestricted model by setting free the parameters v, and vy;,. Let us
suppose the estimation for vy, and vy, are 0.378 and 0.328, respectively. Then:

I 0 0] [0378 —0.087 |

B= _o2ss o)  T=|oas ooss |
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[12.961 0} [ 1.021 7.139]
= D= J
0 8.438J L7.139 215.662

The second step is to generate the implied covariance matrix (£(8)} from these
parameter values. One way to do this is to start all parameter matrices af the
values listed above, and fix all matrices so that no parameters are estimated. The
fitted moment matrix from this run is £(8) at 0=c, where ¢ is a known constant.
The chi-square for this alternative model is zero by construction, whereas that for
Hg is typically positive.

Then, Hg is fitted to Z(6) (8=c), that is, the implied covariance matrix obtained
is analysed under Hg (not the alternative model), while keeping the sample size
the same. The chi-square from this run is the estimated of the non-centrality
parameter (NCP). The df equals the number of parameters that distinguish Hj
from the alternative model (in this case, 2). The estimate of the non-centrality
parameter for this example is .21, with df=2, @=0.05, and N=173. Then, table
? suggests that we would have only a 60% chance of detecting o false H,
{y11="21=0) when the alternative parameterization is true (free vy and ¥y1).

In fact, this procedure uses the “wrong model” (Hp) on the correct implied
covariance matrix for the alternative model (H.). We know that Hy is incorrect,
and we analyze a population covariance matrix Z(8) where 0 is known. The chi-
square for the alternative model is zero by construction, whereas that for Hg is
typically positive (foking into account that we are testing the power of the chi-
square for the overal model).

This procedure applies to tests of individual parameters or groups of
parameters, and not only to tests of overall fit. These power calculations are
based on the chi-square difference LR test for comparing models where the
parameter values for the least restrictive mode! vsually generate the Z(8) that is
onalysed. The models can differ in a single or in many parameters. The preceding
steps are followed except that both models are fitted to the implied covariance
matrix  (E(8) with 0=c). The non-centrality parameter estimate equals the
difference in the non-centrality estimates of the two models, with df equal to the
difference in the df's for the models. Generally, there is no need to fit the least
restricive  model since its non-centrality parameter estimate is zero by
construction.

Power is influenced by many factors. If e is increased, the power of the tfest
goes up. This is one possible means to increase power. Another is to increase the
sample size, if this is possible, when collecting new data. In this way, table 2 also
indicates that we would have required a non-centrality parameter of 9.64 from
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the previous analysis to have attained 80% power. We could obtain such a value
by increasing the sample size. Now, the chi-square obtained from a test generally
increases in proportion to the sample size. So that we can obtain an estimate of
the sample size required (SSR) by using the next formula (Dunn, Everitt and
Pickles, 1993): SSR = {NCP x SSU} / ECS

where:

SSR = estimate of the sample size required

NCP = obtained non-centrality parameter

SSU = sample size used for the expected chi-square

ECS = expected chi-square

In our example, the required sample size is 268 (= 9.64 x 173/6.21), at the
5% level.

Figure 1 illustrates several possible outcomes in assessing quality of a statistical test.
The horizontol axis shows the probability of a Type | error with the preselected cutoff-
level for . The preselected minimum power level is on the vertical power axis. If the
model Hy has a Type | probability lower than the cutoff o and if the power of the test
with respect 1o H, is lower than the cutoff for power, this case fails in the lower left-hand
quadrant of figure 1 labeled "unacceptable”. As the label suggests, Hy would not be
very acceptable since with low power and a significant ¥2-value, it is likely that more than
minor specification errors are in the Hy model. In contrast, when the Type | probability is
larger than o and the power of the fest is high, we obtain the situation shown in the
upper right corner of figure 1. The high power means a high probability of detecting «
false Hg. The high Type | probability and high power suggest that the Hy model is very
consistent with the data since, if it were not so, these discrepancies would be detected.

Figure 1. Comparison of Type | Probability and Power of Statistical Test of Hg
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The two remaining quadrants of figure 1 represent more ambiguous situations.
The lower-right one occurs when the Type | probability for Hg is greater than «,
but the power of the test is low. We cannot be certain whether Hy is appropriate
o1 whether the low power of the test prevents the detection of large errors. The
upper-left quadrant presents a different problem: the Type | probability of Hg is
fower than «, but the power of the test is high. Here we do not know whether the

Hy model has major misspecifications or if the high power of the test reflects
minor discrepancies.

As an example of the preceding assessment of test qudlity, let us consider a
model with ¥? estimate of Hy is 1.26 with df=3, and the Type | probability (@] is
equal to 0.74, indicating a nonsignificant test statistic. Considering the power
cstimate of 0.44, this is moderate and suggests that even with a nonsignificant ¢ 2-
estimate for the test of Hy, we cannot be sure whether important errors are
present in the model. This ambiguous situation corresponds to the lower-right

quadrant of figure 1. This demonsirates the need to redesign the study so as to
increase the power of the ¥2.

4.1.3. Goodness of Fit Index (GFI}
The Goodness of Fit Index (GFI) is defined as:

(s—6) W™'(s - 0)
s'W's

GFl=1- [10]

The numerator is the minimum of the fit function after the model has been
fited; the denominator is the fit function before any model has been fitted. It
compares the squared residucls between prediction and actual data, but is not
adjusted for the degrees of freedom. It is ¢ nonstatistical measure ranging in
value from 0 [poor fit) to 1.0 (perfect f1t), although it is theoretically possible to
become a negative value hut this would mean that the model fits worse than any
model at all. No absolute threshold levels for acceptability have been established.

Although GFl is not explicitly a function of sample size, its distribution depends
on sample size, increasing as sample size increases. It also decreases as the
number of indicators per latent variable, or the number of latent variables,
ncrease, especiaily for smaller sample sizes.



INDICE
200 Estudios de Economia Aplicaaa

4.1.4. Root Mean Squared Residual (RMSR)

The Root Mean Squared Residual is defined as:

piqg i 2

2.21 .Zj(sfj _c.’ii)2
RMSR=1- " 11
(p+q)(p+q+1)[ |

RMSR is a measure of the average of the fitted residuals and can only be
interpreted in relation to the sizes of the observed variances and covarinnces in S.
i covariances are used, it is the average residual covariance. i a correlation
matrix is used, then RMSR is in terms of an average residual correlation. However,
this measure works best if all observed variables are standardized.

4.1.5. Critical N {CN]

It is defined as: CM = (x%,.,./F) + 1 [12}
where the critical %2 is the critical value of the chi-square distribution with df equal
to the maintained model’s df and ot o selected alpha level (e.g., 0.05). The F is

the value of the fitting function at S and 2. CN gives the sample size at which the
F value would lead to the rejection of Hg {i.e., £=%(8)) ot a chosen alpha level. A
tentative cutoff of CN = 200 has been suggested. Since N does not enter the
formula for CN, its calculated value is the same for a given critical ¥? and F value
for all sample sizes. However, when Hy is valid, F goes to zero as N grows larger
and CN increases with N. So, CN may lead to an overly pessimistic assessment of
fit for small samples.

4.2 Incremental fit measures

This class of measures compares the proposed model to some baseline model,
most often referred to as the null model. The null model is hypothesized to be the
maost simple model that can be theoretically justified. It should be some realistic
model that all other models should be expected to exceed. In most cases, the null
model is a single-construct model with all indicators perfectly measuring the
construct. There is, however, some disagreement over exactly how to specify the
null model in many situations.

4.2.1. Bollen Index (p)

This index compares the fit of the proposed model per degrees of freedom for
the null and proposed model, and is defined as:
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(F /df ) —(F / dt

proposed

(Fnull /dfnull)
_ (Xgull / dfr‘.ull ) - (Xgroposed / dfproposed)
(Xﬁull / d‘I:null )

Since introducing additional parameters will lower the number of degrees of
freedom, it is possible for p to stay the same or to decrease for more complex
specifications. The lowest possible value is zero and the maximum is one
lalthough it may be less than zero in theory). The mean of the sampling
distribution of p increases with N.

nuli propased )

[13]

4.2.2. Tucker-Lewis Index (TLI), or Non-Normed Fit Index {NNFI)

First, this measure was proposed as a means of evaluating factor analysis but it
has been extended to SEM. It is better than the Bollen index (p) due to lessens the
dependency of the mean of p on N. It combines a measure of parsimony into a
relative index between the proposed and null models, resulting in values ranging
from O to 1.0. It is expressed as:

(X§|JII / d‘I:null ) - ('X groposed / dfproposed)

TLI =
(X§ulll / dfrlull ) -1

(14]

In the numerator, TLI compares the worst fit to the sample fit. The denominator
contrasts the worst fit (¥2,,1/df..i) to the best fit (1).

A recommended value for TLI is 0.90 or greater. This measure may be valued
less than zero or greater than one. The lafter case means that the model is
overfitting. The case of TLI less than zero is unlikely in practice. This measure is
called also Non-Normed Fit Index.

4.2.3. Normed Fit Index (NFI), or Bentler and Bonett Index

The NFI, or A, was proposed by Bentler and Bonett and it is defined as:

a2 a2
I:nuII - Fproposed _ /(null Xpropcsed

F 2

null Xnull

NF| = [15]
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Fuar is the fitting function value of a null model and F, ,0.0q is the value of the
fitting function for the maointained or proposed model. The alternative formula in
1%'s 1s sometimes computationally more convenient .

One way to obtain the null model is to specify o model such that g=n, x=§,
0"=0, A"=1 and ® is a diagonal, free matrix. Of course, other baseline models
may be more appropriate.

The NFI measure ranges from zero (no fit at all) to 1.0 (perfect fit). A limitation
of Ay is that it does not control for degrees of freedom. As a result, the NFl-value
can be increased adding parameters. Thus a complex model may have a higher
A even though it has fewer degrees of freedom and may be "overfitting” the
data.

The measure is also influenced by sample size. The mean of the sampling
distribution of NFl is farger for bigger samples than it is for smaller ones. Thus
comparing Ay for two samples of different sizes can give the impression that the
large sample has a better fit than the smaller one, even if the identical model
haolds for both samples.

A proposed modification on A, that lessens the dependence of its mean on N
and takes account of df ,.oued st

Fou = F
A, = - =
? F — |df / (N — 1)] X§l1” - dfpropu::sed

null proposed

2 2
nulk — ' proposed Xrun — X proposed

[16]

4.2.4, Other incremental fit measures

The CHl {Comparative Fit Index), 1P {incremental Fit index) and |F1 {Relative Fir
Index} measures range from O to 1, but values outside this interval can occur.
Higher values indicate a better model. Let F be the minimum value of the fit
tunction for the estimated or proposed model, let F, be the minimum vaiue of the
fit function for the null or baseline model, and let d and d, be the corresponding
degrees of freedom. Furthermore, let f= (N-1)F/d, f= (N-1\F/d;, ® = max
HIN-1)F-d), O}, and @; = mox {{{(N-1)F-d}), {(N-1)F-d), 0}. Then,

CFl=1-m/m [17)

IFl = J{N-1JF; - (NSTIFIANTIR - d) 18]

RFI = (f,- 1/f,  [19]

4.3 Parsimonious fit measures

These measures relate the goodness-of-fit of the model to the number of
estimated coefficients required to achieve this level of fit. The basic objective is to
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diagnose whether model fit has been achieved by “overfitiing” the data with too
many coefficients.

4.3.1. Adjusted Goodness of Fit Index {AGFI)

The Goodness of Fit Index adjusted for the degrees of freedom, or the adjusted
GFl, AGFl, is defined as:

(P+Q)(p+q+1)
2d

AGFl =1 (1— GFI) [20]

where d is the degrees of freedom of the model. This corresponds to using mean
squares instead of total sums of squares in the numerator and denominator of 1-
GFI. This measure ranges from zero (not fit ot all) to 1.0 (perfect fit), though it is

Eal

possible for it to be negative. The moximum is reached when 3=X.The
recommended acceptance level is a value greater than or equal to 0.20.

4.3.2. Normed Chi-Square

This measure consists in adjusting the ¥? by the degrees of freedom to assess
maodel fit for various models.

This measure provides a way o assess inappropiate models in two ways: (1} a
model that may be overfitted by capitalizing on chance, which is typified by values
less than 1.0, and {2) models that are not truly representative of the observed
data and thus need improvement, having values greater than an upper threshold
(either 2.0 or 3.0, or the most liberal limit of 5.0). However, since the %2 value is
the major component of this measure, it is subject to the sample size effects
discussed earlier to the y2-measure itself.

4.3.3. Parsimonious Normed Fit Index (PNFI}

This measure is a modification of the NFL. The PFl takes into account the
rumber of degrees of freedom used to achieve a level of fit. Parsimony means
achieving higher measure relative to the number of degrees of freedom used.
Thus more parsimony is desirable. The PNFl is defined as:

PNFI = [degrees of freedom;,qpased / degrees of freedom ] x NFI [21]
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The principal use of PNFI is for the comparisen of models with differing
degrees of freedom. Higher values are better but there are no recommended
levels of acceptable fit. Anyway, differences of 0.6 to 0.9 are proposed fo be
indicative of substantial model differences.

4.3.4. Akaike Information Criteria (AIC)

This is another comparative measure between models with differing numbers
of constructs. The AIC is calculated as:

AIC = V2 (-x?) - Number of estimated coefficients [22]

This measure is always negative but values closer to zero indicate better fit and
greater parsimony. A small AIC generally occurs when small %2 values are
achieved with fewer estimated coefficients. This shows not only a good fit of
observed versus predicted covariances/correlations, but a model not prone to
“overtiting” as well,

There is no absolute value indicating an acceptable level of fit, but the
researcher should choose the model with the smallest value.

4.3.5. Other parsimonious fit measures

All interesting parsimonious fit measures are the CAIC, and the single sample
cross-validation index ECVI. All of these are simple functions of chi-square and
the degrees of freedom:

CAIC = %2 + 51 + In N)t [23]
ECVI = [x%/[N-1)) + 2(t/(N-1)) [24]

where the mentioned parameters has been defined above. Although ECVI is quite
similar to AlC, the rationale for ECVI is quite different from that of AIC and CAIC.
Whereas AIC and CAIC are derived from statistical information theory, the ECVI is
a measure of the discrepancy between the fitted covariance matrix in the analyzed
somple and the expected covariance matrix that would be obtained in another
sample of the same size.

To apply these measures fo the decision problem, one estimates each model,
ranks them according to one of these criteria and chooses the model with the
smallest value. One can also take the precision of the estimated value of ECVI
into account. For exomple a 90% contidence interval for ECVI is:

A £ s+ AANCT) (A + 5 + BANT)L (25)
where s = Va(p+q){p+q+ 1) and the rest parameters as defined above.
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For a given data set, N is the same for all models. Therefore, AIC and ECVI

vill give the same rank order of the models, whereas the rank ordering of AIC
and CAIC can differ.

5. Application

To illustrate the application of the proposed assessment strategy, we shall
assess a causal model with eight observed variobles and three latent or
nonobserved variables.

The observed measures in this example are: X; o X4 (exogenous), and Y, and

Y, (endogenous). The latent variables are: n; (endogenous), and &, and E,
(exogenous).

The specificotion of the LISREL model is as follows:
1} Measurement model:
Xi=rnG b o Xg=w"915 + &
Xa= N3 & + 83 Xy = Wiyp &g + 8y
Xs =Moo+ 85 Xg=Wely + 8
Yi=Anmte Ye=Mymotog
?) Structural modet:
o=y &+ 2 & + G
Oy1: covariance between £, and &,.
The path diagram for the specified model is shown in figure 2.

Figure 2. Path diagram for the model

S Sz S Sa S Se




INDICE
206 Estudios de Economia Aplice..

The analysis of the specified model was conducted by means of LISREL 8
software, using Maximum Likelihood (ML} estimation method. The estimation
process provides estimates for all parameters (table 31,

Table 3. Parameter Estimates

STRUCTURAL MODEL MEASUREMENT MODEL
Parameter | Estimation t-value Parameter | Estimation f-value
Y 0.49 2.10 A 1.01 5.60
hi¥ -0.18 -0.80 A9 0.82 5.88
Pa1 0.63 5.08 A 0.85 6.92

2 0.88 7.23
A 0.40 2.87
A as 0.53 3.63
Alsg 0.59 411
AW 0.82 5.66
a8y -0.02 -0.07
8, 0.33 1.90
8%, 0.28 2.60
0%, 0.23 2.10
8%, 0.84 5.05
0°,4 0.72 4.55
6% 0.65 4,24
6%, 0.33 1.99

Prior Evaluation of the Model

1) Assessment of the assumptions of structural equation modeling

The eight variables must be assessed for their distributional characteristics,
particularly normality and kurtosis, in order to use ML method. No variable was
found to have significant departure from normality nor pronounced kurtosis.

2} Examination of the salution
A. Offending estimates

In table 3 we see that the loading for Y, is greater than 1.0, The corresponding
error measurement value for the same variable is negative (-0.02}. Such estimates
are theoretically inappropriote and must be corrected. There is no right selution to
this problem; if the error measurement is set to a small positive value (0.005),
practical requirements of the estimation process will be met. The theoretical
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justification of the model and the evident discriminant validity between latent
variables must be examinated,
B. Standard errors

Under multivariate normality of the observed variables and using ML method,
standard errors are correct,
C. Squared multiple correlations and coefficients of determination

The squared multiple correlation for the structural equation (R%) is 0.16.

The squared multiple correlations for y-variables are following:

METHOD Y, Y,
ML 1.02 0.67

And the squared multiple correlations for x-variables are:

METHOD X, X, X X, Xs X,
ML 0.72 077 016 |0.28 | 035 067

The squared multiple correlation for the structural equation is low. It means
that n; is not well explain by the exogenous variables. Resulis are very high for y-
variables, but we observed an anomalous value for Y,. Again, there is an
“offending estimate” for value related to Y,. Error variance is negative and
carrelntion exceeds 1.0. We face with a clear sympion of multicollinearity. Then
we should review model especificotion for 1, and consider elimination of
observed variable Y. Y, end Y, measure the same concept. Linear relationships
between x-observed variables and the latent variable are strong enough. The
results are very good for almost all x-variables, except for X3 and Xy, indicating
that only a small proportion of their variance is accounted for by the latent
exogenous variables (&, and &;).

Overall Goodness-of-Fit Measures

1V Absclute fit measures
Next table contains all abolute fit measures:

MEASURE ML
12 (p) ~df- 14.96 (0.60) -17-
Power of y? 90%
GH 0.94
RMSR 0.056
Critical N {x=0.05) 121.60
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Almost all measures are acceptables. The chi-square shows a very good p-level
{0.60). The only measure that is slightly bad is the critical N. This is because this
measure is abnormally low for small sample sizes {sample size=55).

2) Incremental fit measures
Mext table shows the incremental fit measures:

MEASURE ML
NFI 0.92
(Bentler-Bonett)

NNFI 1.02
CH 1.00
IFt 1.01
RFI 0.86

Results are very high, indicating that the proposed model is much better than

the baseline or null model, that is, a simpler or more realistic model than which
has been estimated.

3) Parsimonious fit measures
The parsimonious fit measures are shown in next table:

MEASURE ML
AGF/ 0.87
Normed 2 0.8
PNF 0.56
AIC 52.96" (-17)
CAIC 110.10
ECVI 0.98
90% confidence {1.02; 1.22)
interval for ECVI

The normed chi-square has o marginal acceptability, because the model is
overfitted.

Almost all measures of overall fit show acceptable values to support the
hypothesized latent variables. The main measure (%) is very low and the rest of
measures provide good values. Then, the proposed model fits quite well the
observed covariances. However, since the model has a data inconsistency {the
«Heywood case» for Y}, the researcher should review the model especification,
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gather additional data and considerer elimination of Y, {the option of developing
a «ridge» regression to solve multicollinearity is automatically determined by the
sottware LISREL). This decision must carried out taking into aceount hoth statistical
information and theory. The model must be revised a tested on a new covariance
matrix.

Notes

1. Also, there are other types of assessment that should be carried acut to evaluate a struciural
equotion model such the measurement model fit, the tructural maodel fit, the analysis of residuals, or
the madel medification indices. These types exceed the aims of this paper.

2. Withaut loss of generality, we can olso assume that £ and € are centered variables.
3. In parhicular, the WLS method allows te perfarm an asymptotic distribution-free analysis.

4. A nested sequence of models, in the parameter-nested sense, is a sequence of similar models
having the some parometers but ordered according to increasingly more restricted o prior
constraints placed on their parameters. For example, two nested models with five parameters can

be:
-by by by by bs {completely unrestricted model, i.e., alt parameters are free), ond
-by by by by O (restricted model, one parameter, bj, is restricted 1o Q)

5. The power of a test equals one minus the probability of a Type |l errar, that 15, the probability of
rejecting Hy when it is incorrect, given that an afternative hypothesis, H,, is true,

&. Other avolaible test statisties are the Lagrangian multiplier test (LM), and the Wald test {W), For
further details see Bollen [1989: 289.303, and 338-349).

7. The familiar (central) chi-square distribution is the special cose that arises when the n
independent N (o, 1) variables have a mean of zero (i, e, =0},

2
8. The fitting-function value {F) is computed from the next formula:F:N—xq.

2. Value according to LISREL farmula.
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