Study of the statistical footprint of lightning
activity on the Schumann Resonance

Manuel Soler-Ortiz Manuel Fernandez Ros
Nuria Novas Castellano Jose A. Gazquez Parra

December 2023

Abstract

The Schumann resonance is an electromagnetic phenomenon, a prod-
uct of lightning activity inside the earth-ionosphere cavity. Five years of
Schumann resonance records are analyzed by a novel methodology that
segments the records into time intervals and finds the probability distri-
bution that best describes each segment. Then patterns are extracted
from the resulting time series and compared against known patterns of
global lightning activity to further test the power of the methodology
under study.

The Quality of Fit indices show how over 95% of the segments ana-
lyzed are properly described by the distribution that fit them best. The
relationship between global lightning activity and the number of segments
identified as Gaussian emerges clearly. A link between Laplacian segments
and local lightning activity is explored as well. This presents transient sta-
tistical fitting as an alternative for characterizing complex phenomena by
identifying different segments with a probability distribution, then iden-
tifying circumstances that segments with the same distributions have in
common.

This study further validates the chosen analysis tool, showing its ca-
pacity to offer information on the activity of thunderstorms in the time
segments analyzed from the Schumann resonance data. It presents an
additional source of information that complements the usual techniques
used to study the signal in the frequency domain.
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1 Introduction

The electromagnetic resonant signal known as the Schumann Resonance (SR),
which has a fundamental mode of 7.8 Hz is a subject of study due to its cen-
tral role in the electric circuit of the Earth (Williams and Mareev, 2014) and
especially its relationship with atmospheric and climate phenomena. The work
by Williams (1992) on which the relationship between global temperature and
the intensity of the first mode was discovered is an extensively cited example.
Numerous works have studied different geophysical factors through SRs, such
as the state of the resonant cavity itself (Surkov et al., 2013), extracting models
of the atmospheric conductivity profile (Nickolaenko et al., 2016; Kudintseva
et al., 2018), tracking climate phenomena such as El Nino Southern Oscilla-
tion through SR records (Yang and Pasko, 2007; Williams et al., 2021), and
finding evidence of SR variations related to other climate phenomena such as
the Madden-Julian oscillation (Beggan and Musur, 2019). Studies on transient
events have also been performed, such as the impact of solar flares (Shvets et al.,
2017), gamma rays (Nickolaenko et al., 2012), volcanic eruptions (Nickolaenko
et al., 2022; Bor et al., 2023), and especially earthquakes (Hayakawa et al., 2005;
Gazquez et al., 2017; Figueredo et al., 2021), whose interest has grown in recent
decades.

Despite the considerable number of factors that influence SRs, it is well
established that the phenomenon that produces the frequency response of the
earth-ionosphere cavity is lightning discharges around the globe (Ogawa et al.,
1969). Global lightning activity is generally detected using the Very Low Fre-
quency (VLF) range (Ogawa and Komatsu, 2010). In the Eztremely Low Fre-
quency (ELF) range, thunderstorm discharges are studied by their relationship
to SR (Price, 2016). Alpha stable distributions are a common choice to repre-
sent this phenomena (Chrissan and Fraser-Smith, 2000) since they are the tool
of choice in telecommunications (Volland, 1995). They are especially useful for
analyzing radio electric noise in a wide range of frequencies and under differ-
ent conditions Lamey et al. (2021). Models have also been proposed that solve
the inverse problem of deducing the amount of lightning activity from the SR
records by providing approximate solutions (Heckman et al., 1998; Nickolaenko
et al., 1998). Annual variability in SR records is also a subject of study, with
some analyses indicating additional links to lightning activity (Domingo et al.,
2021). As a consequence, the signal patterns caused by lightning are well known.

The behavior of lightning activity in specific zones is still a topic of interest
(Xu et al., 2022). Especially for each of the three thunderstorm centers (Nieckarz
et al., 2009; Ouyang et al., 2015), which are the regions of the globe with the
highest concentration of lightning activity, located in South America, Africa
and Asia, specifically in the maritime continent. There are works in which the
activity of one (Dyrda et al., 2014) or all (Précser et al., 2019) thunderstorm
centers is characterized, using different techniques with promising results.

There is abundant literature on the relationship between lightning activity
and SR from different perspectives, such as mathematical modeling (Nicko-
laenko, 1997; Pechony and Price, 2004), experimental studies relating SR mea-



surements and lightning activity (Price, 2016; Tatsis et al., 2021), and computer
models to simulate its signal or key aspects (Kudintseva et al., 2017; Perotoni,
2018; Ralchenko et al., 2015). More recently, data-driven approximations have
been taken, applying forecasting methods (Cano-Domingo et al., 2023; Tulunay
et al., 2008) based on neural networks of specific purpose (Cano-Domingo et al.,
2022b; Tulunay et al., 2004). However, the many different events that influence
the SR have prevented the scientific community from providing an accurate
model that takes into account every situation. Most analytical solutions are
developed for the ideal case, and even if more advanced, computer-based mod-
els may produce a satisfactory response, they are mostly focused on presenting
the ELF background noise under unchanging variables The point to be made is
that, despite the advances provided by the scientific community in the field, SR
is a complex phenomenon affected by many natural and artificial events, and
modeling it faithfully is a daunting task.

Most ELF studies are based on data extracted from the frequency domain,
with only a few notable exceptions (Nieckarz et al., 2009; Ogawa and Komatsu,
2009; A. Nickolaenko, P. Colin, 2000; Cano-Domingo et al., 2022a; Gowanlock
et al., 2018). We recently presented a publication based on time domain analysis
using statistical methods (Soler-Ortiz et al., 2021). The philosophy behind
the method is to divide the time records into segments, fit each segment to a
simple model, and extract conclusions about the signal state depending on the
chosen model. The idea is not new in the domain of electromagnetic signals
(Alata et al., 2013). Some studies have worked to statistically characterize
ELF noise (Evans and Griffiths, 1974) with the purpose of using the band for
communications. Close to our previous work is the study by Chrissan and
Fraser-Smith (2000), in which the best model for impulsive atmospheric noise
is tested, considering different bandwidths among the ELF and VLF frequency
ranges. This work use amplitude probability distributions described in terms of
voltage deviation, which rely on a great amount of data to produce a faithful
model but disregarding completely the temporal aspect, and also chooses the
statistical model that showed the best performance on each band. On the other
hand, our previous study focused on the 0 Hz to 100 Hz band and specifically
in the 6 Hz to 40 Hz range where the SR gathers most of its power and works
under a different paradigm. The methodology we developed finds the statistical
model among a set of chosen distributions that showed the best fit for each
segment. Its most interesting contribution is how the distribution that best fits
the segment varied depending on the time interval from which the sample was
taken, hinting a qualitative relationship between the state of the atmosphere
and the chosen model.

This article expands on the relationships described in Soler-Ortiz et al.
(2021), testing the advantages and capabilities of the developed technique. To
do so, the analysis technique has been applied to five years of SR data. The
resulting in-depth analysis establishes further relationships between the clas-
sification provided by the analysis and the known facts and patterns on SR
and lightning activity. This will be done by comparing the known patterns
of lightning activity with the of segments per day associated with a specific



distribution.

With this methodology, a direct way to identify segments where lightning
activity is detectable from within a large amount of SR records is provided.
This, in turn, gives way to the possibility of identifying more processes through
their statistical shape, and also provides an additional level of information for
the studies on this field and is complementary to the usual frequency-based
approaches.

2 Methodology

The mentioned data comes from the research group’s ELF measurement station
in Sierra de los Filabres, Almeria (Lat 37.22, Long -2.55), with a bandwidth
of 100 Hz. The electronic components of the system are thoroughly described
in Parra et al. (2015). The station has two sensors, one with orientation Fast-
West (EW), while the other is North-South (NS) oriented, each reading stored
separately in 30 min files on our data server, at the University of Almeria. The
sampling frequency of the measuring equipment is 187 Hz, which is equivalent
to 336600 samples per file. Data from both channels EW and NS have been
analyzed.

Its remote location away from the electrical networks required the autonomy
of the system that uses batteries and solar panels. Given its remoteness, data
are sent from the station to the server via a radio link.

These characteristics allow continuous data capture and storage, which makes
it possible to gather the data used for this study. However, these elements may
also be prone to failure. Continuous cloudy weather prevents batteries from
being charged via solar power, and atmospheric phenomena may, for example,
disrupt radio link communication. Maintenance or upgrade of the system can
cause longer outages. In conclusion, if rigorousness is to be maximized, data
imputation techniques must be taken into account.

2.1 Data imputation in time series

Time series are especially sensitive to missing values; ideally the whole register
should be complete since each segment belongs to a different time frame and the
information they bring is different (Khayati et al., 2020), so Not Available (NA)
values must be estimated. This makes data imputation in time series a subject
of recent studies (Afrifa-Yamoah et al., 2020; Zefreh and Torok, 2018; Zhang
and Thorburn, 2021), especially for real-time analysis.

The development of imputation methods is applied mainly in research where
the events studied have a time frame similar to the instrument’s capture fre-
quency (Betrie et al., 2016). There are also studies in which the importance of
data imputation in aggregated data is evaluated (Seiler and Heumann, 2013).
Data aggregation comes with the setback of obscuring effects that are only ob-
servable under the aggregation threshold (Cook and Weidmann, 2019). Since
the purpose of this work is to study time trends - yearly, monthly, and daily



patterns - that can be considered long with respect to the number of data points
(60 data points per hour), the data can be aggregated in periods that do not
obscure the phenomena under study while mitigating the impact of NA values.

In light of this situation, NA values’ propagation is prevented as long as
the number of NA values present in the aggregation does not exceed a certain
threshold. This is based on the aggregation of any remaining values being
more informative than any other approximation that might be taken. If the
aggregation is part of some trend extraction process (such as a Moving Average
(MA)) the gap will be covered by linear interpolation.

To provide the reader with data integrity information, a color-coded bar like
the one shown in Fig[T] will be displayed under the relevant figures, showing the
fraction of missing values implied in the calculation of each day’s value.
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Figure 1: A color-coded bar showing the fraction of NA values involved in the
averaging of each day.

2.2 Time Domain Analysis by Segmentation and Distri-
bution Fitting

The statistical analysis tool used in this study was presented in Soler-Ortiz
et al. (2021), where the intricacies of the methodology are presented, including
examples of different cases, as well as the initial assessment of the activity of
lightning that led to this study. To facilitate the reading of this work, some
highlights of the methodology will be presented in this section.

The results of this analysis are based on the SR records filtered with a
6 Hz to 40 Hz band-pass filter, this being the frequency band that contains the
first six modes of SRs (Domingo et al., 2021). The records are then divided
into segments of a specified duration, and the data points are presented as
histograms with a number of bins equal to the square root of the number of
data points in a segment - having 112200 data points for a 10 min segment, and
11220 for 1 min segments. When showing the histograms for each segment, the
bins were capped at 100 to allow the bins to be visible. For each histogram, its
central moments are extracted, and then the data of the segment undergoes a
fit process using Maximum Likelihood Estimates for each of the chosen target
distributions. Then, the one that best fits the data is chosen using a variation of
Akaike Information Criterion (AIC) called Akaike weights (Wagenmakers and
Farrell, 2004). This transformation allows the AIC values of different fitting
processes on the same data, which are estimates of information loss if the fitted



data were represented by the chosen model, to be compared with each other.
Thus, Akaike weights are a direct representation of the amount of information
loss each model incurs compared to the rest. The specific application of Akaike
weights to this problem can be consulted in Soler-Ortiz et al. (2021), whereas
the Akaike weights method itself is thoroughly described in Wagenmakers and
Farrell (2004).

It must be clarified that the chosen distribution for a given segment does not
have to describe the entire data set correctly. Consequently, a quality of fit index
is defined based on the concept of QQ plots, in which the quantiles of a given
data set are plotted against those of a chosen statistical distribution - choosing
as many quantiles as data points a segment has. A perfect fit between the data
and the distribution is recognized as a segment coincident with the identity line.
As the quality index for each fitting process, the correlation coefficient value of
a linear regression between the data points of the segment presented and the
chosen distribution’s points presented in QQ plot is chosen.

The analysis’ specifics are as follows:

e The set of target distributions for this work are Logistic, Gaussian, and
Laplacian, and the quality of fit for a segment to be considered as appro-
priately fit is still 99%.

e All segments whose quality of fit is below 99% are deemed as Unclassified
for this work.

e The segment lengths for this analysis are 1 min and 10 min. The difference
in duration has been related to the ability of transient phenomena to
influence the shape of the distribution (Soler-Ortiz et al., 2021). In other
words, shorter segments have a higher sensitivity to transient events, while
longer segments require intense activity to affect their shape.

e The possibility of analyzing overlapping segments has been introduced in
the analysis, which gives the possibility to smooth the transition between
one sample and the next by controlling the amount of time they share. The
10 min duration segments are taken with an overlap of 9 min, to produce
approximately the same amount of samples as with the 1 min segments.

Fig. presents an overview of the way data is processed to produce the
results presented in this work.

2.3 Methodology strengths and potential

The methodology used to produce this article’s results has already been tested
and validated (Soler-Ortiz et al., 2021), showing how it can process a given
amount of data automatically, and how its results (in the format of the num-
ber of segments per hour whose best fit is the Gaussian distribution) show a
relationship with global lightning activity.



It is through these similarities that this methodology displays an usefulness
not explored through the use of other noise models such as alpha stable dis-
tributions or Hall models. Although there are research lines to monitor global
lightning activity through the SR by means of spectral analysis, these are still
in the early stages (Bozoki et al., 2023). This is why the possibilities offered
by this qualitative relationship are the focus of this article. The main hypoth-
esis to be explored is that SR’s temporal segments background noise where
noticeable global lightning activity is present display a Gaussian distribution.
Otherwise, the best fit for SR background noise will be the Logistic distribution
(Soler-Ortiz et al., 2021). Since both distributions feature in segments where the
signal displayed is the SR background noise, those whose best fit is the Gaussian
distribution will be called storm-active background noise, whereas those fitted
to the Logistic Distribution will be considered steady-state background noise.
Through the evidence presented in this article, it is intended to link the differ-
ent distributions with different states of global lightning activity. This, in turn,
would mean that by checking the distribution that fits a temporal segment of
the SR best, the state of global lightning activity could be qualitatively assessed.

3 Results and Discussion

In this section, the general results of the analysis will be presented first, as they
are compared with the known general behavior of the signal studied. Next,
different data aggregations will be shown to inquire about the implications and
usefulness of temporal segments’ statistical classification. Lastly, Autocorrela-
tion Functions (ACFs) will be applied to the resulting data for Gaussian occur-
rence to compare the patterns displayed by the classified segments with those
already known by previous studies of the SR.
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Figure 2: Flow chart of data processing for this work.



3.1 Hypothesis’ assessment

The relationship between the median of Gaussian (Normal) segments per hour
for the analyzed month (April 2016) and lightning activity uncovered in Soler-
Ortiz et al. (2021) gives way to the current work and is explored further using the
analyzed data in Fig. [3] Figs. [3a] and [3b] show the hourly average of Gaussian
segments per year on the EW and NS channels, respectively. Fig. presents
the hourly average of the five years for both channels with the intensity given to
the SR by each thunderstorm center, these values extracted from Nickolaenko
and Hayakawa (2014), calculated using the model proposed in Nickolaenko et al.
(1998).

The graphs in Fig. show the same pattern, albeit with some differences
between their mean values and the values they reach along the different time
intervals. The same can be said of Fig. bl Repetition of patterns is evidence
that the Gaussian occurrence is related to a physical phenomenon that affects
the analyzed signal. The differences between the values reached each year re-
inforce the evidence as an indicator of intensity variations, since the intensity
of global lightning activity is not constant throughout the years, although their
daily activity patterns are. Now, in Fig. it can be identified how EW Gaus-
sian occurrence increases with the activity of the African thunderstorm center,
whereas the peak during the late hours on the NS channel follows the American
thunderstorm center. However, other factors in the relationship are unclear,
such as the contribution of the Asian thunderstorm center to any of the chan-
nels. In Soler-Ortiz et al. (2021) a two-hour shift was applied to the obtained
values to highlight its similarities with the Maritime Continent’s thunderstorm
center. In light of this analysis’s results, there is not enough evidence to state
that the Gaussian occurrence increase at 7 UTC is caused by the Maritime
Continent’s thunderstorm center, so this must be explored further.

First, it must be explained that the sensitivity of the induction coils used
as magnetic antennas is distributed as an eight-shaped curve with its long axis
perpendicular to the core of the coil (Burrows, 1978). As a consequence, the
electromagnetic activity of each storm center affects each channel in different
proportions, depending on intensity, source-observer distance, and relative ori-
entation (Nickolaenko et al., 1998). That being said, the equations that describe
the horizontal magnetic field at the ELF range are mentioned in the literature
(Nickolaenko, 1997) and are reproduced here for the reader’s convenience in Eq.

and Eq.

Hx(t) = Hyng = Z Ay -g(t — tk) . sin(Bk) (1)
k=—oc0

Hy(t) = Hpw = Y Ay -g(t—tx) - cos(By) (2)
k=—o0

With Ay being the amplitude of the kth lightning pulse, g(t) the waveform of
the magnetic field components and By the kth source bearing. Given the data
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(c) Hourly average storm center activity (left axis) extracted from Nickolaenko and
Hayakawa (2014) and calculated using the model proposed in Nickolaenko et al. (1998)
with the hourly average of Gaussian occurrence (right axis) for EW and NS channels.

Figure 3: Overview of hourly averaged fraction of Gaussian classified segments
for each year (1 min length), which for the remainder of the article will be called
Gaussian occurrence. The similarity between trends of different years and their
stability over the years for both channels (Figs. and clearly indicates
the periodicity of Gaussian occurrence. In the comparison between the average
occurrence by channel for the entire data set with thunderstorm activity (Fig.

the effects of Africa in the EW channel and of America in NS could be
perceived.



Table 1: Average geographical coordinates of the thunderstorm centers and
resulting coefficients to calculate each channel intensity.

Coordinates Azimuth EW coef. | NS coef.
African | 10°S, 28° E | 6.14 Mm, 142.44° 0.793 0.61
American | 4°S,66° W | 7.98 Mm, 249.98° 0.342 0.94
Asian | 2.5° S, 120° E | 13.01 Mm, 70.99° 0.326 0.945

depicted in Fig. [3] the above equations imply that the NS and EW channels are
affected by the total field intensity proportionally to the sine or cosine of the
source bearing, respectively. In Nickolaenko et al. (1998) there is also a model
for the monthly location of thunderstorm centers from which the average yearly
location of each can be calculated. With them, the azimuth of each location
with respect to our observatory can be calculated, giving us the coefficient by
which intensity is modified for each channel. The results are shown in Table

The distance to the thunderstorm center is also relevant since the intensity
measured by the sensors depends on the distance from the thunderstorm center
(Nickolaenko, 1997). The top left graph of Figure 1 of the cited work presents
the power loss in the electromagnetic field according to distance. According to
Table [1] the distance of the African (6.14 Mm) and Asian (13.01 Mm) thunder-
storm centers seem to be at opposite sides of the curve, so theoretically their
reception value should be the same. The American thunderstorm center’s dis-
tance (7.98 Mm) it is higher in the curve but the small resolution of the figure
makes us refrain from making any estimates. The calculated coeflicients are
then applied to the intensity data and presented in Fig. [ Each sub-figure
features thunderstorm center intensity modified to match the level at which is
received by each sensor as well as Gaussian occurrence from the records of each
channel; shows the EW channel and 4b|displays the data for the NS chan-
nel. After this transformation, the similarities between Gaussian occurrence
and thunderstorm intensity are further highlighted.

It can be seen in Fig. how the maximum value of Gaussian occurrence
matched the maximum value of the intensity of the African thunderstorm cen-
ter, which supports the main hypothesis, since this storm center contributes
fully to the signal. The contribution of the other two is considerably lower,
with the American thunderstorm center having a peak intensity halving that of
the African’s. The way Gaussian Occurrence flattens at the end of the period
seems to be due to an interaction between both thunderstorms, but to properly
define it, further research is needed. Finally, the real contribution of the Asian
thunderstorm center to EW intensity is reduced by 68 % due to its geographical
position in relation to the measurement station is almost four times lower than
the American contribution, thus explaining how its effect is barely observable
in the Gaussian occurrence curve.

On the other hand, Fig. shows American thunderstorm center as its
main contributor. This is consistent with the similarities displayed between
the peaks of Gaussian occurrence and American thunderstorm intensity. It also
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Figure 4: Thunderstorm intensity (left axis) and Gaussian occurrence (right
axis) comparison with location correction. After applying the correction, some
of the differences in Gaussian occurrence between the channels are contextu-
alized, such as Gaussian occurrence peaks matching max intensity peaks, the
dominant effect of African thunderstorm center in EW channel, and the plateau
in NS’s Gaussian occurrence corresponding with the similar intensity of Africa
and Asia.

shows a reduced contribution from Africa, which has almost the same peak value
as the intensity supplied by the Asian thunderstorm center. This justifies the
plateau shape displayed by the NS curve from 10 UTC to 16 UTC, which has
a one-hour difference between the hours when Asian and African thunderstorm
centers reach their peaks (9 UTC and 15 UTC, respectively). However, some
inconsistencies should be further explained, such as the Gaussian occurrence of
the NS channel having lower average value than EW’s despite having a higher
intensity contribution overall, as well as the effects of American thunderstorm
center in EW channel, or the delay between the rising edge of NS Gaussian
occurrence and Asian thunderstorm center’s. The answers to further refine
these values may be found watching the main wave propagation paths from our
observatory, as depicted in Fig.

This map serves to illustrate another variable to be taken in consideration.
The average central location of the storm centers has been used to estimate
the proportional intensity that reaches each channel, but global lightning ac-
tivity is never localized in one point; it spans whole continents. That is why
the main wave propagation paths help to understand how and when lightning
intensity affects each channel. For example, the NS channel’s main wave prop-
agation path passing through the Maritime continent is almost tangential, but
the thunderstorm center extends as far as India, which is close enough to the
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Figure 5: Main wave propagation paths from our observatory for the EW chan-
nel (green line) and the NS channel (yellow line) with the average geographic
centers of the thunderstorms in each continent marked with a blue-white stars.

path to be quite influential. Considering the evidence discussed so far, the de-
lay of Gaussian occurrence rising edge in our observatory’s records from the
NS channel in relationship with Asian lightning activity could be caused by the
detection of Indian lightning activity, which would happen a couple hours later
than the Maritime continent. The purpose of Fig. [5is to offer the reader some
perspective about other factor that influence SR recording, which means that it
should be considered to have an effect on Gaussian occurrence in SR segments,
considering their prospective relationship with lightning activity.

The evidence shed by this rough approximation is enough to consider SR
segments displaying a Gaussian distribution as an indication of lightning activity
on the globe. However, more research is needed to formalize the relationship
through mathematical models based on real data. This method presents a
way to process data in bulk while identifying time segments in SR background
noise that are storm-active, or related to thunderstorm activity. This allows
researchers to automatically classify their records and to have a general idea of
the phenomena that occurred within them.

3.2 Overall Results

Fig. [0] gives an overview of the analysis performed, showing the results using
segments of 1 min duration.

Fig. [6a]shows the results for the EW channel and Fig. [6b] for the NS channel.
Both show the daily average of each target distribution’s occurrence as the
length of the segment of the appropriate color, with each vertical segment being
relative to one day. Laplacian distributions are scarce but still present in both
channels, appearing more notably during the months ranging from November
to April.

On the days when Laplacian segments are present, Logistic segments occur-
rence is also higher, for example, in the last trimester of 2018. This is especially
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Figure 6: Daily average of distribution occurrence for all the analyzed data
(1 min segments). Each vertical bar represents a day, with the % of each distri-
bution occurrence filling the bar with its color proportionally. At first glance,
it can be seen that the Gaussian occurrence (light blue) is more common in the
EW channel (Fig. [6a)) than in the NS channel (Fig. [6D]). Its seasonal pattern is
also more pronounced.
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noticeable in Fig. [6a] where they reach values similar to the ones shown in Fig.
6L

The preliminary conclusion regarding Laplacian segments is that they are
mostly related to strong lightning discharges closer to the sensor. This is driven
by the fact that the same behavior is displayed on both channels when several
Laplacian segments are concentrated on the same day. The sensing capacity of
the magnetic coils that serve as sensors overlaps only at a close range. Inspection
of Fig. [f] confirms that despite presenting different data, Laplacian segments
appear on the same days on both channels and with sizes that imply similar
occurrence as well. To further evaluate this hypothesis, the hourly averaged
amount of segments for each distribution on each channel has been correlated
between them, both by different years and for the whole analysis. The results
are in Table 2

Table 2: Yearly correlation coefficient of comparing distribution occurrence be-
tween channels. All p-values below 0.001 %

2016 | 2017 | 2018 | 2019 | 2020 | All years
Gaussian | 0.27 0.24 0.37 0.43 0.38 0.35
Logistic | 0.25 0.14 0.23 0.29 0.32 0.27
Laplacian | 0.89 0.88 0.89 0.95 0.90 0.90

The high correlation values are notable evidence for Laplacian segments
being related to close and/or strong lightning activity.

Regarding the other two distributions, Gaussian segments show a higher
correlation value than Logistic segments. The significant correlation values dis-
played by Gaussian segments are evidence of thunderstorms affecting both sen-
sors in a specific proportion, and shows how this relationship can be extracted
from the statistically analyzed records.

Having a target distribution group of three and ascertaining that Laplacian
manifests only occasionally, Logistic and Gaussian segments can be considered
complementary. This complementarity is further evidence of SR background
noise - the base state of the Schumann resonance and hence, the most common
- answering to both statistical classifications, being Gaussian on the storm-active
periods and Logistic on the steady-state periods. Both Logistic and Gaussian
distribution’s presence is distributed throughout the whole year, but the number
of segments classified as Logistic experiences a higher variation in Fig. [6a] than
in Fig. [6b} Since the overall intensity of lightning activity captured by the
EW sensor is higher than what the NS sensor receives (see Fig. , observing a
similar behavior in Gaussian occurrence is another sign of its link with lightning
activity.

Fig. [7] displays the results of the analysis for April of all the years analyzed
for both channels (Fig. for NS and Fig. for EW). In this case, each
vertical segment represents an hour. Data integrity is absent, since at this level
of aggregation it gives no additional information; the amount of hours for which
a data point is produced with a fraction of the data is scarce, given the format

14



of analyzed data.

The asymmetry between both channels is clear here as well; in Fig. [7a] the
fluctuation between Gaussian and Logistic segments is more noticeable than in
Fig. [Tbl Also, Gaussian occurrence is way higher in the former than in the
latter. In all years, a daily variation can be appreciated. This adds further
weight to the hypothesis explored in this article, since thunderstorm centers
have, among others, a daily cycle (Ogawa et al., 1969; Pracser et al., 2019).
Daily and seasonal trends will be explored in detail later on.

It can be seen again how the presence of segments classified as Laplacian oc-
curs in both channels at once and always comes with an increase of Unclassified
segments, although a sudden increase of Unclassified segments with small or nil
Laplacian occurrence can be observed as well.

On hourly averaged records, more extreme cases are observed, during which
most hours appear as Unclassified (2016-04-20, 2017-04-18, 2018-04-27, and
2020-04-19 are examples of this). The reason is the same as expressed pre-
viously; these are mostly Laplacian segments that, by not crossing the quality
of fit threshold, fell into this category. Laplacian segments that do not exceed
the quality threshold are classified as such for containing isolated among a seg-
ment that is mostly background noise. This can be caused by close lightning
activity, as was proposed for the rest of the Laplacian segments caused by the
so-called ELF flashes (Ogawa et al., 1966), such as the segment shown in Fig.
but could also be due to a captured Q-burst in a segment which is mostly
background noise. Having the ability to tag Q bursts automatically would be an
extremely useful feature for an automated analysis methodology, but so far all
attempts to differentiate between these two cases among Unclassified segments
have been unsuccessful.

After checking the general results presented in Figs. [6 and [7] it is logical to
assume that three out of four categories of this analysis can be considered as a
state in the SRs records.

e The steady-state background noise of the resonance, identified with the
Logistic distribution.

e Intervals containing at least one high amplitude peaks, which are the seg-
ments classified as Laplacian.

e Segments of storm-active SR background noise, meaning that they are
linked to global lightning activity, for whose the Gaussian distribution is
the best fit.

e Unclassified segments are those who do not belong to either of the three
categories, although some of the phenomena ending in this group are rec-
ognized. Examples are periodic disturbances, Q-bursts, or ELF flashes.

By taking advantage of the rest of the parameters extracted by the analysis,
the Unclassified category could be refined. An example of this is how high pulses
can be located by looking for segments with high kurtosis and low statistical
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Figure 7: Hourly average of distribution occurrence in April of each year (1 min
segments). A daily pattern between Gaussian (light blue) and Logistic (green)
can be appreciated. It is worth highlighting the Laplacian (orange) concentra-
tion in both channels at the same time, such as from 5 to 7 April 2016 and from
11 to 12 April 2018.
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Figure 8: Unclassified segment from 2018-04-27, displaying high amplitude
pulses.

deviation. Such a filter was used to get the segment displayed in Fig. The
same can be said about the rest of categories; in the same way that the best fit
distribution describes a segment, its statistical parameters may serve to narrow
down specific events under a certain category.

This and other analyses should be carried on to reach a definitive conclusion;
its interest justified by the presented evidence of the chosen statistical model
for a given segment being a way to identify the signal’s state.

3.3 Gaussian occurrence analysis

Understanding the effects of segment length in classification results is a way to
better understand the relationship between the fraction of segments classified
as Gaussian and lightning activity. To do so, the results of two analysis with
different segment lengths - 10 min segments with overlap of 9min and 1min
segments without overlap - will be compared, plotting the results together along
with the most significant trends, extracted from the raw data using Mowving
Average (MA) functions.

First, Fig. [9] presents the daily fraction of Gaussian segments captured by
the NS channel. Some similarities and differences between the results can be
highlighted under different segment lengths.

e 1min segments’ average value is higher than in the 10 min ones. It seems
that the former rarely reaches 0, whereas for the latter it is a common
value.

e Despite the difference between average values, the seasonal trends of both
analyzes show the same trend. However, excursions in the 1 min trend are
more pronounced than in the 10 min trend. This is the reason why on the
former more peaks and troughs can be observed than on the latter.

e Regarding the monthly trend, the peaks in the 10 min trend have always
a counterpart in the 1 min one. It is not so clear if the relationship works
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Figure 9: Comparison between classified data from channel NS with 1 min and
10 min segments, displaying monthly and seasonal trends. It is difficult to visu-
ally identify any trends, the comparison between different analyses show a higher
average value for 1 min segments. Despite that, the trends of both curves are
similar.

in the opposite direction, especially in sections where the average value of
the 10 min trend is too low, such as in 2016 and 2017.

Next, Fig. presents the data from the EW channel in the same format
used for Fig. [0] The same observations highlighted for the NS data hold in this
case, but there are also two additional aspects to consider.

e First, the maximum values are higher than on the NS channel, reaching
values over 0.95 around New Years Eve in 2018 and peaking over 0.8 on
occasion.

e On the EW channel, the 10 min segment, the raw peak value overlaps with
the 1min peak, sometimes even going over it. However, its average value
is still lower; 10 min reaching the same value as 1 min occurs only for high
occurrence values.

After reviewing the results of both channels, one of the main differences
between the two lengths analyzed was their average value and their peak value.
The former seems to be directly related to the analysis features. Generally
speaking, trend changes are more noticeable in the 1min segments than in
10 min.

The ELF signature of a lightning event can have a duration of a whole second.
Under the evidence obtained so far, which links Gaussian segments with global
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Figure 10: Comparison between classified data from channel EW with 1 min and
10 min segments, displaying monthly and seasonal trends. The yearly pattern
of the African Thunderstorm center appears clearly in both analyses, due to its
major influence in this channel. Some instances of 10 min segments can be seen
overcoming the value of 1 min segments.

lightning activity, it is reasonable to assume that the presence of a certain
number of lightning events is what modifies the SR background noise from
steady-state to storm-active. Considering that enough lightning events over a
time period will make it statistically identifiable with the Gaussian distribution,
it is clear that longer segments will need more events to be identified as Gaussian.
The only situation in which a Gaussian occurrence in 10 min can overcome the
value displayed in the 1min segments is when the number of lightning events
is enough to affect a considerable number of 10 min segments. Consequently,
1 min segments display a higher selectivity than 10 min, with the latter reacting
strongly on what, under the hypothesis of this work, must be considered periods
of high lightning intensity. Evidence of this can be seen in Fig. under
the hourly average of the results. It can be seen that the peak values of the
10 min analysis occur invariably at noon, when the African storm center peaks
in activity. It can be appreciated as well how in the 1min analysis Gaussian
occurrence rarely reaches 0.0, whereas in the 10 min analysis it is a common
value.

On the other hand, during the high-occurrence hours, the number of Gaus-
sian segments is higher for the 10 min than for the 1min. This consequence
comes from the 9min overlap applied to the 10 min segments since a specific
event will appear in 10 different segments, while in the 1min length segments
(no overlap), each event affects only one segment. In conclusion, even when
the particular impact of the analysis’ parameters is not quantified, it is clear
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Figure 11: Hourly averaged fraction of Gaussian segments for July 2016, EW
channel, with 1min and 10 min segments. The daily pattern emerges clearly,
with 10 min taking more extreme values but 1min analysis displaying a more
balanced behavior.

that by controlling segment length and overlap, the researcher can modify the
selectivity of the method.

With respect to the significance of the peak values, it can be seen how the
occurrence value in the NS channel is never very high, and its distribution
throughout the temporal records is sparse enough to not produce higher peak
values on the 10min records. The EW channel, in turn, shows much higher
values for 1 min segment values and the fact that 10 min segments peaks go over
them implies that on the days of high events occurrence the events are cluttered,
causing a higher number of events identification.

This behavior coincides once again with the recorded lightning intensity
of the storm centers after considering the source bearing with respect to the
observatory.

3.4 Pattern analysis

To further analyze the daily trends displayed by Gaussian occurrence, an analy-
sis using Autocorrelation Functions (ACFs) with a window of 24 hours has been
applied to the fractions of Gaussian occurrence from the EW channel, choosing
four months for all the years analyzed. The ACF function applied to the data
is of discrete form, as shown in

Ry, (€) = Z y(n)y(n —0) (3)

nez
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The results are presented in Fig.

The ACF results display the existence of a daily trend in every case, although
there are some deviations and the possible reasons are worth discussing. First,
the results shown in Fig. [[24 clearly indicate an underlying trend present in
addition to the daily one. However, the daily cycle can still be appreciated in the
results for the years 2018 and 2020. Fig. is still affected by a different trend,
but the daily oscillations of the autocorrelation coefficient that hint at a daily
trend can be identified, even in the years 2017 and 2019 where the differences
in average value between periods clearly hint at the presence of another trend.
The presence of a daily trend can be confirmed for all years in Fig. with
only 2019 deviating slightly from the general pattern, while in Fig. [[2d]the daily
trend for November 2019 is greatly distorted and in 2018 is barely recognizable.

The explanation of these differences could be attributed once again to lower
frequency patterns present in the signal, but by comparing the data from dif-
ferent years it can be argued how the season to which the data belong should
be accounted for. Fig. shows the most visible trends in July. This is the
month when African thunderstorm activity is at its lowest on average (Albrecht
et al., 2016). This would imply that minimal activity also translates into min-
imal variability, so even when lightning activity is at its lowest (see Fig.
its activity is regularly synchronized with the sun cycle, and the ACF shows
regular peaks with high autocorrelation values. Arguing along the same lines
for April (Fig. and November (Fig. , these months are theoretically on
the falling and rising edges of activity, respectively. By following the previous
train of thought, it can be considered that the months which are closer to the
period of minimal thunderstorm activity will show this daily trend clearly than
the months who are further away.

As with the original SR records, the number of nuances and differences can
be overwhelming, and more relationships could be found with deeper studies.

4 Conclusions

For this study, a recently developed methodology has been applied to 5 years
of data. Through statistical analysis, expert knowledge of the storm centers’
seasonal trends, and of the Schumann Resonance, the latter signal has been
segmented and categorized using statistical models. In this article, we consider
the implications behind the classification of a specific segment in each model.
Through this exploration, the utility of the procedure has been proven. After
testing the connections between each of the statistical distributions and the
different states of lightning activity, there should be interest in exploring what
other information can be extracted from this modeling strategy. Throughout
the exploration of the relationship between Gaussian occurrence and lightning
activity, this methodology shows promise of being one of the most efficient ways
to assess the state of lightning activity in an automated way, to the best of our
knowledge.

The similarities between the occurrence of the distribution over a period
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Figure 12: ACFSs results for the hourly averaged data of Gaussian occurrence on
different months on all the analyzed years, with 7 days of maximum lag. The
daily pattern is observable in most years for all the chosen months, although
other underlying trends may be perceived. The daily patterns are more homo-
geneous throughout the years in the month of July (Fig. where lightning
activity is at its lowest.
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of time and the different trends known for the signal under study point to
the validity of these relationships and the main argument to demonstrate the
utility of the methodology. Specifically, Laplacian segments have been confirmed
to be related to strong and/or close lightning activity, and the relationship
between Gaussian segments and global lightning activity is clearly shown. The
behavior of monthly and daily trends in the fraction of Gaussian segments per
hour has also been studied, which settles them as an alternative way to study
lightning in the ELF range. However, more research is needed to compare
the distribution occurrence with geotagged lightning activity records to fully
validate these hypotheses and further explore the quantitative information that
can be extracted from the analysis results. Just as well, the segments deemed
Unclassified for this study reveal the necessity of refining the system in that
direction, looking for ways to extract valuable data from those segments that
do not get past the demanded quality of fit.

This analysis proves to be a complement to commonly used frequency domain
information when searching for correlations and studying the different aspects of
the Schumann resonance. The categorization provided by the analysis is already
a great advantage, allowing researchers to automatically process a huge number
of registers and get a reasonable estimate of the events that occur during it.
Inversely, knowing the parameters of the distribution displayed by a particular
event, an automatic search could be performed on the analyzed data to confirm
if the distribution parameters represent the event.
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