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A B S T R A C T

Schumann resonances’ statistical parameters vary over time, which gives way to analyze them as a stochastic
process. By splitting the Schumann resonance’s records into segments and obtaining their empirical distribution
function, the differences can be evaluated by calculating the Kolmogorov–Smirnov distance between them. The
analysis’ results allow for the characterization of the Schumann resonance’s variations, along with the typical
values it reaches under the chosen metric. It is shown how divergence is mitigated through sample averaging,
and also how divergent samples impact on the Fast Fourier Transform algorithm.

Divergence quantification adds a layer of information for data processing. Knowing the changes experienced
over time in Schumann resonances gives a way to know what kind of mathematical procedures can be applied
to the signal. Quantification of signal variations over time can identify error sources in specific procedures,
filter out samples unfit under certain analyses, or serve as a stop criteria for cumulative analyses.
1. Introduction

The Schumann Resonance (SR) is an electromagnetic resonant phe-
nomenon occurring inside the cavity formed by the Earth’s crust and
the lower layers of the ionosphere, sourced by lightning activity all
around the globe (Ogawa et al., 1969). Since they were finally mea-
sured in the decade of 1960 (Balser and Wagner, 1960) ten years
after being theorized (Schumann, 1952), they have been steadily at-
tracting the interest of the scientific community. Studies have proven
the strong link between the first SR mode and the global tropical
temperature (Williams, 1992). The relationship between the electro-
magnetic signal and lightning activity is well understood, with studies
that mathematically infer the latter using the former (Boldi et al.,
2018) up to the point that lightning monitoring through the analysis
of SR records is more efficient than other lightning activity monitoring
techniques (Williams et al., 2021). Other main line of research in steady
development is looking for evidence of seismic activity on the earth–
ionosphere resonances, which could significantly improve the early
detection of this destructive phenomenon (Hayakawa, 1994; Cano-
Domingo et al., 2022; Wang and Cao, 2011). Several studies have been
published as well about how isolated and powerful solar and extra-solar
events reaching Earth affect SRs (Nickolaenko et al., 2012; Dyrda et al.,
2015; Sátori et al., 2016), and on the analysis of long periods of time to
study the signal temporal patterns through its frequency and intensity
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variations (Galejs, 1970; Greenberg and Price, 2007; Domingo et al.,
2021).

Nowadays, it is clear that the SR reflect the state of the Earth and the
atmosphere (Besser, 2007). From the mathematical models developed,
it can be seen how the frequency values of the SRs modes are dependent
on the size of the resonant cavity and the charge distribution on
the ionosphere (Barr, 1975). The layers that conform the waveguide,
namely Earth’s crust and the ionosphere, have an effect on their own
as well. The ionosphere conductivity profile (distribution of charge as
a function of height) has been a subject of study, as well as its impact
on the SR (Jones, 1967), and in turn SR have been used to identify
changes in the ionosphere due to external disturbances (Kudintseva
et al., 2018). Earth’s crust conductivity has an effect, albeit negligible,
reason why it is usually ignored in most models (Kulak and Mlynarczyk,
2012). Despite the stability and periodicity of all these layers, they
define mostly the signal’s frequency modes.

Lightning activity, SR’s main source of excitation, can be classified
as a stochastic process (Artigas, 2012). Therefore, the intensity varia-
tions in the resonant signal produced by lightning can be studied from
the perspective of a stochastic process as well (Surkov and Hayakawa,
2010), even more so when considering the other factors that may
influence SR. Although this is not especially relevant when working
on monthly or even daily timescales, on which their patterns and
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structures emerge, it has a noticeable impact when working with data
segments.

This article proposes a direct, automatic way of quantifying SRs
intensity variations over time under different situations using statistical
methods. The proposed methodology is tested on real data and the
results are evaluated to uncover any additional information that can
be extracted from the procedure.

Providing SRs’ variability along with the data enhances confidence
in the results and helps other researchers reproduce the results by
performing the analysis on samples with the appropriate character-
istics. By having an independent metric to quantify the signal state,
experimentally obtained criteria could be enhanced using this method-
ology. An example is the appropriate segment size and the number
of averaged segments required for the resonances to manifest in the
records (Nickolaenko and Hayakawa, 2014; Guha et al., 2017). While
averaging a sufficient number of segments to ensure the resonances
appear in the spectrogram is effective (as proven by all the meaningful
results produced under it), advantages may arise from quantifying the
stability of the signal, such as choosing the most stable segment to carry
sensitive analyses or controlling the temporal resolution in frequency.

2. Methodology

This section will provide a detailed explanation of all the elements
involved in the analysis. First, the most relevant characteristics of the
analyzed data will be provided. Next, the available statistical methods
for this process are described and their pros and cons are weighed.
Following up, the specific techniques chosen to explore the signal’s
variability in time will be explained. Lastly, the analysis steps will be
shown.

2.1. Data specifics

Two years of data serve as the baseline for this work. The data
belongs to the years 2018 and 2019, and were captured by the ELF
station our research group developed in 2013, and has been in contin-
uous operation since 2015 (Parra et al., 2015). It is located in Sierra
de los Filabres (Lat 37.226, Long −2.546), its closest landmark being
Calar Alto astronomical observatory, Almería, Spain.

Only the data from the East–West (EW) channel will be used in this
study. This decision comes from the fact that this channel is strongly
influenced by the African thunderstorm center due to its orientation,
while the effects of the other two main hotspots of lightning activ-
ity (American and Maritime continent) are mitigated (Belyaev et al.,
1999). This simplifies the pattern search. The raw data, captured with
a 0.1Hz to 100Hz bandwidth sensor at a sampling frequency of 187Hz,
as been filtered with a 4Hz to 40Hz band-pass filter to keep only the
requency range in which the SR is clearly measurable.

.2. Quantifying temporal variations — theoretical framework

It is worth highlighting that this work is not meant to imply that
he SR is a stochastic process, only that it can be treated as such.
vidences of many different patterns are widespread in the literature;
ariables that affect the SR and are stable considering the timescale
f the resonant phenomenon. Ionospheric height and conductivity play
definitive role in the frequencies and average intensity of the sig-

al (Sentman and Fraser, 1991). Disregarding anomalies caused by
pecific events, the ionosphere displays a daily cycle, which hardly
nfluences the signal in the minute timescale. The solar cycle, which
n turn influences the ionosphere conductivity, is another example of

stable pattern of a long period – 11 years – with a measurable
ffect on SR (Bozóki et al., 2021). Lastly, the major storm centers
isplay seasonal and diurnal patterns as well, having a peak of activity
etween 14:00 and 15:00 at local time and being more active in
he summer (Nieckarz et al., 2009). That being said, on the shorter
2

timescale in which this article is based, the primary factor is the
lightning discharges which are usually modeled as a stochastic process
following the Poisson distribution (Chrissan and Fraser-Smith, 2003).
By statistically comparing temporal segments of the SR the total con-
tribution of lightning during that time is what determines the resulting
statistical distribution. In consequence, by calculating the differences
between several realizations of the time series mainly the stochastic
source of the process is being considered.

When discussing a signal stability while modeling it as a stochastic
process, each realization of the signal is observed as a statistical distri-
bution through its histogram. To transform the time series into a certain
amount of histograms two values are considered; the segment span –
its duration – and the time passing from a segment’s starting point to
the next – the amount of time segments overlap with each other. With
the former, the realization’s sensitivity to transient events can be con-
trolled, whereas the latter limits the amount of new information that
each segment brings, in relation with its two neighboring segments.

Under the idea of a segment’s statistical distribution being rep-
resentative of the events captured by the signal in that period of
time (Soler-Ortiz et al., 2021), this work will test the hypothesis of
segments with low Kolmogorov–Smirnov (KS) distance value having
similar characteristics.

Lastly, the procedure to test the signal variability over time will
be measured by choosing a segment that will serve as representative,
referred as the target segment, and comparing it to a specific number
of neighboring segments, namely the comparison interval.

2.3. Statistical divergences and distances

There is a wide selection of generalized metrics whose purpose is
to quantify the differences between statistical distributions. Among the
statistical tests of goodness of fit, the Anderson–Darling test has been
widely used in recent times due to its power and precision determining
differences between samples (Engmann and Cousineau, 2011). The two
sample test is performed by combining two observations 𝑋 and 𝑌
which may contain a different number of samples. Eq. (1) shows the
generalized formula for the test statistic considering, where 𝑛 is the
sample size of 𝑋, 𝑚 is the sample size of 𝑌 , and 𝑍 is a set containing
the combined and ordered samples of both 𝑋𝑛 and 𝑌𝑚. 𝑁𝑖 represent the
number of observations in 𝑋𝑛 which value is less than or equal to the
𝑖th observation in the 𝑍(𝑛+𝑚) set.

𝐴𝐷𝐷 = 1
𝑚𝑛

𝑛+𝑚
∑

𝑖=1

(

𝑁𝑖𝑍(𝑛+𝑚−𝑛𝑖)
)2 1

𝑖𝑍(𝑛+𝑚−𝑖)
(1)

The Anderson–Darling test is an example of widely used goodness
of fit test due to its power, but as shown in Eq. (1) its setback is a more
complicated formulation of its test statistic.

There are another family of tools to measure the difference between
two distributions called f-divergences. These tools are theoretically
developed in the field of statistical data processing (Basseville, 2013),
and are a most relevant tool in information theory (Shannon, 1948),
for example in the development of speech recognition techniques.
Introduced in Rényi (1961), the general definition of f-divergences is
based in the definition of the function 𝑓 (𝑥) called generator, which has
to fulfill certain conditions. It has to be finite for all 𝑥 > 0, satisfy the
equality 𝑓 (1) = 0 and ensure continuity at 𝑓 (0) by fulfilling 𝑓 (0) =
lim𝑡→0+ 𝑓 (𝑡). This general definition is presented in Eq. (2), with 𝑃 and
𝑄 being the Cumulative Distribution Function (CDF) of two distributions.

𝐷𝑓 = ∫ 𝑓
(

𝑑𝑃
𝑑𝑄

)

𝑑𝑄 (2)

Among the f-divergences, one of the best known is the Kullback–
Leibler divergence (Kullback and Leibler, 1951), which is central not
only to information theory, but also related to maximum likelihood

estimation (Ekström, 2008) and even in optimization problems for
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Fig. 1. Representation of time series slot, already segmented in 𝑁 parts, each with a specific length and with a specific time between them.
power spectral density estimation for stochastic processes (Georgiou
and Lindquist, 2003). The mathematical definition of the Kullback–
Leibler divergence is presented in Eq. (3), with 𝑃 (𝑥) and 𝑄(𝑥) being
discrete probability distributions.

𝐾𝐿𝐷 =
∑

𝑃 (𝑥) log2

(

𝑃 (𝑥)
𝑄(𝑥)

)

(3)

That being said, the general metrics presented in this section widely
used or developed in the mentioned contexts have two important
drawbacks.

1. Although used as such, they do not qualify as metrics. For
example, Kullback–Leibler is not symmetric and does not satisfy
the triangle inequality. This is a problem in this context, since
the lack of these or other characteristics associated with metrics
would make the resulting values harder to understand.

2. They involve computationally intensive calculations. Since the
goal of quantifying the SRs variations is to provide support
or additional information to other analysis, introducing it as a
costly algorithm defeats its purpose.

To provide a methodology able to meet the requirements set, some-
thing simpler, less computationally intensive, and more straightforward
is needed. For these reasons, KS distance was chosen. This quantity
measures the maximum absolute difference between the CDFs of both
empirical distributions (Eq. (4), with 𝐹 (𝑥) and 𝐺(𝑥) representing the
CDFs of the two compared time segments) which fulfills all the previous
conditions while effectively quantifying the difference between two
statistical distributions, as it has been applied in other works for the
same purpose (Baselice et al., 2019).

𝐾𝑆𝑑 = 𝑠𝑢𝑝𝑥(|𝐹 (𝑥) − 𝐺(𝑥)|) (4)

It is important to highlight that it is the statistic of the KS test what
was chosen, and not the 𝑝-value. The latter estimates from the statistic
the probability of both realizations coming from the same distribution,
which could be argued is a measure of similarity, but it has some
setbacks such as being dependent on the number of samples.

2.4. Analysis’ specifics

From the two previous subsections, it follows that the proposed
analysis grants three degrees of freedom:

1. The segment’s length in time.
2. The analysis’ temporal resolution by means of the time each

segment shares with its neighbors.
3. The time slot for which variability shall be considered, defined

by the time interval from which neighboring segments will be
compared against the target segment.

A graphical representation of the concepts involved in the analysis is
shown in Fig. 1.

The scope and reach of a single variability test can be defined
through these three variables. Increased time can be thus analyzed
3

either by increasing the time slot or by sequentially repeating the
process for all the time slots contained between two selected dates. The
test itself is performed by segmenting the chosen interval of the signal
after choosing the time slot size, the segment length, and the temporal
distance between segments. Then, a specific segment is selected and
its KS distance with all segments is calculated. The resulting curve is a
representation of the statistical variation under the defined conditions.

That being said, it is important to mark that this test measures
statistical variability. One can feel tempted to associate this variability
with specific events, but to do so, more information is required about
the circumstances when the signal was captured. This analysis measures
the existing differences between the target segment’s distribution and
the rest of the segments’ distributions in the accounted time slot.
Noticeable variability points out the existence of transient events in
the analyzed time slot, but the exact segment on which the transient
event occurred cannot be pinpointed by this method. As stated before,
the purpose of this analysis is only to determine the variability of the
signal under certain conditions.

3. Results and discussion

In this section, the results of quantifying SR divergence using KS
distance will be presented, in order to characterize the methodology.

At first, the analysis results will be outlined by presenting instances
of the two general behaviors observed along the analyzed data. Up to
some degree, when this analysis is performed with a high resolution
(meaning the time difference between segments is considerably lower
than the segment length), a level of base variance is appreciated, which
reflects the stochastic nature of the studied process. The purpose is
to locate more pronounced variations over time, noticeable over the
baseline of the signal.

An example of each can be seen in the following figures. On one
hand, Fig. 2 shows a stable sample with no significant trend changes
and overall low variability along the whole interval whereas Fig. 3
displays significant variations over the base value.

The former serves as a baseline to quantify the standard level of
randomness that the signal can exhibit, whereas the latter displays
several differences when compared with the target segment. The target
segment is compared with itself as part of the analysis’ process and thus
is identifiable for being the only data point showing KS distance of 0.0.

Although the two Figures present the analysis of different days, both
share the same parameters. The analysis is performed in the interval
from 15:00 to 16:00. The interval has been divided into segments
of 5 min in length, with a difference of two seconds between each
segment. This means the first segment goes from 15:00:00 to 15:05:00,
the second segment goes from 15:00:02 to 15:05:02, and so on. The
segments are identified by their starting time, which means that actu-
ally, the last analyzed segment goes from 16:00:00 to 16:05:00. In the
same fashion, the target segment goes from 15:30:00 to 15:35:00.

Besides the base randomness value and the existence of trends in
the statistical variation between temporal segments of a given time

slot, other fact strikes as surprising. The KS distance was expected to
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Fig. 2. Signal variability on June the 24th, 2018 from 15:00 UTC to 16:00 UTC —
segments 5 min in length, 2 s difference between segments.

Fig. 3. Signal variability on April the 6th, 2019 from 15:00 UTC to 16:00 UTC —
segments 5 min in length, 2 s difference between segments.

gradually increase from the 0.0 that indicates the target segment. This
is so because the data point belonging to the comparison against a
segment two minutes forward shares 3/5 of its information with the
target segment. Despite this, it can be seen in Fig. 3 how segments
further away (for example, the minimal values around 15:15) are more
similar to the target segment than the ones that share information with
the target segments, like the data points around the 15:25 peak.

As explained in the previous section, the relevant source of vari-
ations at this temporal resolution is lightning activity. Therefore, the
variations shown in both Figs. 2 and 3 can be related to differences in
thunderstorm activity over time. On one hand, the minimal variations
displayed by Fig. 2 can be considered as a stable period of lightning
activity, since all the analyzed segments are similar. On the other hand,
the variations presented in Fig. 3 mean that during the analyzed hour,
lightning activity was inconsistent.

One should keep in mind that the level of variation between the
target segment at any other segment does not have any physical mean-
ing by itself; it only quantifies how big are the differences between the
compared segment and the target segment. Thus, one can safely assert
that segments with different KS distance values can be attached to
different states, but to assign physically meaningful states, one should
resort to additional data. For example, in the cases presented above
the information revealed by the figures is related to lightning activity,
and if it was either stable or unstable. To actually relate the variations’
results with the state of thunderstorm activity additional information is
needed; at the very least, the global lightning count during the interval
defined by the target segment.

Moving onwards, the major point of interest in testing the presented
methodology is to offer some insight into the general trend changes
such as the ones displayed in Fig. 3. Consequently, all the results will
be smoothed as displayed in the figure. It is worth mentioning how the
4

Fig. 4. Signal variability on December the 27th, 2018 — variable duration, 2 min
difference between segments. The dashed lines mark the time of sunrise (light gray)
and sunset (dark gray).

smoothed line still reaches a 0.0 value for the target segment; this is
intended to make it identifiable at a glance.

To further characterize the resulting curve’s shape and how the
methodology’s degrees of freedom affect the results, the parameters of
the analysis must be accounted for. It is trivial that the time between
segments affects the analysis resolution. Common sense drives the
hypothesis of segment duration mitigating the average variation value
for a given period, but a simple test reveals that this is not the case.
Fig. 4 displays an analysis result where the length of the segments has
been modified while keeping the step size (namely, the amount of time
between a segment and the next) constant.

While it is true that modifying segment duration affects the average
variation, their relationship is not direct. Fig. 4 shows how the segment
duration that peaks in average variation are 90 and 120 s. It is also
worth noticing how, on top of the lower average values displayed
by the 600 s segments’ analysis, it shows a heightened sensitivity to
difference detection. Between 08:00 and 10:00 AM, average KS distance
is doubled for the 600 s segments, reaching the values shared by the
rest of the curves, while the comparative gain on the rest is not that
high. On that same interval, it is the 300 s segments’ curve that peaks
in variance, as can be clearly seen in the inline zoom featured in the
Figure. The variance increase for all segment lengths matching sunrise
(light gray dashed line) is worth noticing, as well as the falling edge of
a variance peak matching sunset (dark gray dashed line).

To provide further insight, Fig. 5 displays a similar procedure
applied on a day with more pronounced variations.

In this case, the analysis with a segment duration of 120 s displays
the highest average variation, especially noticeable in the second half
of the day where the signal is more stable. Despite the differences
appreciated between all curves from the target segment to sunset
(Dark gray dashed line), after sunset the pattern of all curves display
similar trends. This similarity is higher when comparing them by pairs,
especially between 60 s (Salmon curve) and 90 s (Blue curve) and
between 300 s (Purple curve) and 600 s (Green curve). Once again, a
variability peak’s rising edge matches sunrise although no peak matches
sunset.

In this initial stage of methodology testing, the reason why the
average variability does not linearly decrease with segment duration
can only be the subject of speculation. It may be due to the value of
the rest of the parameters or related to some disturbance or behavior
present on the records. The former requires extensive testing since the
many tests realized during the development of this work yielded no
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Fig. 5. Signal variability on February the 4th, 2018 — variable duration, 2 min
difference between segments. The dashed lines mark the time of sunrise (light gray)
and sunset (dark gray).

Fig. 6. Signal variability on February the 4th, 2018 — 10 min length, 2 min difference
between segments. The dashed lines mark the time of sunrise (light gray) and sunset
(dark gray).

specific evidence. The latter is suggested by how in Fig. 4 the curves of
different segments display the maximum variability at different periods.
It will require a detailed study of a period well characterized with
information about the additional variables that define the SR (lightning
activity, ionosphere state, etc.).

To consider the weight of the choice of the target segment, an
analysis has been performed multiple times targeting different segments
inside the same interval. An example of this is shown in Fig. 6 per-
formed on the same day as Fig. 5 which displays pronounced variations
during the early hours of the day while staying stable for the rest of the
day.

Once again, the temporal location of each target segment is given
by the moment where the curve value in the 𝑦-axis is 0.0, as well
as highlighted in the Figure’s legend. An interesting detail is how the
analysis for the target segment of 04:48 UTC (Blue curve) is matched
with a maximum variation point for the analysis of 19:12 UTC (Green
curve). This causes these two curves to almost mirror each other;
despite certain differences, the same peaks and troughs that appeared in
Fig. 5 can be appreciated. In the same fashion, the rest of the segments
follow the green curve’s tendency during most of the first half (up to
10:00 UTC), although the maximum value they reach during each peak
has different magnitudes. In the second half, the 04:48 UTC segment
(Blue curve) is the one with the highest divergence.

Among the rest there are trend shifts worth noticing. The 19:12
UTC segment keeps its variability values above the other three until
approximately 17:00 UTC, where it is surpassed by the 09:36 UTC
analysis (Orange curve). It is also interesting how the variability of
the 00:00 UTC, 09:36 UTC, and 14:24 UTC analyses (Salmon, orange,
and purple curves respectively) stop having a clear, common trend
during the 10:00 UTC to 15:00 UTC section. From this point onward,
5

Fig. 7. Signal variability on June the 2nd, 2018 — 10 min length, 2 min difference
between segments. The dashed lines mark the time of sunrise (light gray) and sunset
(dark gray).

the orange and purple curves match each other and mimic the trend
marked by the 04:48 UTC variability. Just as well, there are similarities
between the variability of these three segments and that from the 00:00
UTC segment after 19:00 UTC.

The way different segment’s variability curves share similar trends
along specific sections points out certain level of independence from
the chosen segment. In other words, while there are differences in
absolute variability between any chosen segment and a segment of the
signal, the general similarity between trends means variability over
time can be appreciated choosing any given segment. Even in segments
containing isolated events such as the one at 04:48 UTC (blue curve) the
trend is present, albeit inverted. The variability between the signal and
this target segment shows the possibilities of choosing an odd segment;
the variability is high through most of the curve, giving reasons to
expect similarities between the target segments and those segments
whose variability is lower.

In Fig. 7 the results of an analysis under the same parameters are
displayed, but in this case, it shows variation distributed in three clear
zones.

The maximum/minimum value inversion behavior is similar to the
one displayed in Fig. 6 but, in this case, no curve clearly mirrors the
other. Most of them tend to follow the same tendency (especially in
the section between 12:00 UTC and 21:00 UTC) with only the curve
with the lowest average value (Segment in 14:24 UTC, with the purple
curve) per section following a different tendency. The sudden shift that
can be appreciated around 11:00 UTC is of interest, since it marks a
boundary between the nighttime and daytime realizations. The most
likely explanation should be the ionosphere change at sunrise, but since
the time when the inversion happens is six hours after sunrise (gray
dashed line) takes away the weight of the hypothesis. It is also worth
noticing the absence of sudden variations around sunrise (light gray
dashed line), as observed in the rest of Figures. Nonetheless, all curves
increase their steepness around sunset (dark gray dashed line).

Once again it can be seen that total variation can be characterized
by any segment, regardless of its location along the time slot. The
behaviors displayed by different segments point once again to different
states contained within each temporal slot.

A variation overview for all the analyzed data is shown in Fig. 8. All
chosen data was subjected to hourly analysis, using segments of 10 min
in length and with a time difference of 2 min between each other. All
the results are hourly averaged by month and the resulting mean and
statistical deviation by hours is displayed here, for both years.

First, it clearly states the main advantage of averaging a signal
such as the SR in monthly segments; the average KS distance stays
almost ever below 0.06, being most usually around 0.04. It points
out how averaging reduces significantly the variation, allowing many
requirements to be fulfilled. That being said, it is interesting how
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Fig. 8. General results, showing the hourly mean and statistical deviation of each month, for the two analyzed years.
the statistical deviation is more sensitive than the average, the latter
following the trend of the former almost to a fault but acquiring higher
relative values as well. Lastly, it is worth noticing how the varia-
tions, although still reduced, are more pronounced in the first and last
quadrimester of the year, whereas in the middle quadrimester the signal
is more stable. This is consistent with the properties of the African
thunderstorm cycle, which reaches a minimum activity level during late
spring and summer. On the other hand, the peak of daily activity for
this thunderstorm center happens at 15:00 UTC (Nickolaenko et al.,
1998), but the variation analysis does not show a clear maximum at
this time, or even around it.

Lastly, a simple test is performed to present in a practical way the
effects of this measurement, its results displayed in Fig. 9.

In this figure, the results of a variation analysis can be seen, with the
variation’s excursions showing how the time interval is one where the
signal changed noticeably in small amounts of time. Below, three sets
of frequency spectra calculated with the FFT algorithm using the same
signal segments involved in the variation analysis are shown. These
have 7 s length and 7 s between each other, closely matching the recom-
mendations from Nickolaenko and Hayakawa (2014). Nonetheless, the
FFTs has been calculated using different sets of segments. For instance,
the spectrum colored in orange has been calculated using the segments
with low variation (segments whose variation is under the orange line,
a total of 52 segments) whereas the blue one comes from those with
high variation (the 58 segments whose variation places them over the
blue line). Finally, the pale red spectrum was calculated using the first
58 segments of the hour.

Nickolaenko and Hayakawa (2014) state how the first four modes
are clearly visible after averaging 7 minutes’ worth of segments, and
recognizable after 2 min. It is understood that this rule of thumb is
applicable to clear segments with no interference. In this test, the FFTs
were calculated using almost 7 min of data, (albeit a bit less for the
segments with lower values of variation) but, due to the noisy nature of
the segment, the SR modes are hard to notice in the FFT calculated just
by averaging the spectra of the segments sequentially. On the contrary,
the other two spectra show the first three modes, showing how by
choosing segments with a similar variation the number of segments
to produce a clear spectrum is reduced. That being said, the spectrum
produced by using similar segments (IE those with lower values of
6

Fig. 9. Practical analysis to present the effects of variation, showing the signal
variability for April the 20th, 2018 with segments length of 7 s, 7 s difference between
segments, and the FFTs calculated from different subsets of the sample.

variation) is clearer than the one calculated using the divergent seg-
ment, despite having fewer samples. An explanation can be reasoned
under the constraints of this analysis. There is no doubt that segments
with a low KS distance will be similar to the target segment, and by
extension similar to each other. On the other hand, segments with a
high variation are different from the target segment, but they are not
necessarily similar between them.
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This test serves its purpose by proving the relevancy of segment
variation in signals whose variations over time allow the interpretation
of the signal as a stochastic process, such as the SR. In this case, the
procedure has shown a way of choosing a set of time segments that
provide the best resolution of the signal spectra. Given the nature
of the calculation, the opposite can happen if the segment chosen
as the target segment was especially odd since the procedure would
consider it similar to the rest of odd segments. Once again, it must be
remarked how the utility of variation calculation may be boosted if the
characteristics of the target segment are properly identified.

4. Conclusions

In this work, we have presented a methodology based on the use
of a fairly common metric, namely the Kolmogorov–Smirnov distance,
to quantify the variation between temporal segments of the Schu-
mann Resonances. The possibilities and results of the methodology are
explored showing the effect of modifying its different parameters.

To the best of our knowledge, this procedure has not been widely
applied to stochastic processes. Its interest and applications are multi-
ple; going from ensuring that the chosen data fulfills similarity criteria,
to the fine-tuning of analysis’ parameters such as sample size or number
of repetitions. This interest has been explored by showing how the spec-
tra calculated using segments of similar variation display the Schumann
resonance modes more clearly than a regular spectra, calculated by
picking up the first 𝑁 segments in a sequential fashion.

Through the application of this tool to the Schumann resonance
ecords, an average variation value of 0.04 between segments con-
aining background noise has been observed. In the same fashion, the
ase variation on the background noise has been estimated, ranging
rom 0.02 to 0.06. When a given time slot displays variation, a typical
aximum value of 0.25 is observed, although a few results reach higher

alues.
Specific situations where the analysis was applied have been shown,

nd through them its potential. The possibility of detecting low vari-
tion segments of time along with the expected relationship with
ightning activity displayed by the results makes this methodology an
nteresting complement to more in-depth analyses. Among the future
evelopments of this line of research, it would be possible to pair
his methodology with additional data about phenomena that may
nfluence the Schumann Resonances, such as lightning activity, iono-
pheric charge or seismic activity. This may give way to infer different
tates on specific variables, knowing the state of the target segment, or
erceiving the presence of undetected transient events by comparing
veraged temporal variations between the variations obtained from a
pecific segment.
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