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Abstract

Territorial planning and management requires that the spatial structure
of the socioecological sectors is adequately understood. Several classification
techniques exist that have been applied to detect ecological, or socioeconomic
sectors, but not simultaneously in the same model; and also, with a limited
number of variables. We have developed and applied a new probabilistic
methodology – based on hierarchical hybrid Bayesian network classifiers - to
identify the different socioecological sectors in Andalusia, a region in south-
ern Spain, and incorporate a scenario of change. Results show that a priori,
the socioecological structure is highly heterogeneous, with an altitude gradi-
ent from the river basin to the mountain peaks. However, under a scenario of
Global Environmental Change this heterogeneity is lost, making the territory
more vulnerable to any alteration or disturbance. The methodology applied
allows dealing with complex problems, containing a large number of vari-
ables, by splitting them into several sub-problems that can be easily solved.
In the case of territorial planning, each component of the territory is mod-
elled independently before combining them into a general classifier model.
Furthermore, it can be applied to any complex unsupervised classification
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problem with no modification to the methodology.
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1. Introduction1

The process of territorial planning and management requires that the2

spatial structure of the territory is adequately understood, particularly given3

the current context of Global Environmental Change (GEC) (Basurto et al.,4

2013; Clark and Dickson, 2003; Hufnagl-Eichiner et al., 2011; Kotova et al.,5

2000; Turner et al., 2003). Spatial analysis allows the territory to be divided6

into a number of different units or ecological sectors (Schmitz et al., 2005),7

which can reflect the spatial patterns caused by ecological interactions be-8

tween the elements of the territory (Jackson et al., 2012; Mart́ın de Agar9

et al., 1995).10

To obtain these sectors, a variety of methodologies have been applied in-11

cluding both subjective methods - based on expert knowledge- and objective12

ones, based on the data available (Chuman and Romportl, 2010; Schmitz13

et al., 2005; Trincsi et al., 2014; Vezeanu et al., 2010). One of the most14

important methodologies is classification, with recent advances promoted by15

the development of new technologies, such as GIS techniques and software.16

The most common classification methodologies are based on spatial overlap-17

ping of thematic maps and other GIS techniques (Villamagna et al., 2014),18

the study of satellite images (Rapinel et al., 2014) and various statistical19

methods, such as hard-clustering or geospatial analysis (Giménez-Casalduero20

et al., 2011; Liu et al., 2014; Ruiz-Labourdette et al., 2011; Trincsi et al., 2014;21

Vezeanu et al., 2010) to perform data analysis and ecological mapping (Lahr22

and Kooistra, 2010). Even though the methodologies mentioned provide ro-23

bust and appropriate results, they have certain limitations, which basically24

relate to the amount of information the models can cope with and the rigid-25

ity of the boundaries between the different sectors identified (Niederscheider26

et al., 2014; Smith and Brennan, 2012). Moreover, human’s role in nature27

is being recognized, and new tools are required that can include socioeco-28

nomic components in the same way as other components of natural systems,29

so configuring a socioecological system (SES) (Challies et al., 2014; Dearing30
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et al., 2014). Thus, other methodologies that are capable of overcoming these31

problems need to be considered (Strand, 2011).32

A novel proposal is Bayesian Networks (BNs), a multivariate statistical33

model based on probability theory, whose ability to model environmental34

problems has been demonstrate over recent decades (Aguilera et al., 2011;35

Borsuk et al., 2004, 2006; Kelly et al., 2013; Langmead et al., 2009). BNs36

consist of a set of nodes (representing the variables of the model) connected37

by several links, which express relationships of statistical (in)dependence,38

modelled by means of probability distributions (Jensen et al., 1990; Jensen39

and Nielsen, 2007; Shenoy and Shafer, 1990). This makes BNs powerful and40

robust tools, yet their results are also easily interpreted by non-experts and41

stakeholders, so allowing them to be included in the model learning and42

validation processes (Hamilton et al., 2015; Tiller et al., 2013; Varis and43

Kuikka, 1999). Additionally, their probabilistic approach allows risk and44

uncertainty to be estimating with greater accuracy than using other models45

(Liu et al., 2012; Marcot, 2012; Uusitalo, 2007).46

One of their most important advantages in the environmental field is that47

BNs can manage both continuous and discrete data in the same hybrid model,48

even though they were originally proposed only for discrete data (Aguilera49

et al., 2011; Wilson et al., 2008). In the presence of continuous variables in the50

data, the most common solution is to discretize them (Keshtkar et al., 2013;51

Renken and Mumby, 2009), which involves loss of relevant information and52

of precision (Uusitalo, 2007). To avoid discretization and treat continuous53

variables, the Conditional Gaussian model has been proposed. However, this54

imposes certain limitations on the structure; i) continuous data has to follow55

a normal distribution, and ii) a discrete variable cannot have a continuous56

parent (Lauritzen, 1992). One way to deal with hybrid BN (HBNs) models,57

without discretizing continuous variables and limitations in the model struc-58

ture, is to use the Mixture of Truncated Exponential models (MTE) to repre-59

sent the probability distributions of the variables in the HBNs. This model60

is able to deal with any distribution function (Moral et al., 2001). In order to61

avoid computational complexity problems, simpler and fixed structures have62

been proposed, especially for classification tasks, such as näıve Bayes (Duda63

et al., 2001; Friedman et al., 1997), which reduce the number of parameters64

to be estimated but which yield appropriate results (Fernandes et al., 2010).65

A classification problem in which no information about the class vari-66

able is available (called an unsupervised classification or clustering problem)67

can be solved by a BN classifier (Aguilera et al., 2013; Anderberg, 1973;68
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Fernández et al., 2014; Gieder et al., 2014). This soft-clustering method-69

ology implies the partition of the data into groups in such a way that the70

observations belonging to one group are similar to each other but differ from71

the observations in the other groups. As BNs express the results by means72

of probability distribution functions, each identified group is composed of a73

set of different observations with a high probability of belonging to it. BNs74

also allow the behaviour of the system to be modelled under a scenario of75

change using probabilistic propagation (Aguilera et al., 2011; Liedloff and76

Smith, 2010).77

Our objective is to develop a new methodological approach based on a78

HBN hierarchical classifier and apply it to characterize the socioecological79

structure of a territory, and study its dynamic under different drivers of80

GEC, in the Spanish region of Andalusia. This mathematical approach is81

considered hierarchical, since the model is divided into two levels of classifi-82

cation; in the first, both natural and socioeconomic components are modelled83

using independent HBN sub-models, with the aim of classifying the territory84

into several groups. In the second, the sub-models are joined into a classifier85

model that divides the territory into several socioecological sectors. Once86

the model is learned and the socioecological structure of the territory has87

been identified, a scenario of change is included. The paper is organized88

as follows: Section 2 describes the methodological approach used; Section 389

describe the results of both the current situation and under a GEC scenario;90

Section 4 discusses the results and the methodological approach is shown;91

finally, Section 5 draw a number of conclusions.92

2. Materials and Methods93

2.1. Study area94

Andalusia (Figure 1) is the second largest Autonomous Region of Spain95

– comprising eight provinces – and the most-densely populated. It covers a96

surface area3 of 87.600 km2, which represents 17.3% of the national territory.97

Bounded by the Mediterranean Sea and Atlantic Ocean, Andalusia lies on98

the frontier between Europe and Africa and contains a mixture of landscapes99

and cultural heritage from both continents.100

Andalusian terrain covers a wide range of altitude, from the Guadalquivir101

river basin to the mountainous ranges of the Sierra Morena and Sistema102

3Data from the Spanish Statistical Institute
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Figure 1: Study area.

Bético, which boast the highest peaks in Spain, lying above 3000 m. a.s.l.103

The landscape is quite heterogeneous, with huge differences between the104

densely populated and irrigated rich croplands areas of the river basin and105

coastlands, to the sparsely populated forested areas of the uplands.106

Its climate is similarly heterogeneous. Even though Andalusia is included107

in the Mediterranean climate zone, there are stark differences between differ-108

ent areas. The climate in the southeast part is semiarid, with less than 200109

mm of annual rainfall in several areas, whilst the middle and northern parts110

are under a continental climate influence, with more than 4000 mm rainfall.111

2.2. Data collection112

In accordance with the environmental and socioeconomic characteristics113

of the territory, six groups of variables were selected for the HBN hierarchical114

classifier model.115

Environmental information (Appendix A) was collected from Andalusian116
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Figure 2: Methodological diagram of the hierarchical classifier model divided into three steps: i) Data collection (Subsec-
tion 2.2), ii) Submodels learning (Subsection 2.3) and iii) Meta-classifier learning (Subsection 2.4). White nodes refer to
original variables (either discrete or continuous), grey nodes refer to artificial discrete class variables, which represent the
membership of each observation to sub-models groups (i.e. Land uses groups) and classifier sectors respectively. SIMA,
Andalusian Multiterritorial Information System; Vars., Variables; Geomor., Geomorphology.
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Environmental Information Network4 (Figure 2 i)) and divided into four dif-117

ferent sub-models: land use, geomorphology, lithology and climate. ArcGis118

v10.0 (ESRI, 2006) was used to retrieve the data, using a grid of 5x5 km.119

Land use, geomorphology and lithology variables are expressed as the per-120

centage of the surface area of each grid cell, whilst climatic variables are121

expressed as an absolute value per grid cell (see Appendix A for a detailed122

explanation).123

The Andalusian Multiterritorial Information System 5 was searched to124

obtain social and economic information for each municipality to feed to the125

corresponding sub-models (Figure 2 i)). In order to obtain information that126

related to uniform spatial units, ArcGis v10.0 (ESRI, 2006) was used to127

transform the data into a 5x5 km grid by overlapping it onto the munici-128

pal information shape file. In this way two cases were found: i) grid cells129

containing only one municipality, where the information was collected; ii)130

grid cells that overlap two or more municipalities; in these cases variables131

were obtained as a weighted mean of each municipal values. Variables are132

expressed in different ways, such as rates, percentage of the municipal popu-133

lation, percentage surface area of the territory (see Appendix A for a detailed134

explanation).135

Variables were selected by experts and from literature review; they were136

preprocessed with the aim of avoiding repeated information. The prepro-137

cessing step included the elimination of variables providing equivalent infor-138

mation by means of the analysis of a correlation matrix, and the selection of139

the appropriate level of detail in the shape file information. In addition, en-140

vironmental variables comprising more than 70% of data equal to zero were141

discretized using the equal frequency method into three different states (0-142

no presence; 1- low presence; 2- high presence. Thresholds of each variable143

are shown in Appendix A). The final data set contained 3630 grid cells and144

151 variables, both discrete and continuous.145

2.3. Sub-models learning146

This section describes the steps for constructing each of the six sub-147

models (Table 1) included in the first level of the classifier (Figure 2 ii)).148

They are based on the probabilistic clustering methodology using HBNs as149

4http://www.juntadeandalucia.es/medioambiente/site/rediam
5http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2-

en.htm
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Table 1: Sub-models characteristics. No., number; Vars., variables.

Sub-model No. Vars. Discrete Vars. Continuous Vars.
Land Use 10 0 10

Geomorphology 50 48 2
Lithology 41 39 2
Climate 7 0 7
Social 18 4 14

Economy 25 15 10
Total 151 106 45

proposed by Fernández et al. (2014), and implemented in the Elvira software150

(Elvira-Consortium, 2002). Figure 3 shows an outline of this methodology.151

The relationships between variables cannot be expressed using a Conditional152

Gaussian model for two reasons (see Section 1): the variables in this dataset153

do not follow a normal distribution, and also, even though in the models154

developed in this paper no discrete variable has a continuous parent, if a155

more complex model such as the Tree Augmented Network (Friedman et al.,156

1997) is selected as the baseline, method then this second constraint is not157

fulfilled either. So, the MTE model, which avoids these limitations, is used158

to model the probability distributions involved in the construction of the159

network (For more information about MTE models see Cobb et al. (2007);160

Rumı́ and Salmerón (2007); Rumı́ et al. (2006)).161

The corresponding sub-models have a näıve Bayes structure (Figure 4),162

in which the links between the feature variables (X1, . . . , Xn) and the class163

variable, H , express the conditional probability distribution p(Xn | H). If164

new information is known about the feature variable Xn it is incorporated165

to the model and the conditional probability distribution of H is updated.166

Taking the Land Use sub-model as an example, feature variables are167

expressed as the presence of different land uses types in Andalusia, collected168

from the 5x5 km grid, whilst the class variable expresses the membership169

of each individual grid cell (corresponding to each data sample) to a group170

with similar land use characteristics. The methodology applied consists of171

two steps:172
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Figure 3: Outline of the HBNs probabilistic clustering methodology to construct both sub-
models and the classifier. Dotted lines represent the relationships between the variables
when the parameters of the probability distribution functions have not been yet estimated.
B, BIC score.
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1. Estimation of the optimal number of states. Initially, no information173

about the class variable is given, so we consider it as a hidden variable174

H , whose values are missing (Figure 3 i)). Firstly, we consider only175

two states for variable H , i.e., two different land use groups that are176

uniformly distributed (the same probability value for each grid cell of177

belonging to both groups, i.e., 50%) (Figure 3 ii)). Now, the model is178

estimated based on the data augmentation method (Tanner and Wong,179

1987), an iterative procedure similar to the Expectation Maximization180

algorithm (Lauritzen, 1995) as follows: a) the values of H are simu-181

lated for each data sample according to the probability distribution of182

H , updated specifically for the corresponding data sample, and b) the183

parameters of the probability distribution are re-estimated according to184

the new simulated data. In each iteration, the BIC score of the model185

is computed, and the process is repeated until there is no improvement.186

In this way, the optimal parameters of the probability distribution func-187

tion of the model with two states and its likelihood value are obtained188

(Figure 3 iii)). The following step consists of a new iterative process189

in which a new state (a new land use group) is included in variable190

H by splitting one of the existing states (Figure 3 iv)). The model is191

again re-estimated (by repeating the data augmentation method) and192

the BIC score is compared with the previous run. The process is re-193

peated until there is no improvement in the BIC score, so achieving the194

final model containing the optimal number of states (Figure 3 v)).195

2. Computation of the probability of each grid cell belonging to each group.196

Once we have obtained the final model (with the optimal number of197

class variable states, i.e., the optimal number of land use groups), the198

next step consists of probability propagation, also called the inference199

process (For more information see Rumı́ and Salmerón (2007)). In this200

step, all the available information (land use variables) for each data201

sample is input into the model as a new value called evidence, and202

propagated through the network, updating the probability distribution203

of the class variable. Finally, from this new distribution the most prob-204

able land use group (state of the variable H) for each data sample, it205

means, for each grid cell, is achieved.206

2.4. Classifier learning207

Once the various sub-models are learned, the next step consists of joining208

them in the second level of classification in the classifier model (Figure 2209

10



X1 . . . Xn

H

Figure 4: Example of the näıve Bayes structure. X1, . . . , Xn are the features variables
which can be both discrete or continuous; H, is the hidden discrete class variable that
represents the membership of each observation to a group.

iii)). A new virtual data set is created where the feature variables are the210

results of the previous six sub-models (i.e., the most probable land use,211

geomorphology, lithology, climate, social and economic group for each grid212

cell), whilst the hidden class variable expresses the membership of each grid213

cell to the socioecological sectors.214

Note that, in this level, both feature and class variables are discrete, but215

the flexibility of the methodology proposed allows this kind of data to be dealt216

with in exactly the same way as in the previous step. The process is repeated,217

as explained in Section 2.3 and Figure 3, to obtain the final model with the218

optimal number of socioecological sectors. Once we know the parameters of219

the model, the inference process is carried out and the probability that a220

particular grid cell belongs to a particular sector is calculated; then the most221

probable one is represented.222

2.5. Global Environmental Change Scenario223

Using the final classifier model obtained, we can predict how the socioe-224

cological structure of the territory might change as a consequence of various225

GEC drivers through the inference or probability propagation process.226

Taking the information provided by the Intergovernmental Panel on Cli-227

mate Change, both national and regional governments have developed cli-228

mate change scenarios for their particular territory. A number of reports229

and studies have been written about the impact of these scenarios on the230

economy, on society, and on land use and land cover (Gasca, 2014; Méndez-231
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Initial data
Gc X1 X2 . . .Xn

1 43 52 . . . 23
2 51 71 . . . 57
. . . . . . . . . . . . . . .

i) Obtaining the socioecological sectors A priori

Gc X1 X2 . . .Xn h1 . . . hn
1 43 52 . . . 23 0.86 . . . 0.04

2 51 71 . . . 57 0.62 . . . 0.08

. . . . . . . . . . . . . . . . . . . . . . . .

ii) Obtaining the socioecological sectors A posteriori

Scenario data
Gc X1 X2 . . .Xn

1 43 71 . . . 36
2 51 17 . . . 98
. . . . . . . . . . . . . . .

Gc X1 X2 . . .Xn h1 . . . hn
1 43 71 . . . 36 0.06 . . . 0.54

2 51 17 . . . 98 0.82 . . . 0.02

. . . . . . . . . . . . . . . . . . . . . . . .

Figure 5: Methodological diagram of the Inference process. A priori the information about the current situation is introduced
into the model and propagated to obtain the probability of each grid cell (Gc) belonging to socioecological sectors. A posteriori,
information about drivers of GEC is collected and included - as new values or evidences - into several variables of the classifier
model, and the probability values are updated.
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Jiménez, 2012; Nieto and Linares, 2011). In Andalusia, two scenarios are232

considered: A2 and B2 (Méndez-Jiménez, 2012). The A2 scenario describes233

a heterogeneous world, where self reliance and preservation of local iden-234

tity are key. Population increases continuously and economic development235

is based on national decisions (regionally oriented), whilst per capita eco-236

nomic growth and technological change are fragmented and slow (Gasca,237

2014; Solomon et al., 2007). By contrast, the B2 scenario describes a situa-238

tion in which economic development is not important and the environmental239

and socioeconomic problems are solved at local level. This scenario implies240

a slow population increase (Gasca, 2014; Solomon et al., 2007). In our study241

we focused on the A2 scenario - the 2040 horizon scenario for Andalusia,242

since we consider it closer to the current trend of socioecological change.243

The information for the evidences was collected from the Assessment244

of the International Panel on Climate Change (Stocker et al., 2013), from245

national and regional reports (Gasca, 2014; Méndez-Jiménez, 2012; Nieto246

and Linares, 2011), and from the Andalusian Environmental Information247

Network.248

One advantage of BNs is that it is not necessary to include information249

for all feature variables in order to be able to make the prediction (Ropero250

et al., 2014b). Rather, only new information is included as evidences in251

those variables in which we have knowledge about their change. In our case,252

evidences are included for the variables of climate, land use and economic253

sub-models (Table 2). Lithology and Geomorphology are consider stable.254

Whilst no reliable information about social changes is available, no evidences255

have been introduced into these variables (For a detailed explanation of the256

scenario of change, see Appendix B). Once the evidences are introduced,257

they are propagated using an inference algorithm from the sub-models to the258

classifier, updating the distribution of the socioecological sectors in Andalusia259

(Figure 5 ii)).260

3. Results261

3.1. A priori results262

Figure 6 shows the socioecological structure of Andalusia in the current263

situation, which identifies eight different sectors. Several non-parametric hy-264

pothesis test (Chi-square for discrete variables and Kruskall-Wallis for con-265

tinuous variables) were carried out to check if significant differences exist266
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Table 2: Variables in which new evidences are introduced under the scenario of GEC.
Sub-model Variables Appendix
Climate Annual average rainfall; Appendix B.1

Annual average temperature
Land Use Dense woodland; Irrigated cropland; Appendix B.2

Rain-fed cropland
Economy Business Activities Tax in primary sector; Appendix B.3

Business Activities Tax in secondary sector;
Business Activities Tax in tertiary sector;
Tertiary sector employment; Number of
rural hotels; Winter water consumption;

Summer water consumption; Farming units
cattles; Farming units pigs

between these sectors. Using a significance level of 0.05, the tests showed267

that the differences between sectors are significant.268

The sectors are aligned geographically with a southwest to northeast ori-269

entation, following a gradient of increasing altitude from the Guadalquivir270

river basin to the peaks of Sierra Morena and Sistema Bético mountain271

ranges Mountain peaks sector. Figure 7 shows the box plot of certain vari-272

ables, as an example of how this gradient is revealed (i.e. rainfed crops273

surface increase from the mountain peak to the Guadalquivir river.)274

The first sector, called Guadalquivir river covers the river basin area, with275

its gentle geomorphology of rich sedimentary plains, whose climate enables276

an important rainfed agriculture to be practiced. This sector is the one most-277

affected by human activities, containing few natural areas and supporting a278

wealthy population with a high level of education.279

In the foothills of the mountains to the north and south, there are two280

transitional bands of mixed cropland with forestland, subject to cooler, wet-281

ter weather. From the socioeconomic point of view, both areas have signifi-282

cant agricultural activity, but their wealth and structure are different: there283

are fewer urban areas, lower level of education, lower income per capita, and284

a change from agricultural areas to one with a high proportion of natural285

areas (Figure 7).286

The northern transitional band can be differentiated into two sectors:287

• Northern transition, medium socioeconomic sector. Located along the288
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edge of the river basin plain, it is dedicated to agricultural activity289

with a slightly less wealthy population who are educated to a lower290

level than the Guadalquivir sector. This area still contains some areas291

of significant agricultural investment.292

• Northern transition, low socioeconomic sector. Located on the hill-293

slopes of the Sierra Morena, its landscape is woodland with some294

patches of rainfed crops. The main difference with the other northern295

transitional sector is its socioeconomic structure, which corresponds to296

a sparse population of poorer ageing people.297

The differences between these two sectors and the river basin area are298

slight and gradual. By contrast, to the south, the transition band - also299

represented by two sectors- shows greater contrast and clearer differences to300

the river plain:301

• Southern transition, contrast sector. This is characterized by a steep,302

eroded relief, containing contrasting areas and an important livestock303

activity. Close to the river Guadalquivir, its socioeconomy comprises304

a wealthier population with a high agricultural investment. At higher305

elevations in this sector, the population is characterized by higher mi-306

gration rates and the economic variables are more depressed than in307

the previous one.308

• Southern transition, heterogeneous sector. Located in the highlands309

of the Sistema Bético, this sector presents a heterogeneous landscape310

with significant forest cover, as well as areas with degraded natural311

vegetation. Croplands are fewer common than in the lower foothills312

and the population is characterized by ageing and abandonment areas.313

Dotted around within these four zones of the northern and southern tran-314

sition bands are seven patches, which belong to the Irrigated cropland sector.315

These patches have similar characteristics to the sector within they lie, but316

they are principally dedicated to irrigated croplands and reveal industrial,317

rather than agricultural, investment. They also contain a significant propor-318

tion of urban landscape. Despite this, these patches have the lowest income319

per capita and the lowest level of education.320

At the top of the mountains are several local patches, which make up the321

Mountain peaks sector. In the Sierra Morena this sector appears over 400322
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m.a.s.l. whilst in the Sistema Bético, it lies above 500 m.a.s.l., so the weather323

is colder and rained in the last one. However, both zones contain more natural324

landscape (forest and scrubland) with some olive groves in the northern part.325

The geography of these areas comprises an elevated, steep relief, whilst its326

sparse and ageing population is mainly dedicated to subsistence agriculture.327

Finally, the Mediterranean coast sector lies on the South face of the Sis-328

tema Bético foothills, over a mixture of sedimentary, metamorphic, volcanic329

and even karst materials. Its eroded relief is composed of hills, mountains330

and coastal plains. It is a warm sector, the driest one of Andalusia, and its331

heterogeneous landscape includes a high proportion of scrubland and sparse332

vegetation. From the socioeconomic point of view, this sector is mainly ded-333

icated to the primary sector, though contrasts exist between medium income334

per capita and medium educational level to poorly developed areas. It also335

has an important tourism sector.336

3.2. A posteriori results337

Figure 8 shows the socioecological structure of Andalusia under the GEC338

scenario. The number of sectors have decreased to seven. As in the a priori339

situation, Chi-square and Kruskall-Wallis tests were carried out. There are340

significant differences between the sectors a posteriori.341

Under this scenario of change, the socioecological structure of the territory342

indicates three main sectors, oriented southwest - northeast. These three343

sectors contain patches of the four sectors dotted within them (Figure 8).344

The gradient corresponding to altitude from the river to the mountain peaks345

is no longer observed.346

The sector called Woodland in the Sierra Morena foothills now covers the347

Sierra Morena and part of the Guadalquivir river basin, as well as several348

patches in southern Andalusia. It is characterized by woodland and rainfed349

landscape on the eroded slopes of dry areas. From the socioeconomic point350

of view, it is a varied sector with an ageing population and a low level of351

education.352

The next sector is called Woodland in the Sistema Bético foothills. It is353

a continuous area that runs from southwest to northeast through Andalusia,354

comprising woodland with patches of rainfed crops. It corresponds to areas355

that are depressed socioeconomically, similar to the previous sector.356

Among them, some agricultural relic areas are found. They support an357

agricultural society with a high level of education, a positive natural increase358

and tourist activity. There is now the Rainfed cropland sector, comprising359
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Figure 6: Socioecological sectors of Andalusia, a priori results.
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b) Annual average temperature
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Figure 7: Extension of some land use (Rainfed crops and Forest expressed in percentage
of the grid cell), climate (Annual average temperature express in Celsius) and economic
(Income per capita express as a rate) variables in a priori sectors. M.peaks, Mountain
peaks; S.T.Het, Southern transition, heterogeneous; S.T.cont., Southern transition, con-
trast; G.river, Guadalquivir river basin; N.T.med., Northern transition, medium; N.T.low,
Northern transition, low; Med.coast, Mediterranean coast; Irrig., Irrigated cropland.
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several patches within the river basin and the Sistema Bético foothills of360

rainfed agriculture that contains no natural landscapes. In a similar way,361

Woodland-croplands sector is composed of a number of small patches, mostly362

located in the river basin area, containing both natural and crop landscapes.363

The Irrigated croplands sector is composed of several patches dedicated to364

irrigated crops.365

Lastly, two sectors are found with similar characteristics (and also the366

same name) as a priori, namely the Mediterranean coast and the Mountain367

peaks sectors. The Mediterranean coast sector covers the same area as before368

and supports a quite similar socioecological structure. In the same way, the369

landscapes belonging to theMountain peaks sector are still located at the top370

of the mountain ranges, but they occur only in the Sistema Bético whilst371

this sector has almost disappeared in the case of Sierra Morena (Figure 8).372

In order to study the dynamics of the structure of the territory, a confu-373

sion matrix was drawn up to highlight the differences between the a priori374

and a posteriori situation (Table 3). This matrix represents the percent-375

age of each sector in the a priori situation that is included in each of the376

a posteriori sectors. From studying this table, it becomes clear that parts377

of both the northern and southern transitional areas have been incorporated378

into the Woodland in the Sierra Morena foothills and Woodland in the Sis-379

tema Bético mountain foothills sectors (Table 3), with corresponding change380

in landscape to scrubland and degraded vegetation. From the socioeconomic381

point of view, the diversity and heterogeneity of the transition band between382

the river basin and the mountain peaks has been minimized and the variables383

have become more homogeneous.384

Whilst, in the a priori situation, agricultural activity extended over the385

river basin and both mountain foothill areas, under this scenario agricul-386

tural activity has been reduced to a number of small patches. Both Rain-387

fed cropland and Woodland-croplands sectors replace part of the previous388

Guadalquivir river sector. However, the Irrigated crops sector is no longer389

located in the same areas as a priori ; now these occur at higher altitude -390

within the Northern transition, medium socioeconomy (Table 3).391

The Mediterranean coast sector, is a heterogeneous area quite similar to392

the a priori one. From the socioeconomic point of view, they have similar393

characteristics, but the climate under this A2 scenario is warmer and drier.394

Lastly, the Mountain peaks sector covers the same geographical area as a395

priori, but the extent of these areas has decreased. Under the A2 scenario of396

change, the mountain peaks show greater presence of forest and scrublands.397
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Table 3: Confusion matrix showing the percentage of grid cells in common between each
a priori and a posteriori sectors.

A posteriori
Woodland in Rainfed Mountainous Irrigated Woodland Woodland in Mediterranean
Sierra Morena crops peaks crops & crops Sistema Bético coast

A
p
ri
o
ri

Irrigated 14.6 0 1.5 0.9 0 0.2 2.05
crops

Southern
transition 3.4 42.8 0 0 0.5 43.4 2.4
(contrast)
Mountain 8.57 0 87.7 0 0 0 4.8
peaks

Northern
transition, 26.1 0 1.5 88.2 0 0.2 0.7
medium
Northern
transition, 16.6 0 0 0 0 0 0

low
Guadalquivir 25.6 57.1 1.5 10.7 99.5 21 4.3

river
Southern
transition 1.3 0 0 0 0 34.9 0

(heterogeneity)
Mediterranean 3.6 0 7.7 0 0 0.1 85.6

coast
Total 100 100 100 100 100 100 100

The fall in both temperature and rainfall occurs because this sector now398

occurs at higher altitude (in both areas, this sector is found above 600 m.a.s.l.399

in the a posteriori, whilst in a priori corresponded to land above 400-500400

m.a.s.l.).401

4. Discussion402

4.1. HBNs classifier403

Ecological modelling requires new methodological approaches that are404

capable of dealing with the heterogeneity inherent in natural systems, espe-405

cially under the current framework of GEC (Challies et al., 2014). Traditional406

clustering techniques have been extensively applied to solve environmental407

problems (Giménez-Casalduero et al., 2011; Jackson et al., 2012) but in the408

case of detecting socioecological sectors, they would obtain poorer results409

(Ropero et al., 2014a). Firstly, they usually have a limit on the number of410

variables that can be included. The methodology proposed in this paper411

highlights the ability of BNs to manage datasets containing a high number412

of variables and observations providing robust and easy-to-interpret results413

due to the proposed structure. Since it is based on a hierarchical classifier -414

in which the problem is split into sub-problems - the model is able to deal415
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Figure 8: Socioecological sectors of Andalusia, results a posteriori.
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with this really complex task, simplifying the problem in the manner of a416

divide and conquer. In addition, it allows the inclusion of new groups of vari-417

ables into the final classifier, if necessary (i.e. include species distribution418

information as a new group of variables).419

Secondly, the majority of the distances used in traditional unsupervised420

classification methodologies can not deal with both continuous and discrete421

variables in the same hybrid model (Ropero et al., 2014a). It has been demon-422

strated how BNs are able to deal with both discrete and continuous data,423

without the need to discretize the continuous variables (Ropero et al., 2014b).424

In this paper, the same methodology is applied, whether variables are dis-425

crete or continuous, without the need to modify the data or the methodology426

(Sections 2.3 and 2.4).427

Finally, when data are of different magnitudes, (for example, land use428

variables are expressed as percentage, whilst some social variables such as age429

are expressed as a rate or number) some variables could have more impact on430

the model than the rest, and need to be standardized. Since BNs are based431

on probability distribution functions, they can cope with those differences432

without data transformation beforehand.433

4.2. Socioecological structure and dynamics of the territory434

Andalusia is a heterogeneous Mediterranean region, where extensive beaches435

lie only a short distance from high and wild mountain peaks, and where436

large extensions of homogeneous monocrops lie a short distance from het-437

erogeneous subsistence crops. However, there is a clear difference between438

the Mediterranean coast and inland Andalusia (which are separated by the439

Sistema Bético mountain range).440

Under the current situation, in inland Andalusia there is a clear separa-441

tion between socioecological sectors. There is a transition from the lowland442

river basin to the mountain peaks, which is reflected by a gradual change from443

an agriculturally rich society to forestland and rural structure, with high em-444

igration rates, illiteracy and abandonment areas. This heterogeneity implies445

a wide variety of ecosystems which, in turn, supports great biodiversity - An-446

dalusia, being a Mediterranean region, is a global biodiversity hotspot (Myers447

et al., 2000). Inland Andalusia supports a strong economic sector, with op-448

portunities for a huge range of economic activities (tourism, agriculture, and449

industry between others). However, its socioeconomy is mainly based on450

extensive (homogeneous) single crop farms, on which a large percentage of451

the population depend for their livelihood. Under the scenario of GEC, this452
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structure is lost and the diversity and richness of the socioeconomic structure453

will tend to decrease.454

In comparison to the a priori situation, changes in the environmental455

conditions will cause a shift in the optimal growing areas for several crop456

species (including olive, wheat and barley) (Méndez-Jiménez, 2012). For457

that reason, the agricultural diversity would be reduced to a number of relict458

areas and provokes the irrigated crops to shift to a higher altitudes in the459

Guadalquivir river basin area. In turn, this would provoke changes in the460

socioecological structure of the territory. The loss of socioecological hetero-461

geneity would provoke a decrease in the resilience of Andalusian ecosystems462

(Virah-Sawmy et al., 2009), making them vulnerable to any disturbance from463

either natural disaster or socioeconomic and political decisions.464

In contrast, in the case of theMediterranean coast sector, even though the465

GEC scenario implies a decrease in the extent of agricultural activities, the466

socioeconomic characteristics would be hardly affected. This area supports467

an important tourist industry, apart from agriculture. Due to both increases468

in temperature and a longer warm season, tourism might benefit under GEC.469

Coastal areas would see an increase in the tertiary sector (Méndez-Jiménez,470

2012). Under the A2 scenario of change, the socioeconomic heterogeneity471

would help to mitigate the impact on the socioecological structure of the472

territory and the effects of GEC would be less profound than in inland An-473

dalusia.474

As far as the Mountain peaks sector is concerned, our results show an475

increase in the surface area of forest, but further work is needed to study these476

areas, since climate change could provoke the extinction of the species unable477

to climb in altitude in the search for colder conditions (Méndez-Jiménez,478

2012). On the other hand, the warmer conditions would allow an increase in479

population, including tourism, which might provide an opportunity in these480

areas to develop a sustainable touristic activity (Méndez-Jiménez, 2012).481

5. Conclussions482

This work presents a new methodological proposal based on HBNs hi-483

erarchical classifier and applied to identify the socioecological structure of484

a territory. The dynamics of the territory under a scenario of GEC was485

studied. The methodology proposed was able to model the heterogeneity486

of the territory under a probabilistic framework. The hierarchical classifier487

structure splits the problem into several sub-problems, in such a way that488
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they can each be studied in detail; it is also feasible to include a new group489

of variables if necessary. In future work, not only would the most probable490

sub-model group be included in the second level of this hierarchical structure491

but also its probability.492

Under an A2 scenario of GEC, it is demonstrated how Andalusia would493

tend to suffer a loss in its inherent territorial heterogeneity. This might494

involve important losses in environmental and social diversity, as well as495

a decrease in resilience that would leave the territory more vulnerable to496

impacts arising from political and economic decisions or natural disasters.497

Even though, in this paper, this methodology has been applied to a spe-498

cific case, it can be applied to any complex unsupervised classification prob-499

lem.500
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Table A.4: Variables included the Social Sub-Model. P/A, Presence / Absence
Variable Type of Variable Units Thresholds

Rate of school attendance Continuous Rate -
between 14 and17 years old
Population average age Discrete Year 37.9; 40.9
Number of libraries Discrete Number per population P/A

in each municipality
Number of Cinemas Discrete Number per population P/A

in each municipality
Number of private schools Continuous Number per population -

in each municipality
Number of public schools Continuous Number per population -

in each municipality
Health care centres Continuous Number per population -

in each municipality
Number of pharmacies Continuous Number per population -

in each municipality
Rate of iliteracy Continuous Percentage of the -

municipal population
Primary studies Continuous Percentage of the -

municipal population
Secondary studies Continuous Percentage of the -

municipal population
Tertiary studies Continuous Percentage of the -

municipal population
National Emigration Continuous Percentage of the -

municipal population
Foreign Emigration Continuous Percentage of the -

municipal population
National Immigration Continuous Percentage of the -

municipal population
Foreign Immigration Continuous Percentage of the -

municipal population
Natural increase Continuous Rate -
Total population Discrete Population per 25 Km2 474.1; 1320.4

Appendix A. Variables included in the model509

In this appendix variables including in each Sub-Model are shown.510
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Table A.5: Variables included the Economic Sub-Model.
Variable Type of Variable Units Thresholds

Employed population Discrete Rate 39.9; 44.3
Internet facilities Discrete Number per head of population 9.2; 12.8

in each municipality
Number of bank branches Discrete Number per head of population 0.07; 0.09

in each municipality
Unemployment rate Continuous Percentage of the -

municipal population
Business Activities Tax Continuous Rate -

in primary sector
Business Activities Tax Discrete Rate 20.0; 24.4
in secondary sector

Business Activities Tax Discrete Rate 71.8; 78.4
in tertiary sector

Primary sector employment Discrete Percentage of the 16.9; 27.3
employed population

Secondary sector employment Continuous Percentage of the -
employed population

Tertiary sector employment Continuous Percentage of the -
employed population

Number of agricultural Continuous Percentage per -
cooperatives municipal territory

Number of home owners Discrete Percentage of the 80.6; 86.5
total flats in the municipality

Number of rented homes Continuous Percentage of the -
total flats in the municipality

Agricultural investment Discrete Percentage per municipal territory 0.44; 22.9
Industrial investment Discrete Percentage per 1.6; 38.5

municipal territory
Investment in tertiary sector activities Discrete Percentage per 0.01; 8.4

municipal territory
Income per capita Continuous Rate -
Number of hotels Discrete Percentage per 0.6; 2.1

municipal territory
Number of campsites Discrete Percentage per 0.001; 0.08

municipal territory
Number of rural hotels Discrete Percentage per 0.027; 0.23

municipal territory
Winter water consumption Continuous Percentage per -

municipal territory
Summer water consumption Continuous Percentage per -

municipal territory
Farming units bovines Continuous Percentage per -

municipal territory
Farming units ovines Continuous Percentage per -

municipal territory
Farming units goats Continuous Percentage per -

municipal territory
Farming units equines Discrete Percentage per 6.9; 19.47

municipal territory
Farming units pigs Discrete Percentage per 23.7; 320.5

municipal territory
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Table A.6: Variables included the Climate Sub-Model.
Variable Type of Variable Unit

Evapotranspiration rate Continuous mm per year
Annual average temperature Continuous Celsius

Annual average rainfall Continuous mm
Spring number of rainfall days Continuous days
Winter number of rainfall days Continuous days

Summer average rainfall Continuous mm
Winter average rainfall Continuous mm

Table A.7: Variables included the Land Use Sub-Model, expressed as the percentage of
the cell surface area.

Variable Type of Variable
Heterogeneous cropland Continuous

Landscape with scarce vegetation Continuous
Dense Woodland Continuous

Scrubland Continuous
Woodland with scrub Continuous

Woodland with herbaceous vegetation Continuous
Human infrastructure Continuous
Irrigated cropland Continuous
Rainfed cropland Continuous
Water surface Continuous

Table A.8: Variables included in the Lithology Sub-Model, expressed as the percentage
of the cell surface area

Variable Type of Variable Thresholds Variable Type of Variable Thresholds
Amphibolite Discrete 0.001; 0.078 Basic volcanic complex Discrete 0.001; 0.069

Clay with red sand Discrete 0.001; 0.23 Clay with marl Discrete 0.001; 0.25
Clay with limestone Discrete 0.001; 0.09 Clay with dolomite Discrete 0.002; 0.17

Sand Discrete 0.001; 0.42 Sand and marl Discrete 0.001; 0.16
Sand and silt Continuous - Silicaceous sandstone Discrete 0.001; 0.41

Sandstone with marl Discrete 0.001; 0.16 Calcarenite Continuous -
Metamorphosized limestone Discrete 0.001; 0.14 Limestone with dolomite Discrete 0.001; 0.22

Greywacke Discrete 0.001; 0.07 Volcanic complex Discrete 0.001; 0.30
Conglomerates in sand Discrete 0.001; 0.22 Conglomerate in lutite Discrete 0.001; 0.10

Quartzite Discrete 0.001; 0.12 Schist and quartzite Discrete 0.001; 0.12
Schists with gneiss Discrete 0.001; 0.24 Phyllite Discrete 0.001; 0.21

Grabo Discrete 0.001; 0.07 Gneiss Discrete 0.001; 0.13
Granite Discrete 0.001; 0.18 Granodiorite Discrete 0.001; 0.37

Silt with clay Discrete 0.001; 0.48 Breccia in marl Discrete 0.001; 0.13
Marl with limestone Discrete 0.001; 0.20 Marl and gypsum Discrete 0.001; 0.19
Marl with sandstone Discrete 0.001; 0.16 Marly limestone Discrete 0.001; 0.10

Metabasite Discrete 0.011; 0.023 Mica schist Discrete 0.001; 0.28
Marble Discrete 0.001; 0.12 Peridotite Discrete 0.001; 0.18

Calcoschist slate Discrete 0.001; 0.19 Quartzite slate Discrete 0.001; 0.37
Schisty slate Discrete 0.001; 0.36 Greywacke slate Discrete 0.001; 0.49

Volcanic complex Discrete 0.001; 0.69
of Cabo de Gata
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Table A.9: Variables included in the Geomorphology Sub-Model, expressed as the per-
centage of the cell surface area.

Variable Type of Variable Thresholds Variable Type of Variable Thresholds
Badland Discrete 0.001; 0.17 Gully Discrete 0.001; 0.09
Scree Discrete 0.001; 0.022 Structural outlier Discrete 0.001; 0.061

Marl outlier Discrete 0.001; 0.087 Metamorphosized outlier Discrete 0.001; 0.077
Gypsum outlier Discrete 0.001; 0.12 Crested hill Discrete 0.001; 0.19
Eroded hills Discrete 0.001; 0.14 Peripheral depression Discrete 0.0012; 0.23

Piedmont hills Discrete 0.001; 0.096 Structural hill Discrete 0.001; 0.15
Conglomerate hills Discrete 0.001; 0.067 Volcanic hill Discrete 0.001; 0.083
Hill of intrusive rock Discrete 0.001; 0.15 Gypsum hill Discrete 0.001; 0.12

Dissected knoll (outlier) Continuous - Alluvial fan Discrete 0.001; 0.036
Crest Discrete 0.001; 0.044 Cuvette Discrete 0.001; 0.035

Conserved glacis Discrete 0.001; 0.061 Dissected glacis Discrete 0.001; 0.085
River bed Discrete 0.001; 0.045 Colluvia Discrete 0.001; 0.037
Floodplain Discrete 0.001; 0.11 Floodplain Discrete 0.001; 0.10

Former mudflat Discrete 0.001; 0.33 Glacis Discrete 0.001; 0.13
Peneplain Discrete 0.0011; 0.37 Piedmont Discrete 0.001; 0.045

Karstified shelf Discrete 0.001; 0.16 Granite pluton Discrete 0.001; 0.51
Shallow erosion surface Discrete 0.001; 0.11 Seasonal watercourse Discrete 0.001; 0.037

Laminated relief Discrete 0.001; 0.38 Tabletop relief Discrete 0.001; 0.059
Appalachian mountain chain Discrete 0.001; 0.48 Intrusive mountain chain DIscrete 0.001; 0.068
Metamorphic mountain chain Discrete 0.001; 0.077 Conglomerate mountain chain Discrete 0.001; 0.14

Marly mountain chain Discrete 0.001; 0.10 Slate mountain chain Continuous -
Volcanic mountain chain Discrete 0.001; 0.13 Scarcely dissected Discrete 0.001; 0.18

erosion relief
Moderately dissected Discrete 0.001; 0.21 Highly dissected Discrete 0.001; 0.20

erosión surface erosion relief
Peneplanization Discrete 0.002; 0.28 Low terrace Discrete 0.001; 0.072

Terrace Discrete 0.001; 0.029 Medium terrace Discrete 0.001; 0.091
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Appendix B. Information used to define the Scenario of Global511

Environmental Change512

Information to describe the impact of several GEC drivers on different513

sectors of the natural and social-economic environments in Andalusia were514

collected from various sources: the Assessment of the International Panel on515

Climate Change (Stocker et al., 2013), national and regional reports (Gasca,516

2014; Méndez-Jiménez, 2012; Nieto and Linares, 2011), and from the Andalu-517

sian Environmental Information Network. Due to the high heterogeneity of518

the Andalusian relief, the impact of the GEC scenario varied between differ-519

ent areas. This appendix explains these changes in detail.520

Appendix B.1. Climate change521

Climate change is one of the most important and commonly studied natu-522

ral drivers modelled under different perspectives and methodologies (Keenan523

et al., 2011; Rubidge et al., 2011; Quisthoudt et al., 2013). Its interactions524

with land use provoke changes in the structure of both natural and socioeco-525

nomic components through different agents (Anderson-Teixeira et al., 2013;526

Claesson and Nycander, 2013). In Andalusia, the A2 scenario implies an527

increase in temperature (of up to 4 degrees in some locations), and changes528

in rainfall distribution (Figure B.9). Data about the predicted value of both529

temperature and rainfall variables for each grid cell can be obtained from the530

Andalusian Environmental Information Network. These data were included531

as evidences in the Climate sub-model variables; Annual average rainfall and532

Annual average temperature.533

Appendix B.2. Land use changes534

The pattern of land uses supports ecosystems and societies due to the fact535

that any alteration of land use leads to changes in biodiversity, primary pro-536

duction, alterations in soil productivity and the capacity to provide ecosystem537

services to societies (Lambin et al., 2001). In Spain, several reports based538

on information from the International Panel on Climate Change have been539

written to describe the expected change in land uses. Our study used infor-540

mation from the 2040 scenario of land use change (Nieto and Linares, 2011;541

Méndez-Jiménez, 2012). The expected changes include several that relate542

to the distribution of vegetation, both crops and forest species. Figure B.10543

shows the percentage presence of certain species under the current situation544
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a) Annual average rainfall (mm)

Current situation 2040 horizon, A2 scenario

b) Annual average temperature (o)

Current situation 2040 horizon, A2 scenario

Figure B.9: Comparison between annual average rainfall (a) and temperature (b) in the
current situation, and under the 2040 horizon A2 scenario of change.
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and under the GEC scenario. Information was collected from regional re-545

ports (Méndez-Jiménez, 2012) and processed by ArcGIS to transform it into546

5x5 grid information. These new values were included into the model as547

evidences in the following Land use sub-model variables: Dense woodland,548

Irrigated cropland, and Rainfed cropland.549

Appendix B.3. Economic change550

SES are dynamic systems including several socioeconomic drivers that551

affect ecosystems; at the same time, they contain natural drivers affecting552

societies in an iterative process (Cadenasso et al., 2006; Haberl et al., 2006).553

Due to the alteration of natural conditions, several changes are expected in554

the economic and social component of the SES. No reliable information was555

found about changes in social variables, but economic changes were identified.556

Two economic sectors are important in Andalusia. The first is the primary557

sector (livestock and agriculture). Modifications in this sector are reflected558

in the Land use sub-model (as changes to the extent of Rainfed crops and559

Irrigated crops variables). The second is the Tourism sector, which could be560

affected in the future if climate and weather conditions change. Information561

was collected from regional reports (Méndez-Jiménez, 2012) and introduced562

as evidences in the following variables: Business activities tax in primary,563

secondary and tertiary sectors, tertiary sector employment, number of ru-564

ral hotels, winter and summer water consumption, and farming units cattle565

and pigs. Figure B.11 shows modifications of some of these variables as an566

example.567
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a) Dense woodland (percentage of the grid cell)

Current situation 2040 horizon, A2 scenario

b) Rainfed cropland (percentage of the grid cell)

Current situation 2040 horizon, A2 scenario

Figure B.10: Comparison between dense woodland (a), and rainfed cropland (b) in the
current situation, and under the 2040 horizon A2 scenario of change.
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b) Summer water consumption (mm)

Current situation 2040 horizon, A2 scenario

a) Farming units cattle (Livestock units)

Current situation 2040 horizon, A2 scenario

Figure B.11: Comparison between farming units cattle (a), and summer water consump-
tion (b) in the current situation, and under the 2040 horizon A2 scenario of change.

33



References568

Aguilera, P. A., Fernández, A., Fernández, R., Rumı́, R., Salmerón, A., 2011.569

Bayesian networks in environmental modelling. Environmental Modelling570

& Software 26, 1376–1388.571

Aguilera, P. A., Fernández, A., Ropero, R. F., Molina, L., 2013. Ground-572

water quality assessment using data clustering based on hybrid Bayesian573

networks. Stochastic Environmental Research & Risk Assessment 27 (2),574

435–447.575

Anderberg, M. R., 1973. Cluster Analysis for Applications. Academic Press.576

Anderson-Teixeira, K. J., Miller, A., Mohan, J., Hudiburg, T., Duval, B. D.,577

Delucia, E., 2013. Altered dynamics of forest recovery under a changing578

climate. Global Change Biology 19, 2001–2021.579

Basurto, X., Gelcich, S., Ostrom, E., 2013. The social-ecological system580

framework as a knowledge classificatory system for benthic small-scale fish-581

eries. Global Environmental Change 23, 1366–1380.582

Borsuk, M. E., Reichert, P., Peter, A., Schager, E., Burkhardt-Holm, P.,583

2006. Assessing the decline of brown trout (Salmo trutta) in Swiss rivers584

using Bayesian probability networks. Ecological Modelling 192, 224–244.585

Borsuk, M. E., Stow, C. A., Reckhow, K. H., 2004. A Bayesian network of586

eutrophication models for synthesis, prediction, and uncertainty analysis.587

Ecological Modelling 173, 219–239.588

Cadenasso, M., Pickett, S., Grove, J., 2006. Dimensions of ecosystem com-589

plexity: Heterogeneity, connectivity, and history. Ecological Complexity 3,590

1–12.591

Challies, E., Newig, J., Lenschow, A., 2014. What role for social-ecological592

systems research in governing global teleconnections?. Global Environmen-593

tal Change 27, 32–40.594

Chuman, T., Romportl, D., 2010. Multivariate classification analysis of cul-595

tural landscapes: An example from the Czech Republic. Landscape and596

Urban Planning 98, 200–209.597

34



Claesson, J., Nycander, J., 2013. Combined effect of global warming and598

increased CO2-concentration on vegetation growth in water-limited condi-599

tions. Ecological Modelling 256, 23–30.600

Clark, W. C., Dickson, N. M., 2003. Sustainability science: The emerging601

research program. PNAS 100, 8059–8061.602

Cobb, B., Rumı́, R., Salmerón, A., 2007. Bayesian networks models with dis-603

crete and continuous variables. Advances in probabilistic graphical models,604

Ch. Studies in Fuzziness and Soft Computing, pp. 81–102.605

Dearing, J., Wang, R., Zhang, K., Dyke, J. G., Haberl, H., Hossain, M.606

S. Langdon, P. G., Lenton, T., Raworth, K., Brown, S., Carstensen, J.,607

Cole, M. J., Cornell, S. E., Dawson, T. P., Doncaster, C. P., Eigenbrod,608

F., Florke, M., Jeffers, E., Mackay, A., Nykvist, B., Poppy, G. M., 2014.609

Safe and just operating spaces for regional social-ecological systems. Global610

Environmental Change 28, 227–238.611

Duda, R. O., Hart, P. E., Stork, D. G., 2001. Pattern classification. Wiley612

Interscience.613

Elvira-Consortium, 2002. Elvira: An Environment for Creating and Using614

Probabilistic Graphical Models. In: Proceedings of the First European615

Workshop on Probabilistic Graphical Models. pp. 222–230.616

URL http://leo.ugr.es/elvira617

ESRI, 2006. ArcMap Version 10.0. Environmental Systems Research Institute618

(ESRI), Redlands, CA.619

Fernandes, J., Irigoien, X., Goikoetxea, N., Lozano, J. A., Inza, I., Pérez,620
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