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Abstract 

A study has been conducted to assess clarification efficiency and cell damage during 

centrifugation, and to optimize this operation for the dinoflagellate microalga 

Amphidinium carterae. Although cells were easily recovered from the cell suspension, 

cell damage was observed in some experiments once the cells had sedimented. Cell 

damage depends on both the residence time of the cells in the pellet and on the g-force 

applied. 2D CFD simulations were carried out to simulate and predict microalgal cell 

settling times, and a dimensionless number was used to obtain an operating window 

(combinations of g-force and centrifugation time) for optimal centrifugation of the 

microalga. The approach used in this study can be extrapolated to other cells and other 

centrifuges.

Keywords: Amphidinium carterae, CFD, centrifugation, cell damage, centrifugation 
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1. Introduction

Microalgae have been traditionally used as food for larval and juvenile animals in 

aquaculture [1]. However, nowadays, they are also attracting enormous interest due to 

their vast potential in a large variety of other applications, for example in wastewater 

treatment and sequestration of atmospheric CO2 [2], production of biofuels (mainly 

biodiesel) as promising alternatives to fossil fuels in terms of economic, renewability, 

and environmental concerns [3], and production of numerous high-value compounds, 

including polyunsaturated fatty acids, antioxidants, vitamins, and antimicrobial and 

anticancer drugs [4].

Marine dinoflagellates are an intriguing class of microalgae (class Dinophyceae) that 

are known to produce a range of fascinating bioactive compounds [5-6]. For example, 

the dinoflagellate Amphidinium carterae produces an interesting group of polyketide 

metabolites, namely amphidinolides and amphidinolds (both referred to henceforth as 

APDs), which elicit potent anticancer, antifungal and haemolytic activities and are 

therefore potentially useful in studies of drug design [7]. As such, the demand for 

increasing quantities of APDs, as well as other dinoflagellate-derived bioactive 

compounds, is increasing [6]. However, the only source of APDs is currently APD-

producing microalgae, and supply constraints are a major obstacle to the successful 

research, development, and marketing of these compounds [5-6, 8]. In recent studies, 

the feasibility of producing bioactive substances from pilot-plant cultures of the 

dinoflagellates A. carterae and Karlodinium veneficum using simple and scalable 

processes has been assessed [9-13].

Despite the huge potential of microalgae in general, and dinoflagellates in particular, in 

a wide range of applications, microalgal-based production systems for high-value 
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bioactives are not yet economically viable. Different upstream strategies to improve the 

economics of these processes have been discussed extensively, including the use of 

genetically modified strains [14], the use of wastewater as a culture medium to reduce 

both the freshwater requirement and production costs [3, 15], and the implementation of 

biorefinery-based production strategies, taking advantage of every component of the 

microalgal biomass to obtain useable products in order to lower overall production costs 

[16, 17]. However, despite the progress made in microalgal cultivation systems, the 

final concentration of biomass when grown phototrophically is very low (less than 1 gL-

1 for open ponds and about 5 gL-1 for closed systems), with small cell sizes (5-30 µm) 

and cell densities close to that of water (average ~ 1020 kg m-3) [16]. As such, large 

volumes of algal suspensions need to be handled in downstream processing.

Harvesting of the biomass from the broth is considered a critical step and has been 

estimated to account for up to 30% of the total cost of microalgae production [18]. As 

such, the implementation of energy-efficient and cost-effective technologies and 

protocols for effective separation and recovery is imperative [19]. Microalgal harvesting 

relies on reducing the water content of the microalgal suspension as much as possible. 

Moreover, an ideal separation process should be applicable to most strains of 

microalgae, provide a product biomass with a high dry weight, and require reduced 

energy, operating and maintenance costs. Amongst others, the processes commonly 

used to harvest microalgae include screening, flocculation, sedimentation, filtration, and 

centrifugation. Although it is generally accepted that there is currently no definitive and 

highly efficient harvesting method that can be used with all microalgal strains, it is 

widely accepted that centrifugation is the fastest method, is applicable to the vast 

majority of microalgae and, in many cases, can be used as a one-step separation process 

[18, 20].
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Centrifugation is routinely used for research and small-scale operations, and for the 

recovery of high-value metabolites. Nonetheless, although the reliability and efficiency 

of centrifugation are high, evidence that high shear rates and centrifugal forces can 

potentially result in cell damage [13, 21], and operating costs [20], frequently offset its 

merits for large-scale algal separation.

Centrifuges are normally adjusted to maximize recovery efficiency. However, recovery 

efficiency depends on the settling characteristics of the cell, centrifuge design, and the 

centrifugation protocol (settling depth, retention time, and centrifugal force). As such, 

the highest recovery efficiency may not coincide with cost-effective and damage-free 

algal cell harvesting.

Herein we introduce an approach based on a dimensionless number to develop cell 

damage free centrifugation protocols for shear-sensitive microalgae. The model 

microalga used was A. carterae and the procedure was corroborated using literature data 

for a microalga lacking a cell wall (Dunaliella salina) and for an extremely shear-

sensitive cell (Spodoptera exigua). Our findings corroborate that the approach presented 

in this work may be useful for developing reliable centrifugation protocols, thereby 

avoiding cell damage.

2. Materials and Methods

2.1. The microalga and maintenance

Monocultures of the marine dinoflagellate microalga A. carterae (strain Dn241EHU) 

were used. The strain was provided by the Culture Collection of the Plant Biology and 

Ecology Department at UPV (Spain). A. carterae inocula were grown in flasks at 21 ± 1 
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°C under a 12:12 h light–dark cycle. The irradiance at the surface of the culture flasks 

(60 µE m-2 s-1) was provided by four 58 W fluorescent lamps. f/2 medium with an N:P 

molar ratio of 24 [22, 23] was used for inoculum maintenance. 

2.2. Centrifugation assays

Cultures for centrifugation experiments were obtained by inoculating cells in 

exponential growth phase in a 10-liter bubble column photobioreactor, as described 

elsewhere [24]. Briefly, the culture medium was a modification of f/2 with an N:P 

molar ratio of 5 [13], and the culture temperature was maintained at 21±1 °C under a 

12:12 h light–dark cycle irradiance at the surface (600 µE m-2 s-1). Cultures were 

sparged continuously with filtered air at a flow rate of 0.5 vvmin, and the pH was 

maintained at 8.5 by automatic on-demand injection of pure carbon dioxide.

Microalgal cultures at a cell concentration of 4.0 × 106 cells mL-1 and with a viability of 

more than 98% were used in all experiments. Cell concentration and viability were 

quantified by flow cytometry, as described elsewhere [11]. Five measurements per 

sample were performed and the average value was used. The mean cell equivalent 

diameter was 12.39±0.78 µm (n=105). Since A. carterae cells have an ellipsoidal shape 

[25], the equivalent diameter was used to calculate the longest (L = 22 µm), 

intermediate (I = 12 µm), and shortest (S = 7 µm) lengths of the cells.

Cultures were deposited in 50 mL Falcon tubes and centrifuged in a benchtop centrifuge 

(Beckman Coulter, model Allegra 25R) using a rotor (swing-out head) with a maximum 

radius of 13.7 cm (max RCF = 15300×g). The height of the suspension (hc) was 10.4 cm 

throughout the experimental work; g-forces (gc) of up to 13500×g, and centrifugation 

times (tc) of up to 35 min were used. After centrifugation, the supernatant was removed 
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and the cell pellet was re-suspended in fresh medium. Cell concentration was measured 

using a hemocytometer under a light microscope, and cell viability was estimated using 

chlorophyll as a marker for cell rupture. The relationship between broken cell and 

chlorophyll concentration was obtained as follows: A volume of 100 mL of cell 

suspension was sonicated on ice using an ultrasonic probe-type device (Hielscher 

Ultrasonics, model UP200S) with the following settings: 0.5 pulse cycle, 80% 

amplitude. The extent of cell rupture was checked by light microscopy. All cells were 

broken after 6 minutes. After sonication, the samples were centrifuged (3000×g, 8 min) 

to remove cell debris, and serial dilutions were prepared using the culture medium as 

diluent. Volumes of 200 μL of solution were placed in a black, clear-well, flat-bottomed 

96-well microplate (Corning, ref 3603) to prevent well-to-well crosstalk, and the 

fluorescence of chlorophylls was measured using a monochromator-based microplate 

reader (BioTek, model Synergy Mx). The excitation wavelength was 480 nm and 

emission wavelengths were between 500 and 700 nm. The area below the emission 

curve between 640 and 800 nm was related to broken cells, as shown in Fig. 1. 

The cell density was measured by density gradient centrifugation in Percoll according to 

the method described by Whitelam et al. [26]. A value of 1200 g mL-1 was obtained. 

The bulk density of the culture medium was measured using a pycnometer and found to 

be 1037 g mL-1. The viscosity of suspensions was measured using a viscometer 

(Brookfield, model DV-II+Pro) and found to be 1180 × 10-6 Pa s. No significant 

changes in these parameters were observed for the different cultures.

The efficiency of the centrifugation process (ηc) was defined as

p
c

i

N
N

  (1)

where Np and Ni are the total number of cells in the pellet and in suspension prior to 
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treatment, respectively. All experiments were carried out in duplicate.
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Fig. 1. Relationship between broken A. carterae cell concentration and the area below 

the chlorophyll emission curve between 640 and 800 nm, after excitation at 480 nm. 

The equation allows the estimation of cell viability after centrifugation experiments. 

The experimental data are represented as the average for duplicate experiments ± 

standard deviation.

2.3. CFD simulations

Cell-sedimentation times for each centrifugation experiment were simulated using the 

CFD software Fluent® v19.2 (Ansys, Canonsburg, PA, USA). As the tube is axis-

symmetrical, it was simulated in 2D using a structured grid with an optimum size of 0.2 

mm. Laminar flow was assumed and a two-phase Eulerian model, in which the cells 

represent the granular phase, was used to describe the solid-liquid interactions. The 

initial cell volume fraction in the suspension was 0.00458, as calculated from the cell 

diameter and the cell concentration in suspension. No energy balance was imposed, as 

isothermal conditions were assumed. The reference for pressure was at the top of the 

suspension. Boundary conditions included non-slip conditions at the walls. The schemes 
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used for spatial discretization were second -order upwind for momentum, Green-Gauss 

Node Based for gradient and Modified HRIC for volume fraction. The SIMPLE scheme 

with implicit formulation was chosen for pressure-velocity coupling. All simulations in 

the present study were performed in transient mode using a time step of 0.0005 s. The 

convergence criteria were checked at every time-step and residuals for all the variables 

were fixed at 10-5. An HP Z840 Workstation with two Intel® Xeon E5-2670 v3 

processors running at 2.3 GHz with 128.0 GB RAM and 3 TB×2 hard disks was used 

for the simulations [27]. 

3. Results and Discussion

3.1. The approach

Despite the critical relevance of the operating parameters (mainly hc, tc, and gc) on the 

output of discontinuous centrifugation, the performance of a centrifugation operation for 

harvesting microalgae and other cells or microorganisms is usually expressed in 

qualitative terms [28], and a wide variety of centrifugation protocols, with different 

suspension heights, times, and centrifugal forces, are used for no specific reason [29]. 

Indeed, they are frequently selected arbitrarily as the same separation can be achieved 

with different combinations of parameters. However, it is widely accepted that the 

conditions required to achieve complete cell separation can potentially damage cells, 

particularly in the case of shear-sensitive cells. The origin of this cell damage has been 

mainly related to hydrodynamic shear forces associated with the velocity gradients, 

relative cell-fluid movement during settlement, and the compressive centrifugal forces 

to which cells are submitted in the pellet. As such, the time that cells remain in the 

pellet, and the g-force applied, are critical parameters determining cell survival in 
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centrifugation processes. Indeed, the longer the cells remain in the pellet, the longer the 

compressive forces act, eventually producing cell damage [30, 31]. It has also been 

shown that long periods of time in the pellet may also result in severe cell deterioration 

or even death due to the exhaustion of essential nutrients [32].

Despite all the efforts made in the past, quantification of the impact of varying 

centrifugation parameters on the performance of centrifugation, especially when fragile 

biological materials are used, is currently not possible [31, 33]. Nonetheless, a 

quantitative approach can provide a deeper insight into centrifugation performance and 

the effect on cells. This work uses a new approach to study the influence of 

centrifugation parameters on separation efficiency capacity and cell damage. This 

approach allows the operating conditions for complete separation and operating 

conditions that lead to cell damage to be determined, thus providing an “operating 

window” for a specific cell in a particular centrifuge, as discussed below. This approach 

uses a dimensionless number, namely the centrifugation number (Ce), which is 

equivalent to a dimensionless time, to represent the intensity of the treatment. It is 

defined as:

𝐶𝑒 =
𝑡𝑐

𝑡𝑠

(2)

where tc is the centrifugation time and ts is the sedimentation time. If the time taken for 

acceleration and deceleration of the rotor is neglected, tc represents the time that the 

cells are subjected to centrifugal forces. ts is the time needed to sediment all the cells. tc 

is an operating variable and ts can easily be determined from experimental data. If no 

experimental ts values are available, a theoretical value of ts can be estimated from hc 

and the settling velocity.
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According to the theory of particle movement through a fluid, the terminal settling 

velocity of a small particle in dilute suspension under gravity is given by [34]:

𝑣 =
2 𝑔(𝜌𝑠 ‒ 𝜌)𝑚𝑠

𝐴 𝜌𝑠 𝐶𝐷 𝜌

(3)

where v is the sedimentation velocity under gravity, g is the gravitational acceleration, 

ρS is the density of the particle, ρ is the density of the fluid, ms is the mass of the 

particle, A is the projected area of the particle (the area obtained projecting the particle 

on a plane perpendicular to the line of flow), and CD is the drag coefficient. In a 

centrifuge, the corresponding terminal velocity is: 

𝑣𝑐 =
2𝜔2𝑟(𝜌𝑠 ‒ 𝜌)𝑚𝑠

𝐴𝜌𝑠𝐶𝐷𝜌
=

2 𝑔𝑐(𝜌𝑠 ‒ 𝜌)𝑚𝑠

𝐴 𝜌𝑠 𝐶𝐷 𝜌

(4)

where ω is the angular velocity,  r is the radius of the centrifuge, and gc is the g-force, 

the force developed in a centrifuge relative to the force of gravity. For spherical 

particles, equation (4) can be written as: 

𝑣𝑐 =
4𝑔𝑐(𝜌𝑠 ‒ 𝜌)𝐷𝑠

3𝐶𝐷𝜌

(5)

where Ds is the diameter of the particle. The drag coefficient for spherical particles is a 

function of the particle Reynolds number Re, and in laminar flow can be written as [34]:

𝐶𝐷 =
24
𝑅𝑒 =

24
𝐷𝑠𝑣𝑐𝜌

𝜇

(6)

where µ is the viscosity of the liquid. Substituting this into equation (5) gives the 

following equation:
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𝑣𝑐 = 𝑣𝑆𝑡𝑜𝑘𝑒𝑠 =
𝑔𝑐𝐷2

𝑠(𝜌𝑠 ‒ 𝜌)
18𝜇

(7)

known as Stokes’ law.

Hence, for spherical particles in dilute solutions, if no experimental ts values are 

available, the theoretical ts can be estimated from hc and Stokes’ settling velocity as:

𝑡𝑠 =
ℎ𝑐

𝑣𝑆𝑡𝑜𝑘𝑒𝑠
=

18𝜇ℎ𝑐

𝑔𝑐𝐷2
𝑠(𝜌𝑠 ‒ 𝜌)

(8)

Substituting Eq. (8) into Eq. (2) gives the following expression for Ce:

𝐶𝑒 =
𝑡𝑐

𝑡𝑠
= 𝑎

𝑔𝑐𝑡𝑐

ℎ𝑐

(9)

where a is a constant for a particular cell-fluid system given by:

𝑎 =
𝐷2

𝑠(𝜌𝑠 ‒ 𝜌)
18𝜇

(10)

For non-spherical particles, general equation (4) can be used to estimate sedimentation 

velocity. Numerous correlations can be found in the literature to estimate CD for 

different particles, with one of the most recent correlations for estimating the average 

drag coefficient of freely falling solid non-spherical particles in liquids or gases being 

proposed by Bagheri and Bonadonna [36], modifying Eq. (6): 

𝐶𝐷

𝑘𝑁
=

24 𝑘𝑠

𝑅𝑒𝑘𝑁
(1 + 0.125 (𝑅𝑒𝑘𝑁 𝑘𝑆)2 3) +

0.46
1 + 5330 (𝑅𝑒𝑘𝑁 𝑘𝑆)

(11)

where

= 1.101𝑘𝑆 = (𝐹1 3
𝑆 + 𝐹 ‒ 1 3

𝑆 ) 2
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= 0.936𝑘𝑁 = 10𝛼2[ ‒ 𝑙𝑜𝑔(𝐹𝑁)]𝛽2

= 0.45𝛼2 = 0.45 + 10 𝑒𝑥𝑝(2.5 𝑙𝑜𝑔𝜌´ + 30)

= 1𝛽2 = 1 ‒ 37 𝑒𝑥𝑝(3 𝑙𝑜𝑔𝜌´ + 100)

and

= 0.263𝐹𝑆 = 𝑓𝑒1.3

= 0.191𝐹𝑁 = 𝑓2 𝑒

where e is the elongation (I/L) and f  the fatness (S/I). L, I, and S are the longest, the 

intermediate, and the shortest length of the particle, respectively; and ρ’ is the particle-

to-fluid density ratio. Eq. (11) is based on dimensional analysis, by normalizing the drag 

coefficient and particle Reynolds number, and has been shown to be valid for any 

particle shape and any normalized Reynolds number [36].

A high particle concentration negatively affects particle settling velocity in a 

suspension, and different models have been proposed over the past 100 years or so to 

predict the settling velocity for different particles in concentrated suspensions [37], 

although the prediction of sedimentation times under these conditions remains 

complicated. In this scenario, CFD can also be successfully used to predict 

sedimentation times. Thus, in this work, the Bagheri and Bonadonna equation [36] was 

incorporated into a user-defined function to modify the drag force in Fluent to estimate 

the theoretical ts.

As pointed out above, the dimensionless number used in this approach, Ce, represents 

the intensity or magnitude of the centrifugation treatment. If Ce = 1, we have an “ideal 

treatment” where tc equals ts, all the cells are separated and the mean time that cells 
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remain in the pellet approaches 0. If Ce < 1, we have a “deficiency of treatment” and 

not all the cells sediment. If Ce is > 1, we have an “excess of treatment”. In this case, all 

the cells are separated, but the time that the cells remain in the pellet is > 0 and, if the 

process lasts too long, it will potentially be deleterious for cells at some point. This 

approach provides an “operating window” for optimal centrifugation of a particular cell-

centrifuge system, as discussed below for three different cells in three different 

centrifuges.

3.2. Application to Amphidinium carterae cells

The clarification efficiency for representative g-forces up to 2000×g used in this work is 

shown in Fig. 2. As can be seen, the longest time needed to recover all the cells (15 

min) was obtained for the lowest gc (100×g). As gc increased, the time needed for 

complete cell separation decreased, reaching roughly 1 min at 2000×g.

tc (min)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 35

 c
(%

)

0

10

20

30

40

50

60

70

80

90

100

110

100xg 
200xg 
300xg 
500xg 
1000xg 
2000xg 

Fig. 2. Centrifugation of A. carterae cells. Influence of centrifugation time (tc) on the 
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average for duplicate experiments ± standard deviation.

The experimental ts values derived graphically from the data presented in Fig. 2, as the 

time needed to reach a separation efficiency of 100% for the different gc values, are 

shown in Fig. 3.
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Fig. 3. Influence of gc on sedimentation time (ts) of A. carterae cells. Experimental 

times are derived graphically from Fig. 2. Theoretical values of ts predicted using Eq. 

(8), Eq. (4), and CFD are also shown.

The values obtained for ts using equation (8) and (4) are also shown in Fig. 3. As stated 

above, the application of Stokes’ equation implies several assumptions for the behavior 

of the cells, with the most relevant being: spherical particles, laminar flow, and the 

particles do not interfere with each other during the settling process. As can be seen 

from Fig. 3, Stokes’ equation greatly underestimates sedimentation times and therefore 

should not be used to describe sedimentation of A. carterae cells. Since the calculated 

Re number reveals that the flow remained in the laminar region for all experiments (data 

not shown), this significant discrepancy between the sedimentation times obtained using 
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Stokes’ equation and the experimental values may be due to the morphology of the A. 

carterae cell, which presents the typical shape of the Amphidinium genus, namely oval 

in ventral view and dorso-ventrally flattened, with two flagella, or to the interference of 

cells with each other during the settling process.

The morphology of the cells undoubtedly negatively affects sedimentation. As such, to 

take cell shape into account, the general equation for terminal velocity (Eq. (4)) with CD 

obtained from Eq. (11) was also used to predict settling velocities. It is clear that 

although Eq. (4) improves the prediction of Stokes’ equation, predicted ts values are still 

about 50% lower than experimental times (see Fig. 3). In this scenario, CFD was also 

used to predict ts. Thus, the Bagheri and Bonadonna equation [36] was incorporated into 

a user-defined function to modify the drag force in Fluent.

As can be seen in Fig. 3, CFD provided ts values very close to the experimental ones. 

The minor discrepancies observed are probably due to the lack of precision in the 

graphical determination of experimental ts [31]. These results support the use of CFD as 

a solid and useful tool for predicting sedimentation times for single-cell suspensions in 

discontinuous centrifugation without the need for experimentation. As such, CFD was 

also used to predict ts for g-forces over 2000×g because settling times over this g-force 

were below the minimum working time of the centrifuge (1 minute).

Fig. 4a shows the separation efficiency (ηc) and percentage of viable cells (Vc) versus 

Ce for all experiments. It can be seen from this figure that, for Ce < 1, ηc increases 

linearly to reach its highest value (100%) at a Ce value of 1. For higher Ce values up to 

80, ηc remains constant, subsequently decreasing sharply due to cell rupture for Ce > 80. 

Vc, in turn, is close to 100% up to a Ce value of 80, whereas for Ce > 80, Vc also 

decreases sharply due to cell rupture in a similar manner to ηc. In this scenario, a Ce 
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value of 80 is the “critical Ce” and represents the maximum magnitude of treatment that 

A. carterae cells can withstand in this centrifuge.
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Fig. 4. Separation efficiency (ηc) and cell viability (Vc) for different centrifugation 

numbers (Ce) (a), and operating window (b), for A. carterae cells centrifugation. Ce = 

1 is the Ce value for complete cell separation and Ce = 80 is the “critical Ce”, the Ce 

value above which cell integrity is compromised. The separation efficiency and cell 

viability data are represented as the average for duplicate experiments ± standard 

deviation. See text for further details.

These data can be rearranged as shown in Fig. 4b, which shows the operating window 
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below the line representing Ce = 1, the treatment will be deficient and not all cells will 

be separated. For combinations over the line of Ce = 80, cells will be damaged.

To corroborate the applicability of this approach, a new set of experiments was carried 

out under different centrifugation conditions. These experiments are shown in Fig. 4b 

(points A to G). In experiment A (400×g, 1 min) a ηc of 90% was obtained, with a Vc of 

99%. This experiment represents a deficient treatment and clearly lies outside the 

operating window. In experiments B (2000×g, 1 min) and C (2000×g, 5 min), a ηc of 

100% with a Vc of 98% and 99%, respectively, was obtained. These two points are 

clearly inside the operating window and represent optimal centrifugation conditions. 

However, in experiment D (2000×g, 120 min) ηc and Vc decreased to 90% due to cell 

rupture. This experiment represents an excessive treatment and is clearly outside the 

limits of the operating window. Similar results were obtained in experiments carried out 

at 12,000×g. Thus, in experiments E (12000×g, 1 min) and F (12000×g, 5 min), a ηc of 

100% was obtained, with a Vc of 99% in both cases, whereas in experiment G 

(12,000×g, 120 min) both ηc and Vc decreased to 60%.

As noted in section 2.2, the height of the suspension in the centrifuge tubes was 10.4 cm 

in all experiments carried out in this work. According to Eq. (9), if the height of the 

suspension changes, gc or tc, or both, have to change in order to keep Ce constant. This 

implies that a change in the height of the suspension would produce a displacement of 

the operating window to higher or lower values of gc, tc, or both, while keeping the 

width of the operating window constant.

To corroborate the applicability of the Ce number approach discussed above to different 

cell-centrifuge systems, it was applied to centrifugation data from the literature for a 
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microalga lacking a cell wall (Dunaliella salina; [21]) and to the very shear-sensitive 

Spodoptera exigua Se301 cell line [31].

3.3. Application to Dunaliella salina cells

Recently, Xu et al. [21] used mechanistic calculations to explore the potential cell 

damage that may result due to different forces acting on Dunaliella salina cells during 

centrifugation in a benchtop microcentrifuge (Eppendorf, model 5415R) using a fixed-

angle rotor at different g-forces (from 1000 to 15,000×g) for a fixed time (10 min). The 

authors assumed a spherical shape with a diameter of 10 µm for Dunaliella cells and 

that Stokes’ law (Eq. 7) was applicable. Calculations included hydrodynamic stress due 

to turbulence, viscous drag, hydrostatic pressure exerted on cells at the bottom of the 

centrifuge tube, the pressure acting on the cells due to their own mass and the 

centrifugal force, and the pressure of the cells in the pellet acting on the cells at the 

bottom of the pellet. They concluded that D. salina cell rupture observed for g-forces 

over 5000×g was due to the hydrostatic pressure, with the other forces being 

considerably lower than those estimated to be required for cell rupture [21].

To apply the Ce number approach to these experiments, the same assumptions 

(spherical cells and Stokes’ law applicable) were applied. CFD could not be used due to 

a lack of geometrical data for the centrifuge rotor and centrifuge tube, and the absence 

of experimental values for ts. Fig. 5a shows that, with those assumptions,  the Ce used in 

these experiments were thousands of times higher than that needed for complete 

separation of Dunaliella cells (Ce = 1). Indeed, cell rupture, with a sharp decline in Vc, 

was observed for Ce values over 5600. This provides a very large operating window, as 

seen in Fig. 5b. According to the authors, in the experiment carried out at 3000×g, 
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100% cell separation, with a Vc of 100%, was obtained. It can be seen from Fig. 5b that 

these centrifugation conditions (3000×g, 10 min) are inside the operating window (point 

A). The authors point out that the number of intact cells present in the pellet decreased 

upon increasing gc above 5000×g. These results are clearly corroborated in Fig 5b, 

which shows that gc = 5000×g and tc = 10 min are in the limit of the operating window 

(point B), and that increasing gc over 5000×g is expected to result in an increasing 

number of cells being damaged, as observed by the authors in experiments at gc = 

9000×g, where Vc for the pellet decreased to 60%. As can be seen from Fig 5b, the 

combination 9000×g and 10 min clearly lies outside the operating window (point C).
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Fig. 5. Separation efficiency (ηc) and cell viability (Vc) for different centrifugation 

numbers (Ce) (a), and operating window (b), for centrifugation of D. salina cells. Ce = 
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1 is the Ce value for complete cell separation and Ce = 5600 is the “critical Ce”, the Ce 

value above which cell integrity is compromised. See text for further details.

3.4. Application to Spodoptera exigua cells

In a recent study, Molina-Miras et al. [31] studied the effect of centrifugation on the 

Spodoptera exigua Se301 cell line, using the “Excess of Treatment”, an intensive 

variable, to predict cell damage.  Experiments were carried out using 15 mL Falcon 

tubes (2.2 cm suspension height) in a benchtop centrifuge (Sigma, model 4-15C) using a 

swing-out rotor with a maximum radius of 18.2 cm at g-forces ranging from 20 to 

4000×g for different times of up to 45 min. The authors assumed a spherical shape with 

a diameter of 18 µm for S. exigua and Stokes’ law and CFD were used to estimate ts and 

make a comparison with experimental values. The results for S. exigua (see Fig. 6) were 

similar to those found for A. carterae (Fig. 3). Although the deviation from Stokes’ 

equation is less than with A. carterae, this equation underestimated ts, whereas CFD 

provided ts values similar to the experimental ones. The authors also used CFD to 

determine the shear stress magnitude in a conical centrifugation tube, with the highest 

shear stress value (7.4 × 10-1 Pa) being obtained at the wall at the bottom of the tube. 

This value was well below the breaking shear stress value (233 Pa) previously found for 

S. exigua cells in a microfluid flow-concentration device [27]. These results clearly 

show that, under the conditions used in that study, S. exigua cells were not damaged by 

the velocity gradient present in the settling process. These authors concluded that cell 

damage correlated with long residence times in the pellet at the bottom of the tube, and 

with high centrifugal forces. They were also able to distinguish between mechanical cell 

damage at high g-forces and cell damage due to oxygen depletion in the pellet at longer 

times [31]. These findings were in accordance with those previously reported by 
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Peterson et al. [29], who observed that compressive forces squeezed the cells against the 

tube wall and defined a “Compaction Parameter” to determine the fraction of the pellet 

that was damaged in a specific centrifugation protocol.
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Fig. 6. Influence of gc on sedimentation time (ts) for S. exigua cells. Experimental times 

are taken from reference [31]. Theoretical values of ts predicted with Eq. (8) and CFD 

are also shown.

Application of the Ce approach to data for S. exigua cells is shown in Fig. 7. Fig. 7a 

shows that ηc increases with Ce to 100% at a Ce value of 1, remaining constant for 

higher values of Ce. Severe cell damage, with a marked decrease in Vc, was observed 

for Ce values higher than 3.5. This means that the operating window for this cell type is 

very narrow, as can be seen from Fig. 7b and corroborated by the experimental data.  

According to the authors, in the experiment carried out at 60×g and tc = 1 min, the time 

that the cells were in the pellet was < 0, with a Vc of 98%. This indicates a deficient 

treatment, as can be seen in Fig. 7b (point A). Point B in Fig. 7b represents the 

experiment at 400×g and tc = 1 min. According to the authors, in this experiment all 

cells were sedimented and the Vc for the cells in the pellet was 98%. This experiment 
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clearly falls within the operating window. However, when the g-force was increased to 

1000×g with tc remaining constant (1 min), a decrease in cell viability in the pellet to 

90% was observed. This experiment is clearly outside the operating window (point C). 

A similar result was observed in the experiment at 400×g and tc = 4 min (point D), with 

a decrease in Vc to 91% being observed. However, the most damaging conditions are 

represented by point E (4000×g, tc =16 min), with a decrease in Vc to 60%. Clearly, the 

selection of gc and tc in this case is highly critical to obtain complete separation and 

avoid cell damage.
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Fig. 7. Separation efficiency (ηc) and cell viability (Vc) for different centrifugation 

numbers (Ce) (a), and operating window (b), for centrifugation of S. exigua cells. Ce = 

1 is the Ce value for a complete cell separation and Ce = 3.5 is the “critical Ce”, the Ce 
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value above which cell integrity is compromised. The separation efficiency and cell 

viability data are represented as the average for duplicate experiments ± standard 

deviation. See text for further details.

4. Conclusions

In this study, Computer Fluid Dynamics has been successfully used to simulate and 

predict the settling time of a single-cell suspension in discontinuous centrifugation. In 

addition, the centrifugation number (Ce) has been used to obtain an operating window 

for Amphidinium carterae centrifugation in a discontinuous centrifuge. This approach 

has been extrapolated to other cells in benchtop centrifuges and has been shown to 

provide an efficient guide for selecting the combination of critical centrifugation 

parameters from a cell separation-cell integrity perspective.
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