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Abstract: Background: Among the clinical predictors of a heart failure (HF) prognosis, different per-

sonal factors have been established in previous research, mainly age, gender, anemia, renal insuffi-

ciency and diabetes, as well as mediators (pulmonary embolism, hypertension, chronic obstructive 

pulmonary disease (COPD), arrhythmias and dyslipidemia). We do not know the role played by 

contextual and individual factors in the prediction of in-hospital mortality. Methods: The present 

study has added hospital and management factors (year, type of hospital, length of stay, number of 

diagnoses and procedures, and readmissions) in predicting exitus to establish a structural predictive 

model. The project was approved by the Ethics Commi�ee of the province of Almeria. Results: A 

total of 529,606 subjects participated, through databases of the Spanish National Health System. A 

predictive model was constructed using correlation analysis (SPSS 24.0) and structural equation 

models (SEM) analysis (AMOS 20.0) that met the appropriate statistical values (chi-square, usually 

fit indices and the root-mean-square error approximation) which met the criteria of statistical sig-

nificance. Individual factors, such as age, gender and chronic obstructive pulmonary disease, were 

found to positively predict mortality risk. Isolated contextual factors (hospitals with a greater num-

ber of beds, especially, and also the number of procedures performed, which negatively predicted 

the risk of death. Conclusions: It was, therefore, possible to introduce contextual variables to explain 

the behavior of mortality in patients with HF. The size or level of large hospital complexes, as well 

as procedural effort, are key contextual variables in estimating the risk of mortality in HF. 

Keywords: SEM analysis; heart failure; biomedical factor; in-hospital factors; epidemiology;  

mortality 

 

1. Introduction 

Heart failure (HF) is a syndromic process with high prevalence and rising incidence, 

especially in Western countries. In Spain the prevalence was, in 2019, 1.89 (CI95% 1.70–

2.08) with an incidence rate of 2.78 new cases per 1000 people and year [1], having pro-

jected a 30% increase in 2035 [2], mainly due to ageing, although in France it has increased 

especially among young adults (36–59 years) [3]. It is currently the most frequent cause of 

hospital admission in patients over age 65 and constitutes 5% of total hospital admissions 

in Spain during recent years. The most common hospital access for patients with decom-

pensated HF is through the emergency department [4], and from this department the 
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stabilized patient may be discharged to home, or admi�ed to a hospital ward or short-stay 

unit [5]. In-hospital mortality for decompensated HF worldwide was about 9–13% [6]. In 

our country, studies such as Escobar et al. focused on hospitalized patients of internal 

medicine and showed in-hospital mortality at 9.5%; these percentages may significantly 

increase when a geriatric population is being considered—potentially as high as 11% mor-

tality [7]. In Spain, hospital mortality during admissions for acute HF is variable and con-

stitutes a major problem from the point of view of public health and cost efficiency, put-

ting a strain on healthcare expenditures [1,2,8]. 

On one hand, we must consider that the improved care and survival of ischemic heart 

disease in recent years constitute true breakthroughs in cardiology, but increased survival 

of ischemic heart disease results in very high rates of HF with this aetiology, not to men-

tion the increase that comes along with the unrelenting aging of the population. It is im-

portant to keep in mind that HF is not a unique nosological process, but it is one step in 

the physiopathological route of multiple morbid entities and pathologies, resulting in its 

extreme prevalence. 

To date, there are only two epidemiological, populational studies of HF in Spain 

(Cortina et al.) [9], in the region of Asturias and the Price Study nationwide [10]. In-hos-

pital estimates of mortality are more reliable than populational estimates, and, despite the 

high levels of mortality in HF, there are no explanatory models with a predictive compo-

nent that are founded on large clinical-administrative databases such as the Basic Mini-

mum Data Set (BMDS). The BMDS is a clinical-administrative database of obligatory use 

in all the hospitals of the Spanish National Health System that is complete with data from 

the clinical history of the patients. From these databases, different categories can be estab-

lished according to the “diagnosis-related groups” (DRGs). The DRGs are a system of 

classification of patients that allows the relating of the casuistry of treated patients with 

their cost. This system allows classification into categories (DRGs) with the isoconsump-

tion of resources. 

Nor is there any approach based on structural equations methodology so that we 

may gain knowledge of how variables at different levels interact to influence mortality in 

these patients. 

The main objective of this study was to determine whether it is feasible to develop a 

structural model to understand the functioning of direct and intermediate factors associ-

ated with in-hospital mortality due to decompensated HF in Spain. A secondary objective 

was to determine the role of 30-day readmission as a contextually dependent variable and 

its relationship with in-hospital mortality. 

2. Materials and Methods 

2.1. Participants  

Design: A retrospective cohort study was designed using analytical observation of all 

hospital stays for HF during the period 2008–2012. Two diagnosis-related groups (DRGs) 

were studied: HF or shock without comorbidities (DRG 127) and complex HF (DRG 544), 

with comorbidities. Geographic scope. The study was developed within the sphere of the 

Spanish National Healthcare System, which has a decentralized structure in 17 autono-

mous or regional healthcare systems whose information is centrally collected in the Min-

istry of Health and Consumerism. Each of the autonomous systems has its own structure 

with Basic Healthcare Areas that are in turn grouped into Primary Care Districts and Hos-

pitals; in our case, we have dealt exclusively with patients’ hospitalization episodes, and 

walk-in patients were excluded. 
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2.2. Source of Information, Sample and Case Selection 

The source of information was Spain’s Basic Minimum Data Set (BMDS) at discharge, 

made available by the Ministry of Health, Consumerism and Social Policies [11]. This da-

tabase contains information from more than 300 hospitals in Spain and is built up from 

the information contained in the medical records. Information about each hospitalization 

is sent by the different hospitals to the Ministry of Health, where all the information is 

centralized. In each episode, administrative and clinical data are collected, especially the 

diagnoses (the main one and up to 13 secondary ones), as well as up to 20 categories of 

procedures performed on the patients. A total of 529,606 hospital stays were analyzed, the 

total of all hospital stays from the period studied. Diagnostic and procedural coding was 

carried out using the International Classification of Diseases, Ninth Revision, and Clinical 

Modification (ICD-9-CM). The selection criteria consisted of extracting the patient stays 

that were discharged under the DRGs 127 and 544, after applying the AP-DRG classifier, 

version 21. DRG 127 accounted for 57.4% of the hospital stays (304,405 stays) and the re-

maining 42.6% was accounted for by DRG 544 (225,561). 

2.3. Variables 

The main dependent variables were mortality, an individual-based variable, and re-

admission, a context-based variable. The variables studied were sociodemographic (age, 

gender and healthcare region) and clinical (number of diagnoses at discharge “NDX” and 

the number of procedures at discharge “NPR”). NDX was considered a proxy for comor-

bidity or disease burden while NPR was the proxy for therapeutic effort and procedural 

complexity. In addition, we analyzed the type of admission (urgent vs. scheduled), as well 

as hospital management variables (length of stay, hospital group and readmission). The 

variables that, according to the evidence, are associated with a greater risk of morbimor-

tality from cardiovascular causes (diabetes, hypertension (HTA), dyslipemia and obesity, 

especially) were considered. Other variables such as the existence of arrhythmias (ARR), 

renal insufficiency (RI) and anemia, among others, were also considered to define the pa-

tient’s comorbidities profile. 

Only mortality that took place during hospitalization was taken into account. Read-

mission was counted when it occurred within 30 days after discharge, as long as it was 

classified under the same DRGs and did not occur in a different calendar year. Unplanned 

hospital admissions included any order for urgent hospital admission regardless of 

whether the patient came to the hospital via the emergency department or through other 

channels. 

2.4. Instruments and Procedure 

Bioethics Commi�ees 

The appropriate confidentiality and good practices documents, as approved by the 

Ministry of Health and Social Policies and in accordance with the legislation in force, were 

signed. Subsequent use and transmission of data, from the Ministry to the researchers, 

were anonymous and untraceable. The present investigation was evaluated and approved 

by the Provincial Research Ethics Commi�ee (Ref. 72/2018). 

2.5. Data Analysis 

2.5.1. Data Analysis Strategy 

In order to address our main objective, and detect the factors that are associated with 

in-hospital mortality for HF, we began with the hypothesis that each individual variable 

in the linear model (age, gender and the main individual comorbidities) would have a 

statistically significant effect on the intermediate variables in the model (length of stay, 

NDX, NPR and context variables such as year and hospital group); these intermediate 

variables would, in turn, have such an effect on the two main dependent variables, that is, 

mortality in the individual dimension and readmissions in the contextual dimension. 
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2.5.2. Variables and Analysis Schema 

The analysis schema defined two axes for the study of relations and associations be-

tween variables, as seen in Table 1. On one hand, variables were analyzed according to 

two large dimensions of each episode: variables in the individual dimension and variables 

in the contextual dimension. The context variables were identified as year, hospital group, 

length of stay, NDX and NPR, as well as readmissions, which was considered the depend-

ent, context variable; the remaining variables were considered variables characteristic of 

the individual (Table 1). On the other hand, our second axis of analysis classified variables 

as predictor variables, mediating/process variables or outcome/criteria variables regard-

less of the dimension to which they belonged. 

Table 1. Constituent variables of the model classified along two axes, and coding of variables in this 

investigation. 

VARIABLES CLASSIFIED ALONG TWO AXES OF ANALYSIS 

  PREDICTORS VARIABLES  MEDIATING VARIABLES CRITERIA VARIABLES 

INDIVIDUAL VAR. 

Age HTA 

Mortality  

Gender  PE  

Anemia Arrhythmias 

Renal Insufficiency 

Diabetes  
  

CONTEXTUAL VAR. 

Year  Length of Stay  

Readmission  Hospital Group Num- of Diagnoses  

  Num- of Procedures 

VARIABLES STUDIED ACCORDING TO CONTEXT 

Patient variables In-hospital context variable 

Age (years) Year (2008 to 2012) 

Gender (M/F) (%) Hospital Group (administrative status, I to IV) 

Anemia (%) Length of stay (number of days of hospital stay) 

Renal insufficiency (%) NDX (number, continuous discrete) 

Diabetes (%) NPR (number, continuous discrete) 

Hypertension (%) Readmissions (Yes/No) 

Pulmonary Embolism (%)  

Arrhythmias (Yes/No)  

Dyslipidemia (Yes/No)  

COPD (%)  

Exitus (%)  

Note: NDX: Number of diagnoses at discharge. NPR: Number of procedures at discharge. COPD: 

chronic obstructive pulmonary disease. 

As can be observed in the second part of Table 1, the variables are grouped into two 

distinct columns: individual variables and context-specific variables. For each of them, the 

way they are measured is indicated (percentages, yes/no values, specific categories in the 

case of polytomous variables and exact values in the case of quantitative variables). 

Sociodemographic information was obtained from the variables year, age, gender 

and autonomous region (Spain). Administrative-type elements were assessed through the 

variables length of stay, 30-day readmission in the same DRG, type of admission (emer-

gency vs. scheduled) and type of discharge (alive vs. exitus).0 Readmission was counted 

when it occurred within 30 days after discharge and in the same DRG. From a clinical 

point of view, we used the NDX as a proxy variable for the patient’s comorbidity, and the 

NPR to estimate the procedural complexity and therapeutic effort of each episode and the 

main clinical comorbidities associated with HF episodes. 
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2.6. Statistical Analysis 

For the statistical analysis, variables were treated as follows, according to the dimen-

sion being analyzed: (1) first, the initial variables were the predictor variables (PV), and 

the process and outcome variables were mediating variables (MV); (2) second, the process 

variables were the predictor and the outcome variables exitus (death) and readmission 

were the criteria variables (CV), according to the dimension of analysis. 

Two types of analysis were carried out in order to determine the variables to be in-

cluded in the structural linear model. First, bivariate analysis was carried out; Student’s t 

test was used to test the equality of means hypothesis for independent samples or analysis 

of variance. In cases where they could not be applied, the Mann–Whitney or Kruskal–

Wallis nonparametric test was applied, as appropriate (see Table S1 of the Supplementary 

Material). The chi-square test was used for comparison of qualitative variables. Relation-

ships between quantitative variables were determined through Pearson correlations (see 

Supplementary Material). Second, uni- and multi-variate inferential analysis was carried 

out between the variables established in the rational model. Inferential statistical analyses 

(multivariate analysis, MANOVAs) were carried out using SPSS (v. 23.0) for Windows. A 

selection of the most relevant results is shown in this text. 

Once the variables were identified, a structural equations model was finally devel-

oped. AMOS (v. 23.0) for Windows was used for structural validity analysis and for con-

structing the structural prediction model—specifically, in verification of the structural lin-

ear prediction hypothesis (path analysis). We a�empted to replicate the same analysis 

scheme as in a previous paper (de la Fuente et al. 2019 [12], with a different sample and 

problem. In model 1, we tested the relationships of the 17 variables, without constructing 

second-level latent variables. In models 2 and 3, predictive relationships between the la-

tent variables or defined dimensions were tested, with different predictions between 

them. In model 2, predictive relationships were established that were less significant. Fi-

nally, model 3 showed the most robust ones, with acceptable overall significant effects. 

To interpret the confirmatory factor analysis (CFA) and the structural equation model 

(SEM) fit, we assessed model fit by first examining the comparative fit index (CFI), normed 

fit index (NFI), incremental fit index (IFI), relative fit index (RFI) and the root-mean-square 

error of approximation (RMSEA). Sample size adequacy was checked using the Hoelter 

index (Tabachnick&Fidell, 2001). The analyses were conducted using the AMOS Program 

(IBM, USA). CFI values equal to or more than 0.90 were taken to indicate an acceptable 

and close fit to the data (McDonald & Marsh, 1990). RMSEA values equal to or below 0.05 

and 0.08 were taken to indicate close and acceptable levels of fit, respectively (Jör-

eskog&Sörbom, 1993 [13]. Keith (2006) [14] proposed the following research benchmarks 

for direct effects (direct linear prediction between one variable and another) in the form 

of beta coefficients: less than 0.05 is considered too small to be meaningful, above 0.05 is 

small but meaningful, above 0.10 is moderate and above 0.25 is large. For indirect effects 

(linear prediction between one variable, through another), we used Kenny’s (2012) [15] 

definition of an indirect effect as the product of two effects; using Keith’s benchmarks 

above, we propose an educationally meaningful small indirect effect = 0.003, moderate = 

0.01 and large = 0.06. Direct values refer to the direct linear prediction of one variable over 

another. Indirect effects refer to indirect linear prediction, or of a variable through another 

intermediate. This can occur between latent variables or between a latent variable and 

another observable through another latent. 
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3. Results 

3.1. Descriptive Analysis 

We analyzed 529,606 hospitalization episodes under DRG 127 (noncomplex HF) and 

DRG 544 (complex HF with comorbidity), from the years 2008–2012. The mean age of the 

patients was 79.02 years (SD 10.64). Patients were hospitalized for a mean length of stay 

of 7.28 days (SD 4.50) and were discharged with 9.31 recorded diagnoses (SD 2.89). They 

were submi�ed to 2.61 (SD 2.62) procedures during hospitalization. 

The sample included 296,013 female patients (55.9%). Of the total sample, 95.6% of 

the hospital admissions were unplanned (urgent) and 10.2% (53,862 patients) died during 

their hospitalization. The global analysis showed that 17.2% of the episodes involved pa-

tients who were experiencing readmission to hospital for HF. 

Considering the ICD9-CM codes used, the most prevalent were 428.0 (55.8%), 428.1 

(12.2%), 402.9 (9.3%) and 428.23 (1%), with the remaining codes associated with HF ac-

counting for 21.7%. 

3.2. Bivariate Association 

Many significant relations of bivariate association appeared between the different 

variables (p < 0.001). These associative relationships served to establish the later model of 

predictive linear relations. Most of these associations are physiopathologically coherent 

and have a low level of correlation, but they are associations that allow the establishment 

of the second-level model. In this sense, the positive association of gender (women) with 

hypertension and negative with the existence of COPD is noteworthy. Similarly, the NDX 

was positively associated with the existence of diabetes, the year in which the coding was 

done (“year”), HTA, dyslipemia and length of stay. Finally, mortality (“exitus”) was asso-

ciated with age, renal failure and correlated with short stays and negative correlation. See 

Table 2. 

Table 2. Correlation between variables (n = 529.606). 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Age                  

2. Gender 0.221                 

3. Anemia 0.075 0.054                

4. RI 0.055 −0.065 0.108               

5. Diabetes −0.090 −0.050 0.022  0.032             

6. Year 0.096 0.005 0.098 0.051 0.085             

7. HospGr −0.042 −0.007 0.016 −0.013 0.018 0.019            

8. HTA 0.033 0.136 −0.030 −0.041 0.137 0.121 0.023           

9. PE 0.011 0.010 −0.003  −0.012 −0.004 0.007 −0.009          

10. Arrhy 0.070 0.038 −0.018 −0.033 −0.058 0.097 0.012 0.035 0.007         

11. Dyslip. −0.103 0.003 −0.010 −0.010 0.139 0.151 0.031 0.143 −0.007 −0.024        

12. COPD −0.029 −0.227 −0.033 −0.088 −0.021  0.013 −0.033 −0.005 −0.005 −0.018       

13. Stay −0.027 0.006 0.079 0.032 0.032 −0.041 0.067 −0.024 0.016 0.020 −0.014 0.037      

14. NDX −0.012 −0.046 0.221 0.051 0.252 0.390 0.095 0.178 0.019 0.224 0.224 0.146 0.179     

15. NPR −0.029 −0.010 0.101 −0.013 0.051 0.202 0.006 0.052 0.023 0.082 0.073 0.028 0.198 0.369    

16. Readm −0.009 −0.027 0.027 0.040 0.032 0.024 −0.003 −0.022 0.003 −0.012 0.004 0.025 0.002 0.043 −0.029   

17. Exitus 0.116 0.009 −0.004 0.106 −0.034 −0.004 0.010 0.079 0.062 −0.008 −0.056 −0.007 −0.107 0.003 −0.002 0.040   

Note: All values are significant at p < 0.001. 

3.3. Linear Relations: Structural Prediction 

The results of structural analysis or pathway analysis (SEM) showed an acceptable 

model of relationship between variables. Three relationship models were tested with 17 

variables, but only the third showed adequate indices. The relationship parameters of both 

models are presented below (Table 3). 
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Table 3. Models of structural linear of second-level results of the variables. 

Model Degrees of Freedom Chi-Square p< NFI RFI IFI TLI CFI RMSEA Hoelter 

          0.05–0.01 

1. 17 F (170–121): 49 157341.89 0.001 0.825 0.454 0.825 0.454 0.854 0.063 341–385 

2. 17 F (170–138): 32 71268.011 0.001 0.921 0.621 0.921 0.621 0.921 0.052 524–607 

3. 17 F (170–151): 19 1926.507 0.001 0.946 0.941 0.946 0.941 0.946 0.050 497–541 

Note. Models 1 and 2 (complex with 17 factors); model 3 (simplified with 6 dimensions). NFI: 

normed fit index; RFI: relative fit index; IFI: incremental fit index; TLI: Tucker–Lewis index; CFI: 

corporative fit index; RMSEA: root-mean-square error of approximation. 

3.4. Standardized Direct Effects 

The second-order model showed significant predictions, simpler than the first, as the 

factors were grouped in latent dimensions. See Table 4 and Figure 1. 

 

Figure 1. Structural model of relationships of second-level with factors. Note. D1 = PRESAGE FAC-

TORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCIATED PATHOLOGIES; D3 

= PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL; D4 = PROCESS OF CONTEXT: YEARS; 

D5= PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT OF PATIENTS: DEATH; AGE = 

age; GEND = gender; ANEM = anemia; DIAB = diabetes; HTA = arterial hypertension; ARR = ar-

rhythmias; COPD = chronic obstructive pulmonary disease; YEAR = year; HOSPGR = hospital 

group; TEP = pulmonary thromboembolism; STAY = length of stay; NDX = number of diagnoses; 

NPR = number of procedures; READ = readmission. EXITUS = death. RTI = renal insufficiency.  

The D1 (PRESAGE FACTORS OF PATIENTS) dimension, made up of Age, Gender 

and Anemia factors, appeared as a positive predictor of D2 (PROCESS FACTORS OF PA-

TIENTS: ASSOCIATED PATHOLOGIES) and D3 (PRESAGE FACTOR OF CONTEXT: 

TYPE OF HOSPITAL), negative from D5 (PROCESS OF CONTEXT: INTERVENTIONS) 

and positive from D6 (PRODUCT OF PATIENTS: DEATH). 
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The D2 dimension (PROCESS FACTORS OF PATIENTS: ASSOCIATED PATHOLO-

GIES), made up of diabetes, dyslipidemia and HTA, positively predicted D5 (PROCESS 

OF CONTEXT: INTERVENTIONS), and negatively predicted D6 (PRODUCT OF PA-

TIENTS: DEATH). 

The D3 (PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL) dimension, made 

up of hospital group and EP, positively predicted D2 (PROCESS FACTORS OF PA-

TIENTS: ASSOCIATED PATHOLOGIES) and D4 (PROCESS OF CONTEXT: YEARS), but 

negatively predicted D6 (PRODUCT OF PATIENTS: DEATH) with great force. 

The D4 (PROCESS OF CONTEXT: YEARS) dimension, made up of the Year and ARR, 

positively predicted D5 (PROCESS OF CONTEXT: INTERVENTIONS). 

The dimension D5 (PROCESS OF CONTEXT: INTERVENTIONS), forced by NDX, 

length of stance, NPR and anemia, positively predicted D6 (PRODUCT OF PATIENTS: 

DEATH). 

Table 4. Standardized DIRECT effects (default model). 

 D1 D2 D3 D4 D5 D6 

D1. PATIENS       

D2. PATHOLOG.  0.136  0.582    

D3. TYPE HOSPI 0.060      

D4. YEAR    0.921    

D5. INTERVENT −0.122 0.131  0.870   

D6. DEATH 0.103 −0.147 −0.887  0.713  

Gender  0.974      

Age 0.223      

COPD −0.282      

Diabetes  0.391     

Dyslipemia  0.372     

HTA  0.352     

EP   0.027    

HOSPGR   0.104    

Year    0.358   

ARR    0.234   

IR      0.599 

NDX     0.769  

STAY     0.157  

NPR     0.319  

Anemia     0.195  

READ      0.087 

Exitus      0.170 

Note: D1 = PRESAGE FACTORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCI-

ATED PATHOLOGIES; D3 = PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL;D4 = PRO-

CESS OF CONTEXT: YEARS; D5 = PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT 

OF PATIENTS: DEATH; HTA = arterial hypertension; ARR = arrhythmias; COPD = chronic obstruc-

tive pulmonary disease; YEAR = year; HOSPGR = hospital group; EP = pulmonary thromboembo-

lism; STAY = length of stay; NDX = number of diagnoses; NPR = number of procedures; READ = 

readmission. EXITUS = death. 

3.5. Standardized Indirect Effects 

The model also revealed the existence of multiple indirect predictions among the var-

iables. The dimension D1 (PRESAGE FACTORS OF PATIENTS), made up of gender and 

age, has a positive influence on dimensions D2, D4 and D5, and on their factors of diabetes, 
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dyslipemia, HTA, EP, hospital group, year and ARR, as well as negative in D4 (IR, NDX, 

length of stance, NPR) and D6 (exitus). 

The second effect of interest is related to the fact that, while D2 (PROCESS FACTORS 

OF PATIENTS: ASSOCIATED PATHOLOGIES) appeared as a positive predictor of D5 

(PROCESS OF CONTEXT: INTERVENTIONS) and D6 (PRODUCT OF PATIENTS: 

DEATH), D3 (FACTOR OF CONTEXT: TYPE OF HOSPITAL) was a positive predictor. 

The dimension D4 (PROCESS OF CONTEXT: YEARS) appeared as a negative pre-

dictor of D6 (PRODUCT OF PATIENTS: DEATH). Additionally, D5 (PROCESS OF CON-

TEXT: INTERVENTIONS) appeared as an indirect predictor of D and factors (PRODUCT 

OF PATIENTS: DEATH. See Table 5. 

Table 5. Standardized Indirect Effects (Default model). 

 D1 D2 D3 D4 D5 D6 

D1. PATIENS       

D2. PATHOLOG.  0.035      

D3. TYPE HOSPI       

D4. YEAR  −0.055      

D5. INTERVENT 0.070  0.877    

D6. DEATH −0.208 0.224 −0.417 −0.491   

Gender        

Age       

COPD       

Diabetes 0.067  0.228    

Dyslipemia 0.064  0.217    

HTA 0.060  0.205    

EP 0.002      

Hospgrup 0.006      

Year 0.020  0.330    

ARR 0.013  0.216    

IR −0.063 0.046 −0.101 0.892 0.825  

NDX −0.055 0.140 0.938 0.930   

Stance −0.008 0.021 0.138 0.137   

NPR −0.016 0.042 0.280 0.278   

Anemia −0.010 0.025 0.171 0.170   

Reentry −0.009 0.007 −0.015 0.130 0.150  

Exitus −0.018 0.013 −0.029 0.253 0.290  

Note: D1 = PRESAGE FACTORS OF PATIENS; D2 = PROCESS FACTORS OF PATTIENTS: ASSOCI-

ATED PATHOLOGIES; D3 = PRESAGE FACTOR OF CONTEXT: TYPE OF HOSPITAL; D4 = PRO-

CESS OF CONTEXT: YEARS; D5 = PROCESS OF CONTEXT: INTERVENTIONS; D6 = PRODUCT 

OF PATIENTS: DEATH; AGE = age; GEND = gender; ANEM = anemia; DIAB = diabetes; HTA = 

arterial hypertension; ARR = arrhythmias; COPD = chronic obstructive pulmonary disease; YEAR = 

year; HOSPGR = hospital group; TEP = pulmonary thromboembolism; STAY = length of stay; NDX 

= number of diagnoses; NPR = number of procedures; READ = readmission. EXITUS = death. 

4. Discussion 

The present study confirmed the role of individual and personal factors in the risk of 

mortality due to HF. At the same time, and for the first time, it has been documented that 

contextual factors are key to this risk estimation. It was possible to introduce contextual 

factors in the elaboration of an explanatory and predictive model of mortality and, given 

the heterogeneity in the characteristics and equipment of the hospital centers, we believe 

that this represents a great advance in our knowledge of the risk of mortality due to HF. 
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More specifically, the size of the hospital complexes and the procedural effort was key to 

the model obtained. 

4.1. First Level Model 

In-hospital mortality, as an undeniably individual variable, is represented and pre-

dicted by a number of elements that were already known, and by others that require fur-

ther explanation; at the same time, mortality is not only produced as a direct effect, but is 

influenced by mediating variables pertaining to the individual and contextual spheres 

(Supplementary Material, Model S1). 

Thus, age is a direct predictor of mortality in HF; this being plainly understood and 

present in certain statistical models of mortality [16–18], and it supports the plausibility 

of the present model. Similarly, we observed that age predicted greater prevalences of 

HTN and ARR, as would be expected from the physiopathological point of view [19]. We 

feel that age is an ideal variable for testing the model, inasmuch as it fits the biological 

plausibility and well-understood natural history of HF. 

The female sex was statistically associated with an increased risk of mortality; we 

believe this to be true because the age sectors affected by HF are predominantly female. 

Prevalence of mortality is systematically higher when we work with age groups where 

there is a higher death rate for men, and the living population is primarily female—a well-

known phenomenon for many entities in epidemiology and demography. Finally, we 

would emphasize that the female gender also predicts greater mortality by indirect means, 

through ARR, most often found in elderly patients who, as we have noted, are mostly 

women. 

Patients who suffer from renal insufficiency also present a higher prevalence of mor-

tality, as is documented in prior evidence [19–22]. Anemia is present in more than half of 

HF patients, especially if there is renal insufficiency, and this is in relation to the degree 

of both kidney and HF. The role of anemia in the literature is variable; it appears as an 

intermediate variable not systematically associated with a long-term prognosis in the ev-

idence reported by other authors [23–27], although certain population registries have as-

sociated low levels of hemoglobin with a poorer long-term prognosis [25]. Our results 

support anemia as more of a marker associated with gender, renal insufficiency and prob-

ably poorer clinical conditions than as a variable directly associated with mortality, in 

agreement with what other authors have suggested [21–27]. 

PE, a classic, powerful predictor of mortality in HF, besides being a cause of death in 

its most acute form [28,29], is marked indelibly as a predictor of mortality in our structural 

model. Length of stay negatively predicts mortality and this fits into the logic defined in 

prior studies [30]: the most seriously ill patients are those who die shortly after their hos-

pital admission; therefore, the subgroup of patients with very short hospital stays nor-

mally presents high mortality rates. 

Finally, larger hospitals (“Hospital Group”), as well as patients with a greater num-

ber of medical and procedural complexities, also predict greater mortality. In this line, we 

observe that not only individual variables but also context variables (length of stay, pro-

cedural effort and hospital group), become direct predictors of the prevalence of exitus 

(see Supplementary Material). Other studies have examined the greater efficiency of small 

hospitals in comparison to large complexes, especially when implanting pacemakers with 

and without associated HF [31]. 

Mortality is also associated with the main contextual variable readmissions, whereby 

a reasonable, logical connection is established between the two main dependent variables, 

one from each dimension (individual vs. contextual). Thus, in our model, readmission 

predicts greater probability of mortality, as is a�ested to and consistent with the previous 

literature, mainly the CHARM study [17], where death rates clearly increase after hospi-

talizations for HF even after adjusting for known mortality predictors; according to the 

literature, this risk increases one month after discharge and continues to rise gradually. 

The structural model must be supplied with a logical, plausible interpretation such that 
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there is an obvious (but mathematically evident) association where exitus negatively pre-

dicts readmissions—for obvious reasons, but accounted for in the model from the mathe-

matical viewpoint. 

The study has found significant, direct, linear predictive relationships for the likeli-

hood of 30-day readmission for HF. Namely, the existence of anemia, RI, diabetes and 

COPD are objectified as comorbidities that increase the risk of readmission, and this is 

well known from the prior evidence and the literature [17,23,32]. In the same sense, a di-

rect prediction from NDX may be an expression that patients with greater diagnostic com-

plexity and comorbidities have a greater likelihood of readmission, while those who re-

ceive greater therapeutic effort (NPR) present lower risk. The relationship between num-

ber and type of comorbidities and the risk of readmission and in-hospital death has been 

explored by different predictive models; they are assigned different weightings, but are a 

constant in the modeling of these phenomena [16,33]. 

It is important to stress once again the role of contextual factors in the risk of readmis-

sion (which in turn increases mortality). In this line of argument, the length of stay did 

not decree an association that would allow predicting readmissions; we understand that 

this can be interpreted as meaning that the short length of stay in the short-stay units does 

not affect readmissions and, therefore, does not detract from their efficiency [34]. The di-

rection of prediction for the proxy variables of comorbidity (NDX) and procedural effort 

(NPR) is totally consistent with medical logic and biological plausibility. Thus, the more 

complex patients, with a greater number of diagnoses and greater disease burden, are 

those with the most readmissions and, secondarily, with a higher death rate; concurrently, 

those who received greatest therapeutical effort have lower risk of readmission. 

Indirectly, the year also significantly and directly predicts readmission, probably be-

cause the group of readmi�ing patients is obviously more elderly (direct path) and be-

cause NDX increases over the years in a population that is increasingly more aged and 

complex (indirect path). 

Readmission was predicted by a number of well-understood entities (anemia, RI, di-

abetes, COPD) as well as by patients’ level of comorbidity (NDX). 

Finally, it is important to note that readmission shows some apparently paradoxical 

behaviors, as in a negative prediction from dyslipidemia and arrhythmias. This behavior 

may be related to Jencks’ bias of underreporting, well known in this type of study using 

clinical-administrative databases [35]. 

4.2. Second-Level Model 

In the simplified model, the relationships previously exposed have been verified with 

greater clarity. It has been shown that dimension D1 (age, gender and COPD) positively 

predicts D6 (DEATH). However, there are two dimensions that negatively predict D6 

(DEATH); on the one hand, D2 (PATHOLOGIES) directly predicts D5 (INTERVENTIONS) 

and, negatively, D6 (DEATH) and on the other, D3 (Hospital Group), which is the one that 

most clearly predicts D6 (DEATH) in a negative way. This result would endorse the im-

portance of hospital groups to be a mediating variable between pathology and death 

through the interventions carried out, with a clear increase during the ten years analyzed. 

Furthermore, indirect predictions confirm this trend: although the pathologies analyzed 

predict death associated with cardiovascular factors, large hospitals, with greater inter-

ventions and their improvement over time (in the 10 years analyzed), have slowed this 

probability. Consequently, hospital contextual factors have a very relevant weight to mod-

ulate the prediction of death due to cardiovascular reasons (Supplementary Material, 

Model S2). 

4.3. Limitations 

The present work has several limitations that need to be clearly stated and estab-

lished. First, the source of information (Minimum Basic Data Set) suffers from a series of 

well-known problems which, in themselves, are both a challenge and a limitation. 
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On the one hand, the well-known Jencks bias [35] or under-coding of diagnoses cor-

responding to chronic comorbidities can modify the strength and direction of the associ-

ation in some cases, as occurs in hypertension and dyslipidemia. In dealing with this lim-

itation, it is essential to review the literature and prioritize the clinical meaning of the 

associations so as not to obtain spurious associations. In fact, some variables that had li�le 

consistency in previous works were not considered (such as psychological disorders and 

previous surgeries). Although there may be a selection bias, it is precisely the information 

bias of the BMDS that may explain this underreporting more precisely [36]. Furthermore, 

there is no “operative” definition for the diagnosis of certain comorbidities, so the fact that 

they appear in the clinical history and have been coded by a medical specialist in docu-

mentation is the only criterion for considering them valid. Consequently, this inclusion of 

comorbidities based on the clinical history but not on exact definitions of the comorbidi-

ties, a limitation imposed by the characteristics of the BMDS, should be assumed as a lim-

itation of this study. 

Finally, it should be recalled that, overall, this project may be affected by the limita-

tions inherent in the use of clinical-administrative databases. 

5. Conclusions 

We conclude then, with reasonable support from prior evidence, and from logic and 

the biological plausibility of how HF evolves, that it is possible to create a prediction 

model of mortality in this entity and incorporate contextual factors to the extent that they 

prove indispensable. We feel that once the theoretical models obtained from big databases 

take contextual variables into account, any model based exclusively on individual varia-

bles will inevitably lack elements that can explain part of the variability of this phenome-

non. 

The model finally obtained provides interesting information that explains the com-

plex relationships between mortality and FH. 

Death is conditioned or predicted by multiple factors, but the weight of age, sex and 

suffering from COPD pathology are determining factors according to our results. 

Other variables are associated with lower mortality and provide interesting conclu-

sions. Mortality is lower the fewer diagnoses patients have coded, which translates into 

the need to code more extensively those patients who die (usually brief and not very de-

tailed reports of very serious patients who die shortly after admission). It is also interest-

ing from the point of view of management that the larger hospitals report higher mortality 

than the rest, all mediated by the intermediate variables studied. 

Direct linear predictive relationships were found between 30-day readmission and 

different predictors such as anemia, renal failure, COPD and diabetes. From a quantitative 

point of view, reference is made to the concrete values shown in the “Standardized Direct 

Effects” (Default model 1) tables on pages 21 and 22 of the Supplementary Material, where 

the level of the standardized direct effect (and indirect effect on page 23) is given. Simi-

larly, the relationship between “Hospital Group” and diagnostic-therapeutic complexities 

is statistically and methodologically consistent, as shown in the Supplementary Material. 

From a forward-looking viewpoint, in addition to contributing a new modeling ap-

proach with an original outlook on the study of factors associated with HF mortality, we 

feel that future studies and modeling of any aspect of HF should consider the importance 

of the context. We must incorporate more contextual variables, make use of big data and 

integrate multiple relational databases in order for clinical data about the individual to be 

contextualized in an environment of external variables, where the accuracy of estimates 

will undoubtedly be greater than with the exclusive use of individual variables. 

We expect that the present study will constitute a point of departure toward new 

lines of research where management-related, contextual and environmental variables be-

come elements that help improve the accuracy of our calculations. Strictly individual ele-

ments cannot and should not be the only elements intervening in creation of models for 
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entities that are so complex and that form part of multiple morbid processes, as in the case 

of HF. 

Supplementary Materials: The following supporting information can be downloaded at: 

h�ps://www.mdpi.com/article/10.3390/jpm13060995/s1, Figure S1: title; Table S1: COMPARISON 

ACCORDING TO MORTALITY GROUPS; Model S1. SIMPLIFIED FIRST-LEVEL MODEL FOR AP-

PROXIMATING HOSPITAL MORTALITY; Model S2. ADVANCED SECOND-TIER MODEL FOR 

HOSPITAL MORTALITY.  
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