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Abstract Bayesian networks have become a standard
in the field of Artificial Intelligence as a means of deal-

ing with uncertainty and risk modelling. In recent years,

there has been particular interest in the simultaneous

use of continuous and discrete domains, obviating the

need for discretization, using so-called hybrid Bayesian
networks. In these hybrid environments, Mixtures of

Truncated Exponentials (MTEs) provide a suitable so-

lution for working without any restriction. The objec-

tive of this study is the assessment of groundwater qual-
ity through the design and application of a probabilis-

tic clustering, based on hybrid Bayesian networks with

MTEs. Firstly, the results obtained allows the differ-

entiation of three groups of sampling points, indicating

three different classes of groundwater quality. Secondly,
the probability that a sampling point belongs to each

cluster allows the uncertainty in the clusters to be as-

sessed, as well as the risks associated in terms of wa-

ter quality management. The methodology developed
could be applied to other fields in environmental sci-

ences.
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1 Introduction

The study of groundwater quality is very important for
the sustenance of both natural ecosystems and human

activities (Garćıa-Dı́az 2011; Papaioannou et al 2010;

Lischeid 2009). With the aim of assessment, groundwa-

ter quality multivariate procedures, as cluster analysis,

has been applied to physico-chemical information ob-
tained from monitoring programmes (Evin and Favre

2012; Ghorban 2012; Vousoughi et al 2012; Wang and

Jin 2012; Liu et al 2011). Cluster analysis (Anderberg

1973; Jain et al 1999) is a statistical technique that
groups observations (sampling points) into clusters. Thus,

sampling points with similar water quality can be grouped

to optimize the monitoring programmes (Atlas et al

2011; Lu et al 2011). However, using these groups as

part of a decision-making process, the uncertainty in-
volved when including an observation into a group can

not be quantified. In this context, managers have an in-

creasing interest in the development of new operational

tools related to the assessment of uncertainty and risk,
which can facilitate the decision-making process (Refs-

gaard et al 2007).

Bayesian networks (BNs) (Pearl 1988; Jensen and
Nielsen 2007) are considered to be one of the most pow-

erful tools for representing complex systems in which

the relationships between variables are subject to un-

certainty. Their main purpose is to provide a frame-
work for efficient reasoning about the system they rep-

resent, in terms of updating information about unob-

served variables, given that some new information is
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incorporated to the system (Jensen et al 1990; Shenoy

and Shafer 1990). Variables in BNs are modelled by

means of probability distributions, therefore risk and

uncertainty can be estimated more accurately than in

models where only point estimates and confidence in-
tervals are taken into account (Uusitalo 2007; Liao et al

2010; Liu et al 2012). BNs graphical interpretation al-

low stakeholders easily understand the relationships be-

tween variables and refine manually the learned model
just by adding or removing arcs (even variables) from

the graph to better represent reality (Voinov and Bous-

quet 2010). Most data available in environmental sci-

ences are continuous or hybrid (discrete and continu-

ous), and even though BNs can manage them, the lim-
itations are too restrictive in many cases (Nyberg et al

2006). The most widely-used solution in environmental

modelling is to discretise the variables, accepting a loss

of information (Bromley et al 2005; Uusitalo 2007). To
date, several new solutions to this problem have been

proposed such as the Conditional Gaussian (CG) model

(Lauritzen 1992; Lauritzen and Jensen 2001), the Mix-

ture of Truncated Exponentials model (MTE) (Moral

et al 2001), the Mixtures of Polynomials model (MoP)
(Shenoy and West 2011) and the Mixtures of Trun-

cated Basis Functions (MoTBFs) model (Langseth et al

2012).

Aguilera et al (2011) reviewed the application of
BNs in environmental modelling. Hybrid BNs have scarcely

been applied in environmental modelling. There are

few papers published concerning BN-groundwaters and

none of them use a solution based on hybrid BNs, but

discretisation is applied. They are related to manage-
ment and decision-making (Molina et al 2009a, 2011;

Carmona et al 2011; Henriksen and Barlebo 2008; Hen-

riksen et al 2007; Santa Olalla et al 2007, 2005), partic-

ipative modelling (Mart́ınez-Santos et al 2010; Zorrilla
et al 2010) and prediction (Molina et al 2009b).

BNs have been developed to resolve a wide vari-

ety of problems in the field of Artificial Intelligence

(Larrañaga and Moral 2011). One of these is the so-

called data clustering problem (Anderberg 1973; Jain
et al 1999), which is very useful in tasks such us pat-

tern recognition or machine learning. Data clustering is

understood to be a partition of a data set into groups

in such a way that the individuals in one group are sim-
ilar to each other but as different as possible from the

individuals in other groups. BNs are valid tools for solv-

ing probabilistic clustering problems which, in contrast

to traditional clustering, allows an individual to belong

to more than one cluster depending on a probability
distribution.

The aim of this article is to develop a probabilistic

clustering model based on hybrid BNs that can be ap-

plied in the assessment of groundwater quality. To do

this, inference is applied to a probability distribution

of a data set. The probability distributions of the BN

are modelled using MTEs, which means that there is no

restriction on the model’s structure, i.e., any combina-
tion of discrete and/or continuous nodes with discrete

and/or continuous parents is allowed. In addition, con-

tinuous and discrete data can be used simultaneously

without the need for any discretization.
The article is organized as follows: Sect. 2 introduces

the basic concepts about hybrid BNs and how they can

be used to solve a probabilistic data clustering problem.

Sect. 3 is dedicated to the application of the clustering

model to management of groundwater quality. Lastly,
Sect. 4 presents the most important conclusions drawn

from the study.

2 Probabilistic clustering based on hybrid

Bayesian networks

2.1 Bayesian networks

A Bayesian network (Jensen et al 1990; Shenoy and

Shafer 1990) is a statistical multivariate model for a
set of variables X1, which is defined in terms of two

components:

– A qualitative component, defined by means of a

directed acyclic graph (DAG), in which each ver-
tex represents one of the variables in the model, so

that the presence of an arc linking two variables in-

dicates the existence of statistical dependence be-

tween them. For example, the graph depicted in
Fig. 1(a) could be the qualitative component of a

BN for variables X1, X2 and X3.

– A quantitative component, specified using a condi-

tional distribution p(xi | pa(xi)) for each variable

Xi, i = 1, . . . , n given its parents in the graph, de-
noted as pa(Xi). Figure 1(b) shows an example of

the conditional distributions p(x1), p(x2 | x1) and

p(x3 | x1, x2) for the DAG in Fig. 1(a).

The success of BNs stems from the fact that the
DAG structure gives us information about which vari-

ables are relevant or irrelevant for some other variable

of interest, taking into account the d-separation concept

(Jensen and Nielsen 2007). This allows us to simplify,
to a significant extent, the joint probability distribution

(JPD) of the variables necessary to specify the model.

1 Uppercase letters denote random variables and bold-
faced uppercase letters denote random vectors, e.g. X =
{X1, . . . ,Xn}. The domain of X is denote as ΩX. By low-
ercase letters x (or x) we denote some element of ΩX (or
ΩX).
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X1

X2 X3

(a) Qualitative component.

P (X1) = 0.3
P (X2 | X1) = 0.2
P (X2 | ¬X1) = 0.1
P (X3 | X1,X2) = 0.2
P (X3 | X1,¬X2) = 0.2
P (X3 | ¬X1,X2) = 0.7
P (X3 | ¬X1,¬X2) = 0.2

(b) Quantitative component.

Fig. 1 An example of a Bayesian network with three vari-
ables.

In other words, BNs provide a compact representation

of the JPD over all the variables, defined as the product

of the conditional distributions attached to each node,

so that

p(x1, . . . , xn) =

n
∏

i=1

p(xi | pa(xi)). (1)

For instance, the JPD associated to the network in
Fig. 1, p(x1, x2, x3), is simplified as the product p(x1) ·
p(x2 | x1) · p(x3 | x1, x2).

There are two approaches to training a BN: auto-

matic and manual (or a mixture of the two). The first
approach involves using algorithms which, starting with

a set of training data, calculate the optimum structure

for these data (Spirtes et al 1993; Cooper and Her-

skovits 1992). From here, the corresponding probability
distributions are calculated. In contrast, using manual

approximation, expert opinion is included as part of the

process to indicate which variables are related and how

strongly. This second option is often used when there
are no training data or where some data are missing.

A BN can carry out an efficient reasoning for a given

scenario under conditions of uncertainty. This is what

is known as probability propagation or probabilistic in-
ference. Hence, the objective is to obtain information

about a set of variables of interest (unobserved vari-

ables) given known values of other variables (observed

or evidenced variables). If we denote the set of evidence

as E, and its values as e, then we can calculate the
posterior probability distribution, p(xi | e), for each

variable of interest Xi /∈ E.

2.2 Hybrid Bayesian networks based on the MTE

model

BNs were originally proposed for handling discrete vari-
ables and, nowadays, a broad and consolidated theory

about it can be found in the literature (see for instance

Jensen and Nielsen (2007)). However, in real problems,

it is very common to find continuous and discrete do-

mains simultaneously in so-called hybrid BNs.

In a hybrid framework, the simplest and the most

common solution is to discretise the continuous data

and treat them as if they were discrete. Thus, existing

methods for discrete variables can be easily applied.
However, discretisation of variables can lead to a loss in

precision and this is why other approaches have received

so much attention over the last few years.

So far, several approaches have been devised to rep-

resent probability distributions in hybrid BNs. In order
of their appearance they are: the Conditional Gaus-

sian (CG) model (Lauritzen 1992; Lauritzen and Jensen

2001), the Mixtures of Truncated Exponentials (MTEs)

model (Moral et al 2001), the Mixtures of Polynomials

(MOPs) model (Shenoy and West 2011) and the Mix-
tures of Truncated Basis Functions (MoTBFs) model

(Langseth et al 2012).

Although the CG model is used extensively by re-

searchers and works well in many cases, it puts some

restrictions on the network. It is only useful in situa-

tions where it is known that the joint distribution of the
continuous variables, for each configuration of the dis-

crete ones, follows a multivariate Gaussian. Moreover,

CG models are not valid in frameworks where a discrete

variable has continuous parents.

Discretisation is equivalent to approximating a den-
sity by a mixture of uniforms, meaning that each inter-

val is approximated by a constant function. Thus, the

accuracy of the final model could be increased if, instead

of constants, other functions with better fitting proper-

ties were used. A good choice are exponential functions
since they are closed under restriction, marginalisation

and combination. This is the idea behind the so-called

MTE model (Moral et al 2001).

During the probability inference process, when the

posterior distributions of the variables are obtained given
some evidence, the intermediate probability functions

are not necessarily density functions. Therefore, a gen-

eral function called MTE potential needs to be defined

as follows:

Definition 1 (MTE potential) Let X be a mixed n-

dimensional random vector of variables. Let Z = (Z1, . . . , Zd)
T

and Y = (Y1, . . . , Yc)
T be the discrete and continuous

parts of X, respectively, with c+ d = n. We say that a

function f : ΩX 7→ R
+
0 is a Mixture of Truncated Expo-

nentials potential (MTE potential) if one of the follow-

ing conditions holds:

i. Z = ∅ and f can be written as

f(x) = f(y) = a0 +

m
∑

i=1

aie
{

bT

i y
}

(2)
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for all y ∈ ΩY, where ai ∈ R and bi ∈ R
c, i =

1, . . . ,m.

ii. Z = ∅ and there is a partition D1, . . . , Dk of ΩY

into hypercubes such that f is defined as

f(x) = f(y) = fi(y) if y ∈ Di,

where each fi, i = 1, . . . , k can be written in the

form of Eq. 2.

iii. Z 6= ∅ and for each fixed value z ∈ ΩZ, fz(y) =
f(z,y) can be defined as in ii.

For example, the function f defined as

f(y1, y2) =































































2 + e3y1+y2 + ey1+y2

if 0 < y1 ≤ 1, 0 < y2 < 2,

1 + ey1+y2

if 0 < y1 ≤ 1, 2 ≤ y2 < 3,
1
4 + e2y1+y2

if 1 < y1 < 2, 0 < y2 < 2,
1
2 + 5ey1+2y2

if 1 < y1 < 2, 2 ≤ y2 < 3.

is an MTE potential since all of its parts are MTE po-

tentials.
Thus, in this hybrid framework an MTE potential

f is an MTE density if

∑

z∈ΩZ

∫

ΩY

f(z,y)dy = 1.

A conditional MTE density can be specified by di-

viding the domain of the conditioning variables and

specifying an MTE density for the conditioned vari-

able for each configuration of splits of the conditioning
variables.

Consider the following example. Let X and Y be

two continuous variables. A possible conditional MTE

density for Y given X is:

f(y | x) =


























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
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



























1.26− 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13,

1.18− 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43,

0.07− 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43.

Since MTEs are defined into hypercubes, they ad-
mit a tree-structured representation in a natural way.

Moral et al (2001) proposed a data structure to rep-

resent MTE potentials, the so-called mixed probability

trees or mixed trees for short which are specially appro-

priate for this kind of conditional densities.

In a similar way to the discretisation process, the

more intervals used to divide the domain of the con-

tinuous variables, the better the MTE model accuracy,

but also the more complex. Furthermore, in the case of
MTEs, using more exponential terms within each inter-

val substantially improves the fit to the real model, but

again more complexity is assumed.

The MTE model has been the main focus of re-

search for several years by the Laboratory of Proba-
bilistic Graphical Models group2 and it forms the basis

of the clustering presented in Sect. 2.3. For more de-

tails about learning and inference tasks in these mod-

els, see Moral et al (2001), Moral et al (2002), Moral

et al (2003), Rumı́ et al (2006), Rumı́ and Salmerón
(2007), Romero et al (2006), Cobb and Shenoy (2006),

Cobb et al (2007), Morales et al (2007), Fernández et al

(2010), Langseth et al (2009), Langseth et al (2010),

Aguilera et al (2010) and Fernández et al (2012).

The last two approaches, dealing with hybrid BNs
(MOPs and MoTBFs) are very recent. The idea be-

hind the MOPs (Shenoy and West 2011) model is to re-

place the basis function of the MTE (exponential) by a

polynomial, yielding several advantages. The MoTBFs

(Langseth et al 2012) imply a generalisation of the MTEs
and MOPs in the sense that any function can be used

as a basis to represent the potentials. We do not use any

of these approaches since they are still the subject of

research and so there is not yet any software available.

2.3 Bayesian networks for clustering

In the context of machine learning, there are two types

of classification algorithms: supervised and unsupervised.

Let D = {d1, . . . ,dk} be a set of instances where di =

{xi1, . . . , xin, ci} are the values for the ith-individual
with features X1, . . . , Xn and target variable C. Super-

vised classification involves inferring a function, f , such

that f(x1, . . . , xn) gives us information about the best

class state c for an individual x1, . . . , xn. On the other
hand, if data about C are missing, we start from a col-

lection of unlabelled data and the classification problem

becomes unsupervised.

Clustering (Anderberg 1973; Jain et al 1999), or un-

supervised classification, is understood to be the par-
tition of a data set into groups in such a way that in-

dividuals in one group are similar to each other but as

different as possible from individuals in other groups.

Different types of clustering algorithms can be found

2 http://elvira.ual.es/programo
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X1 X2

C

· · · Xn

Fig. 2 Structure of a hybrid näıve Bayes classifier where X2

is a continuous variables and the remaining ones are discrete.

in the literature depending on the approach they fol-

low. On one hand, there is a hard clustering, in which
clusters are exclusive, i.e., an individual belongs to a

cluster in a deterministic way. The second approach is

soft clustering or probabilistic clustering, meaning that

an individual can belong to more than one cluster de-

pending on a probability distribution. BNs can solve
a probabilistic clustering problem by performing infer-

ence on the model, as explained next.

Since unsupervised classification (or clustering) is

mainly based on supervised classification, let us first
explain how to carry out supervised classification based

on hybrid BNs.

A BN can be used for supervised classification if it

contains a class variable C, and a set of feature variables
X1, . . . , Xn where an individual with observed features

x1, . . . , xn will be classified as belonging to class c∗ ob-

tained as follows:

c∗ = argmaxc∈ΩC
f(c | x1, . . . , xn), (3)

where ΩC denotes the set of possible values of C.

Note that f(c | x1, . . . , xn) is proportional to f(c)×
f(x1, . . . , xn | c), and therefore, solving the classifica-

tion problem would require a distribution to be spec-

ified over the n feature variables for each value of the

class. The associated computational cost can be very
high. However, using the factorisation determined by

the network, the cost is reduced. Although the ideal

would be to build a network without restrictions on the

structure, usually this is not possible due to the lim-
ited data available. Therefore, networks with fixed and

simpler structures and specifically designed for classifi-

cation are used.

The extreme case is the so-called näıve Bayes (NB)

structure (Duda et al 2001; Friedman et al 1997). It
consists of a BN with a single root node and a set of

attributes having only one parent (the root node). The

NB model structure is shown in Fig. 2.

Its name comes from the naive assumption that the
feature variables X1, . . . , Xn are considered indepen-

dent given C. This strong independence assumption is

somehow compensated by the reduction in the number

H

Y1 · · · Yn Z1 · · · Zm

Fig. 3 Hybrid näıve Bayes classifier for probabilistic data
clustering, where Y and Z are the set of discrete and contin-
uous variables, respectively, and H the hidden variable useful
for the clustering.

of parameters to be estimated from data, since in this

case, it holds that

f(c | x1, . . . , xn) ∝ f(c)

n
∏

i=1

f(xi | c), (4)

which means that, instead of one n-dimensional condi-

tional distribution, n one-dimensional conditional dis-
tributions are estimated. Despite this extreme inde-

pendence assumption, the results are amazing in many

cases, and for this reason it has become the most widely

used Bayesian classifier in the literature.

Unsupervised classification or data clustering is per-

formed in a similar way as for supervised classifica-

tion. The only difference stems from the fact that, since

there is no information about the target variable C, cer-
tain considerations have to be taken into account when

training the model. The key idea is to consider a hid-

den variable H as part of the dataset, that is, a vari-

able whose values are missing in all the records. Thus,
using an iterative process based on data augmentation

(Tanner and Wong 1987), a model is built for a specific

number of clusters. The iterative process includes two

essential steps that are repeated until the probability

of the model no longer improves:

1. For each ith-individual xi1, . . . , xin in the data set,

a value is simulated for hi based on the posterior
distribution f(h | xi1, . . . , xin).

2. The probability distributions of the BN are re-learnt

using the newly-generated database.

Figure 3 shows the model for carrying out a prob-

abilistic clustering based on the hybrid näıve Bayes

structure. Note that both continuous and discrete fea-

tures are allowed in the model. The variable H must be
discrete where its states represent the clusters obtained.

The specific steps for building this model are detailed

in Sect. 3.1.3.
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Fig. 4 Study area

3 Application in the assessment of groundwater

quality

3.1 Methodology

3.1.1 Study area

The Campo de Daĺıas is located in the far southeast-

ern end of Andalusia (Spain), covering around 330 km2

(Fig. 4). It is bounded to the north by the Sierra de

Gádor and to the south by the Mediterranean Sea. Its

climate, together with technological innovations, have

allowed the development of intensive agriculture in plastic-
covered greenhouses. The cultivated area is approxi-

mately 20,000 hectares, which represents the largest

cultivated area under greenhouse cover in Europe. Wa-

ter for crop irrigation and for human consumption comes

mostly from groundwater abstractions.

The study area can be differentiated into three hy-
drogeological units (Pulido-Bosch et al 1991; Molina

1998): Balerma-LasMarinas, Balanegra and Aguadulce.

The Balanegra unit occupies the western part, while the

Aguadulce unit is to the east. Both these basically con-
sist of carbonate deposits that form part of the Gádor

nappe. The Balerma-Las Marinas unit is the largest

and occupies the central-southern portion of the area.

It is basically made up of Pliocene calcarenites that can

exceed 100 m in thickness, though there are local Qua-
ternary deposits as well.

The largest abstractions are made from the car-

bonate deposits of the Balanegra and Aguadulce units,

given their calcium-magnesium bicarbonate water type.

Accordingly, piezometric levels currently lie between

−31 and −17 m a.s.l. In the Balerma-Marinas unit, the
water facies is sodium-chloride and so abstractions are

much lower. Since many wells have been abandoned as

a result, the piezometric level over the entire unit is

positive (10 and 40 m a.s.l). Although under a natural
regime the hydraulic relationships between these three

units would have been close, their subsequent exploita-

tion means that they are now quite well individualized.

3.1.2 Monitoring and water analysis

A total of 125 wells (sampling points) were chosen, their

distribution being representative of the three Campo de

Daĺıas hydrogeological units. Water samples were taken
according to the criteria given by the Enviromental Pro-

tection Agency (EPA 1991) and analysed for electrical

conductivity, nitrate; Cu, Fe and pesticides. Conductiv-

ity was measured in situ using a WTW MultiLine P4
digital pH-Conductivity meter. Nitrate was determined

using ion chromatography, Cu and Fe, using atomic ab-

sorption spectroscopy, while pesticides were analysed

using gas chromatography.

3.1.3 Data clustering methodology

This section describes the methodology for constructing

a probabilistic clustering model based on a groundwater

data set, and the strategy devised to find the optimal

number of clusters.

Algorithm 1 (Gámez et al 2006; Fernández et al

2011) shows the steps for carrying out a probabilistic
data clustering based on hybrid BNs using the ground-

water samples. Algorithms 2, 3 and 4 are subroutines

of Algorithm 1 and they are shown in boldface. The al-

gorithms were implemented in Elvira software (Elvira-

Consortium 2002).

At the beginning of Algorithm 1, we only have data

about the five physico-chemical variables and no infor-
mation about the hidden variable H is available (i.e.

the number of clusters and the associated probability

distribution are still unknown). Therefore, the first task

was to construct a preliminary model according to Al-
gorithm 2, where the conditional MTE distributions for

the variables are approximated by the marginal MTE

distribution learnt directly from data (see Rumı́ et al

(2006) for more details). On the other hand, the initial

number of clusters in H are fixed to 2 and their proba-
bilities are equitatively initialised to 0.5. The algorithm

does not depend on the initial probabilities assigned as

the convergence is ensured.

Once created, the initial model is refined using the

data augmentation method (Tanner and Wong 1987)

(see Algorithm 3). This method returns the most likely

model with two clusters. In order to run this method,
the missing data corresponding to the hidden variable

H is initialise using zeros (step 4). It does not mat-

ter which values are used in the initialisation, since the

method converges to the same point. In a similar way,
in step 6 we impute values for the hidden variable sim-

ulating them from the posterior distribution of H after

propagating in the model the values for the physico-
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chemical variables, i.e., f(h | di) (this imputation is

needed for the following steps).

From this point, the idea is to create a new model
by adding a cluster (see Algorithm 4). In this task the

last state, hn, in H is split to create a new one, hn+1,

and the new distributions generated are approximated

from the current ones. The results may slightly be influ-

enced by the choice of the state to be split, but we can
not have this information a priori. The optimal solu-

tion would be to check all the states to find the optimal

solution, but we did not consider this option since high

complexity is added to the procedure in comparison
with the benefits in terms of accuracy.

After adding a cluster, the data augmentation method

is run again to refine iteratively the new model with
n+1 clusters. Then, we checked if this model improves

on the earlier according to the likelihood measure ex-

plained next. Assume a data set of n independent and

identically distributed observations for testing the model
D = {X(1), . . . , X(n)}. Then, the likelihood3 of a model

M according to this test set is defined as:

L(M | D) =

n
∑

i=1

m
∑

j=1

logPM(X
(i)
j | pa(Xj)

(i)), (5)

where i and j index over the instances and nodes in the
model respectively, X

(i)
j is the value for the j-variable

in the i-instance and pa(Xj)
(i) are the values for Xj ’s

parents in the i-instance.

The process is repeated until the log-likelihood of

the model for n+ 1 clusters does not improve the ear-
lier model containing n clusters, so that n, the optimal

number of clusters, is finally determined.

Once the training stage has finished, the model in
Fig. 5 is reported. It is then applied to perform the

data clustering. Thus, an individual (x1, . . . , xn) will

belong to the cluster c∗ according to Eq. 3. In this way,

an individual can belong to more than one cluster de-

pending on the probability distribution. This feature of
fuzzy problems is particularly interesting in the envi-

ronmental sciences, in particular, in the assessment of

groundwater quality.

3.2 Results

3.2.1 Data clustering

The results obtained from applying Algorithm 1 allow

the sampling points to be grouped into three clusters

3 For math convenience the logarithm of the likelihood is
computed instead.

Algorithm 1: Probabilistic clustering based on

hybrid Bayesian networks for the groundwaters

data set
Input: The data set containing 125 samples for the

five physico-chemical variables
X = {Conductivity, NO3, Cu, Fe, Pesticides}.

Output: A model M to carry out the clustering
1 Divide the data set into two parts randomly: train

(80%) and test (20%).
2 M0 ← LearnInitialModel (train) (see Algorithm 2).
3 Lets denote the cluster variable as H (hidden).
4 Add a data column H with 0s to the train data set.
5 M0 ← DataAugmentation (M0, train) (see

Algorithm 3).
6 Add a hidden variable H to test by simulating values

in M0 from f(h | di).
7 L0 ← log-likelihood (M0, test) (see Eq. 5).
8 repeat

9 L← L0.
10 M0 ← AddCluster (M0) (see Algorithm 4).
11 M0 ← DataAugmentation (M0, train) (see

Algorithm 3).
12 Update H in test by simulating values in M0 from

f(h | di).
13 L0 ← log-likelihood (M0, test) (see Eq. 5).
14 if L0 > L then

15 M ←M0.

16 until L0 < L;
17 return M .

Algorithm 2: LearnInitialModel

Input: The train database with variables X.
Output: A model M with variables X and a hidden

one H.
1 foreach Xi in X do

2 Learn an MTE potential f(xi) from train (see
Rumı́ et al (2006)).

3 f(xi | h)← f(xi).

4 P (h0)← 0.5.
5 P (h1)← 0.5.
6 Let M a näıve Bayes model with distributions P (H)

and f(xi | h), ∀Xi ∈ X.
7 return M .

(Fig. 6). Table 1 shows the log-likelihood values accord-

ing to Eq. 5 after running the algorithm for different

number of clusters. The entry in boldface indicates the
optimal log-likelihood value which is reached with 3

clusters. Despite the algorithm stops when this mea-

sure does not improve w.r.t. the previous iteration, we

forced the algorithm to run up to 6 clusters just to
investigate the behaviour of the algorithm. As shown,

the log-likelihood decreases as the number of clusters

increases, meaning that the inclusion of new clusters

cause obtaining less accurate models in this case.

The average values of the physico-chemical variables

for each of the clusters is presented in Table 2.



8 Pedro A. Aguilera et al.

C
lu

st
er

 3
C

lu
st

er
 2

C
lu

st
er

 1

Cluster

Probability
0.0 0.2 0.4 0.6 0.8 1.0

1000 3000 50000e
+

00
4e

−
04

8e
−

04

Conductivity

x

f(
x)

0 100 200 300 4000.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0 Nitrate

x

f(
x)

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

Cu

x

f(
x)

0 500 1500 2500 35000.
00

00
0.

00
10

0.
00

20
0.

00
30

Fe

x

f(
x)

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Pesticides

x

f(
x)

Fig. 5 Probabilistic data clustering model with the marginal MTE probability distributions for the variables. Note that the
features are continuous, whilst the cluster variable is discrete. The marginal probability for the cluster variable represents
the frecuency (in terms of probability) of samples assigned to each cluster after running the algorithm (the marginal for the
physico-chemical variables has similar interpretation). The number of states of the cluster variable corresponds to the optimum
number of clusters found by Algorithm 1.

Table 1 Accuracy in terms of log-likelihood for different clustering models depending on the number of clusters assigned. The
entry in boldface indicates the optimal number of clusters.

# clusters log-likehood

2 −888.6936
3 -857.4265

4 −861.5178
5 −864.0865
6 −873.5870

Table 2 Average values of the physico-chemical parameters measured at the sampling points grouped in clusters 1, 2 and 3.
Conductivity is expressed in µmhos/cm, nitrate in mg/l and Cu, Fe and pesticides in µg/l.

# Sampling points Conductivity Nitrate Cu Fe Pesticides

Cluster 1 50 2833 106.53 22.65 447.17 0.087
Cluster 2 2 3125 269.4 19.15 260 0.955
Cluster 3 73 927 12.25 10.11 148.82 0.024

Table 3 Minimum, average and maximum probability, and standard deviation for the sampling points in clusters 1 and 3.
The values for cluster 2 are not shown since, given only two sampling points, their statistical significance is meaningless.

# Sampling points Min Max Average Sd

Cluster 1 50 0.55 0.99 0.92 0.13
Cluster 3 73 0.54 0.99 0.95 0.09
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Cluster 1

Cluster 2

Cluster 3

Fig. 6 Assignment of sampling points to its most probable cluster.

Algorithm 3: DataAugmentation

Input: A model M0 with hidden variable H and a
database D.

Output: The new model M after refining it.
1 Divide D into two datasets: train and test.
2 L0 ← log-likelihood (M0, test) (see Eq. 5).
3 M ←M0.
4 repeat

5 L← L0

6 Update H in train and test by simulating values
in M0 from f(h | di).

7 M0 ← Learn a new model (train).
8 L0 ← log-likelihood (M0, test) (see Eq. 5).
9 if L0 > L then

10 M ←M0.

11 until L0 < L;
12 return M .

Algorithm 4: AddCluster

Input: A model M0 with n states in the hidden
variable H0.

Output: A new model M with n+ 1 states in the
hidden variable H.

1 M ←M0.
2 Let h1, . . . , hn be the states of the hidden variable H

in M .
3 Add a new state, hn+1 to H.
4 Update the probability distribution of H by

re-computing the probability of hn and hn+1 as
follows:

5 a← p(hn)/2.
6 p(hn)← a.
7 p(hn+1)← a.
8 foreach feature Xi in M do

9 f(xi | hn+1)← f(xi | hn).

10 return M .

Group 1 comprises 50 sampling points. The average

probability of these points belonging to this group is

0.92, with a standard deviation of 0.13 (Table 3). The

sampling points are situated over Pliocene calcarenites
and Quaternary detritic deposits that form the upper-

most part of the aquifer. The surface wells have a depth

of between 20 and 150 m. Dissolution of deposits that

overlie the sampling points mean that samples have a

high conductivity. In turn, elevated nitrates, Cu and Fe
are the result of the proximity of the phreatic level to

the ground surface, which facilitates entry of these agri-

cultural pollutants into the groundwater (Molina 1998).

In this cluster, 18% of the samples contain pesticides.
The elevated contaminant concentrations are the reason

that these waters are used neither for human consump-

tion nor agricultural irrigation.

Group 2 consists of just two sampling points, with

probabilities of belonging of 0.97 and 0.75. These bore-

holes are located in Plioquaternary deposits at depths

of 30 and 80 m. The deeper sampling site gave a conduc-
tivity of 2180 µmhos/cm, nitrate content of 124 mg/l,

Fe of 182 µg/l, Cu of 16 µg/l, and a high pesticide

content (1.63 µg/l). This sampling point is positioned

between the calcarenites and the limestones in an aban-

doned borehole. The other, shallower sampling point
gave a conductivity of 4070 µmhos/cm, nitrate of 415

mg/l, Fe of 337 µg/l, Cu of 22 µg/l with presence of

pesticides as well (0.28 µg/l). This sampling point is lo-

cated over calcarenites at the eastern end of the study
area and has been polluted due to the intensive agri-

cultural activities in the vicinity; for this reason it has

been abandoned for some time.

Group 3 is formed by 73 sampling points. The aver-

age probability of belonging to this group is 0.95, with

standard deviation 0.09 (Table 3). This group is char-
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acterized by the fact that all the boreholes abstract

water from the limestones and dolomites of the Bal-

anegra and Aguadulce units that lie along the southern

edge of the Sierra de Gádor. The depth of the bore-

holes along the edge of the Sierra is between 200 and
300 m. The aquifer gets steadily deeper as a result of

a number of fractures, towards the centre of the area,

reaching a depth of up to 900 m. The marked depth

of these boreholes favours abstraction of better quality
water, except at the eastern and western flanks where

marine intrusion intervenes (Pérez-Parra et al 2007). In

this group only two sampling points indicate the pres-

ence of pesticides, for which reason neither of them are

exploited.

3.2.2 Uncertainty, risk and probabilistic clustering

In addition to the data clustering, Algorithm 1 pro-

vides information about the probability that a certain

sampling point belongs to a particular cluster (Fig. 7).

This information allows to assess the uncertainty and

the risk in the groundwater quality management.
Thus, in group 1 (Fig. 8(a)), 36 of the sampling

points have a probability greater than 0.95 of belonging

to this group. Eight of the observations have a probabil-

ity of belonging to the group of between 0.70 and 0.95,
while 6 sampling points give a value lower than 0.70.

In group 3 (Fig. 8(b)), 57 sampling points have a

probability greater than 0.95 of belonging to the group,

14 points have a probability of between 0.70 and 0.95,

while two points have a probability lower than 0.70.
These data suggest that 72% and 78.1%, respec-

tively, of the sampling points in these two groups show a

high degree of certainty of belonging to its group (prob-

ability ≥ 0.95), i.e., there is a lower risk that the water
quality of a well belongs to a different group than the

one assigned using the BN clustering. As a consequence,

these sampling points could be used as reference obser-

vations during classification of groundwater quality or

during groundwater monitoring programmes.
Moreover, for another series of sampling points (Ta-

ble 4, Fig. 9), there is greater uncertainty (probability

< 0.70) that the points belong to the assigned groups.

These points share physico-chemical and hydrogeologi-
cal characteristics from both groups 1 and 3.

– Point 65 shares the high nitrate and iron contami-
nation of group 1, and the low conductivity of group

3. It lies in the Pliocene calcarenites at a depth of

100 m.

– Point 394 shares the elevated concentrations of ni-
trate, iron and copper with group 1, and the low

conductivity with group 3; it lies at a depth of 40

m in the Pliocene calcarenites.

– Point 839 has the high Fe of group 1 and the low con-

ductivity of group 3, tapping limestones/dolomites

at a depth of 600 m.

– Point 1189 shares the elevated Fe and Cu of group

1 and the low conductivity of group 3, it lies at 400
m depth in the Gádor limestones and dolomites.

– Point 1201 shares the high Fe with group 1 and the

low conductivity with group 3, again tapping the

limestone/dolomite at a depth of 400 m.
– Point 1202 shares the Fe and Cu contamination with

group 1 but has the low conductivity of group 3. It

lies in the Sierra de Gádor limestones and dolomites

at a depth of 900 m.

– Point 766 has high nitrates, Fe and Cu, as well as
pesticides in common with group 1, with the low

conductivity of group 3. It lies at a depth of 30 m

in Quaternary deposits.

– Point 821 has elevated nitrates, Fe and Cu as in
group 1, together with the low conductivity charac-

teristic of group 3. It exploits the Pliocene calcaren-

ites and lies at 200 m depth.

In traditional multivariate statistics, a cluster would
normally allow the detection of sampling points with

similar water qualities, i.e., groups of sampling points

tapping groundwater with a homogeneous water qual-

ity. However, using these groups as part of a decision-
making process does not take into account the uncer-

tainty involved nor the risk of making the wrong deci-

sion in terms of water quality management.

In contrast, probabilistic clustering demonstrates that

if all the sampling points assigned to each group are
taken (as the traditional clustering methods do), we

are committing the error of including sampling points

that are not fully representative of a particular water

quality.

The model developed here allows the uncertainty

associated to be known and to determine, probabilisti-

cally, which sampling points should be chosen for ground-

water monitoring programmes and conversely, which

sampling points should be excluded on the basis of be-
ing less representative of a particular water quality.

4 Conclusions

This paper presents a novel technique for resolving the
problem of probabilistic data clustering in the field of

groundwater management. The probabilistic model based

on MTEs allows simultaneous treatment of continuous

and discrete variables without the need to discretise
the data, thus increasing the precision of the modelling.

Moreover, the grouping of sampling points using BNs

allows optimization of the number of sampling points
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Fig. 7 Probability of a sampling point belonging to each of the clusters. For each sampling point, three concentric circles are
shown on the map (using a different colour for each cluster), whose area is proportional to the probability of belonging to the
corresponding cluster.
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Fig. 8 Frequency histogram of the sampling points belonging to clusters 1 and 3 for various probability intervals. The higher
the probability, the lower the uncertainty regarding assigning a sampling point to a particular cluster, and so the lower the
risk of making a wrong decision about groundwater quality as part of the management process.

Table 4 Sampling points with lower probabilities of belonging to groups 1 and 3.

Sampling points Cluster Probability of belonging to cluster 1 Probability of belonging to cluster 3

65 1 0.60 0.40
394 1 0.69 0.31
839 1 0.60 0.40

1189 1 0.60 0.40
1201 1 0.65 0.45
1202 1 0.55 0.45
766 3 0.45 0.55
821 3 0.40 0.60
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Fig. 9 Location of sampling points with lower probabilities of belonging to clusters 1 and 3.

required for making an assessment of groundwater qual-
ity. It reduces the risk of wrong decisions being taken in

the decision-making process by considering only those

points that show higher probabilities of belonging to a

particular group during the water quality monitoring
programme. The technique of clustering presented in

this article can be applied to any other field within the

environmental sciences for risk assessment using proba-

bilities, and thus contributes greater diversity to a field

in which hybrid BNs were not previously applied.
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