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Abstract

The calculation of power flow in power systems with the presence of harmonics has been properly studied

in the scientific literature. However, power flow calculation considering interharmonic components is still

an open question. Traditional methods based on the IEEE1459 standard have proven to be valid and

accurate only for linear and sinusoidal systems, but have been criticized for non-linear and non-sinusoidal

systems because they are not able to explain correctly the current and voltage interactions beyond the active

power. This paper proposes the use of a novel mathematical framework called geometric algebra (GA) to

study the power flow considering the interaction of current and voltage harmonics and interharmonics. The

use of GA enables the precise determination of the direction and magnitude of the total and single active

power flow for each component, as well as other power elements related to the non-active power due to cross

interaction. Moreover, this paper makes a novel contribution to the definition of interharmonics in geometric

algebra space that has not been done before. To test the validity of the method, both linear and non-

linear circuits are proposed and solved by applying voltages and currents with harmonic and interharmonic

components. The results obtained show that power flow can be analyzed under the prism of the principle

of energy conservation (PoCoE) in a way that allows a better understanding of the power spectrum due to

the interaction of harmonics and interharmonics of voltage and current.
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1. Introduction

The proliferation of electronic devices has increasingly led to poor power quality in the electricity supply

[1]. One of the most commonly used parameters for measuring power quality is the waveform distortion of

voltage and current [2]. This waveform can be affected by the presence of spectral frecuencies other than the
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50/60 Hz fundamental component. These spectral components can be integer multiples of the fundamental

(harmonics) or not (interharmonics), depending on various factors such as the type of installation, receivers

or class of supply. If they are not integer multiples, IEC 61000-2-1 defines them precisely as ”Between the

harmonics of the power frequency voltage and current, further frequencies can be observed which are not

an integer of the fundamental. They can appear as discrete frequencies or as a wide-band spectrum” [3]. A

particular case of interharmonics are the so-called subharmonics, i.e. spectral components with a frequency

lower than the fundamental and which is not an integer multiple of it. The main causes for the appearance

of interharmonics are usually two: on the one hand, the random change in the magnitude of the value of the

voltage or current or the phase angle causes the appearance of intermediate spectral effects such as picket

fence or spectral leakage that lead to the generation of fake interharmonic; on the other hand, the massive

use of non-linear loads, and especially those that interact with true interharmonic power systems, such as

ship propulsion systems, power inverters between different frequency systems, wind turbines, etc [4]. This

article will focus on the study of true interharmonics, i.e. interharmonics of known origin caused by real

devices.

Despite the clear interest in power quality [5], and the large number of studies of the influence of

harmonics on power grids, there has not been much attention paid to the study of interharmonics, so

it is necessary to look deeper into the causes that provoke them, as well as the consequences they have

[6, 7]. Currently, they are not a real or compelling problem, but it is expected that in the future they

may become so, therefore it is necessary to pay attention to this problem [8]. For example, Ravindran

and Bollen [9] investigates the existence of interharmonic emissions from an MPPT driven grid-connected

PV inverter to identify their severity and persistence. Kim et al. [10] also talk about the impact of

interharmonics on offshore electrical systems and how interaction with other harmonics can cause serious

vibration problems that cause systems to shut down. For this, it is essential to use powerful and well-

founded mathematical circuit theory analysis tools. So far, the main analysis tool has been the application

of Fourier analysis, and its FFT algorithmic implementation [4]. Other techniques such as wavelets also

make an interesting contribution [11] when studying the interaction between voltage and current so that

power flows can be clearly established. Kim et al. [10] propose the use of the cross power spectrum technique

for interharmonic power analysis to determine real and reactive power flows. On the other hand, Petrovic

[12] reviews undersampling methods for voltage and current signals with both harmonics and interharmonics

in order to obtain active power measurements.

Geometric Algebra or Clifford Algebra has successfully been used in several scientific disciplines such as
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engineering, physics or computer science achieving excellent results [13, 14]. In particular, it has proven to be

a powerful and flexible tool for representing the flow of energy and power in electrical systems [15, 16]. Some

researchers have proposed the use of Clifford’s algebra as a mathematical tool to address the multicomponent

nature of power in non-sinusoidal contexts [17, 18, 19]. The concept of non-active, reactive or distorted

power acquires a meaning that is more in line with its mathematical significance, making it possible to

better understand energy balances and to verify the principle of energy conservation. The concept of

multi-component power within the scope of geometric algebra [20] is used in this article to demonstrate its

feasibility for determining the net power flow in a non-sinusoidal electrical circuit, the direction and sense of

such power, as well as its use for calculating the geometric or net power factor defined as the ratio between

the active power and the norm of the multivector power. This paper also proposes a new extension to Castro-

Núñez’s theory [15, 16, 20], which has not been published previously, so that it takes into consideration the

coding of interharmonics in space GN . Thereby, it is possible to conveniently study the interactions between

fundamental, harmonic and interharmonic components leading to different power components, while taking

into account their senses, i.e. whether they are powers flowing from the source to the load or vice versa.

Some specific applications in power systems have been already found, such as passive filtering [21]. In order

to validate the theory presented in this paper, three cases of study are proposed where the circuit theory

based on GA is applied to linear and non-linear loads.

The rest of the paper is structured as follows: Section 2 summarizes the theoretical basis of interhar-

monics; Section 3 introduces the analysis of electrical circuits by GA and the new formulation applied to

interharmonics; Section 4 presents the results obtained in three case studies; Section 5 presents the main

conclusions of this work.

2. Interharmonic basics

The harmonic component concept emerges from the application of Fourier analysis to periodic time

signals. Through this technique, it is possible to reconstruct any periodic signal based on the sum of sine-

type components. For example, if you have a voltage signal v(t) (see Figure 1) that is periodic with period

T , it is possible to perform the Fourier series decomposition according to

v(t) = a0 +

∞∑
n=1

an cosnωt+

∞∑
n=1

bn sinnωt =

∞∑
n=0

cne
jnωt (1)

where ω = 2π
T , n is an integer and the coefficients are
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Figure 1: Power signal waveform with harmonics and interharmonics
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a0 =
1

T

∫ T

0

v(t)dt

an =
2

T

∫ T

0

v(t) cos(nωt)dt

bn =
2

T

∫ T

0

v(t) sin(nωt)dt

cn =
1

2
(an − jbn) =

1

T

∫ T

0

v(t)e−jnωtdt

The discrete implementation of the Fourier Transform in the digital domain is based on the Discrete

Fourier Transform (DFT):

X(fk) =
1

N

N−1∑
n=0

x(tn)e−j2πkn/N (2)

where fk = k
TsN

= k
T . The above equation carries the implicit assumption that the signal is repeated

every N samples, i.e. it contains a period T . If a higher number of samples is chosen, so that there are p

periods contained in the N samples, then the spectral resolution will increase according to the expresión

∆f =
1

pT
(3)

Thus, it is possible to increase the precision when it comes to detecting the possible interharmonics that

may exist in a signal, whatever its origin is (real or fake). For example, for a fundamental frequency signal

of 50 Hz, you can choose a sample length equivalent to 10 periods T , so the frequency resolution would

be ∆f = 50/10 = 5 Hz. If there are interharmonics multiple of 5 Hz, they can be detected by the DFT.

Naturally, the greater the number of samples, the more options there are to capture interharmonics precisely,

but with the added cost of finding variations in the amplitude of the signal, which will inexcusably cause the

appearance of other interharmonics that are not due to phenomena typical of electrical equipment. In any

case, the application of the DFT allows us to obtain the coefficients of both harmonics and interharmonics

to represent a voltage or current signal in the frequency domain. Thanks to these coefficients, in the next

section it will be demonstrated the possibility of carrying out a transformation to the geometric space where

it is possible to operate and obtain the power flows that arise as a result of the interaction between the

different harmonics and interharmonics.
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Figure 2: Representation of a bivector a ∧ b. Note that the classical vectorial product a × b is also represented as the
perpendicular vector to plane formed by a and b.

3. Geometric algebra applied to harmonics and interharmonics

Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century. Unfortu-

nately, their theory did not receive so much attention until its impulse by Hestenes and others [13, 14, 22].

Traditional concepts such as vector, spinor, complex numbers or quaternions are naturally explained as

members of subspaces in GA. It can be easily extended in any number of dimensions, being this one of its

main strengths. Because these are geometric objects, they all have direction, sense and magnitude. The

basic concepts are widely explained in [23, 21, 16] but the most important are reproduced here for the sake

of completeness. One of the core concepts in GA is the geometric product between vectors a = α1e1 +β1e2

and b = α2e1 + β2e2

ab = a · b + a ∧ b (4)

that is, the geometric product is a linear combination of the internal and external product. It can be

seen how the result is made up of a scalar and a bivector, resulting in the so-called multivector.

A = ab = 〈A〉0 + 〈A〉2 = (α1α2 + β1β2) + (α1β2 − β1α2)e1e2 (5)

〈A〉0 is the scalar part and 〈A〉2 is the bivector part. A bivector is a novel concept introduced by

geometric algebra and does not exist in vector calculus. It is the result of the external product of two

vectors producing a plane with direction and sense, exactly as a vector would have it. Its value is equal to

the area enclosed by the parallelogram formed by the vectors (see Figure 2). Like vectors, a bivector can be

written as the linear combination of a base of bivectors.
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Based on the transformation given by Castro-Nuñez [16]

ϕc1(t) =
√

2 cosωt ←→ e1

ϕs1(t) =
√

2 sinωt ←→ −e2

ϕc2(t) =
√

2 cos 2ωt ←→ e2e3

ϕs2(t) =
√

2 sin 2ωt ←→ e1e3

...

ϕcn(t) =
√

2 cosnωt←→
n+1∧∧∧
i=2

ei

ϕsn(t) =
√

2 sinnωt ←→
n+1∧∧∧
i=1
i 6=2

ei

(6)

we can transform the Fourier spectrum to GA domain, GN . For example, consider the voltage waveform

u(t) = 230
√

2 sinωt+ 110
√

2 sin 3ωt

following the proposed transformation in (6), the voltage becomes

u = −230e2︸ ︷︷ ︸
〈u〉1

+ 110e134︸ ︷︷ ︸
〈u〉3

(7)

In equation (6), every integer multiple of sine and cosine has a unique translation to a base k-vector, but

there is no correspondence for interharmonics components, i.e., there is no way to transform interharmonics

from the frequency domain to GA. One of the main contribution of this paper is to provide new rules to

complete the geometric algebra theory applied to electrical circuits. Let us suppose we have an interharmonic

uint(t) = U
√

2 coshωt, where 1 < h < 2, i.e., h is between fundamental component and 2nd harmonic and
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it is clear that h 6∈ N. The transformation is as follows

cos(hωt)←→ e24 (8)

If other interharmonics exists in the interval [1, 2], then terms like e25, e26, etc will arise. In general, if

k interharmonics, pk, exist between n and n+ 1, the transformation is as follows

Xcnpk =

(
n+1∧
i=2

ei

)
e(k+n+2)

Xsnpk =

n+1∧
i=1
i 6=2

ei

 e(k+n+2)

(9)

where subscript c means cosine and s means sine transformation, respectively.

Once voltage and current can be represented in the geometrical domain, it is possible to define a new

power concept called geometrical apparent power or net apparent power M , as it is described by Castro-

Núñez [23]. This concept supersedes the traditional concept of apparent power S widely known in electrical

engineering. This change is both substantive and profound, but it is supported by numerous studies that

demonstrate how traditional apparent power is unable to explain with clarity and coherence the flow of energy

and power in non-linear systems, where harmonics and interharmonics appear [24]. The term reactive power

is also misinterpreted in its conceptual meaning of quadrature power with active power [25, 26]. These

terms work very well in linear and sinusoidal systems, but they founder when applied to non-sinusoidal or

non-linear systems. It is precisely M that comes to overcome this lack, guaranteeing the principle of energy

conservation and a physical correspondence between the different terms of which it is composed and the

characteristics of the problem. One of the consequences of the foregoing is that, in general, ‖M‖ 6= S. The

geometric apparent power is defined as the geometric product between voltage and current:

M = ui = u · i + u ∧ i (10)

which will result in a scalar and a bivector for the sinusoidal case

M = 〈M〉0︸ ︷︷ ︸
scalar

+ 〈M〉2︸ ︷︷ ︸
bivector

(11)

It can be generalized for a non-sinusoidal voltage with the presence of interharmonics
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u(t) =

n∑
i=1

ui(t) =D1 cos(ωt) + E1 sin(ωt) +

d∑
h=2

Dh cos(hωt) +

k∑
h=2

Eh sin(hωt)+

+
∑
p∈J

Pp sin(pωt)

(12)

where n is the total number of frequency components of the signal, d and k are the total number of harmonics

and J is the set of interharmonics. After that, it can be obtained the voltage transferred to the geometric

domain GN

u = D1e1 − E1e2 +

d∑
h=2

[
Dh

h+1∧
i=2

ei

]
+

k∑
h=2

Eh h+1∧
i=1,i6=2

ei

+ (13)

+
∑
pp∈J1

n+1∧
i=1
i 6=2

ei

 e(p+n+2) +
∑
pp∈J2

[
n+1∧
i=2

ei

]
e(p+n+2) (14)

Since Castro-Nuñez [23] establishes that the geometric admittance is Y = Gh + Bhe1e2, applying the

superposition principle (SP) yield each of the harmonic currents as ih = (Gh + Bhe1e2)uh. Clearly, the

total current i is the sum of all harmonic currents

i =

n∑
h=1

ih (15)

This current can be decomposed into parallel and quadrature components with the voltage

i = i|| + i⊥ = ig + ib (16)

Finally, the apparent multivector geometric power M can be obtained as the product between u and i
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M = ui = Mg + Mb =

P︷ ︸︸ ︷
〈Mg〉0 +

CNd︷ ︸︸ ︷
n+1∑
i=1

〈Mg〉i︸ ︷︷ ︸
Mg

+

+ CNr(ps) + CNr(hi)︸ ︷︷ ︸
Mb=CNr

(17)

where

Mg is the parallel geometric apparent power

Mb is the cuadrature geometric apparent power

P is the active power

CNd is the degraded power

CNr is the geometric reactive power

CNr(ps) is the geometric reactive power due to voltage and current phase shift

CNr(hi) is the geometric reactive power due to voltage and current cross products

Based on the above definitions, the net or geometric power factor can be defined as

pf =
P

‖M‖
=

〈M〉0√
〈M †M〉0

(18)

4. Empirical study

To demonstrate the validity and usefulness of the proposed method for the resolution of non-sinusoidal

and non-linear electric circuits based on geometric algebra, several examples of typical circuits will be solved.
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u(t)

is

iL

R=1Ω

L=2 H

+

Figure 3: Linear inductive load

4.1. Example 1

The first case of study (Figure 3) represents a simple inductive linear load powered by a non-sinusoidal

voltage source polluted with interharmonic and harmonic

v(t) = 230
√

2 sinωt+ 20
√

2 sin 1.2ωt+ 10
√

2 sin 3ωt (19)

for the sake of simplicity, ω = 1 will be taken.

The voltage waveform is transformed into geometric domain using (6), so that the geometric voltage is

as follows

u = −230e2 + 20e14 + 10e134 (20)

The geometric impedance zh for each frequency component is defined (according to what is proposed in

[23], as:

zh = R− hωLe12 (21)

where h is the order of the harmonic or interharmonic, in our problem, h = [1, 1.2, 3].

z1 = 1− 2e12

z1.2 = 1− 2.4e12

z3 = 1− 6e12
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Therefore, if we apply SP and Ohm’s law, it is posible to calculate the current i as follows

i = z−11 〈u〉1 + z−11.2〈u〉1.2 + z−13 〈u〉3

= (1− 2e12)−1(−230e2) + (1− 2.4e12)−1(20e14) + (1− 6e12)−1(10e134)

= −46e2 + 2.96e14 + 0.27e134︸ ︷︷ ︸
ig

−92e1 − 7.1e24 − 1.62e234︸ ︷︷ ︸
ib

(22)

Note that the principle of superposition is embedded in equation (22) and consequently all the harmonics

(interharmonics) can be examined simultaneously. This is in contrast to the frequency domain, where it is no

possible to handle all harmonics at once. The value of the total current is found by its norm ‖i‖ = 103.16A.

It should be noted that the current obtained has two distinct components: ig is the parallel current and ib

is the quadrature current. It’s easy to verify that both components are in quadrature simply by performing

the scalar product ig · ib = 0. Once the current is determined, the geometric apparent power M can be

calculated

M = ui = 10641 + 35e3 + 1600e124 − 398e1234︸ ︷︷ ︸
Mg

+ 3473e4 − 21000e12 − 547e34 − 103e123︸ ︷︷ ︸
Mb

(23)

so that the detailed analysis of powers appears as

P = 10, 641 W

‖CNd‖ = 1, 650 VA

‖CNr‖ = 21, 294 VA

‖M‖ = 23, 862 VA

(24)

It is easy to demonstrate that

‖M‖ =
√
P 2 + ‖CNd‖2 + ‖CNr‖2 (25)

The power factor is then obtained by applying (18)

pf =
10, 641

23, 862
= 0.446 (26)
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u(t)

i1

R1=1Ω R3=1Ω
i3

L2=1 H

i2

C3= 4
15 F

L3= 3
4 H

+

Figure 4: Linear circuit for example 2.

h = 1 h = 1.7

Element Impedance Z Admittance Y Impedance Z Admittance Y

R1 1 1 1 1

L2 −e12 e12 −1.7e12 0.588e12

R3 1 1 1 1

L3 −0.75e12 1.333e12 −1.275e12 0.784e12

C3 3.75e12 −0.266e12 2.206e12 −0.453e12

RLC3 1 + 3e12 0.1− 0.3e12 1 + 0.93e12 0.536− 0.498e12

RLC123 1.2− 1.4e12 0.353 + 0.412e12 2.81− 0.30e12 0.352 + 0.037e12

Table 1: Geometric impedance and admittance for circuit elements

4.2. Example 2

The second case of study is showed in Figure 4. In this case, a more complex linear circuit is presented

with non-sinusoidal source and serveral resistors, inductors and capacitors.

The voltage source is

v(t) = 230
√

2 sinωt+ 23
√

2 sin 1.7ωt (27)

which translates to geometric domain as

u = −230e2 + 23e14 (28)
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k-vector

e1 e2 e14 e24 ‖i‖

i2 -148,8235 -94,7059 0,5118 -8,7798 176,6210

i3 54,1176 13,5294 7,5626 7,9098 56,8465

i1 -94,7059 -81,1765 8,0743 -0,8700 125,0000

Table 2: Current summary in amperes [A]

Similar to the example 1 above, the geometric impedance can be calculated for every element in figure

4 as showed in table 1.The geometric current is derived by applying Ohm’s law for every branch m = 1, 2, 3

im =
∑
k

z−1km〈u〉km (29)

The table 2 shows a summary of the three current branches of the circuit i1, i2 and i3. It can be

observed that i1 = i2 + i3 as stated by Kirchhoff’s 1st law. Recovering equation (16), the current i1 can be

decomposed as a parallel and quadrature parts

i1 = ig1 + ib1 = −81.17e2 + 8.07e14︸ ︷︷ ︸
ig1

−94.70e1 − 0.87e24︸ ︷︷ ︸
ib1

(30)

The quadrature current ib1 is the part that can be compensated by passive filters using techniques such

heuristic optimization provided in [21].

The apparent geometrical power involved can be found by the geometric product between voltage and

current in each passive element. Table 3 shows the power balance detail for each element of the circuit in

figure 4. It is clear that the principle of energy conservation is fulfilled as presented in [23].

Finally, in order to compare the GA power theory applied to non-sinusoidal and non-linear systems, the

time domain power of the source p(t) has been calculated. The voltage v(t) and current i1(t) is multiplied

to find the instantaneous power as
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k-vector

e0 e4 e12 e124 ‖M‖

MR1 15,624.77 1475.67 15,694.30

ML2 3658.79 -30,986.15 528.73 31,205.90

MR3 3231.52 651.48 3296.54

ML3 659.63 -2181.13 271.04 2294.75

MC3 -1940.09 11,404.94 797.20 11,596.21

M3 3231.52 -1280.46 9223.81 1719.74 10,005.92

M 18,856.29 2378.33 -21,762.34 3724.15 29,132.20

P ‖CNr(hi)‖ ‖CNr(ps)‖ ‖CNd‖

Table 3: Geometric apparent power summary. Active power P in watts [W] and the rest of terms in volt-amperes [VA].

p(t) = [230 sinωt+ 23 sin 1.7ωt︸ ︷︷ ︸
u(t)

][− 94.70 cosωt+ 81.17 sinωt+ 8.07 sin 1.7ωt− 0.87 cos 1.7ωt︸ ︷︷ ︸
i1(t)

]

= 18670.6︸ ︷︷ ︸
P1

(sinωt)2︸ ︷︷ ︸
(−e2)2

+ 185.7︸ ︷︷ ︸
P1.7

(sin 1.7ωt)2︸ ︷︷ ︸
(e14)2︸ ︷︷ ︸

P

− 21782.4︸ ︷︷ ︸
CNr1

sinωt cosωt︸ ︷︷ ︸
−e21=e12

− 20.0︸︷︷︸
CNr1.7

sin 1.7ωt cos 1.7ωt︸ ︷︷ ︸
e1424=−e12︸ ︷︷ ︸

CNr(ps)

− 200.1 sinωt cos 1.7ωt︸ ︷︷ ︸
−e4

−2178.2 sin 1.7ωt cosωt︸ ︷︷ ︸
−e4︸ ︷︷ ︸

CNr(hi)

+ 3724.1︸ ︷︷ ︸
CNd

sin 1.7ωt sinωt︸ ︷︷ ︸
e124︸ ︷︷ ︸

CNd

In the above equation it can be clearly seen how the different terms of the instantaneous power have

an evident translation in the terms of the geometric apparent power M . For the sake of clarity, different

colors have been used to highlight each of these components. For example, the active power P is the sum

of the squared sine terms that arise when multiplying the same harmonic voltage and current order. Other

cross terms are also related by the degraded power CNd or the power in quadrature due to the interaction

between harmonics of different order.

4.3. Example 3

The third example is a non-linear load connected to a real voltage source according to the diagram shown

in Figure 5. The problem data are as follows:
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u(t)

is

Zs

il

Zl

+
jc

Source Load

Figure 5: Non-linear load and real voltage source

u(t) = 230
√

2 sinωt+ 10
√

2 sin 3ωt+ 5
√

2 sin 3.5ωt

jc(t) = 10
√

2 sin 3ωt+
√

2 sin 4.5ωt

Rs = Rl = 1 Ω

Ls = Ll = 1 H

Following the steps of the previous examples, we proceed to carry out the transformation from the time

domain to the geometric domain, so that

u = −230e2 + 10e134 + 5e1346

jc = 10e134 + e13457

zh = R− hωLe12

After that, the principle of superposition and Ohm’s law is applied to solve the different currents present

in the circuit, i.e. is and il. To do this, some operations are performed in the geometric domain taking into

account that ix = 〈ix〉1 + 〈ix〉3 + 〈ix〉3.5 + 〈ix〉4.5,

il = [z1l]
−1〈ul〉1 + [z3l]

−1〈ul〉3 + [z3.5l]
−1〈ul〉3.5 + [z4.5l]

−1〈ul〉4.5

ul = 〈ul〉1 + 〈ul〉3 + 〈ul〉3.5 + 〈ul〉4.5
(31)
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For a better understanding of the solving process, a step-by-step approach will be made, although all

these steps can be carried out simultaneously. First, the voltage source will be solved and then the current

source, following the superposition principle.

(i) Voltage source

When only the voltage source is applied, the equivalent circuit is

u(t)

i
(a)
s

zs

i
(a)
l

zlu
(a)
l+

Solving the voltage u
(a)
l and the current i

(a)
l for each frequency component

u
(a)
l = zl1〈i(a)s 〉1 + zl3〈i

(a)
l 〉3 + zl3.5〈i

(a)
l 〉3.5 = (1− e12)

−230e2
(1− e12) + (1− e12)

+

+ (1− 3e12)
10e134

(1− 3e12) + (1− 3e12)
+ (1− 3.5e12)

5e1346
(1− 3.5e12) + (1− 3.5e12)

=

= −115e2 + 5e134 + 2.5e1346

i
(a)
l =

−230e2
(1− e12) + (1− e12)

+
10e134

(1− 3e12) + (1− 3e12)
+

5e1346
(1− 3.5e12) + (1− 3.5e12)

=

= −57.5e1 − 57.5e2 + 0.5e134 − 1.5e234 + 0.19e1346 − 0.66e2346

(ii) Current source

If we only apply the current source, the circuit to operate on is

17



zs

i
(b)
l

zlu
(b)
l

jc

that helps us to solve the voltage u
(b)
l

u
(b)
l = −1

2
(1− 3e12)〈jc〉3 −

1

2
(1− 4.5e12)〈jc〉4.5 =

= −1

2
(1− 3e12)10e134 −

1

2
(1− 4.5e12)e13457 =

= −5e134 − 15e234 − 0.5e13457 − 2.25e23457

i
(b)
l = 5e134 + 0.5e13457

The total load voltage will be

ul = u
(a)
l + u

(b)
l = −115e2 − 15e234 + 2.5e1346 − 0.5e13457 − 2.25e23457 (32)

and the total current demanded by the load

il = i
(a)
l + i

(b)
l = −57.5e1 − 57.5e2 + 5.5e134 − 1.5e234 + 0.19e1346 − 0.66e2346 + 0.5e13457 (33)

Finally, the geometric apparent power is equal to the geometric product between voltage and current

18



M = ui = 6635.22 + 3.85e6

− 6695.52e12 + 1, 035e34 − 0.62e57

− 6.60e126 + 219.65e346 + 0.14e567

− 230e1234 − 20.62e1257 + 158.12e3457

+ 165.60e12346 + 0.75e12567

− 43.12e123457

The absolute value of the geometric power is

‖M‖ = 9491.22VA

and the power factor

pf =
6635

9491.22
= 0.7 (34)

As in the previous examples, geometrical power M can be decomposed into different constituents such as

Mg or Mb, i.e. components due to parallel current or quadrature with voltage, respectively. It is interesting

to remark that the use of geometric algebra complies with the principle of energy conservation by faithfully

reflecting the power flows involved due to the different spectral components. For example, the active power

P is worth 6635.22 W and is due to the interaction of similar components between voltage and current

harmonics,

P = 〈Mh1〉0 + 〈Mh3〉0 + 〈Mh3.5〉0 + 〈Mh4.5〉0

= 6612.5 + 22.5 + 0.475− 0.25 = 6635.22 W

So, as expected, the total active power is the sum of every harmonic interaction taking into account the

sense of the energy flow. Only the interharmonic 4.5 is flowing in the opposite direction, i.e., from load to

source.
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5. Conclusions

In this paper we present an extension of Castro-Nuñez’s theory for the analysis of electric circuits by

means of geometric algebra. Through the use of GA, voltage and current harmonics and interharmonics can

be handled simultaneously, in such a way that it is possible to solve any type of electric circuit, whether

it is linear or non-linear, including harmonics and interharmonics. This technique exceeds by far the use

of complex numbers traditionally employed by electrical engineers. It is also proven how the geometrical

product of voltage and current leads to several power constituents that make it possible to verify the principle

of energy conservation, a fact that is not possible with the traditional concepts of apparent and reactive

power. The examples proposed and solved validate the use of GA for dealing with the interaction of power

terms coming from cross products of harmonics, interharmonics and fundamental component, resulting in

new components such as the degraded power CNd and the quadrature power CNr. This contribution opens

a fundamentally new avenue for the study of power systems with non-linear loads and non-sinusoidal sources.
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