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The results obtained using the OBIA approach for remote sensing image
analysis depend strongly on the quality of the segmentation step. In this paper,
to optimise the scale parameter in a multiresolution segmentation, we analyse
a high resolution image of a large and heterogeneous agricultural area.

This approach is based on using a set of agricultural plots extracted from
official maps as uniform spatial units. The scale parameter is then optimised
in each uniform spatial unit. Intra-object and inter-object heterogeneity mea-
surements are used to evaluate each segmentation. To avoid subsegmentation,
some oversegmentation is allowed but is attenuated in a second step using the
spectral difference segmentation algorithm. The statistical distribution of the
scale parameter is not equal in all land uses, indicating the soundness of this
local approach.

A quantitative assessment of the results was also conducted for the different
land covers. The results indicate that the spectral contrast between objects is
larger with the local approach than with the global approach. This differences
were statistically significant in all land uses except irrigated fruit trees and
greenhouses. In the absence of subsegmentation this suggests that the objects
will be placed far apart in the space of variables, even if they are very close in
the physical space. This is an obvious advantage in a subsequent classification
of the objects.
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2 F. Cánovas-Garćıa & F. Alonso-Sarŕıa

1. Introduction

Object Based Image Analysis (OBIA) is an alternative to the traditional pixel based ap-
proach for remote sensing image analysis. Whereas the latter is based on the statistical
analysis of multispectral features of the pixels in the image, the former allows the use of
a large range of additional information. Two advances are behind the expansion of this
technique: the availability of high spatial resolution satellites for civil use, for example
Quick Bird (Aplin et al. 1997); and the release of eCognitionTM in 2001, the first com-
mercial OBIA software. This release has given universal access to tools previously only
available in specialised research labs (Castilla and Hay 2008, Blaschke 2010).

OBIA, when used in remote sensing (GEOBIA), has been defined as a ”subdiscipline
of Geographic Information Science (GIScience) devoted to developing automated meth-
ods to partition remote sensing imagery into meaningful image-objects, and assessing
their characteristics through spatial, spectral and temporal scales, so as to generate new
geographic information in GIS-ready format” (Hay and Castilla 2008).

This approach produces better results than traditional pixel-based classification (Yan
et al. 2006, Blumberg and Zhu 2007, Chen et al. 2007, Platt and Rapoza 2008, Smith 2008,
Gao et al. 2009, Myint et al. 2013), especially when applied to high spatial resolution
images (Yu et al. 2006, Lu and Weng 2007) or in regions dominated by small-scale farming
(Conrad et al. 2010).

Additional advantages of OBIA have been highlighted (Jyothi et al. 2008, Lang 2008,
Liua and Xiab 2010): reduces intra-class spectral variability; provides a great number of
new features to characterize classes; reduces in several orders of magnitude the number
of cases to process, allowing more advanced and computationally costly classification
techniques to be used; and, finally, diminishes the speckled pattern in the final map.
However, some disadvantages have also been identified, being the most important the
dependence of the results on the quality of the segmentation step (Recio Recio 2009,
Liua and Xiab 2010, Hermosilla Gómez 2011, Myint et al. 2013).

Therefore, it is clear that segmentation, a critical step in OBIA and specific to this
technique, is the base for the extraction of real world objects (Marpu 2009). However, the
perfect segmentation algorithm does not yet exists and the most widely used techniques
still need to be improved (Reikik et al. 2007). The need for human decisions concerning
the segmentation settings for each different satellite scene remains a bottleneck, allowing
room for increased automatic preprocessing in GEOBIA (De Kok 2012).

Multiresolution segmentation (Baatz and Schape 2000), the segmentation algorithm
used in this study, is one of the most widely used in OBIA. It has been included in
eCognitionTM since 2002 (Lucieer 2004, Benz et al. 2004) and, despite its recent avail-
ability, it is rapidly becoming one of the most cited segmentation algorithms (Lu and
Weng 2007). The key parameter for this segmentation method is the scale parameter, but
there is no straightforward method to obtain an optimum value of the same. The usual
approach is to find a compromise value for the whole image by trying several values and
evaluating the results (Platt and Rapoza 2008, Tzotsos et al. 2008, Gao 2009, Conrad
et al. 2010). However this global approach needs a certain degree of uniformity in the
image, so its application to large heterogeneous images may be difficult.

The objective of this paper is to present an approach for optimising the segmentation of
high resolution images, especially in large study areas, in order to obtain a land cover map
for agronomic purposes. This approach is based on an empirical goodness method, which
consists of quantifying some desirable segmentation properties and searching for the scale
parameter that maximises them. The overall approach solves some of the problems faced
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by the research in the topic:

• Instead of optimising the scale parameter for the whole image, the approach uses
uniform spatial units to optimise local scale parameters. It thus uses the multi-scale
aspect indirectly.

• It uses the multi-source aspect including ancillary information from a cartographic
database.

• It uses the multi-method aspect since it implements several different segmentation
algorithms.

For comparison purposes we also used the global optimisation method proposed in
Espindola et al. (2006). This method is briefly explained in section 2.3.

The paper is organised as follows. In section 2 segmentation algorithms are briefly
presented. In section 3 we describe the study area and the input information that was
used. The proposed approach is outlined in section 4. In section 5, the main results are
presented and discussed. Finally, the last section offers some conclusions.

2. Segmentation algorithms

There is a wealth of literature on the different segmentation approaches. The most rele-
vant approaches in remote sensing are:

• Algorithms based on unsupervised classification, like k-means and isodata.

• Algorithms based on edge detection search for the pixels corresponding to the limits
of the real elements in the landscape and use them as object boundaries.

• Algorithms based on region growing include algorithms that merge pixels recursively
from an initial set of pixels acting as seeds. These seeds are distributed through the
image according to previously established criteria.

2.1. Multiresolution Segmentation

The multiresolution segmentation algorithm is based on region growing. The details of
the algorithm can be consulted in Baatz and Schape (2000), where the authors claim that
the objects of interest typically appear simultaneously on different scales in an image;
therefore, the scale used for the extraction of objects should be adaptable to fit the size
of the objects.

The first step in the application of this algorithm is to consider each pixel in the image
as an object; thus the seed pixels are seed objects. Each possible fusion of a seed object
(i) with one of its neighbouring objects (j) means an increase in heterogeneity ∆Hij .
Only those fusions with a ∆Hij smaller than a previously established threshold (SP ) are
considered. If an object i is surrounded by any object j with ∆Hij < SP , a heuristic
decision rule must be applied to decide whether any of them should be merged with i. The
process continues iteratively until there are no more possible fusions. A low threshold
allows a lower number of fusions, resulting in a larger number of smaller objects. In
contrast, a large threshold will produce a small number of larger objects. This is why
this threshold is called the scale parameter (SP ).

The process requires two key elements: (1) that the definition of object heterogeneity
should allow ∆Hij to be calculated for the merging of a pair of objects (i and j); (2)
that a heuristic decision rule should decide which objects will be merged in each step.
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The increase in heterogeneity after a fusion of two objects, i and j, is calculated as a
linear combination of the increases in spectral and shape heterogeneities (Gao 2009):

∆Hij = wh ·∆Hspcij + (1− wh) ·∆Hshpij (1)

where wh is a weighting coefficient to give more importance to one of the hetero-
geneities, and ij represents the object resulting from merging objects i and j.

Spectral heterogeneity (Hspci,d) for an object (i) and a spectral band (d) can be
approximated by the variance or standard deviation of their values and the increase in
spectral heterogeneity (Baatz and Schape 2000):

∆Hspcij =
∑
d

wd[ai · (Hspcij,d −Hspci,d) + aj · (Hspcij,d −Hspcj,d)] (2)

where Hspci,d and Hspcj,d are the the spectral heterogeneities of band d in two neigh-
bour objects that are candidates for merging; Hspcij,d is the heterogeneity in band d of
the object resulting from the fusion; ai and aj are the sizes of both objects; and, finally,
wd is a weighting coefficient for each band.

Shape heterogeneity for an object (∆Hshpij) is calcuated as a weighted average of
compactness and smoothness, as defined in Baatz and Schape (2000) or Gao (2009). In
this study, a value of 0.5 was used for both weighting factors.

Once the increase in heterogeneity resulting from each possible merging of an object
with its neighbours has been calculated, the heuristic decision rule is used to decide
which of the neighbour objects with ∆Hij < SP is more suitable for merging with
the object analysed. The multiresolution segmentation algorithm uses a heuristic called
”more adequate, local and mutual” (Baatz and Schape 2000), which:

(1) finds for object i, the adjacent object j with lowest ∆Hij

(2) finds for j, the adjacent object k with lower ∆Hjk

(3) confirms that i=k; if not, the same cycle is repeated with j.

2.2. Spectral Difference Segmentation

The objects resulting from a multiresolution segmentation do not correspond to real
elements in the landscape and are called primitive objects (DEFINIENS 2004, Benz et al.
2004, DEFINIENS 2008). They are usually smaller than objects produced by manual
digitising (Corcoran et al. 2010), which is why it is difficult to compare both segmentation
approaches.

Multiresolution segmentation is appropriate for finding primitive objects, but there is
a need for other fusion algorithms to merge those primitive objects into a set of larger
objects that are more related to landscape elements (Benz et al. 2004, Yan et al. 2006).

Spectral difference segmentation is one of the most frequently used fusion algorithms
in eCognitionTM and several authors have used it to refine segmentation results (Esch
et al. 2008, Zabala et al. 2010, Johnson and Xie 2011). This algorithm improves the
spatial correspondence between primitive objects and landscape elements, reducing the
number of objects. It merges two objects if the difference between the average value of
their features is lower than a threshold called the maximum spectral difference (MSD):
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SDij =
∑
d

wd · |mi,d −mj,d| (3)

where mi,d and mj,d are the averages for band d calculated for two objects, and wd is
the band weight, according to its importance. If SDij < MSD, the fusion is allowed.

2.3. Validation and optimization of segmentation

One of the main problems with OBIA, particularly with the multiresolution segmentation
algorithm, is the impossibility of knowing a priori the most suitable set of parameters
for delimiting the objects (Espindola et al. 2006, Lu and Weng 2007, Tian and Chen
2007, Walker and Blaschke 2008, Gao 2009). Another problem is the validation and
optimisation of the parameters. Usually, a very time-costly trial-error approach is used,
but does not guarantee an optimal result (Schiewe 2002, Espindola et al. 2006, Tian
and Chen 2007, Nussbaum and Menz 2008, Platt and Rapoza 2008, Costa et al. 2008,
Kim et al. 2008, Walker and Blaschke 2008, Marpu 2009, Gao 2009, Dragut et al. 2010,
Gao et al. 2011, Rosa and Stow 2014). Moreover, this approach is usually applied to the
complete image, and a compromise scale parameter is obtained for the image as a whole,
which does not necessarily work for the different plots.

The methods used to validate the results were classified in Zhang (1996). Although
this classification was not initially intended to be used with remote sensing imagery,
it is essentially valid and has been accepted (Schiewe 2002, Castilla Castellano 2003,
Espindola et al. 2006, Costa et al. 2008, Radoux and Defourny 2008, Neubert et al. 2008,
Marpu 2009). Segmentation results can be evaluated in an analytical or empirical form
(Zhang 1996). The first way is based on an a priori examination of the algorithm, its
principles and properties. When applying the empirical approach there are two options:

• Empirical discrepancy methods: The automatic segmentation is compared with an-
other digitised by a photointerpreter, which is considered as ground-truth, and the
differences are quantified. These methods are mostly used in OBIA when the aim is to
validate one or several segmentations (Delves et al. 1992, Neubert and Meinel 2003,
Lucieer 2004, Carleer et al. 2005, Zhang et al. 2005, Radoux and Defourny 2007, Tian
and Chen 2007, Möller et al. 2007, Neubert et al. 2008, Neubert and Herold 2008,
Schöpfer et al. 2008, Fu et al. 2013). However, as is claimed in (Zhang et al. 2005),
manually digitising a reference image is difficult, subjective, and time-consuming; fur-
thermore, it would be impossible to choose the better of two different, skillful manual
segmentations. Thus, empirical discrepancy methods are difficult to use when the goal
is optimisation.

• Empirical goodness methods: The objective is to quantify any a priori desirable seg-
mentation property, the segmentation with the best results is considered the most
appropriate. There is no need for a reference image and the method is easy to use in
optimisation. This is the approach used in this study.

Some approaches focus on internal homogeneity measurements (Dragut et al. 2010)
based on local variability increments that arise in different segmentations obtained with
increasing values of the scale parameter. These ideas are based on Woodcock and Strahler
(1987), who established the existing relations between the spatial structure of the image,
the dimensions of real world objects, and the spatial resolution of the image.
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Espindola et al. (2006) integrates both internal homogeneity and external heterogeneity
criteria to measure segmentation quality using an objective-function. External hetero-
geneity is measured as the spatial autocorrelation. The rationale is that a segmentation
should have two basic properties: (1) the resulting objects are internally homogeneous;
(2) the resulting objects are different from those nearby.

The objective function used by Espindola et al. (2006) combines external heterogeneity
and internal homogeneity measurements. The first measurement is the Moran autocor-
relation index (Fotheringham et al. 2000), calculated, for each band, from the objects’s
average values for that band. The second one is a size-weighted variability index, which
is also calculated for each band. This is based on the object internal variance (equation
4):

vd =

∑N
i=1 ai · S2

di∑N
i=1 ai

(4)

where vd is the internal homogeneity in band d, Sdi is the variance of each object (i)
for each band (d), ai the size of object i and N the number of objects. This measurement
guarantee that all polygons in the image contribute equally to the calculation of the
parameter, preventing instabilities resulting from a high number of small areas.

As far as we know, little work has been done on the selection of objective functions
to maximise internal homogeneity and external heterogeneity. However, one of the most
relevant works in this respect is Espindola et al. (2006) which proposes two functions to
normalise both internal homogeneity and external heterogeneity to values between 0 and
1; the sum of both functions is the measure to be maximised. Other authors embrace
this equation with some modifications or deal with the problem with similar statistics
(Johnson and Xie 2011). This proposal has been used successfully by Zhang and Xie
(2014).

3. Study area and data set

The study area (Figure 1) is located in the Murcia Region in south-east Spain, and
corresponds to Irrigation Unit (UDA) 28, as defined by the River Segura Basin Hydro-
logical Plan, the in-force water resources planning law passed on 24 July 1998 (R.D.
1664/1998). A 150 m buffer zone has been added to guarantee the complete inclusion of
the relevant plots. The area is centered at X=600000,Y=42175000 (UTM 30N), equiva-
lent to latitude=38o05′50′′N and longitude=1o51′35′′W , both coordinate pairs based on
the ETRS89 datum. Including the buffer, it has an area of 9,070 ha. Most of it, except
600 ha, is included in the basin of the River Argos. This river is a tributary of the River
Segura, a typical semiarid river.

Most of the information used in this research was obtained from the Environmental
Integration and Management Service (SIGA), a branch of the CARM government. The
data, obtained under the Natmur-08 project (CARM 2009), consist of a 2 m resolution
multispectral (Blue, Green, Red and Near Infrared) image, a 0.45 m panchromatic digital
image, and a 4 m resolution DEM interpolated from LIDAR points. The images corre-
sponding to the study area were acquired on 9,10 and 11 July 2008 with an Intergraph
Z/I-Imaging Digital Mapping Camera. The final 0.45 m resolution multispectral image
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was obtained using Gram-Schmidt fusion (Clayton 1971, Farebrother 1974, Cánovas-
Garćıa and Alonso-Sarŕıa 2014) as previous treatment. This final image was used in this
study.

4. Methodology

The main aim of this study was to optimise the scale parameter used with the multires-
olution segmentation algorithm. Due to the lack of a priori valid criteria to identify the
optimal segmentation parameters, a procedure to extract primitive objects using the mul-
tiresolution segmentation algorithm is proposed. This is based on the execution of several
segmentations and their statistical analysis. From these analyses, and using criteria that
will be defined later, a general decision rule can be obtained. This rule identifies which
scale parameter maximises the empirical properties characteristic of good segmentation
in the context of an empirical goodness method.

The approach follows that used in Espindola et al. (2006) with some modifications to
provide better results given the large size and heterogeneity of the study area. In short,
the difference is that external heterogeneity was calculated using the Geary coefficient
rather than Moran’s coeeficient because the former allows the variability of the objects
to be taken into account. The most relevant difference from most other OBIA-related
studies, is that, instead of a global (the whole image) approach, we take a local (uniform
spatial units) approach. Another important difference is the optimization of the scale
parameter, which is discussed further in this section.

4.1. Extraction of primitive objects: Internal homogeneity and
external heterogeneity measurements

The ideal situation would be to find a set of parameters that maximises internal homo-
geneity and reduces external heterogeneity. However, in most cases, the two functions
are inversely proportional, and a graphical approach can be used.

Following Baatz and Schape (2000) and Espindola et al. (2006), equation 4 is used
in our work as the internal homogeneity measurement. However, we used the Geary
coefficient (Geary 1954) as the external heterogeneity statistic, rather than the Moran
autocorrelation index. The original formulation of the Geary index can be expressed for
any feature as:

c =
N − 1

2 ·
∑N

i

∑J
j wij

·
∑N

i

∑J
j wij · (xi − xj)2∑N
i (xi − µx)2

(5)

where N is the number of objects obtained in each uniform spatial unit, xi is the value
of the feature in object i, xj is the value of the feature in one of the J objects surrounding
object i, µx is the average of feature x, and wij is 1 if both i and j share an arc, and 0
otherwise. If c is smaller than one, it indicates a negative spatial autocorrelation; if c is
larger than one, the autocorrelation is positive; finally, if c = 1 there is no autocorrelation.

The formulation of the Geary coefficient has been modified in this study by substituting
the difference values (xi − xj) for an Euclidean distance between both objects in a 2-
dimensional space defined by the average and the standard deviation of the band in each
object:
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Dij =
√

(mi −mj)2 + (si − sj)2 (6)

We believe that, by including objects variability, this distance between objects allows
a more complete characterization of the differences between two objects. In fact, the
possibility of using this form of Euclidean distance is why we used the Geary index
instead of the Moran index as proposed in Espindola et al. (2006). Hence, the Geary
coefficient applied was:

c =
N − 1

2 ·
∑N

i

∑J
j wij

·
∑N

i

∑J
j wij ·D2

ij∑N
i D

2
iµ

(7)

where:

Diµ =

√√√√(mi −
∑H

h=1mh

H

)2

+

(
si −

∑H
h=1 sh
H

)2

(8)

where H is the number of objects in the image.
The modification of the Geary coefficient introduced in this work is the transforma-

tion of wij from a Boolean variable (contiguity or non-contiguity) into a percentage of
contiguity:

wij = 100 · Pij
Pi

(9)

where Pi is the perimeter of object i and Pij the perimeter shared by objects i and j.

4.2. Uniform spatial units

The validity of internal homogeneity and external heterogeneity criteria to optimise the
scale parameter depends heavily on having a uniform study area for the scale parameter
to be representative of the whole area. The study area also needs to be large enough for
the algorithm to be executed. The study area in this research is large, at least compared
with the areas analysed in other OBIA studies (Carleer et al. 2005, Chen et al. 2006,
Espindola et al. 2006, Tian and Chen 2007, Esch et al. 2008, Corcoran et al. 2010, Dragut
et al. 2010, Johnson and Xie 2011, Fu et al. 2013), and contains several different land
uses. This is why the global approach to optimise the scale parameter was not considered
suitable opting, instead, for a local optimisation approach.

The searching and manual digitising of uniform spatial units would have been almost
impossible for such a large area and would run counter to the idea of having a semiauto-
matic segmentation procedure. Not to mention the difficulty of defining and measuring
a uniformity index. As a result, we decided to use a land use map to obtain agricultural
plots to be used as uniform spatial units. After an analysis of the available digital land use
maps in the Spanish official cartography, the Agricultural Plots Geographic Information
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System (SIGPAC) cartography, with a nominal scale of at least 1:10,000, was selected
as the most appropriate source to obtain uniform spatial units. A detailed description
of this map can be found in Recio Recio (2009). We are assuming that each agricultural
plot in this ancillary layer is, if not completely uniform, at least more uniform than the
study area as a whole. Figures 5 to 10 depict some of the analysed uniform spatial units
showing, at least qualitatively, a high degree of uniformity.

SIGPAC should not be considered a proper land use layer. Only crops eligible for
subsidies are identified and labelled in the map; moreover, the map shows the land uses
declared by the owners, not always a reflection of reality; finally, the updates rely on the
owners’ declarations. Although, its geometry is fairly reliable, it is not error-free, which
is why some time had to be devoted to editing topological inconsistencies of the layer
and to merging agricultural plots with the same cover. Less frequently, some plots had
to be divided to maintain just one cover in each plot. As a result of such editing the
number of plots in the SIGPAC ancillary layer was reduced from 21,400 to 9,582.

The SIGPAC layer was then used just to obtain the boundaries of the homogeneous
cover plots, while the registered land use was not taken into account. The method we
propose therefore is not sensitive to the degree of updating of this layer.

4.3. The objective functions

The first step in defining the objective functions was to linearly transform both the
heterogeneity (cd) and the homogeneity (vd) functions for each band (d) (equations 10
and 11). To combine both curves a third one, F (vd, cd) was calculated (equation 12).

F (vd) =
max(vd)− vjd

max(vd)−min(vd)
(10)

F (cd) =
min(cd)− cjd

min(vd)−max(cd)
(11)

F (vd, cd) =
F (vd) + F (cd)

2
(12)

The purpose of these transformations was to keep the values within the range 0-1 with
the higher values indicating the fulfilment of the desired properties (i.e. high external
heterogeneity and high internal homogeneity).

The multiresolution segmentation algorithm was used with 3 spectral bands (red, green,
and near infrared). The importance of shape homogeneity was 30% and the weighting
coefficient for both compactness and smoothness was 50%.

If we let the three parameters vary in order to find the best combination, the num-
ber of possible combinations would not be feasible from a computational point of view.
Therefore, we decided to optimise the segmentation by varying the most critical param-
eter, the scale parameter, fixing the importance of shape homogeneity at 0.3 and the
smoothness and compactness weights to 0.5. The scale parameter was allowed to vary
from a value that was seen to produce oversegmentation (75) to another that produced
a strong subsegmentation (1025), with steps that were small enough to ensure minimal
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changes from one step to the other (25). However, these values may not be generalizable
to other images, since they could depend on the radiometric resolution of the sensor.

The authors of the algorithm Baatz and Schape (2000) consider that the spectral crite-
rion is more relevant than the shape criterion, so they recommend using a value smaller
than 0.5 as the importance of shape heterogeneity. In many OBIA-related papers the
usual values range between 0.1 and 0.4 (Al-Khudhairy et al. 2005, Walker and Blaschke
2008, Zhou et al. 2009). So we considered a value of 0.3 as acceptable.

The 9,582 uniform spatial units were analysed, creating F (vd) and F (cd) and F (vd, cd)
for each band and plot. Figures 5 to 8 show four examples of the relation of such curves
with the scale parameter.

A strong inverse correlation between F (vd) and the scale parameter is evident from
the curves. From the observation of several curves, it can be stated that such smooth
behaviour is usual in homogeneous large plots. The F (cd) function provides more infor-
mation: as a general pattern, F (cd) is small for a very small SP , increasing with it until
a threshold is reached, at which point the curve tends to flatten out. Additionally, there
is a relation between the evolution of F (cd) and the spatial structure of the image, more
specifically the presence or absence of different elements inside a uniform spatial unit
(trees, bare soil, buildings, etc.).

Some preliminary tests were carried out to evaluate the result of using the maximum
F (vd, cd) criterion to obtain the scale parameter. In some cases this function was an
almost horizontal line (Figure 8); moreover, using the smallest SP at which the maximum
value of F (vd, cd) was reached did not produce good results.

However, our hypothesis was still that valid criteria for any kind of land cover could be
extracted from the curves. It is clear that internal homogeneity and external heterogeneity
are two inversely correlated objectives; when SP is low, F (vd) is high and F (cd) is low,
while the opposite occurs when SP is high.

It was therefore decided to consider the SP value at which the two curves intersect
as a trade-off between both objectives and, consequently, as the optimum SP. Because
the whole process was carried out with three bands, the minimum SP value obtained in
any of them was considered the final optimum SP. The minimum was preferred to the
mean in order to provide a more conservative estimation to avoid subsegmentation of
the homogeneous plots.

4.4. Improvement of the spatial correspondence of the primitive
objects

The spectral difference segmentation algorithm was used to modify the primitive objects
in order to improve their spatial correspondence with the real landscape objects. The
inputs for this algorithm are (1) the maximum spectral difference (MSD) value for use
as a threshold, and (2) the bands in which the method is to be applied. In this case,
the bands are the same as those used with the multiresolution segmentation algorithm.
In order to obtain an objective procedure to chose the optimum MSD for each uniform
spatial unit, several values were tested in several uniform spatial units. The results showed
that MSD increases with SP, following a curve defined by equation 13.

MSD(SP ) =

{
1500, if SP >= 600;

1500 · (1.5 · SP600 − 0.5 · SP600
3
), if SP < 600;

(13)
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4.5. Segmentation quality

The use of digitised objects as a reference to validate a segmentation has been limited, as
far a we know, to the use of very few objects in very small study areas (Lucieer and Stein
2002, Neubert and Meinel 2003, Liua and Xiab 2010, Johnson and Xie 2011). Having
a set of digitised objects large enough to be representative increase substantially the
complexity of the study, especially in large study areas, as it is the case for this study.

Following Zhang (1996) and Zhang et al. (2008), an evaluation based on an empirical
goodness method, as the one used in this study, relies only on the segmented image,
without comparison with a manually-digitised reference set of objects. The optimisation
of the segmentation parameter is considered enough to obtain the best possible segmen-
tation. This approach has been widely accepted among OBIA researchers (Schiewe 2002,
Espindola et al. 2006, Costa et al. 2008, Neubert and Herold 2008, Radoux and Defourny
2008, Dragut et al. 2010).

However, in order to have a more quantitative and objective quality measurement,
two statistical analyses were carried out. The set of uniform spatial units was randomly
sampled to obtain 50 uniform spatial units in each land use, except ”seedlings” that
included just 15 units. The class of each uniform spatial unit was assigned during a
field work campaign. The distribution of the scale parameters obtained using the local
approach was used to verify that differences in the scale parameter among different
land uses exist and can be related to their spatial patterns. Kruskal–Wallis one-way
analysis of variance using ranks was used to decide whether the population distributions
are identical. Fisher exact test was then used to compare the distributions of the scale
parameter in every pair of classes searching for significantly different pairs.

On the other hand, a simple measure of the quality of each method has been introduced.
In the absence of subsegmentation, a segmentation is better than another if, for any band,
the reflectivity of the pixels in an object is different to that of the surrounding objects.
The arithmetic mean of the absolute differences between each object and its neighbours
can measure this property:

Diffi =

∑
j∈J

wij |mi −mj |

|J |
(14)

where i is the object being measured, j is each of the objects contiguous to i, mi the
pixel average of object i, mj the pixel average in object j, wij a percentage of contiguity
(indicated in equation 9), J is the set of the objects that share a boundary with i, and
|J | is the number of members in J .

The values of Diff obtained with the global and local approaches were compared for
each class. To take into account the size of each object, avoiding at the same time the
computational and statistical problems of having a huge number of cases, 5,000 pixels
were selected from each class. Each object contributed to this amount with a number of
pixels proportional to its size. These pixels were used to build the density function of
Diff, calculate the medians, and compare the medians obtained with the global and local
approaches using the Mann–Whitney U test to determine in which classes the medians
were significantly different. We used a non-parametric test because, as can be seen in
figure 4, the distributions are far from normal. On the other hand, except for irrigated
cereal and arable land, the distributions obtained using both global and local approaches
are very similar, with the same variance. Consequently, the conditions to apply Mann–
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Whitney U test are fulfilled except for those two land uses whose medians are clearly
different just seeing the density distributions.

4.6. Work flow

Figure 2 shows a diagram with the whole work flow. The first step was to calculate the
internal homogeneity and external heterogeneity statistics in the three bands used to
segmentate each plot with each scale parameter. The eCognitionTM software was used to
make all the segmentations for all the uniform spatial units, as defined by the SIGPAC
map. The segmentations were carried out using variable SP values, ranging from 75 to
1025 with steps of 25. Segmentation was hierarchical, which means that segmentations
using higher SP values used the information obtained in the lower SP segmentations.
In this way, the whole set of segmentations can be completed in a reasonable time. The
algorithm was forced to keep to the SIGPAC plot boundaries, which means that two
objects included in different uniform spatial units were not merged even if they fulfilled
the heterogeneity criteria; this is a feature included in eCognitionTM software. Finally,
the statistics were calculated for all objects within a plot, for all the plots and for each
scale parameter. Although this is a slow process, the possibility of creating sequential
rulesets in eCognitionTM is very useful.

This process created a large amount of text files containing the statistics, which were
exported into R software (R Development Core Team 2009). This software was used to
build the curves and to locate the intersection points, that is, the lowest SP value which
produced a change in the sign of the function F (vd) - F (cd). Once the optimum SP values
had been obtained for each plot, they were used again in eCognitionTM to make the final
segmentation of the corresponding plots.

Finally, and also in eCognitionTM the spectral difference segmentation algorithm was
applied to all the plots.

The boundaries of the agricultural plots were, once again, maintained, meaning that
if two objects (i and j) were located in different plots, they were not merged even if
SDij < MDS. The values of SDij were calculated using equation 3.

The method in Espindola et al. (2006) was also applied to the red band, using different
scale parameters from 75 to 1025 with steps of 25. The importance of the shape criterion
was established at 30%.

We used the same parameters as in the previous case to obtain results that could be
compared.

Our method is very time-consuming, taking in our case about 15 hours of computation
in a 64-bit multicore (8 core) server with 12 GB RAM.

5. Results and discussion

Figure 3 and table 1 show the scale parameter distribution and medians in different land
uses. The lower median values of SP appear in seedlings and irrigated fruit trees (250),
while irrigated cereals (375) is the land cover with larger value. Arable land, olive trees,
and greenhouses (350) were also segmented with high SP values. In general, plots with
tree crops have lower scale parameters than those with non-tree crops because smaller
objects have to be identified in the former. Tree crops show also a lower dispersion in
SP values with higher density peaks, while non-tree covers show larger dispersion. The
reason is that non-tree covers represent large areas whose pixels have similar and spatially
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non-autocorrelated reflectivity, so they are prone to be randomly oversegmented. This
oversegmentation is easily solved in the post-segmentation step but produces a large
dispersion in the scale parameter values. Some cases of bimodality appears, specially in
rainfed cereals. The reason might be some differences in cultural techniques.

The results of the Kruskal–Wallis test showed that scale parameter do not have the
same distribution in at least a pair of classes (p-value=0.0000325). Table 1 shows the
p-values of the Fisher exact test conducted to compare the distributions of each pair of
classes. There is a subset of four land covers for which it cannot be rejected that their
spatial parameter distributions are the same: Irrigated cereal, arable land, olive trees,
and greenhouses. In the case of almond trees, the same distribution hypothesis cannot
be rejected with arable land and olive trees. In the case of rainfed cereal, this hypothesis
cannot be rejected with irrigated cereal, irrigated fruit trees, olive trees, and greenhouses.
On the other hand, the distribution of scale parameter for seedlings is different to all the
other land uses.

The differences in median among land uses, the differences in density functions, and
the fact that the dispersion by class is lower than overall dispersion suggest that the local
approach can produce a better segmentation than the global, giving to each spatial unit
an adequate value.

Figure 4 show the distribution of Diff, both for the local and global methods, and for
all land uses; table 2 shows the median values. Diff is always higher when using the local
approach than when using the global approach. The p-values of the Mann–Whitney U test
are highly significant except for greenhouses and irrigated fruit trees. In the land covers
where the fulfilment of the conditions to use the Mann–Whitney U test are less clear
(arable land and irrigated cereals) the difference between global and local approaches
are clear form the density distributions (Figure 4). So, assuming no subsegmentation,
the local optimisation method offer better contrast among neighbouring objects (except
for arable land and irrigated cereals). According to a visual inspection of the results,
none of the two approaches has produced subsegmentation in any land cover except in
the case of seedlings. In this case the local optimisation method subsegments 5 of the 15
analysed plots, while the global optimisation do it in 6.

Figures 5 to 8 show some examples of the obtained segmentations in uniform spatial
units. Figure 5 shows a uniform spatial unit with seedlings. This is an example of how
the proposed method allows very small objects to be identified if the required conditions
(a large enough plot and a good enough spectral contrast between objects) are met. The
optimal scale parameter identified for this spatial unit (125) have properly delimited
even small seedlings. However the plot is divided into many objects, most of them very
similar, although by applying the second segmentation algorithm, Spectral Difference
Segmentation, the number of objects, including background bare soil, is much reduced.
On the contrary, the global scale parameter (310), although it may be optimal for the
overall image, subsegmented this unit.

In other cases, both local and global approaches have produced similar results. Figures
6 and 7 show two examples where large trees are properly identified as separate objects,
and Figure 8 shows an example in a ploughed plot. Both in Figure 7 and Figure 8 the
application of the Spectral Difference Segmentation algorithm favours the generation of
large, homogeneous objects preventing subsegmentation.

Some examples of the segmentation results in different plots are presented in Figures 9
and 10 to discuss some qualitative aspects of the results in the main land uses present in
the study area. The aim of segmentation is to extract primitive objects that do not usually
have an exact correspondence with real landscape elements. However, these primitive
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objects should maintain some important properties, such as as low spectral variance,
similar sizes for the different objects included in the same land cover, and absence of
subsegmentation.

Figure 9 (a and b) shows two almond tree plots. Image a is a small plot, which is
a disadvantage when applying our method, although the result is acceptable. The trees
remain separated from the surrounding bare soil. Although the delimitation of the trees is
not very clear and some small bare soil patches are included within the tree objects, there
are no split trees, a very common problem when using a compromise scale parameter.
Such separation occurs when the shadow of the tree appears next to the tree. In this case,
two objects are often created: the illuminated part of the tree and the shadow merged
with the darkest part of the tree. Image b shows a similar result in a larger plot.

The two cereal plots in Figure 9 (c and d) are segmented in a way characteristic of
cereal plots where the stubble remains in the plot. A distinctive pattern of alternating
stripes of cut flush cereal and stubble appears. For this reason, although the land cover
is the same, these plots include several different long and narrow primitive objects. Even
using high scale parameters, these objects do not merge, due to the large differences in
their reflectivity. In image c, the contrast is less clear, which results in larger primitive
objects, even when a smaller scale parameter is applied.

Plots with irrigated fruit trees (Figure 9 e and f) are very heterogeneous because of
the different tree sizes. As long as there is no intersection between the canopies and the
bare soil surface between trees has no vegetation, the high contrast between canopy and
bare soil allows good differentiation of the former. However, some trees (for example
peach trees), due to the time of the year when the image was taken, show very developed
canopies without gaps between them. As a consequence, it is impossible to separate
individual trees and the quality of the segmentations is variable. Arable land (Figure 10
a and b), just like irrigated grass crops or wasteland, forms large objects due to the high
spectral homogeneity that characterises this cover, producing good segmentation.

Figure 10 (c and d) shows an olive trees plot. Olive trees are usually easy to differentiate
from the bare soil underneath. As with other tree covers, the success of the segmentation
depends on the reflectivity of the bare soil, which is related with the agricultural practices
carried out. If there is another crop in the soil underneath, or a dense cover of weeds
the results are worse. Figure 10 e and f show a plot covered with greenhouses. Being
quite different from other covers, greenhouses are usually very well segmentated. They
are also isolated constructions within agricultural plots, so the probability of merging
with a different kind of building is negligible.

In general, the results of the proposed approach can be considered quite satisfactory.
Land covers belonging to different kinds of crops appear in different objects. There is a
tendency to oversegmentation, but not to subsegmentation; however, this is not a problem
because oversegmentation can be easily handled in further steps of the classification
process. Several errors, however, have been identified, belonging to three main types:

• Errors due to the properties of the images. Some objects were not properly identified
because they were too small for the spatial resolution of the image or, less importantly,
too similar to the neighbouring objects for the radiometric resolution.

• Errors due to the structure of the agrarian landscape. The results were less accurate
in areas with small and congested plots. Another relevant factor is the attention given
to agricultural practices. In general, properly managed plots are easier to segmen-
tate, while abandoned plots are characterized by a mixture of non vigorous trees and
seasonal weeds that are easily merged.

• Some problems arise from the characteristics of the method. Using uniform spatial
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units introduces artificial boundaries. Another problem is the strong sensitivity of the
whole approach to the quality of the vector map used to support the segmentation. It
is crucial that the plots should be uniform, and large enough compared with the image
resolution.

6. Conclusions

In this study, a local approach using uniform spatial units is used to optimise the scale
parameter when applying the multiresolution segmentation algorithm to a high resolution
image of a large and heterogeneous agricultural area. The empirical goodness method to
validate the segmentation results was easily adapted to search for an optimal segmenta-
tion, especially compared with the empirical discrepancy methods. In light of the results,
we consider it an acceptable starting point for use in multiresolution segmentation in an
OBIA remote sensing analysis.

The rationale for such a local approach is that in large and dissimilar images, a global
optimisation of the scale parameter produces inappropriate values for some of the diverse
land covers included in the image. In contrast, the local approach allows application
of different heterogeneity criteria to different land covers providing an optimum scale
parameter for each uniform spatial unit.

Despite the amount of segmentations necessary (39 segmentations in each of the 9,583
uniform spatial units) both the programming capabilities of R and the sequential rulesets
available in eCognitionTM allow the work flow to be organised in an efficient, semi-
automatic way without much difficulty.

The statistical distribution of the scale parameter is not equal in all land uses, indicat-
ing the soundness of this local approach in such a large and diverse study area. However,
the hypothesis of having the same distribution could not be rejected for some pairs of
classes.

A qualitative evaluation suggests that the results are quite satisfactory. Noteworthy
is the good segmentation obtained for tree covers, whose correct segmentation is usu-
ally very difficult when using a global scale parameter. However, some problems were
identified in the segmentation of certain land covers, most related with the very low
spectral contrast between some real elements and their neighbouring elements. When
this happens segmentation is very difficult regardless of the method used.

We also carried out a quantitative assessment of the results, for the different land
covers, using relatively simple statistics. The results indicate that the spectral contrast
between objects is larger with the local approach than with the global approach. This
differences were statistically significant in all land uses except irrigated fruit trees and
greenhouses. In the absence of subsegmentation, as was mostly the case, this suggests
that the objects will be placed far apart in the space of variables, even if they are very
close in the physical space. This is an obvious advantage in a subsequent classification
of the objects.

The multiresolution segmentation algorithm is not particularly suitable for generating
objects which can be compared with those obtained by manual delineation of the cov-
erages. In contrast, the integration of different algorithms using the Cognition Network
Language (CNL) and eCognitionTM software (in which the former is implemented) may
produce a segmentation in which the objects generated are more related with real land-
scape elements. The reason is that eCognitionTM includes tools to integrate the elements
necessary to carry out a flexible classification-based segmentation.
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Interpretation of the internal homogeneity and external heterogeneity curves can be
useful for locating the optimal scale parameter in each homogeneous plot. However,
neither is able to identify the optimum segmentation without the other. It would be in-
teresting to devote more effort to studying their behaviour in different types of land cover
because it is possible that the F (cd) curves could even be used as landscape structure
signatures to characterise different land covers.
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suelo en entornos urbanos con imágenes de alta resolución y datos LiDAR. Thesis
(PhD). Universidad Politécnica de Valencia.
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Table 1. Medians of the scale parameter and p-values of the Fisher exact test when comparing the scale
parameter distribution of two different land uses.

Land cover med. SP R.c. I.c. I.f.t. A.l. O.t. G. S.
Almond trees 300 0.0056 0.0026 0.0022 0.215 0.2675 0.025 0.0002
Rainfed cereal 300 0.1096 0.1166 0.006 0.4201 0.0794 0.0006
Irrigated cereal 375 0.0022 0.1682 0.2553 0.9072 0.0002
Irr. fruit trees 250 0.0002 0.0092 0.0068 0.0166
Arable land 350 0.0282 0.0894 0.0002
Olive trees 350 0.2681 0.0002
Greenhouses 350 0.0002
Seedlings 250

Table 2. Medians of Diff calculated with the reflectivity in the red band with the global and local
approach and p-values of the Man-Whitney U test to compare both medians.

Land cover med. Diff global med. Diff local med. Diff p-value
Almond trees 3,621.7 4,454.5 6.413× 10−158

Rainfed cereal 1,800.7 2,193.1 1.096× 10−121

Irrigated cereal 1,382.9 2,835.7 0
Irrigated fruit trees 3,331.8 3,444.5 0.137
Arable land 1,121.1 2,216.0 0
Olive trees 4,354.4 4,783.7 2.093× 10−24

Greenhouses 4,419.8 4,402.9 0.492
Seedlings 2,585.5 2,869.5 1.8× 10−29
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Figure 1. Irrigation Unit no 28. National Topographic Map 1:200,000 from the Spanish National
Geographic Institute (IGN).
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Legend

MRS: Multiresolution Segmetation Algorithm
SDS: Spectral Difference Segmentation Algorithm
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Figure 2. Work flow.
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Figure 3. Scale parameter distribution along the different classes.
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Figure 5. F(v), F(c) and F(v,c) curves in an homogeneous plot with small trees (0.696 ha).
Applying the entire methodology with SP=125 and MSD=461 (a) . Applying just the scale pa-
rameter optimization with SP=125 (b) . Applying Espindola methodology with a global SP=310
(c).
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a) SP=325; MSD=1099

b) SP=325 c) SP=310
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Figure 6. F(v), F(c) and F(v,c) in an almond trees plot with low density and without irrigation
(1.621 ha). In this kind of plot our approach works very well, especially if the plots are large and
with only one type of land cover. Results obtained after the application of the entire methodology
with SP=325 and MSD=1099 (a). Applying just the optimization of the scale parameter with
SP=325 (b). Applying Espindola methodology with a global SP=310 (c).
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Figure 7. F(v), F(c) and F(v,c) curves for the red band in a irrigated fruit-trees plot (1.332
ha). The curves shows the uncertainty in the estimation of the scale parameter that maximizes
the average curve when the slope of such curve is very small. The intersection criterion is less
uncertain. Results obtained after the application of the entire methodology with SP=225 and
MSD=804 (a). Applying just the optimization of the scale parameter with SP=225 (b). Applying
Espindola methodology with a global SP=310 (c).
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Figure 8. F(v), F(c) and F(v,c) curves for the red band in a ploughed plot (2.453 ha). In this
kind of very homogeneous plots, optimisation is less relevant because almost any scale parameter
lower than 300 would have an acceptable result. Results obtained after the application of the
entire methodology with SP=325 and MSD=1099 (a). Applying just the optimization of the
scale parameter with SP=325 (b). Applying Espindola methodology with a global SP=310 (c).
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a b c

d e f

Figure 9. Examples of the results obtained with the proposed segmentation method: Two almond
tree plots, a small one (a) and a large one (b); two cereal plots (c and d); and two irrigation plots
with fruit trees showing the overlapping between canopies (e, f). Surfaces are a: 0.233 ha, b:
13.529 ha, c: 3.945 ha, d: 8.259 ha, e: 3.237 ha and f: 1.088 ha.
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a b c
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Figure 10. Examples of the results obtained with the proposed segmentation method: Two arable
land plots, a small one (a) and a large one (b); two olive tree plots (c and d); and two groups of
greenhouses (e and f). Surfaces are a: 0.257 ha, b: 4.209 ha, c: 9.721 ha, d: 0.838 ha, e: 0.514 ha
and f: 0.466 ha.


