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Abstract7

Long time series of wind data can have data gaps that may lead to errors in the subsequent analyses8

of the time series. This study proposes using the wavelet transform as a system to verify that a data9

completion technique is correct and that the data series behaves correctly, enabling the user to infer the10

expected results. Wind speed data from three weather stations located in southern Europe were used to11

test the proposed method. The series consist of data measured every 10 minutes for 11 years. Various12

techniques are used to complete the data of one of the series; the wavelet transform is used as the control13

method, and its scalogram is used to visualize it. If the representation in the scalogram has zero magnitude,14

it shows the absence of data, so that if the data are properly filled in, then they have similar magnitudes15

to the rest of the series. The proposed method has shown that in case of data series inconsistencies, the16

wavelet transform can identify the lack of accuracy of the natural periodicity of these data. This result can17

be visually checked using the WT’s scalogram. Additionally, the scallograms provide valuable information18

on the variables studied, e.g. periods of higher wind speed. In summary, the wavelet transform has proven19

to be an excellent analysis tool that reveals the seasonal pattern of wind speed in periodograms at various20

scales.21
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1. Introduction24

The scarcity of fossil fuels and the environmental concerns of climate change related to their use have25

contributed to the development and use of the two most important renewable energies in the world, i.e.,26

solar and wind energy, being wind energy one of the most widespread in the world, depending on availability27

[1, 2]. Each MWh of wind energy prevents the emission of at least 500 kg of greenhouse gases [3, 4, 5], and28

since it was first developed in the 1980s, wind farms have experienced a worldwide increase of more than29

1500%, reaching a total installed capacity of 432 GW by the end of 2015 [6, 7].30

Wind energy production is related to the quality and quantity of the wind speed data [8]. The quality31

depends on whether the data set is reliable and uniform, while the quantity is related to the data recording32

time which is usually shorter than the lifetime of the structure of the wind generator and is useful for33

modelling the worst wind load case expected on the structure during its service life [9]. For these reasons,34

the development of wind energy requires better understanding of the collection of wind speed time series35

[10].36

Energy models based on environmental data often require a full time series of meteorological data, e.g.37

wind speed, so reconstruction of missing data is a key issue in the functionality of these models. It is not38

unusual for weather stations to fail, and therefore techniques are needed to fill the gaps in the data series to39

use them as input data in the models. Several approaches have been pursued by researchers, first of them is40

using the same weather station: interpolation using classic statistical models as Linear Regression [11], Auto41

Regression [12], or Auto Regression Integrate Moving Average [13]. Sometimes for extreme events different42

types of statistical distributions are used such as: Gumbel, Exponential, Gamma, Normal or Lognormal43

[14]. Another approach is to use data from nearby stations. So, where data from several neighboring44

weather stations are interrelated, as example deterministic methods: trend surface analysis (TSA), the45

inverse distance weighting (IDW) [15, 16], the spatial regression test (SRT) [17], local polynomial (LP) [18],46

thin plate spline (TPS) [19]. Another group of methods are the geostatistics ones [20]: kriging (provides47

a solution by taking account of the spatial correlation), ordinary kriging (assumes the mean is unknown,48

focuses on the spatial component and uses only the samples in the local neighborhood for the estimate),49

universal kriging (assumes the presence of a trend in average values across the study area) or cokriging50

(involves more complicated calculations than kriging and the detailed principles are well explained by [21]).51

Wind speed is a random meteorological phenomenon that changes with geographic location and time of52

day, month, year, etc., and whose trend in time and space is difficult to predict [22]. The fast Fourier trans-53

form (FFT) is widely used to assess the frequency content of the time series of wind speed data and provides54

the power spectral density (PSD) [23]. This technique is used to investigate the complicated properties55
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associated with the distribution between the frequency (Hz) and magnitude of the power spectrum (dB).56

However, most signals, including geophysical time series such as average wind speed, are complex and are57

considered non-stationary processes because of their many non-stationary (transient) characteristics, such58

as drift, sudden changes, event starts and ends. These characteristics are usually the most important part59

of the signal and need to be analysed in order to understand the physical phenomena hidden behind the sig-60

nal [24]. FFTs are useful for extracting frequencies from a stationary or transitory signal, as well as their61

predominance in the entire time series (for example, wind speed), in order to investigate the properties asso-62

ciated with the distribution between the frequency (Hz) and magnitude of the power spectrum. It produces63

averaged spectral coefficients that are time independent and useful for identifying dominant frequencies in a64

signal; however, it cannot capture wind speeds that vary over time. Therefore these signals, which in nature65

have irregular or time-limited characteristics, are considered non-stationary. FFT may not be practical or66

efficient for wind data. In addition, the FFT is limited by the fact that a single window analysis cannot67

detect signal characteristics that are much longer or much shorter than the window size [25]. Short-Time68

Fourier Transform (STFT) was developed in attempt to analysis the non-stationary signal. However, using69

STFT with narrow window to capture high temporal resolution leads to poor frequency resolution [26]. The70

WT becomes a powerful analyzing tool for stationary, non-stationary, intermittent time series, especially,71

to find out hidden short events inside the time series [27, 28]. Because of its advantages, the WT have been72

applied in the various fields such as wind data analysis [29, 30]. Therefore, a representation is required that73

can follow the spectrum of the signal as it varies with respect to time, this is the case of the WT [31].74

Wavelet transform (WT) was first introduced and formulated by Morlet et al. in 1982 [32], and Gross-75

mand and Morlet [33]. Wavelets are functions that satisfy certain mathematical requirements and are used76

for the representation of data. Wavelets are very suitable for data approximation with variations or sudden77

discontinuities [33]. The basic idea of wavelets is to analyze functions according to scales [34]. In wavelet78

analysis, the scale used to analyze the data plays a special role. Algorithms using wavelets process data at79

different scales or resolutions [35]. If a signal or function is observed using a wide window, small details are80

not observed; on the other hand, if the window used is narrow, then they can be observed. In parsing by81

wavelets, those windows automatically adjust when the resolution changes [36]. As with the Fourier trans-82

form, the WT uses internal products to measure the similarity between the original signal and an analysing83

function; specifically, a correlation is made between the original signal and the chosen wavelet [37, 38]. The84

wavelets have been successfully applied to different studies of meteorological and climatological series to85

analyse their time scales of variability, underlining the advantages of this technology compared to Fourier86

transform analysis. The most interesting difference between the two transforms is that the size of the window87
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in the WT varies according to the scale, while in the FFT the window is fixed. This allows a better location88

in time-frequency. Another difference is the base of functions in FFT are always the same while in the WT89

it is possible to choose different wavelet mothers that will originate different bases of functions. This allows90

to choose a suitable base according to the problem under study. In this way, signal analysis using wavelets91

bases provides immediate access to signal information that remains hidden from other analysis tools. In92

summary, these functions can slide through the time variable and change their length such that large win-93

dows are used for capturing phenomena at low frequencies and short windows for high frequencies. It has94

been seen that wavelets are a mathematical tool to decompose functions hierarchically. The most widely95

known applications are: data compression [39, 40]; flexible representation of multi-resolution curves [41],96

this is of special application in diagnosis in medicine for radiological issues [42]; or retrieve three-dimensional97

surfaces from unknown objects in applications such as visual inspection [43], stand-alone navigation or robot98

control [44]. Therefore, the application areas of the transformed wavelet are so varied and, although most99

of the wavelet’s theory has already been developed, new applications can still be searched for. This makes100

wavelets a useful and interesting tool.101

Symmetry and orthogonality are among the characteristics of the families of wavelets that stand out102

because these increase the computing speed, which is beneficial. While the Fourier transform is used to103

find the frequency spectrum of a signal assumed to be stationary, the WT is suitable for non-stationary104

signals because it breaks down the signal on a time-frequency grid at different resolutions which results in105

a technique known as multiresolution analysis [45]. The WT breaks down a time domain signal f(t) into a106

function with scale variables a and with shifting or translation variables b [46].107

The wavelet analysis method allows the use of long time intervals where more precise low frequency108

information is needed and of shorter intervals where high frequency information is needed [47, 48]. In109

wavelet analysis, a specific wavelet function that is most similar to the desired function is selected, and the110

changes from one time period to the next time period of the function can be defined by matching a wavelet111

function and changing the scales and positions of that function [49]. Thus, with this method it is possible to112

capture the characteristic of the wind speed variation that changes over time based on auto-calculation and113

changes in seasonal patterns [50]; it can also be used to study the efficiency of a wind park [51]. The WT114

provides a revealing snapshot of the time-frequency localization that enables understanding of the inherent115

characteristics of wind [52, 53, 54].116

Wavelet techniques have shown their applicability in the study of a signal generated from a time series117

of the average wind speed, for the extraction of information related to its frequency components that vary118

over time [55, 56]. By applying the WT on the wind signal, the temporary interactions of its frequency119
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components are detected, in contrast to the FFT, which is not entirely appropriate for non-stationary signals120

such as wind speed [37]. In addition, with the time-frequency plane of the wavelet scalogram, the information121

in the time and frequency domain is more detailed in comparison to the FFT [57], which provides almost122

no signal information [58].123

Furthermore, weather stations may suffer measurement interruption due to sensor malfunction [59, 60,124

61], an occurrence that is worsened for stations located in isolated, rural areas, such as those studied in125

this research. This fact needs to be properly resolved because otherwise it complicates the analysis and126

the quality of the obtained results. Some authors use signal processing applications such as WT and FFT127

for spectral estimation or reconstruction of the signal [62] using these mathematical techniques, it is even128

possible to predict faults based on previous sets of stored data [63, 64, 65]. So, techniques such as Weibul129

or Raleigh could also be used as an alternative method for it [66, 67]. Scripts implemented in MATLAB130

and that use the wavelet toolbox, and FFT among other functions, are frequently used to view the results131

[68, 56].132

Therefore, the lack of data from a time series is a key factor in the subsequent analysis of time series133

data [69]. Given the usefulness of the wavelet transform for the analysis of wind time series, the objective of134

this work is that once the lost wind data are completed the WT ensures that these do not adversely affect135

seasonal patterns.136

2. Material and methods137

2.1. Available data138

This study was carried out using the average wind speed data recorded every 600 seconds (10 minutes),139

over a period of 11 years, from January 1, 2002 until December 31, 2012. The data were obtained from weather140

stations located in the province of Almeria, called ”Collado de Yuste” (37.22633N, 2.430768W, 1866 masl),141

”Solana del zapatero” (37.31286N, 2.430768W, 1116.1 masl) and ”Calar Alto” (37.22099N, -2.548748W, 2151142

masl), hereinafter referred to as CY, SZ and CA (the latter with data only until August 2010), respectively.143

These areas are characterized by a dry Mediterranean climate, and the region is used as reference because the144

wind characteristics that reach lower altitudes are known. In addition, based on the data obtained in Collado145

de Yuste, the average wind speed over 11 years is 4.51 m/s, which makes Collado de Yuste a favourable146

candidate location for the installation of wind farms (Figure 1). This study area was selected because it147

has three nearby stations with a large amount of data, which may make it possible to check the proposed148

methodology.149
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Figure 1: Locations and average wind speed at the Collado de Yuste, Solana del zapatero and Calar Alto weather stations in

Almeŕıa.
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Figure 2: Proposed methodology

2.2. Methods150

Figure 2 summarizes the proposed method. First, a scalogram based on the WT to detect the relevance151

of the potential lost data is developed. Subsequently, an interpolation is performed using a method that152

uses data from nearby stations, first verifying the correlation coefficient between nearby stations and the153

station to interpolate. Lastly, the WT is applied to the new data set to test the data validity.154

2.2.1. Continous wavelet transform CWT155

The WT can be studied using two approaches: the continuous wavelet transform (CWT) [70], in which156

the variables a and b take continuous values, and the discrete wavelet transform (DWT), in which dyadic157

and orthogonal scales are used, greatly reducing the redundancy of the CWT. The DWT is particularly158

useful for noise reduction and data compression, while the CWT is best for feature extraction [71]. For this159

reason, this paper only discusses CWT [72], which is described by equation 1, where f(t) is the signal to be160

analysed, Ψa,b(t) is the mother wavelet scaled by the frequency factor a and localized by the time factor b161

and Ψ∗ is the complex conjugate of the function Ψ(t).162

CWTf (a, b) =
1√
|a|

∫ ∞
−∞

Ψ∗
(
t− b
a

)
f(t)dt where a > 0 and −∞ < b <∞ (1)
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The normalization factor 1√
|a|

ensures that for all a and b, the energy remains the same. By definition, the163

CWT is calculated by changing the scale of the window and shifting the window in time; it is then multiplied164

by the signal that is going to be transformed and integrated over all times. The procedure provides a good165

frequency resolution for low frequencies, but the time resolution is poor. For higher frequencies, the time166

resolution is good, but the frequency resolution is poor [73].167

More specifically, the Morlet wavelet has proven to be a good choice for the analysis of intermittent168

oscillations of the average wind speed found in a time series [74] (see Equation 2). It is used specifically in169

the analysis of meteorological time series, and we use it to analyse the percentage of energy distribution of170

the scalogram. Using the Morlet wavelet with w0 > 5, a good balance is provided between frequency171

localization and time localization [75, 76].172

Ψ0(n) = π
−1
4 eiw0ne−

n2

2 (2)

where w0 is the dimensionless frequency and n the dimensionless time.173

2.2.2. Wavelet scalogram174

The scalogram is a visual method for showing the time and frequency localization of the wavelet coeffi-175

cients. It is represented by three axes: the x axis represents time, the y axis represents the scale, and the176

z axis represents the value of the wavelet coefficient [73], which is represented in Figure 3 using distinct177

colours. The scalogram is used to detect the most representative scales or time instants of a signal, namely,178

the scales or time instants that contribute the most to total wind energy [77] of the wind speed time series179

that indicates the spectral sensitivity [25], and in our study, provides a visual representation of the energy180

distribution of the wavelet coefficients [73]. In contrast to the power spectrum, the scalogram simultaneously181

reveals the time and frequency information of the wind signal [58] and shows the duration of each frequency182

component that occurs periodically, quasi-periodically and even randomly.183

In signal processing, a scalogram is a method of visually showing a wavelet transform. The scalogram of184

a time series x in a given scale a > 0 is defined in Equation 3 as:185

S(x) = ‖Wax(b)‖ =

√√√√∣∣∣∣∣
∫ ∞
−∞

x(t)Ψ

(
t− b
a

)2
∣∣∣∣∣ da (3)

where the energy of Wax(b) represents a scale of a. The scalogram allows detection of the most represen-186

tative scales (or frequencies) or time instants of a signal, namely, the scales or time instants that contribute187

most to the total energy of the signal [68, 77]. The enveloping curve shown at the bottom of the scalogram188
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Figure 3: The WT power spectrum of wind speed of CY with original data

is identified with a white dashed line. The estimates within the cone of influence show regions in which the189

wavelet coefficient is reliable [78].190

2.2.3. Data interpolation techniques191

2.2.3.1 Interpolation using data from the same station192

It can be assumed that the series of daily averages, obtained from the average of all the data available for193

each selected day, should allow the completion of the series. When a gap is detected, the fragment of the194

average series is scaled and adapted to the initial and final values. These new interpolated values replace195

the missing values in their same positions, as shown in Figure 4.196

2.2.3.2 Interpolation using data from nearby stations197

When reliable data from nearby stations are available, the lost data from the studied station, in our case,198

station CY (see Figure 1) are completed using Equation 4199

Ci =
1

N

i=N∑
i=1

αiAi (4)
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Figure 4: Interpolation of lost data from the same station

where Ci indicates the lost data to be generated, for a specific date and time; Ai indicates the reference200

data from a nearby station i, for a specific date and time; N indicates the number of locations with existing201

data for a specific date and time; αi indicates the weighting coefficient.202

The coefficient α is calculated as the annual median rate of the values of that year for the studied station203

in relation to reference station i. The median is chosen instead of the average because the median is less204

affected by outliers and skewed data.205

3. Results206

Figure 3 shows the scalogram obtained by applying the proposed CWT methodology to all the original207

data recorded from the studied station CY. A periodic pattern can be seen in areas where there is data, and208

in areas without data there are homogeneous dark blue bands. The most significant data losses are seen in209

2003 (Year 1 in the scalograms) and in 2009 (Year 7), which represent 2.27% and 5.84% of the total data210

from the 11 years recorded at that station (CY).211

The 62,108 values of lost data from station CY were interpolated with data from the same station, and the212

CWT was then applied. In the scalogram generated from this new set of data (Figure 5), the interpolated213

areas can be seen easily (see Years 2003 and 2009). Specifically, there is an unnatural periodicity over the214

11 years, especially in the periods of time with lost data (Figure 3). Therefore, the procedure to interpolate215

these values is not entirely appropriate. We believe the reason for this effect is that the average of the216

data is always more centred than the individual values, and therefore, it does not reproduce the individual217

behaviour of each data point.218
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Figure 5: The WT power spectrum of wind speed of CY with interpolated data

Because the interpolation of data with values from the same station is unacceptable, a methodology based219

on the availability of data from nearby stations is proposed. To do this, it is first necessary to check if there is220

a good correlation between the stations. For the three stations studied, 2006 (Year 4 in the scalogram) was221

chosen because the percentage of lost data for all stations is low. The analysis of the normalized cross-222

correlation of the average wind speed between stations CY-SZ (Figure 6a) and CY-CA (Figure 6b) shows223

that the Pearson correlation coefficient is close to 1 for both sets of stations; for CY-SZ, the correlation224

coefficient is 0.8075, and for CY-CA, it is 0.8979. This means that the data sets for stations SZ and CA are225

closely related to those of CY; in addition, the lag is zero (Figure 6) because the three stations are located226

near each other (Figure 1) in this case of study. The mean distance is 14 km, with a minimum of 9 km and227

a maximum of 18 km.228

In addition, the monthly correlations between stations CY-SZ and CY-CA was analysed, and it was found229

that the Pearson coefficient is also close to 1 (Table 1) and that station CA has a stronger relationship with230

station CY. Next, the lost data from station CY were interpolated and the weighting coefficients for each year231

were calculated using the 52,560 samples from each year. Table 2 shows the yearly median rates obtained.232

The median was used to relate the stations because it is less sensitive to outliers or biased values. The233

analysis was carried out for complete years, but the data series of the CA station only reaches until August234
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Figure 6: Cross-correlation of the 2006 values from Collado de Yuste station with a) Solana de Zapatero and b) Calar Alto

2010 so, from that moment there is no relationship of CY with CA. The CWT was applied to the completed235

data for station CY, and the scalogram shown in Figure 7 was obtained. The results obtained show a236

constant and natural pattern, this time with periodicity and continuity over the 11 years.237

4. Discussion238

Figure 3 reveals that the scalogram shows zero magnitude between 2008 and 2009 due to the lack of239

data. Once the data are filled with the right technique (see Figure 7), the magnitudes of the scalogram are240

different from zero and present values similar to the rest of the previous data series. Figures 8 and 9 are241

obtained by applying the FFT to the original data and the new dataset of station CY, respectively, with242

the PSD (power spectrum density) represented on the Y-axis in logarithmic scale and the frequency (Hz)243

on the X-axis, also in logarithmic scale. The sampling rate is fs = 1
T ≈ 0.0017Hz because each sample was244

recorded at 10-minute intervals. Figure 8 shows that the resulting cycles do not correspond to a natural245

cycle which are summarized in Table 3. Figure 9 shows how the natural cycle’s patterns of the completed246

series are the expected, e.g. 24 hours, 7 days, 28 days, or 356 days. Now with the correct data verified247

by this technique, wind forecasts can be performed and used for instance for the placement of wind farms248

where wind data are indispensable for their study [79]. It is shown that the peak of year cycle is varied to249

401 days, this is caused by the loss of 3% of the data in the total of the 11 years. Therefore a data loss of250

2.5% can give an error of 9% in the computation of an annual cycle. Then a threshold of data loss greater251

than 2.5% gives unacceptable results for using the FFT technique.252

Because the FFT is not sensitive to the temporal variation of wind speed, the WT can be used for this time-253

frequency analysis, as shown in Figure 10. By using the scalogram, it is possible to reveal the areas with most254

energy, represented by a colour scale according to the magnitude value, which are those that have significant255

oscillations with annual periods. The upper (11.5 µHz) and lower (0.0317 µHz) horizontal bands demarked256
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Pearson Coefficient

Month CY with SZ CY with CA

January 0.7789 0.7804

February 0.8636 0.8487

March 0.8393 0.9237

April 0.7616 0.9225

May 0.7951 0.9334

June 0.8440 0.9115

July 0.8316 0.9308

August 0.8236 0.9057

September 0.8358 0.9271

October 0.7922 0.9146

November 0.7234 0.8947

December 0.8430 0.9041

Table 1: Pearson coefficient for station CY for 2006

Median rate

Year Median CY/ SZ Median CY/ CA

2002 2.6250 0.8424

2003 2.8750 0.8038

2004 2.7222 0.8038

2005 2.5000 0.8193

2006 2.6429 0.8027

2007 2.4348 0.7836

2008 2.3529 0.8038

2009 2.7500 0.8010

2010 2.9286 -

2011 2.8500 -

2012 2.7857 -

Table 2: Median rate (2002-2012)
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Figure 7: The WT power spectrum of wind speed of the new CY containing data aggregations

Figure 8: Original values of wind speed PSD for CY (2002-2012)
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Figure 9: New data set of wind speed PSD for CY (2002-2012)

Frequency units Cicle

365.00 days 1 year

182.50 days 1/2 year

91.27 days 1/4 year

28.08 days Moon cycle

6.96 days 1 Week

24.07 hours 1 day

12.05 hours 1/2 day

8.02 hours 1/3 day

6.02 hours 1/4 day

Table 3: The main cycles (Figure 9) of the average wind speed obtained with the new dataset for station CY
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Figure 10: Highlights in the main activities on the windspeed scalogram

with horizontal dashed lines represent the periodicity during a day and a year, respectively. The vertical257

red lines are the time intervals with most activity, fluctuating from April to June, and from September to258

November during the eleven years with frequencies ranging between 1 and 8 µHz. Wind speed changes are259

negligible between the months of December and March, depending on the year. The highest wind speeds260

are also demarked with dashed squares in the months of December 2002 to January 2003, November to De-261

cember 2005, February to March 2006, December 2006, March to May 2008, September to December 2008,262

November 2009 to January 2010, and October 2010 to January 2011.263

5. Conclusions264

The interpolation of lost wind speed data of a weather station using data obtained from the interpolation265

of data from other stations can lead to incorrect results that are not easily detected. The behaviour of wind,266

as well as the cycles and periods of its cycles, are not easy to visualize in graphs. This complexity is partially267

solved by using the FFT that details the cycles; but this technique does not help if the data series is268

incomplete. A data loss of 2.5% can give an error of 9% in the computation of an annual cycle. In this269

case, it is necessary to complete the lost data using an interpolation technique. The missing results can be270

seen using the scalogram of the WT, and if these results are completed using data from the station itself,271
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the resulting periodicity is not natural. When the data have been interpolated in a satisfactory manner272

using data from nearby stations, as demonstrated by their correlation coefficient, the scalogram shows the273

periodicity of the data with an apparent naturalness. Therefore, the use of the WT and its representation274

through scalograms allows detecting the validity of the interpolation of lost wind data. In addition, the275

scalograms provide additional information on the variables studied, for example, the periods of highest276

intensity. As a general conclusion of this study, the WT has proven to be a time and frequency analysis tool277

that reveals the seasonal pattern of wind speed in periodograms at various scales.278
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