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RESEARCH ARTICLE

Co-registration of multi-sensor UAV imagery. Case study: Boreal forest areas
Patricio Martínez-Carricondo a,b, Fernando Carvajal-Ramírez a,b and Francisco Agüera-Vega a,b

aDepartment of Engineering, Mediterranean Research Center of Economics and Sustainable Development (CIMEDES), University of Almería
(Agrifood Campus of International Excellence, ceiA3). Almería, Spain; bPeripheral Service of Research and Development based on drones,
University of Almeria. Almería, Spain

ABSTRACT
Monitoring the regeneration process of a forest is an important part of forestry management.
Compared to traditional methods of counting tree species, UAVs have been a revolutionary means
of saving time and costs due to the temporal and spatial flexibility of data collection. In turn, the
integration of multispectral cameras allows the traditional vegetation indices that have been used
with satellite imagery to be obtained. However, data from multispectral cameras must be
combined with data from other types of sensors, such as RGB. It is therefore necessary to
co-register all the information in order to obtain combined vegetation indices and carry out
segmentation processes that allow the identification of the different tree species. In this study, the
coordinate transformation methods available in QGIS software through the georeferencer plugin
are evaluated. It also studies the influence of the number and distribution of control points on the
accuracy of the transformation. It is concluded that of the transformation methods studied, TPS
transformation has the highest accuracy with an MAE of 0.9 pixels and a deviation of 0.6 pixels,
providing a minimum of 10 control points and a stratified or edge distribution.
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Introduction

Information on regeneration success is important in forest
management. Furthermore, this information is required
shortly after planting to carry out the supplementary
measures if needed. Unmanned aerial vehicles (UAVs) may
be particularly suitable for reforestation applications as they
can collect very high-resolution data with great operational
flexibility and a decrease in field survey costs.

Practitioners validate the regeneration success of
replanted forest areas by assessing the adequacy of the
spacing, survival, growth and species composition. These
studies are carried out by manual counting in sampling
plots (Feduck et al. 2018). If the condition, minimum height
and seedling species within the sample cells used to
conduct the establishment surveys could be derived from
unmanned aerial vehicle images, then the reduced need for
manual surveys could result in considerable cost savings.
However, it is necessary to demonstrate that seedlings can
be detected automatically or semi-automatically by remote
sensing. The detection of seedlings requires extremely high
spatial resolution images.

Other authors have already conducted similar studies,
although for other purposes. For example, (Puliti et al.
2018) used automated procedures to detect small tree
stumps and (Peña et al. 2015) to detect weed seedlings in
bare soil in an agricultural application. (Hall & Aldred 2014)
detected only 44% of seedlings with a crown diameter of
less than 30 cm using a 1:500 scale and colour and infrared

photographs. More recently, (Goodbody et al. 2018) classified
2.4 cm spatial resolution images of red, green and blue (RGB),
which were acquired by a UAV on harvest blocks replanted
five to 15 years earlier in British Columbia, Canada, and
obtained user accuracies for conifer coverage between 35%
and 97%. However, no attempt was made to detect the indi-
vidual seedlings of conifers, which in their study area were
more than 1 m high. These authors recognized that the
potential for detecting all stems using aerial remote sensing
technologies is still limited and calls for more research. As
another example, (Hentz et al. 2018) built a toolbox in
ArcGIS for tree identification that was tested in three areas
with Eucalyptus, Pinus and broadleaved trees with satisfac-
tory results, but less accurate in natural forests. Depending
on the spatial resolution of the images, seedling detection
is similar to the detection of individual trees in mature
forests, which has been well studied using satellites
(Agarwal et al. 2013; Gomes and Maillard 2016), pilot planes
(Gougeon 1995; Wulder et al. 2000; Franklin et al. 2003;
Pouliot et al. 2005; Wolf and Heipke 2007; Ke and Quacken-
bush 2011; Leckie et al. 2017), airborne laser scanning data
(Vauhkonen et al. 2012) and, more recently, UAVs (Fritz
et al. 2013; Wallace et al. 2014; Wallace et al. 2014; Jaskierniak
et al. 2015; Puliti et al. 2015; Kang et al. 2017; Nevalainen et al.
2017; Panagiotidis et al. 2017). With fixed spatial resolution,
the accuracy with which individual trees are detected tends
to improve with crown size (Pouliot et al. 2005). For
example, using 15 cm resolution multispectral airborne
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images and an image segmentation algorithm, (Hirschmugl
et al. 2007) obtained 70% accuracy in replanted conifers
between five and 10 years of age with an average height of
138 cm.

Recently, UAVs have enabled the use of a large variety of
sensors with the capacity for close range sensing and are
applied in regenerating forests (Chen et al. 2017; Hird et al.
2017). Digital cameras operating in the visible spectrum are
used for UAV-photogrammetric projects combined with the
Structure from Motion (SfM) (Fonstad et al. 2013) and multi-
view stereopsis (MSV) (Furukawa and Ponce 2010) tech-
niques, producing very high-resolution orthoimages and
Digital Elevation Models (DEMs), as well as very dense point
clouds of the terrain. The absolute georeferencing of the
photogrammetric project can be obtained directly through
the EXIF data stored in the photographs, or indirectly
through the use of ground control points (GCPs). This
second way has traditionally been widely used but it is
usually very laborious and time consuming, sometimes
even dangerous due to the inaccessibility of the working
area (Agüera-Vega et al. 2017; Martínez-Carricondo et al.
2018). This is why, in forested and large areas, it is interesting
to carry out a direct georeferencing of the photogrammetric
project.

When the UAV sensor includes multispectral images, all
the indices designed for satellite imagery can be applied or
adapted to UAV applications.

However, the multispectral cameras that are available for
mounting on a UAV do not have a high geometric resolution,
so it is often necessary to obtain the RGB orthoimage using
another camera of higher resolution. When different
sensors are used, the EXIF data of the photographs taken
are different (due to the fact that each sensor incorporates
its own Global Navigation Satellite System, GNSS), which
means that the direct georeferencing of the photogram-
metric project is also different. Therefore, the orthoimages
from the multispectral camera and the orthoimage from the
RGB camera do not have an exact match (Turner et al. 2014;
Dias et al. 2019). Thus, the band misregistration effect is a
problem when obtaining indices based on RGB camera pro-
ducts and multispectral camera products. It is therefore
necessary to co-register all the available bands in order to
combine them to obtain the desired indices.

Image registration is a technique for transforming a dis-
torted image to a reference image so that an image overlay
analysis can be performed (Brown 1992). In general, image
registration contains four main steps, namely feature extrac-
tion, feature matching, image transformation and image
interpolation (Dawn et al. 2010). Co-registration can be
carried out by georeferencing through different typical trans-
formation methods (Boutoura and Livieratos 2006). Second-
degree polynomial transforms have been frequently used to
georeference old maps (Cajthaml 2011; Brigante and Radi-
cioni 2014; Follin et al. 2016) as well as Helmert transform-
ations when no deformations are to be introduced in
georeferencing (Boutoura and Livieratos 2006). More
complex transformation methods based on thin plate spline
(TPS) for image registration have also been used (Sprengel
et al. 1997; Donato and Belongie 2002; Bartoli et al. 2010)

as well as more sophisticated methods for georeferencing
satellite images (Willneff et al. 2008; Widyaningrum et al.
2016) and even multispectral images from UAVs (Jhan et al.
2016).

The aim of this research is to evaluate the accuracy
obtained with the classical transformation methods provided
by a geographic information system (GIS) for the co-regis-
tration of the four bands coming from a multispectral
camera, taking as a reference the RGB orthoimage obtained
by a different camera of higher resolution. For this purpose,
different transformation methods and different combinations
and distributions of control points are established. By com-
pleting this research, conclusions will be drawn to obtain a
quick and easy co-registration of the images from different
sensors in order to obtain indices that allow the identification
of different tree species, which will be addressed in forthcom-
ing publications.

Materials and methods

The methods used to carry out this research are summarised
in Figure 1.

Study site

The study area was located in Innlandet county, south-
eastern Norway (Figure 2).

The total surface of the study area was 8.4 ha, and it was
divided into 20 subzones. The average elevation of the
study area was 270 m over the sea level ranging from 260
to 278 m, and the average slope was 9%. Most of the study
area is free of high vegetation as it has been cut down in
the last five years. The study site is currently undergoing a
process of natural reforestation. The main species found are
conifers, Picea Abies and Pinus Sylvestris and non-conifers
such as Birch. The largest sizes found are around 100 cm in
height, although the majority of the species are under
25 cm. Figure 3 shows an example of each of the main
species.

UAV and sensor

The images used in this work were taken using a rotatory
wing DJI Phantom 4 Pro UAV with four rotors. This equipment
has a navigation system using GPS and GLONASS. In addition,
it is equipped with a front, rear and lower vision system that
allows it to detect surfaces with a defined pattern and ade-
quate lighting and avoid obstacles with a range between
0.2 and 7 m.

The UAV was equipped with a RGB camera mounted on a
motion-compensated three-axis gimbal and a Parrot Sequoia
multispectral camera mounted on a 3D printed bracket
(Figure 4).

The Phantom 4 RGB camera (Figure 5a) is equipped with a
1-inch 20-megapixel (5472 × 3648) sensor, and it has a manu-
ally adjustable aperture from F2.8 to F11. The lens have a
fixed focal length of 8.8 mm and a horizontal FOV of 84°.
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The average ground sample distance (GSD) was 1.2 cm, corre-
sponding to a flight height of 45 m.

The Parrot Sequoia camera (Figure 5b) has four sensors
with a resolution of 1.2 megapixels (1280 × 960) that collect
multispectral imagery by employing a global shutter in the
green, red, red-edge and near-infrared wavelengths. The
four lenses have a fixed focal length of 4 mm and a horizontal
and vertical FOV of 61.9° and 48.5°, respectively. Furthermore,
the camera includes an integrated high-resolution RGB

sensor of 16 megapixels (4608 × 3456) and a rolling shutter,
which can be useful for the UAV photogrammetric process.

One of the most interesting characteristics of this multi-
spectral camera is that it is equipped with an irradiance
sensor to record light conditions in the same spectral bands
as the multispectral sensor and at the same time as the
flights. Thanks to this device, light changes throughout the
time of flight can be compensated by calculating the absolute
reflectance during post-processing.

Figure 1. Flowchart of the methodology used in this work.

Figure 2. Location of the study area. The coordinates are referred to UTM Zone 32 N (WGS84).
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Flight route planning and image acquisition

The flight was carried out with an autopilot using the DJI GS
Pro © application for the purpose of obtaining nadiral
photographs. Figure 6 shows some of the parameters confi-
gured for the flight execution. Due to the low slope of the
zone, the flight altitude was set at a constant distance of
45 m above ground level, which implies an equivalent

ground sample distance of 1.2 and 4.5 cm for the RGB and
multispectral images, respectively – the reason why this
flight height was selected. In accordance with the flight alti-
tude, the UAV speed and the light conditions at the time of
flight, the shutter speed was adjusted to minimise the effect
of blurring on the images taken. The flight plan consisted of
16 passes, and a total of 460 and 460 (x4 bands) images for
the RGB and multispectral cameras, respectively, were
selected to carry out the photogrammetric project. Both
the RGB camera and the multispectral one were triggered
every three seconds, and the flight speed was set to
obtain forward and side overlaps of 75% and 60%, respect-
ively, which were calculated for the RGB camera. Larger
image overlaps are justified by the presence by the presence
of a large density of high trees in order to have a greater
depth in the point cloud obtained after the photogram-
metric process (Dandois et al. 2015). However, in this case
it is possible to reduce the overlaps between images for
reducing flight time and computational process (Domingo
et al. 2019).

Photogrammetric processing

The RGB and multispectral photogrammetric projects were
processed using Pix4Dmapper Pro version 3.1.23, a software

Figure 3. Main species in the study site. (a) Picea Abies; (b) Pinus Sylvestris; (c) Non-Conifers (Birch).

Figure 4. Unmanned Aerial Vehicle (UAV) system used in this work.

Figure 5. Cameras used in this work: (a) Phantom 4 RGB camera; (b) Parrot Sequoia camera and sunshine sensor.
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application based on the SfM and MVS algorithms, which
allows a significant reduction in the computing time required
for most of the processes involved in UAV multispectral
photogrammetric projects. Both projects were processed
independently. After previous quality checking of the
imagery acquired by the sensor in a complete flight
mission, the internal calibration parameters and coordinates
of the image principal points of all the images were loaded
from the EXIF data and considered as initial data for the itera-
tive process of block adjustment. Sets of tie points in the over-
lapped areas of the images were automatically identified by
autocorrelation algorithms. It was checked that the number
of overlapping images computed for each pixel of the result-
ing orthomosaic was sufficient to match a large number of tie
points throughout the study area. The bundle block adjust-
ment process depends directly on the number of 2D and
3D keypoint observations.

The internal camera parameters, including the radial and
decentring distortion coefficients, the focal length and the
principal point coordinates, were optimised by an iterative
field camera calibration process for each of the four sensors
included in the multispectral camera.

Manual identification of the GCPs coordinates in the
images made it possible to assign the absolute geolocation
of the photogrammetric block. However, for the purpose of
tree counts, high precision absolute georeferencing is not
necessary. That is why the GCPs were not used prior to the
photogrammetric flight. Therefore, direct georeferencing
has been carried out based on the geographic coordinates
extracted from the EXIF data of each photograph.

Finally, some products were obtained from the photo-
grammetric projects based on the triangular irregular
network (TIN) resulting from the densified terrain point
cloud. These are the Digital Surface Model (DSM) with a res-
olution of 1 x GSD, the Digital Terrain Model (DTM) with a res-
olution of 5 x GSD, a dense point cloud and an RGB
orthoimage, and monochromatic reflectance orthorectified
images corresponding to each of the four channels.

Co-registration of multispectral bands and RGB
orthoimage

Once the RGB orthophoto and orthophotos for each of the
four monochromatic bands have been obtained, they can
be used to extract vegetation indexes, for example a normal-
ised difference vegetation index (NDVI) (Rouse et al. 1974) to
help identify the different tree species present in the study
area. However, the georeferencing of each of these orthopho-
tos do not match as they have been obtained from different
sensor photographs. This is also true for the four bands of the
multispectral camera; however, processing with the Pix4d
software reduces this misregistration effect to below one
pixel. Therefore, the first essential step is the co-registration
of the RGB orthophoto with the orthophotos of the four
monochromatic bands. Figure 7a shows an example of a dis-
placement between the RGB orthophoto and the monochro-
matic red band.

To quantify the average displacement between the RGB
orthophoto and the orthophotos of the four monochromatic
bands, 100 check points were established throughout the
study area. The result of this quantification resulted in a
mean absolute error (MAE)(Willmott and Matsuura 2005) of
56.18 pixels (taking as reference the pixel of the monochro-
matic bands) and a standard deviation of this error (SDAE)
of 6.36 pixels. Figure 7b shows the error measured at 100
check points distributed throughout the study area.

The co-registration of the orthophotos has been carried
out through the geographic information system (GIS) QGIS
3.10. This tool is open source software for GNU/Linux, Unix,
Mac OS, Microsoft Windows and Android platforms. It
allows the handling of raster and vector formats through
the GDAL and OGR libraries as well as through databases.
The process has been carried out using the QGIS software’s
“georeferencing” tool. This tool allows the raster to be refer-
enced to geographic or projected coordinate systems by
creating a new GeoTIFF or by adding a reference file to the
existing image. The basic approach to georeferencing a

Figure 6. Flight path configuration with DJI GS Pro © software.
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raster is to locate points on the raster for which the coordi-
nates can be accurately determined. The usual procedure
for georeferencing an image is to select multiple points on
the raster, which specifies their coordinates, and choose a
suitable transformation type. In our case, the four monochro-
matic bands have been georeferenced based on the RGB
orthoimage.

The tool has different types of transformations according
to the mathematical model used. The types of transformation
that have been tested in this study are as follows:

. Helmert transformation

. Polynomial transformation of degree 1 or affine

. Polynomial transformation of degree 2

. Polynomial transformation of degree 3

. Thin plate spline transformation

Depending on the type of transformation chosen, a certain
number of control points are required for the mathematical
model to have a solution. If more control points are used
than strictly necessary, the tool performs a least squares
bundle adjustment to minimise the error.

Helmert transformation
The Helmert or 2D similarity transformation model corre-
sponds to a conformal transformation that keeps all angles
and changes all distances by the same amount. This type of
transformation considers three factors: the rotation, trans-
lation and scale. In addition, in order to be able to apply
this type of transformation, the coordinates of two control

points in both systems are needed to mathematically solve
the four parameters of the transformation (Pérez 2001). The
mathematical model is expressed by the equation (1).

X
Y

[ ]
= k· cos u − sin u

sin u cos u

[ ]· x
y

[ ]
+ Tx

Ty

[ ]
(1)

where:
x,y are the coordinates of a point corresponding to the

initial plane.
X,Y are the adjusted coordinates of a point corresponding

to the transformed plane.
K is the scaling factor.
θ is the angle of rotation.
Tx, Ty are the translations on the x and y axes.

Polynomial transformation of degree 1 or affine
The two-dimensional (2D) affine transformation model (P1)
corresponds to a transformation that considers the non-
orthogonality of the transformed axes and establishes
different scaling factors for each direction of the corre-
sponding axis (abscissa and ordinate axis direction). In the
case of this type of transformation, the coordinates of
three control points in both systems are needed to math-
ematically solve the six parameters of the transformation
(Pérez 2001). The mathematical model is expressed by

Figure 7. (a) Examples of displacements between the RGB orthophoto and the monochromatic red band (both layers appear overlapping and using 70% transpar-
ency in the monochromatic band); (b) Displacements measured at 100 check points distributed throughout the study area.
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equation (2).

X
Y

[ ]
= cos u − sin u

sin u cos u

[ ]
1 − sinb
0 cosb

[ ]
lx · x
ly · y

[ ]

+ Tx
Ty

[ ]
(2)

where:
x,y are the coordinates of a point corresponding to the

initial plane.
X,Y are the adjusted coordinates of a point corresponding

to the transformed plane.
λx is the scaling factor in the x-axis direction.
λy is the scaling factor in the y-axis direction.
θ is the angle of rotation.
β is the angle of non-perpendicularity between the x-axis

and y-axis.
Tx, Ty are the translations on the x and y axes.
The mathematical model can also be expressed according

to equation (3).

X
Y

[ ]
= a0 + a1 · x + a2 · y

b0 + b1 · x + b2 · y
[ ]

(3)

where:
x,y are the coordinates of a point corresponding to the

initial plane.
X,Y are the adjusted coordinates of a point corresponding

to the transformed plane.
a0, a1, a2,… , bn are the polynomial transformation par-

ameters to be determined.

Polynomial transformation of degree 2
The polynomial transformation of degree 2 (P2) is a type of
transformation that does not preserve collinearity as it intro-
duces curvature into the transformation. It also does not
maintain parallelism or angles. It is considered a high accu-
racy transformation but has loss of reliability outside the
common area of fit between the two systems. In two-dimen-
sional space, it requires the use of six control points in order
to mathematically solve the 12 parameters of the transform-
ation (Pérez 2001). The mathematical model is expressed by
equation (4).

X
Y

[ ]
= a0 + a1 · x + a2 · y + a3 · xy + a4 · x2 + a5 · y2

b0 + b1 · x + b2 · y + b3 · xy + b4 · x2 + b5 · y2
[ ]

(4)

where:
x,y are the coordinates of a point corresponding to the

initial plane.
X,Y are the adjusted coordinates of a point corresponding

to the transformed plane.
a0, a1, a2,… , bn are the polynomial transformation par-

ameters to be determined.

Polynomial transformation of degree 3.
In this case, the use of 10 control points is required to math-
ematically solve the 20 parameters of the polynomial trans-
formation of degree 3 (P3). The mathematical model is

expressed by equation (5).

X
Y

[ ]
=

a0+a1 · x+a2 · y+a3 · xy+a4 · x2+a5 · y2+a6 · yx2
+a7 · xy2+a8 · x3+a9 · y3
b0+b1 · x+b2 · y+b3 · xy+b4 · x2+b5 · y2+b6 · yx2
+b7 · xy2+b8 · x3+b9 · y3

⎡
⎢⎢⎣

⎤
⎥⎥⎦

(5)

where:
x,y are the coordinates of a point corresponding to the

initial plane.
X,Y are the adjusted coordinates of a point corresponding

to the transformed plane.
a0, a1, a2,… , bn are the polynomial transformation par-

ameters to be determined.

Thin plate spline transformation.
The thin plate spline (TPS) is an effective tool for representing
coordinate mappings in two dimensions. The method has
been successfully applied in several disciplines. For
example, (Bookstein 1989) studied its use for modelling
changes in biological shapes. (Pedersen 2000) applied the
TPS transformation to estimate the positions of protein
spots in 2D electrophoresis gels. To understand the math-
ematical properties of splines in a simpler way, it is often
common to make analogies based on mechanical behaviour.
In this case, a flat, elastic plate subjected to internal forces
caused by a series of external forces is considered (Keller
and Borkowski 2019). Unfortunately, the solution requires
the inversion of a p×p matrix, where p is the number of
points in the dataset, which makes it impractical for large-
scale applications. However, it is possible to obtain a high-
quality approximate solution using only a small subset of cor-
responding points (Donato and Belongie 2002). Once the
mathematical model is developed, the TPS value of any
point can be calculated based on equation (6).

f (x, y) =
∑n
i=1

lir
2
i lnri + d00 + d10x + d01y (6)

where λi, d00, d10, d01 are the parameters of the TPS
transformation.

Combination of georeferencing projects analysed
based on the number and distribution of control
points

In order to assess the accuracy of each of the five types of
transformation in the previous section, four different types
of control-point distribution have been established:

(1) In the edge distribution, the control points are placed
around the edge of the study area.

(2) In the stratified distribution, the control points are placed
in a stratified way.

(3) In the corner distribution, the control points are placed in
the corners of the study area.

(4) In the random distribution, the control points are placed
randomly throughout the study area.
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In addition, the performance has been analysed as a func-
tion of the number of control points used in the transform-
ation. Thus, the accuracy has been studied using three, six,
10, 15 and 20 control points. In order to obtain the average
values, each of the above cases was repeated five times.
Bearing in mind that the second-degree polynomial trans-
formation requires a minimum of six control points and
that the third-degree polynomial transformation requires a
minimum of 10 control points. The total number of georefer-
encing projects studied was 5 (transformation types) x 4 (dis-
tribution types) x 5 (combinations of control points) x 5
(repeats) – 60 = 440 georeferencing projects.

For all the combinations, the resampling method chosen
was that of the “nearest neighbour” as changing the statistics
of the image was not desired.

The points identified were distributed homogeneously
throughout the study area. For this purpose, the study area
was divided into 20 sub-zones, and five points were identified
in each sub-zone. Of all the points identified, a certain number
was used to perform the transformation (control points), and
the rest were used to assess the accuracy of the georeferencing
(check points). Figure 8 shows all the identified points on the
RGB orthophoto and the monochromatic bands.

Accuracy assessment

The accuracy of all the georeferencing projects was evaluated
using the identified points that had not been used for geore-
ferencing (check points) using the MAE and SDAE formulation.
To this end, the check points were identified in the orthoimage
of the monochromatic band, and their coordinates were com-
pared with the same point identified in the RGB orthoimage.
The formulation used is shown in equations (7) and (8).

m = MAE = n−1
∑n
i=1

|ei| (7)

s = SDAE = [n−1
∑n
i=1

(|ei| − m)2
]1

2

(8)

where n is the number of check points tested for each geore-
ferencing project, and ei is the error obtained for each check
point.

Results

Figures 9–12 show the MAE and SDAE averages for the five
replicates that were conducted. The abscissa axis shows the

number of control points used to carry out the coordinate
transformation. The ordinate axis represents the error
obtained in the transformation expressed in pixels, which
refers to the orthoimage of the monochromatic band. For
each type of transformation, the trend of the average MAE
for each of the five types of transformation is plotted as a
function of the number of control points used. In turn, for
each number of control points used, the average SDAE
obtained in the five repetitions of each type of transformation
is represented by a vertical bar. In order to restrict the study
to high-precision cases, the abscissa axis is restricted to values
between 0 and 10 pixels.

Figure 9 represents the results obtained for the edge dis-
tribution georeferencing projects. Thus, for the Helmert
transformation, the average MAE varies from 2.7 pixels for
three control points to 2.0 pixels for 20 control points,
with a deviation of the result varying from 1.2 pixels for
three control points to 1.1 pixels for 20 control points. For
the P1 transformation, the average MAE varies between
2.9 pixels for three control points and 2.0 pixels for 20
control points, and the deviation varies between 1.6 and
1.1 pixels for three and 20 control points, respectively. For
the P2 transformation, the average MAE varies between
4.3 pixels for six control points and 2.2 pixels for 20
control points, with the deviation varying between 2.5 and
1 pixel. For the P3 transformation, the average MAE varies
between 6.4 pixels for 10 control points and 4.1 pixels for
20 control points, and the deviation varies between 4.4
and 2.6 pixels. For the TPS transformation, the average
MAE varies between 2.9 pixels for three control points and
1 pixel for 20 control points, with the deviation varying
between 1.6 and 0.6 pixels.

Figure 10 represents the results obtained for the stratified
distribution georeferencing projects. Thus, for the Helmert
transformation, the average MAE varies from 2.3 pixels for
three control points to 2.2 pixels for 20 control points,
with a deviation of the result varying from 1.4 pixels for
three control points to 1.3 pixels for 20 control points. For
the P1 transformation, the average MAE varies between
3.2 pixels for three control points and 2.1 pixels for 20
control points, and the deviation varies between 2.0 and
1.3 pixels for three and 20 control points, respectively. For
the P2 transformation, the average MAE varies between
4.7 pixels for six control points and 2.6 pixels for 20
control points, with the deviation varying between 2.9 and
2.5 pixels. For the P3 transformation, the average MAE
varies between 14.0 pixels for 10 control points and 9.6
pixels for 20 control points, and the deviation varies

Figure 8. Distribution of identified points on the RGB ortophoto.
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Figure 9. Average MAE and SDAE results for edge distribution georeferencing projects.

Figure 10. Average MAE and SDAE results for stratified distribution georeferencing projects.
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between 13.4 and 14.0 pixels. In this case, there is a signifi-
cant reduction for 15 control points with an average MAE of
4.4 pixels and a deviation of 3.9. For the TPS transformation,

the average MAE varies between 3.2 pixels for three control
points and 0.9 pixel for 20 control points, with the deviation
varying between 2.0 and 0.6 pixels.

Figure 11. Average MAE and SDAE results for the corner distribution georeferencing projects.

Figure 12. Average MAE and SDAE results for random distribution georeferencing projects.
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Figure 11 represents the results obtained for the stratified
distribution georeferencing projects. Thus, for the Helmert
transformation, the average MAE varies from 6.5 pixels for
three control points to 6.9 pixels for 20 control points, with
a deviation of the result varying from 5.6 pixels for three
control points to 5.3 pixels for 20 control points. The
maximum is found for 10 control points with an average
MAE of 7.2 pixels and a deviation of 5.2 pixels. For the P1
transformation, the average MAE varies between 6.2 pixels
for three control points and 7.6 pixels for 20 control points,
and the deviation varies between 5.3 and 5.7 pixels for
three and 20 control points, respectively. The maximum is
found for 10 control points with an average MAE of 8.5
pixels and a deviation of 5.9 pixels. For the P2 transformation,
the average MAE varies between 73.3 pixels for six control
points and 19.7 pixels for 20 control points, with the deviation
varying between 75.7 and 16.2 pixels. For the P3 transform-
ation, the average MAE varies between 14471.0 pixels for
10 control points and 79.4 pixels for 20 control points, and
the deviation varies between 16311.7 and 83.8 pixels. For
the TPS transformation, the average MAE varies between
6.2 pixels for three control points and 8.3 pixels for 20
control points, with the deviation varying between 5.3 and
5.9 pixels. The maximum is reached for 15 control points
with an average MAE of 9.7 pixels and a deviation of 6.8
pixels.

Figure 12 represents the results obtained for the random
distribution georeferencing projects. Thus, for the Helmert
transformation, the average MAE varies from 3.1 pixels for
three control points to 2.1 pixels for 20 control points, with
a deviation of the result varying from 2.0 pixels for three
control points to 1.2 pixels for 20 control points. For the P1
transformation, the average MAE varies between 7.6 pixels
for three control points and 2.1 pixels for 20 control points,
and the deviation varies between 5.2 and 1.2 pixels for
three and 20 control points, respectively. For the P2, the
average MAE varies between 101.5 pixels for six control
points and 1.0 pixels for 20 control points, with the deviation
varying between 118.8 and 0.6 pixels. For the P3 transform-
ation, the average MAE varies between 672.6 pixels for 10
control points and 1.1 pixels for 20 control points, and the
deviation varies between 893.3 and 0.6 pixels. For the TPS
transformation, the average MAE varies between 571.1
pixels for three control points and 1.1 pixels for 20 control
points, with the deviation varying between 388.3 and 0.6
pixels.

Discussion

If we analyse the results according to the type of transform-
ation used, we see that the best results are obtained for TPS
transformation. However, there is an important nuance in
the case of using only three control points since the MAE
increases, especially if the combination of the control
points is not adequate. For this type of transformation and
the edge and stratified distributions, the results are very
even, with an MAE ranging between 0.9 and 1.3 pixels and
deviations between 0.6 and 0.8 pixels. For the corner distri-
bution, the values are in the order of three times higher with

an MAE between 6.1 and 9.7 pixels and deviations between
5.4 and 6.8 pixels. For the random distribution and three
control points, an anomalous value appears due to the
poor result obtained in one of the five repetitions of this
type of georeferencing project. The suitability of the TPS
transformation versus polynomial methods has already
been reported by (Pedersen 2000) in the registrations of
2D gel electrophoresis images. For the Helmert transform-
ation, very even values are obtained for all distributions,
except for the corner distribution where the values approxi-
mately triple. Thus the MAE values range between 2.0 and
3.1 pixels with deviations of 1.1 and 2.0 pixels. However, in
the corner distribution, these values rise to an MAE of 7.2
pixels and a deviation of 5.2 pixels. Even so, the values are
almost double those obtained by TPS transformation,
although this transformation method should be used
when no deformations are to be introduced in the trans-
formed image (Boutoura and Livieratos 2006).

The results obtained for the P1 transformation are similar
to those obtained by Helmert, but they are somewhat
higher. The MAE values range from 2.0 for the edge distri-
bution to 8.5 for the corner distribution, with deviations of
1.2 and 5.9, respectively. The results obtained for the P2 trans-
formations worsen those obtained for P1 when the number
of control points used is low. From 10 control points
onwards, the results are similar to those obtained by
Helmert and the P1 transformation, and for 20 control
points they become similar to those obtained by TPS trans-
formation. The suitability of grade two for the polynomial
transformations has also been contrasted in other studies
(Mohammed et al. 2013). However, the P2 transformation is
heavily penalised for the corner distribution, with MAE
values up to 106.1 pixels and deviations of 92.3 pixels. The
results obtained by the P3 transformation worsen the
results obtained by P2’s transformation. Thus, even for 20
control points and edge distribution, the MAE amounts to
4.1 pixels with a deviation of 2.6. For this type of transform-
ation, good results have only been obtained for 15–20
control points and random distribution. This fact contrasts
with those obtained by (Baiocchi et al. 2013), who obtained
better results with P3 compared to P2 for georeferencing a
historical map of Rome.

By analysing the results according to the type of distri-
bution, we can see that the best results have been obtained
for the edge and stratified distributions. From six control
points onwards, similar results are also obtained for the
random distribution. Thus, for the edge and stratified distri-
butions, not including the P3 transformation results, the
MAE values range between 4.3 and 1.0 pixels with a devi-
ation between 2.5 and 0.6 pixels. Clearly, the worst results
are obtained for the corner distribution where for the P3
transformation the average MAE value amounts to 14471.0
pixels and a deviation of 16311.7 pixels with an MAE
minima of 79.4 and 83.8 pixels deviation. Therefore, this
type of distribution is not feasible. Even for the TPS trans-
formation the average MAE value amounts to 9.7 pixels,
which may be too high for the vast majority of engineering
applications. This agrees with the results of (Zhou and Li
2000), who indicate that a dense but sparsely spread
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control point distribution performs worse than a less dense
but better spread distribution. Regardless of the type of
transformation, a random distribution can be effective if a
minimum of about 15 control points is used, but if the
number of control points used is low, it can lead to high
MAE errors. This is explained by the fact that as the
number of control points increase, the control point distri-
bution is more likely to be well spread.

With some exceptions, increasing the number of control
points improves the accuracy of the results, regardless of
the type of transformation and the type of distribution, a
fact that has been previously evidenced by other authors
in the scientific literature (Zhou and Li 2000). In fact, the
use of only three control points only gives approximately
constant results for the Helmert distribution. In this case,
the three control points should be placed as far apart as
possible (Watson 2006). From 10 control points onwards,
the improvement stabilises even if the number of control
points is increased. The results remain approximately
stable.

Conclusions

Monitoring the regeneration process of a forest is an impor-
tant part of forestry management. Compared to the tra-
ditional methods of counting tree species, UAVs have been
a revolutionary means of saving time and costs due to the
temporal and spatial flexibility of the data collection. In
turn, the integration of multispectral cameras allows the tra-
ditional vegetation indices that have been used with satellite
imagery to be obtained. However, data from multispectral
cameras must be combined with data from other types of
sensors, such as RGB. It is therefore necessary to co-register
all the information in order to obtain combined vegetation
indices and carry out segmentation processes that allow
the identification of the different tree species. In order to
carry out this co-registration, easily accessible GIS tools,
such as QGIS, can be used. This software has a georeferen-
cing tool with different transformation methods; however,
not all of them allow the co-registration of the data to be
obtained with the same level of precision. Regardless of
the type of transformation, it is possible to obtain accuracy
levels with an MAE of around 3–4 pixels and deviations of
2–3 pixels. However, to improve this result, it is necessary
to define a suitable number and the distribution of control
points. Thus, in this study, the best results have been
obtained for the TPS transformation from 10 control points
and with edge or stratified distribution. Similar data have
also been obtained with the second-degree polynomial
transformation, but, in this case, with a larger number of
control points. This research article is the first step to con-
tinue advancing in future research on automatic counts
and identification of tree species from multispectral images
captured from a UAV.
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