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Abstract

In this contribution we deal with a varying discrete Sobolev inner product involving the
Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal
polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae
because they describe the essential differences from the point of view of the asymptotic behavior
between these Sobolev orthogonal polynomials and the Jacobi ones. Moreover, this asymptotic
behavior provides an approximation of the zeros of the Sobolev polynomials in terms of the zeros
of other well–known special functions. We generalize some results appeared in the literature
very recently.
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1 Introduction

One of the aims of this paper is the study of the asymptotic behavior of sequences of polynomials

{Q(α,β,Mn)
n }n≥0 orthogonal with respect to the inner product

(f, g)S,n =

∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx+Mnf

(j)(1)g(j)(1), (1)

where α > −1, β > −1, and j ≥ 0.
We assume that {Mn}n≥0 is a sequence of nonnegative real numbers satisfying

lim
n→∞

Mnn
γ =M > 0, (2)
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where γ is a fixed real number. Notice that this assumption is not very restrictive since the sequence
{Mn}n≥0 can behave asymptotically like any real power of the monomial n.

The main motivation to study this type of inner product arises from the papers [3] and [4].
In [3] the authors work with a measure supported on [−1, 1]. However, in [4] the authors deal
with measures supported on an unbounded interval. In both cases the authors consider measures
with nonzero absolutely continuous part, i.e., they work with the so–called continuous Sobolev
orthogonal polynomials. The main topic in those papers is how to balance the Sobolev inner product
to equilibrate the influence of the two measures in the asymptotic behavior of the corresponding
orthogonal polynomials. This inspires us to consider the discrete Sobolev inner product

(f, g)S =

∫
fgdµ0 +M

∫
f (j)g(j)dµ1 =

∫
fgdµ0 +Mf (j)(c)f (j)(c),

which is a perturbation of a standard inner product. Now, makingM dependent on n we can study
the influence of the perturbation on the asymptotic behavior of the orthogonal polynomials. The
literature on discrete Sobolev (or Sobolev–type) orthogonal polynomials is very wide, so we refer
the interested readers on this topic to survey [8] and the references therein.

From here, in [6] the authors found the asymptotic behavior of a family of orthogonal polyno-
mials with respect to a varying Sobolev inner product similar to (1), involving the Laguerre weight
w(x) = xαe−x, α > −1. We remark that the techniques used in [6] are not useful in this case, and
now we need to use more powerful techniques based on those considered in [11]. More recently, in
[12] the same authors have even improved these techniques in such a way that they have obtained
relevant results for the orthogonal polynomials with respect to a non–varying discrete Sobolev inner
product being µ0 a general measure.

Previously, in [10] J. J. Moreno–Balcázar obtained some results in this direction but only for
the case j = 0. Again, the method used in that paper does not allow to tackle our problem.

We want to emphasize that our objective is to establish that the size of the sequence {Mn}n≥0

has an essential influence on the asymptotic behavior of the orthogonal polynomials with re-
spect to (1), but this influence is only local, that is, around the point where we have intro-
duced the perturbation. In our case, this point is located at x = 1. Furthermore, we prove
that this influence depends on the size of the sequence {Mn}n≥0 and its relation with the pa-
rameter α in the Jacobi weight and the order of the derivative in (1). It is important to re-
mark that for a sequence {Mn}n≥0, we have a sequence of orthogonal polynomials for each n,

so we have a square tableau {Q(α,β,Mn)
k }k≥0. Here, we deal with the diagonal of this tableau,

i.e. {Q(α,β,Mn)
n }n≥0 = {Q(α,β,M0)

0 (x), Q
(α,β,M1)
1 (x), . . . , Q

(α,β,Mi)
i (x), . . . }. At this point, in order to

simplify the notation, we will denote Q
(α,β,Mn)
n (x) = Qn(x).

A second aim of this paper is to establish a simple asymptotic relation between the zeros of
the Sobolev polynomials which are orthogonal with respect to (1) and the zeros of combinations of
Bessel functions of the first kind. This relation is deduced as an immediate consequence of Mehler–
Heine formulae (Theorem 2) and they have a numerical interest since we provide an estimate of
the zeros of these polynomials.
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Since Jacobi classical orthogonal polynomials are involved in the varying inner product (1),
we recall some of their basic properties. Jacobi polynomials are orthogonal with respect to the
standard inner product

(f, g) =

∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx, α, β > −1.

In the sequel, we will work with the sequence {P (α,β)
n }n≥0, α > −1 and β > −1, normalized by

(see [13, f. (4.1.1)])

P (α,β)
n (1) =

(
n+ α

n

)
=

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
. (3)

The derivatives of Jacobi polynomials satisfy (see, [13, f. (4.21.7)])

(P (α,β)
n (x))(k) =

1

2k
Γ(n+ α+ β + k + 1)

Γ(n+ α+ β + 1)
P

(α+k,β+k)
n−k (x), k ≥ 0. (4)

Using (3) and (4), we deduce

(P (α,β)
n (1))(k) =

1

2k
Γ(n+ α+ β + k + 1)

Γ(n+ α+ β + 1)

Γ(n+ α+ 1)

Γ(n− k + 1)Γ(α+ k + 1)
, (5)

where (P
(α,β)
n (1))(k) denotes the kth derivative of P

(α,β)
n evaluated at x = 1.

We also note that the squared norm of a Jacobi polynomial is (see, [13, f. (4.3.3)]):

||P (α,β)
n ||2 = 2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
. (6)

Finally, we will use the Mehler–Heine formula for classical Jacobi polynomials

Theorem 1 ([13, Th. 8.1.1]) Let α, β > −1. Then,

lim
n→∞

n−αP (α,β)
n

(
cos

(x
n

))
= lim

n→∞

1

nα
P (α,β)
n

(
1− x2

2n2

)
= (x/2)−αJα(x),

uniformly on compact subsets of C. Here Jα(x) denotes the Bessel function of the first kind, i.e.,

Jα(x) =
∞∑
k=0

(−1)k

k!Γ(k + α+ 1)

(x
2

)2k+α
.

We will also use the following limit related to Stirling formula (see, for example, [5, f. (5.11.13)])

lim
n→∞

nb−aΓ(n+ a)

Γ(n+ b)
= 1. (7)
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We introduce the following notation: If an and bn are two sequences of real numbers, then
an ≈ bn means that the sequence an

bn
converges to 1.

The paper is organized as follows. In Section 2 we provide some properties of the varying Jacobi–
Sobolev orthogonal polynomials which are essential to establish the Mehler–Heine asymptotics for
these polynomials in Section 3. Furthermore, as a consequence of this asymptotic formula we deduce
the asymptotic behavior of the corresponding zeros. Thus, as we have commented previously, we
can see the influence of the parameter γ, related to the size of the sequence {Mn}n≥0, on the
location of these zeros. Finally, in Section 4 we illustrate the results obtained in Section 3 with
some numerical experiments.

2 Varying Jacobi–Sobolev Orthogonal Polynomials

It is well known that the classical Jacobi orthogonal polynomials, {P (α,β)
i }ni=0, constitute a basis

of the linear space Pn[x] of polynomials with real coefficients and degree at most n. Therefore, the
Jacobi-Sobolev orthogonal polynomial of degree n, Qn(x), can be expressed as

Qn(x) = P (α,β)
n (x) +

n−1∑
i=0

an,iP
(α,β)
i (x).

Then, using well-known algebraic tools (see, for example, [7, Sect. 2]) we can deduce

Qn(x) = P (α,β)
n (x)−

Mn

(
P

(α,β)
n (1)

)(j)

1 +MnK
(j,j)
n−1 (1, 1)

K
(j,0)
n−1 (1, x), (8)

with

K(j,k)
n (x, y) =

n∑
i=0

(
P

(α,β)
i (x)

)(j) (
P

(α,β)
i (y)

)(k)

||P (α,β)
i (x)||2

.

Next, we give a technical result useful for our purposes, interesting in itself though.

Lemma 1 Let {Qn}n≥0 be the sequence of orthogonal polynomials with respect to (1) and 0 ≤ k ≤
n, then

a)

lim
n→∞

(Qn)
(k)(1)(

P
(α,β)
n (1)

)(k)
=


k−j

α+j+k+1 , if γ < 2(α+ 2j + 1),

θα,β,j,k, if γ = 2(α+ 2j + 1),
1, if γ > 2(α+ 2j + 1),

(9)

where

θα,β,j,k =
M(k − j) + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1)(α+ j + k + 1)

(α+ j + k + 1) (M + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1))
. (10)
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b) (Qn, Qn)S,n ≈ ||P (α,β)
n ||2.

Proof. Kernel polynomials related to classical families of orthogonal polynomials and their deriva-
tives have been widely studied in the literature. Thus, we can claim that the following limit exists,

lim
n→∞

K
(j,k)
n−1 (1, 1)

n2α+2j+2k+2
∈ R. (11)

It is very easy to check it by using Stolz’s criterion, (5), (6), (7) and the fact that

n2α+2j+2k+2 − (n− 1)2α+2j+2k+2 ≈ (2α+ 2j + 2k + 2)n2α+2j+2k+1.

Thus,

lim
n→∞

K
(j,k)
n−1 (1, 1)

n2α+2j+2k+2
= lim

n→∞

K
(j,k)
n−1 (1, 1)−K

(j,k)
n−2 (1, 1)

n2α+2j+2k+2 − (n− 1)2α+2j+2k+2

= lim
n→∞

(
P

(α,β)
n−1 (1)

)(k) (
P

(α,β)
n−1 (1)

)(j)

||P (α,β)
n−1 ||2(2α+ 2j + 2k + 2)n2α+2j+2k+1

= lim
n→∞

Cj,kΓ(n+ α+ β + j)Γ(n+ α+ β + k)Γ(n+ α)Γ(n)

Γ(n− j)Γ(n+ α+ β)Γ(n− k)Γ(n+ β)n2α+2j+2k

= Cj,k ∈ R,

where

Cj,k =
1

Γ(α+ j + 1)Γ(α+ k + 1)2α+β+j+k+1(α+ j + k + 1)
.

We will now prove part a) of the lemma, by (8)

lim
n→∞

Q
(k)
n (1)(

P
(α,β)
n (1)

)(k)
= lim

n→∞

1−
MnK

(j,k)
n−1 (1, 1)

1 +MnK
(j,j)
n−1 (1, 1)

(
P

(α,β)
n (1)

)(j)

(
P

(α,β)
n (1)

)(k)



= lim
n→∞

1−
Mnn

γ 1
2j

Γ(n+α+β+j+1)
Γ(n−j+1)Γ(α+j+1)

K
(j,k)
n−1 (1,1)

n2α+2j+2k+2n
2α+2j+2k+2−γ

1
2k

Γ(n+α+β+k+1)
Γ(n−k+1)Γ(α+k+1)

(
1 +Mnnγ

K
(j,j)
n−1

n2α+4j+2n2α+4j+2−γ

)
 .

To simplify the computations we introduce the following notation

an = Mnn
γ , by (2) we have lim

n→∞
an =M,

bn,j,k =
K

(j,k)
n−1 (1, 1)

n2α+2j+2k+2
, by (11) we have lim

n→∞
bn,j,k = Cj,k.
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Then, the above limit becomes

lim
n→∞

1−
anbn,j,k

1
2j

Γ(n+α+β+j+1)
Γ(n−j+1)Γ(α+j+1)n

2α+2j+2k+2−γ

1
2k

Γ(n+α+β+k+1)
Γ(n−k+1)Γ(α+k+1) (1 + anbn,j,jn2α+4j+2−γ)


= 1− 2k−jΓ(α+ k + 1)

Γ(α+ j + 1)
lim
n→∞

an lim
n→∞

bn,j,k lim
n→∞

n2α+2j+2k+2−γ

n2k−2j(1 + anbn,j,jn2α+4j+2−γ)

= 1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)
lim
n→∞

n2α+4j+2−γ

(1 + anbn,j,jn2α+4j+2−γ)

= 1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)
lim
n→∞

1
1

n2α+4j+2−γ +MCj,j
.

Therefore, it is necessary to distinguish three cases according to the value of the parameter γ. The
value of this limit is:

Case γ > 2(α+ 2j + 1).

1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)
lim
n→∞

1
1

n2α+4j+2−γ +MCj,j
= 1.

Case γ < 2(α+ 2j + 1).

1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)
lim
n→∞

1
1

n2α+4j+2−γ +MCj,j

= 1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)

1

MCj,j
= 1− α+ 2j + 1

α+ j + k + 1
=

k − j

α+ j + k + 1
.

Case γ = 2(α+ 2j + 1).

1−
2k−jΓ(α+ k + 1)Cj,kM

Γ(α+ j + 1)

1

1 +MCj,j

= 1− M(α+ 2j + 1)

(α+ j + k + 1) (M + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1))

=
M(k − j) + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1)(α+ j + k + 1)

(α+ j + k + 1) (M + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1))

= θα,β,j,k.

Thus, we have proved a). Now, we are going to prove b). Using standard arguments for Sobolev
orthogonal polynomials we can deduce

(Qn, Qn)S,n = ||P (α,β)
n ||2 +

Mn

((
P

(α,β)
n (1)

)(j)
)2

1 +MnK
(j,j)
n−1 (1, 1)

.
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Then,

lim
n→∞

(Qn, Qn)S,n

||P (α,β)
n ||2

= lim
n→∞

1 +

((
P

(α,β)
n (1)

)(j)
)2

||P (α,β)
n ||2

Mn

1 +MnK
(j,j)
n−1 (1, 1)

 .

To establish b) it is enough to prove that

lim
n→∞


Mn

((
P

(α,β)
n (1)

)(j)
)2

||P (α,β)
n ||2

(
1 +MnK

(j,j)
n−1 (1, 1)

)
 = 0.

Indeed, from (5) and (6) this limit can be expressed as

limn→∞


Mn

((
P

(α,β)
n (1)

)(j)
)2

||P (α,β)
n ||2

(
1 +MnK

(j,j)
n−1 (1, 1)

)
 =

limn→∞

Mn
1
22j

Γ(n+α+β+j+1)
Γ(n−j+1)Γ(α+j+1)

Γ(n+α+β+j+1)
Γ(n+α+β+1)

n−4j−2α−β+γΓ(n+α+1)
Γ(n−j+1)Γ(α+j+1)

1
n−4j−2α−β+γ

2α+β+1

2n+α+β+1
n−βΓ(n+β+1)

Γ(n+1)
1

n−β

(
1 +MnK

(j,j)
n−1 (1, 1)

n2α+4j+2−γ

n2α+4j+2−γ

)
 .

Again, to simplify the computations we introduce some notation

an = Mnn
γ , by (2) we have lim

n→∞
an =M,

bn =
Γ2(n+ α+ β + j + 1)Γ(n+ α+ 1)n−4j−2α−β

Γ(n− j + 1)Γ2(n+ α+ β + 1)
, then by (7) lim

n→∞
bn = 1,

cn =
Γ(n+ β + 1)n−β

Γ(n+ 1)
, then by (7) lim

n→∞
cn = 1,

dn = Mnn
γK

(j,j)
n−1 (1, 1)

n2α+4j+2
, then using (2) and (11) we get lim

n→∞
dn =MCj,j ,

Eα,j =
1

22j
1

Γ2(α+ j + 1)
.

In this way, for every γ, the above limit is

lim
n→∞

Eα,janbnn
4j+2α+β−γ

cn
2α+β+1nβ

2n+α+β+1 (1 + dnn4j+2α+2−γ)
= lim

n→∞

Eα,janbn(2n+ α+ β + 1)

2α+β+1n2
(

cn
n4j+2α+2−γ + cndn

) = 0,

and we have just proved b). 2
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Remark 1 Notice that taking into account b) in the above lemma, a) holds true when we consider
orthonormal polynomials.

To tackle Mehler–Heine asymptotics we need to expand the Sobolev polynomials Qn adequately.
The following result gives us this expansion. In a more general framework it has been established
in [12, Th. 1]. The idea is that the coefficients bi(n) in (12) can be obtained as a solution of a
homogeneous linear system of j + 1 equations and j + 2 unknowns. In our concrete case, we can
compute explicitly the entries of the corresponding coefficient matrix.

Proposition 1 There exists a family of real numbers {bi(n)}j+1
i=0 , not identically zero, such that

the following connection formula holds

Qn(x) =

j+1∑
i=0

bi(n)(1− x)iP
(α+2i,β)
n−i (x), n ≥ j + 1. (12)

Lemma 2 Let {bi(n)}j+1
i=0 be the coefficients in (12). Then

lim
n→∞

bi(n) = bi ∈ R, i ∈ {0, 1, . . . , j + 1}.

Proof. We take the kth derivative in (12) and we evaluate the corresponding expression at x = 1,

Q(k)
n (x) =

j+1∑
i=0

bi(n)

k∑
s=0

(
k

s

)(
(1− x)i

)(s) (
P

(α+2i,β)
n−i (x)

)(k−s)

=

j+1∑
i=0

bi(n)

min{i,k}∑
s=0

(
k

s

)
(−1)s

i!

(i− s)!
(1− x)i−s

(
P

(α+2i,β)
n−i (x)

)(k−s)
.

Then,

Q(k)
n (1) =

k∑
i=0

bi(n)

(
k

i

)
(−1)ii!

(
P

(α+2i,β)
n−i (1)

)(k−i)
.

From Lemma 1, limn→∞
Q

(k)
n (1)(

P
(α,β)
n (1)

)(k) exists and its value depends on the value of parameter γ

related to the size of the sequence {Mn}n≥0, so

Q
(k)
n (1)(

P
(α,β)
n (1)

)(k)
=

k∑
i=0

bi(n)

(
k

i

)
(−1)ii!Ai(k, n) (13)
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with Ai(k, n) =

(
P

(α+2i,β)
n−i (1)

)(k−i)

(
P

(α,β)
n (1)

)(k) .

It only remains to prove that there exists limn→∞Ai(k, n) ∈ R and, therefore the coefficients
{bi(n)}j+1

i=0 are convergent. Indeed

lim
n→∞

Ai(k, n) = lim
n→∞

1
2k−i

Γ(n−i+α+2i+β+k−i+1)
Γ(n−i+α+2i+β+1)

Γ(n−i+α+2i+1)
Γ(n−i−k+i+1)Γ(α+2i+k−i+1)

1
2k

Γ(n+α+β+k+1)
Γ(n+α+β+1)

Γ(n+α+1)
Γ(n−k+1)Γ(α+k+1)

= Ai(k, α),

where we denote Ai(k, α) =
2iΓ(α+ k + 1)

Γ(α+ i+ k + 1)
. 2

Remark 2 Let bi = limn→∞ bi(n) with i ∈ {0, 1, . . . , j+1}. (13) is a recursive algorithm to compute
bi.

� Step 1. For k = 0 we obtain b0 in a straightforward way.

� Step 2. For k = 1 we deduce the value of b1 from (13) using step 1. Similarly, for k ≥ 2 we
apply (13) in a recursive way.

3 Asymptotics and zeros of varying Jacobi–Sobolev

We focus our attention on the analysis of Mehler-Heine formulas for these discrete Jacobi–Sobolev
orthogonal polynomials because we want to know how the discrete part in the inner product (1)
influences the asymptotic behavior of the corresponding orthogonal polynomials. Furthermore, we
will prove that this influence is related to the size of the sequence {Mn}n≥0.

Theorem 2 For the sequence {Qn}n≥0 the following Mehler–Heine formula holds

lim
n→∞

Qn(cos(x/n))

nα
= lim

n→∞

Qn

(
1− x2

2n2

)
nα

=


ϕα(x), if γ > 2(α+ 2j + 1),
ψα,j(x), if γ = 2(α+ 2j + 1),
φα,j(x), if γ < 2(α+ 2j + 1),

(14)

uniformly on compact subsets of C, where

ϕα(x) =
(x
2

)−α
Jα(x),

ψα,j(x) =

j+1∑
i=0

bi2
i
(x
2

)−α
Jα+2i(x),

9



with

bi = (−1)i
M(i−j)−Γ2(α+j+1)2α+β+2j+1(α+2j+1)(α+j+i+1)
(α+j+i+1)(M+Γ2(α+j+1)2α+β+2j+1(α+2j+1))

− Γ(α+ i+ 1)
∑i−1

k=0 bk
(
i
k

) (−1)kk!2k

Γ(α+i+k+1)

i!2
iΓ(α+i+1)
Γ(α+2i+1)

,

for 0 ≤ i ≤ j + 1, and

φα,j(x) =

j+1∑
i=0

bi2
i
(x
2

)−α
Jα+2i(x),

where the coefficients bi are computed as

bi = (−1)i
i−j

α+j+i+1 − Γ(α+ i+ 1)
∑i−1

k=0 bk
(
i
k

) (−1)kk!2k

Γ(α+i+k+1)

i!2
iΓ(α+i+1)
Γ(α+2i+1)

, 0 ≤ i ≤ j + 1.

Notice that in last two cases the coefficient b0 is computed using the corresponding formula assuming∑−1
i=0 = 0.

Proof. Scaling and taking limits in (12)

lim
n→∞

Qn

(
1− x2

2n2

)
nα

= lim
n→∞

∑j+1
i=0 bi(n)

(
1−

(
1− x2

2n2

))i
P

(α+2i,β)
n−i

(
1− x2

2n2

)
nα

=

j+1∑
i=0

lim
n→∞

bi(n) lim
n→∞

(
1−

(
1− x2

2n2

))i
P

(α+2i,β)
n−i

(
1− x2

2n2

)
nα

=

j+1∑
i=0

bi2
i
(x
2

)−α
Jα+2i(x),

uniformly on compact subsets of C. Notice that in the last inequality we have used Theorem 1
written in the following way

lim
n→∞

(
x2

2n2

)i
P

(α+2i,β)
n−i

(
1− x2

2n2

)
nα

= 2i
(x
2

)−α
Jα+2i(x),

uniformly on compact subsets of C, where i is a fixed nonnegative integer number.
Now, we distinguish three cases according to the value of the parameter γ.

� If γ > 2(α+ 2j + 1), we are going to prove that b0 = 1 and bi = 0 if i ∈ {1, 2, . . . , j + 1}.

10



We can compute bi from (13). If k = 0, then

Qn(1)

P
(α,β)
n (1)

= b0(n)A0(0, n),

Using Lemma 1 and taking limits, we obtain b0 = 1. If k = 1, then according to Lemma 1 we have

Q
(1)
n (1)(

P
(α,β)
n (1)

)(1)
= b0(n)A0(1, n)− b1(n)A1(1, n).

Taking limits,
1 = 1− b1A1(1, α), then b1 = 0.

Applying a recursive procedure we get bi = 0 for i ∈ {1, 2, . . . , j + 1}. To illustrate this procedure
we consider the case k = j + 1. Thus, we have bi = 0 for i ∈ {1, 2, . . . , j}. Then,

Q
(j+1)
n (1)(

P
(α,β)
n (1)

)(j+1)
= b0(n)A0(1, n) +

j∑
i=1

bi(n)

(
j + 1

i

)
(−1)ii!Ai(j + 1, n)

+ bj+1(n)(−1)j+1(j + 1)!Aj+1(j + 1, n).

Taking limits,
1 = 1 + bj+1(−1)j+1(j + 1)!Aj+1(j + 1, α), then bj+1 = 0.

� Case γ = 2(α+ 2j + 1). From (13) and k = 0, we have

Qn(1)

P
(α,β)
n (1)

= b0(n)A0(0, n).

Taking limits when n tends to infinity in the above expression, we get

b0 =
−jM − Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1)(α+ j + 1)

(α+ j + 1)(M + Γ2(α+ j + 1)2α+β+2j+1(α+ 2j + 1))
.

For i ≥ 1, we use Lemma 1 again and take limits. Thus, we deduce the coefficients bi in a
recursive way from (13).

� Case γ < 2(α+2j+1).We can tackle this case in the same way as the case γ = 2(α+2j+1). 2

Next, we are going to study the zeros of the polynomials {Qn}n≥0 orthogonal with respect to
(1). The following result was established for the non-varying case within a more general framework
by H. G. Meijer in [9, Th. 4.1] (see also [2, Lemma 2]). Actually, that proof can be written in the
same way for the varying case, so we omit it.

11



Proposition 2 The polynomial Qn(x), n ≥ 1, has n real and simple zeros and at most one of them
is located outside the interval [−1, 1].

We can give more information about the location of the zeros. The case j = 0 was considered in
[10]. We notice that in that case all the zeros are in the interval (−1, 1). Thus, next we will assume
j > 0 and we will denote by yn,1 > yn,2 > · · · > yn,n−1 > yn,n the zeros of Qn(x).

Proposition 3 For n large enough and j > 0, we have

� If γ > 2(α+ 2j + 1), then all zeros of Qn(x) are located in (−1, 1).

� If γ < 2(α+ 2j + 1), then yn,1 > 1.

� If γ = 2(α+ 2j + 1), then yn,1 > 1 if and only if

M >
2α+β+2j+1(α+ j + 1)(α+ 2j + 1)Γ2(α+ j + 1)

j

Proof. We distinguish three cases, but essentially we use Lemma 1 a) with k = 0, and the fact
that the leading coefficient of Qn is positive. Then,

� If γ > 2(α+ 2j + 1), then by Lemma 1 Qn(1) > 0 for n large enough. Therefore, taking into
account Proposition 2, all the zeros are located in (−1, 1).

� If γ < 2(α+2j +1), then Qn(1) < 0 for n large enough, which implies that there is a zero of
Qn greater than 1 and by Proposition 2 it is the only one.

� If γ = 2(α+ 2j + 1), then yn,1 > 1 if and only if Qn(1) < 0 for n large enough, and this only
happens if and only if

M >
2α+β+2j+1(α+ j + 1)(α+ 2j + 1)Γ2(α+ j + 1)

j
. 2

Now we deduce the asymptotic behavior of the zeros of Qn(x).

Proposition 4 Let yn,1 > yn,2 > · · · > yn,n−1 > yn,n be the zeros of Qn(x) and ϕα(x), φα,j(x),
and ψα,j(x) the functions defined in Theorem 2. We assume j > 0.

1. If γ > 2(α+ 2j + 1), then

lim
n→∞

n
√

2(1− yn,i) = jα,i, i ≥ 1,

where jα,i denotes the ith positive zero of the Bessel function of the first kind.
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2. If γ < 2(α+ 2j + 1), then

lim
n→∞

yn,1 = 1, lim
n→∞

n
√
2(1− yn,i) = sα,i−1, i ≥ 2,

where sα,i denotes the ith positive zero of the function φα,j(x).

3. If γ = 2(α+ 2j + 1), we have two cases:

(a) IfM ≤ 2α+β+2j+1(α+ j + 1)(α+ 2j + 1)Γ2(α+ j + 1)

j
, then yn,1 ≤ 1, for n large enough,

and

lim
n→∞

n
√
2(1− yn,i) = tα,i, i ≥ 1,

where tα,i denotes the ith positive zero of the function ψα,j(x).

(b) If M >
2α+β+2j+1(α+ j + 1)(α+ 2j + 1)Γ2(α+ j + 1)

j
, then

lim
n→∞

yn,1 = 1, lim
n→∞

n
√

2(1− yn,i) = tα,i−1, i ≥ 2,

where tα,i denotes the ith positive zero of the function ψα,j(x).

Proof. It follows from Theorem 2, Proposition 3, and Hurwitz’s Theorem (see [13, Th. 1.91.3]). 2

To illustrate Theorem 2 we are going to recover the case j = 0 obtained in [10]. In that paper
the author uses monic polynomials, and here we are considering a different normalization, i.e. the
leading coefficient of Qn is

Γ(2n+ α+ β + 1)

2nΓ(n+ 1)Γ(n+ α+ β + 1)
.

Therefore, it is necessary to do some easy computations. We use the relations (see, [5, f.10.6.1], [1,
6.1.18])

Jα(x)−
2(α+ 1)

x
Jα+1(x) = −Jα+2(x), (15)

as well as

Γ(2x) =
Γ(x)Γ(x+ 1

2)

21−2x
√
π

. (16)

First, using (7) and (16) we get

Γ(2n+ α+ β + 1)

2nΓ(n+ 1)Γ(n+ α+ β + 1)
≈ 2n+α+β

√
π

Γ
(
n+ α

2 + β
2 + 1

2

)
Γ(n+ 1)

Γ
(
n+ α

2 + β
2 + 1

)
Γ(n+ α+ β + 1)

≈ 2n+α+β

n
1
2
√
π
.
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In [10] it was obtained

lim
n→∞

2nP̂
(α,β,Mn)
n (cos(x/n))

nα+1/2
=


−2−β√πx2zα+2(x), if γ < 2α+ 2,
−2−β√π(zα(x) + aα,β,Mzα+1(x)), if γ = 2α+ 2,
2−β√πzα(x), if γ > 2α+ 2,

where

zα(x) = x−αJα(x),

aα,β,M =
−2M(α+ 1)

M + 2α+β+1Γ(α+ 2)Γ(α+ 1)
,

and {P̂ (α,β,Mn)
n }n≥0 denotes the sequence of monic polynomials which are orthogonal with respect

to (1) with j = 0. This result can be written as follows

lim
n→∞

2n+α+βP̂
(α,β,Mn)
n (cos(x/n))

nα+1/2
√
π

=


−2αx2zα+2(x), if γ < 2α+ 2,
−2α(zα(x) + aα,β,Mzα+1(x)), if γ = 2α+ 2,
2αzα(x), if γ > 2α+ 2.

(17)

We can observe that
2n+α+βP̂

(α,β,Mn)
n (cos(x/n))

nα+1/2
√
π

≈ Qn(cos(x/n))

nα
.

Therefore, it only remains to compare the limit functions in (17) and (14). The case γ > 2α+2
is trivial. We pay attention to the other two cases.

� γ < 2α+ 2.

In this case b0 = 0 and b1 = −1/2. Thus we have

φα,0(x) = −
(x
2

)−α
Jα+2(x) = −2αx2x−α−2Jα+2(x) = −2αx2zα+2.

� γ = 2α+ 2.

In this case,

b0 = − Γ(α+ 1)22α+β+1(α+ 1)

M + Γ2(α+ 1)2α+β+1(α+ 1)
,

b1 =
M

2(M + Γ2(α+ 1)2α+β+1(α+ 1))
.

14



By using (15) we deduce

ψα,0(x) = b0

(x
2

)−α
Jα(x) + 2b1

(x
2

)−α
Jα+2(x)

=
−Γ2(α+ 1)2α+β+1

M + Γ2(α+ 1)2α+β+1(α+ 1)

(x
2

)−α
Jα(x)

+
M

M + Γ2(α+ 1)2α+β+1(α+ 1)

(x
2

)−α
Jα+2(x)

= −
(x
2

)−α
Jα(x) +

M(α+ 1)

M + 2α+β+1Γ2(α+ 1)(α+ 1)

(x
2

)−α−1
Jα+1(x)

= −2α(zα(x) + aα,β,Mzα+1(x)).

4 Numerical Experiments

In this section we illustrate the previous results on the zeros of the polynomials Qn with some
numerical experiments where we have taken j = 3 for all of them. Thus, we are dealing with the
varying Sobolev inner product

(f, g)S,n =

∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx+Mnf

(3)(1)g(3)(1).

We have used the mathematical software Mathematica®8.0 for the computations. In all the
numerical experiments we have computed the four largest zeros of the polynomials Qn(x) and the
corresponding scaled zeros for several values of n.We only show one example for each possible case.
In the tables about the scaled zeros we show their asymptotic behavior such as it is described in
Proposition 4.

� Case γ > 2(α+ 2j + 1).

We choose the following values:

α = 3, β = 1, γ = 25, and Mn =
3en

(6en + 4)nγ
.

It was proved in Theorem 2 that in this case the Mehler–Heine formula for the polynomials
Qn is the same one as for the classical Jacobi polynomials. This behavior is due to the negligible
influence of the sequence of masses {Mn}n≥0 on the asymptotics. Obviously, as it was stated in
Proposition 4, this determines the asymptotic behavior of the zeros which is illustrated in Table 1
and Table 2.

� Case γ < 2(α+ 2j + 1).
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yn,4 yn,3 yn,2 yn,1
n = 150 0.994346 0.99636 0.997952 0.999125

n = 250 0.997937 0.998672 0.999254 0.999681

n = 500 0.999479 0.999665 0.999811 0.999919

Table 1: Case γ = 25 > 2(α+ 2j + 1),
j = 3, α = 3, β = 1, γ = 25, Mn = 3en

(6en+4)nγ .

n
√

2(1− yn,1) n
√

2(1− yn,2) n
√

2(1− yn,3) n
√

2(1− yn,4)

n = 150 6.27524 9.59956 12.7982 15.9503

n = 250 6.31687 9.66386 12.885 16.0602

n = 500 6.34839 9.71233 12.9501 16.1421

Limit j3,1 = 6.38016 j3,2 = 9.76102 j3,3 = 13.0152 j3,4 = 16.2235

Table 2: Case γ = 25 > 2(α+ 2j + 1),
j = 3, α = 3, β = 1, γ = 25, Mn = 3en

(6en+4)nγ .

According to Theorem 2 the limit function in the Mehler–Heine formula is given by φα,3(x) =∑4
i=0 bi2

i
(
x
2

)−α
Jα+2i(x), where the coefficients bi, 0 ≤ i ≤ 4, can be computed from Theorem

1.We choose the following values:

α = 3, β = 1, γ = 4, and Mn =
7 ln(n+ 1) + 5

(3 + ln(n2))nγ
.

In Table 3 we can see that the largest zero is greater than 1 for n large enough according to
Proposition 3. Table 4 shows the asymptotic behavior of the scaled zeros given in Proposition 4.

yn,4 yn,3 yn,2 yn,1
n = 150 0.994574 0.996593 0.998169 0.999286

n = 250 0.998176 0.998915 0.999497 1.0016

n = 500 0.999554 0.999739 0.999883 1.0014

Table 3: Case γ = 4 < 2(α+ 2j + 1),

j = 3, α = 3, β = −1/2, γ = 4, Mn = 7 ln(n+1)+5
(3+ln(n2))nγ .

� Case γ = 2(α+ 2j + 1).

16



n
√

2(1− yn,2) n
√

2(1− yn,3) n
√

2(1− yn,4)

n = 150 9.07735 12.382 15.6257

n = 250 7.92964 11.6463 15.1011

n = 500 7.6415 11.4238 14.9355

Limit s3,1 = 7.64622 s3,2 = 11.4432 s3,3 = 14.9699

Table 4: Case γ = 4 < 2(α+ 2j + 1),

j = 3, α = 3, β = −1/2, γ = 4, Mn = 7 ln(n+1)+5
(3+ln(n2))nγ .

According to Theorem 2 the limit function in the Mehler–Heine formula is given by ψα,3(x) =∑4
i=0 bi2

i
(
x
2

)−α
Jα+2i(x), where the coefficients bi, 0 ≤ i ≤ 4, can be computed again from Theorem

1. We choose the following values:

α = β = −9/10, γ = 61/5 = 12.2,

and we denote by V the quantity which appears in Proposition 4, i.e.

V =
2α+β+2j+1(α+ j + 1)(α+ 2j + 1)Γ2(α+ j + 1)

j
.

Thus, with this data

V = 21/5
15128

75
Γ2

(
31

10

)
≃ 1119.0037947.

Now we take

Mn =
Mn2(n− 1/2)(n+ 2)

nγ+4
=
Mn2(n− 1/2)(n+ 2)

n81/5
.

According to Proposition 4 we have two possible choices of M which determine two different
asymptotic behaviors of the zeros. In Table 5 and Table 6 we show the case M ≤ V where M = 5.
We can see that the largest zero of Qn is always lesser than 1. However, whenM > V then yn,1 > 1
for n large enough and this is illustrated in Table 7 for M = 106. In Table 8 the asymptotic
behavior of the scaled zeros is shown.

Finally, we illustrate Theorem 2 plotting the curves corresponding to the limit functions and to

the scaled polynomials Qn

(
1− x2

2n2

)
with n = 150 and n = 500. In all the figures we have used the

same values for the parameters as those ones taken previously in the numerical experiments about
the zeros.
Acknowledgements: We thank the two anonymous referees for their useful suggestions to improve
the paper. In special, one of the referees provided us with some references such as [12] which have
been relevant for our research.
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yn,4 yn,3 yn,2 yn,1
n = 150 0.99778 0.99854 0.999585 0.999991

n = 250 0.999142 0.999585 0.999871 0.999997

n = 500 0.999786 0.99985 0.999968 0.999999

Table 5: Case γ = 61/5 = 2(α+ 2j + 1), M = 5 ≤ V

j = 3, α = −9/10, β = −9/10, γ = 61/5, Mn = 5n2(n−1/2)(n+2)
nγ+4 .

n
√

2(1− yn,1) n
√

2(1− yn,2) n
√

2(1− yn,3) n
√

2(1− yn,4)

n = 150 0.649565 4.02672 7.20558 10.3659

n = 250 0.64887 4.02249 7.19831 10.3561

n = 500 0.64853 4.01929 7.19273 10.3484

Limit t0,1 = 0.648561 t0,2 = 4.01985 t0,3 = 7.19169 t0,4 = 10.3446

Table 6: Case γ = 61/5 = 2(α+ 2j + 1), M = 5 ≤ V

j = 3, α = −9/10, β = −9/10, γ = 61/5, Mn = 5n2(n−1/2)(n+2)
nγ+4 .

Funding: The authors JFMM and JJMB are partially supported by Research Group FQM-0229
(belonging to Campus of International Excellence CEIMAR). The author JFMM is funded by
PPI Universidad de Almeŕıa. The author FM is partially supported by Dirección General de
Investigación, Ministerio de Economı́a y Competitividad Innovación of Spain, Grant MTM2012-
36732-C03-01. The author JJMB is partially supported by Dirección General de Investigación,
Ministerio de Ciencia e Innovación of Spain and European Regional Development Found, grant
MTM2011-28952-C02-01, and Junta de Andalućıa (excellence grant P11-FQM-7276).
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yn,4 yn,3 yn,2 yn,1
n = 150 0.996412 0.999306 0.999978 1.00042

n = 250 0.99931 0.999739 0.999991 1.00009

n = 500 0.999818 0.999928 0.999999 1.000001

Table 7: Case γ = 61/5 = 2(α+ 2j + 1), M = 106 > V

j = 3, α = −9/10, β = −9/10, γ = 61/5, Mn = 106n2(n−1/2)(n+2)
nγ+4 .

n
√

2(1− yn,2) n
√

2(1− yn,3) n
√

2(1− yn,4)

n = 150 1.77464 6.0132 9.53661

n = 250 1.10344 5.71202 9.35539

n = 500 1.00403 5.58651 9.27349

Limit t0,1 = 0.903528 t0,2 = 5.34057 t0,3 = 9.07889

Table 8: Case γ = 61/5 = 2(α+ 2j + 1), M = 106 > V

j = 3, α = −9/10, β = −9/10, γ = 61/5, Mn = 106n2(n−1/2)(n+2)
nγ+4 .
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[4] M. Alfaro, J. J. Moreno–Balcázar, A. Peña, M. L. Rezola, Sobolev orthogonal poly-
nomials: Balance and asymptotics, Trans. Amer. Math. Soc. 361 (2009), 547–560.

[5] R. A. Askey, R. Roy, Gamma function, in NIST Handbook of Mathematical Functions,
Cambridge University Press, Cambridge, UK, 2010, 135–147.
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Figure 3: Case γ = 2(α + 2j + 1). Limit function and scaled polynomials Qn(1 − x2/(2n2)) with
M < V.

-10 -5 5 10

-1.0

-0.5

0.5

1.0

ΨΑ,3HxL

n=500

n=150

Figure 4: Case γ = 2(α + 2j + 1) Limit function and scaled polynomials Qn(1 − x2/(2n2)) with
M > V.
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