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a b s t r a c t

In this study, we developed a fragment–asperity interaction model for earthquakes.
Based on Tsallis entropy, this model can provide mathematical expression for the
non-extensive entropy of fragments and asperities in the gouge area. From a statistical
physics perspective, we hypothesized that non-extensive entropy decreases with energy
relaxation after crustal rupture (i.e., following an earthquake). By using a windowing
process, the non-extensive entropy value was monitored for three relatively recent
earthquakes: the 2009 M6.1 L’Aquila (Italy) earthquake, 2011 M9.0 Tohoku (Japan)
megathrust earthquake, and 2016 M7.8 Kaikoura (New Zealand) earthquake. The results
support our hypothesis and suggest that the non-extensive entropy formula obtained in
this study can provide a good characterization of seismicity for a given area.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The second law of thermodynamics postulates that only those phenomena for which the entropy of the universe
ncreases, understood as a Shannon’s measure of information [1], are allowed. Thus, in the field of seismology, entropy can
e used to ascertain the future states of a given region of Earth’s crust from its current state [2]. Changes in entropy have
een identified as precursors of large earthquakes [3]. Entropy based in Boltzmann–Gibbs statistical physics can correctly
escribe Markovian processes, including complex systems exhibiting short-range correlations in space and time and short
emory [4]. In contrast, systems displaying non-Markovian processes, including long-range correlations in space and time,

ong memory, and multifractal geometry (e.g., earthquakes), can be better described through non-extensive statistical
hysics; that is, they can be more appropriately characterized using Tsallis entropy [5].
From the point of view of statistical mechanics, entropy measures the number of microstates that can form a given

tate. Then, isolated systems tend to evolve to those states that can be formed by more microstates; that is, to the most
robable [6,7].
Sarlis et al. [8] showed that the entropy of seismicity in natural time under time reversal changed sharply 2 months

efore the 2011 M9 Tohoku (Japan) earthquake. Moreover, by using a complexity measure that quantifies the entropy
hange of seismicity under time reversal, Varotsos et al. [9] found that a M7.3 earthquake on 9 March 2011 was a foreshock
f the Tohoku mainshock.
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As far as Tsallis entropy is concerned, Telesca [10] analysed spatial variation of the non-extensive parameter q in
taly using a 1◦

× 1◦ spatial window and suggested that different earthquake triggering mechanisms govern seismicity;
hat is, stick–slip when q is relatively low and fragment–asperity interaction when q is relatively high. The same author
showed that volcano seismicity is characterized by relatively low q values [11], and that the non-extensive parameter q
increased in the seismic interval before the 2009 M6.1 L’Aquila earthquake [12]. Valverde-Esparza et al. [13] indicated
a possible correlation between the non-extensive parameter q and the seismicity pattern associated with subduction
inclination angle. Michas et al. [14] used non-extensive physics to investigate the statistical properties of frequency–
magnitude and interevent time distributions in the western Corinth Rift. Papadakis et al. [15] identified an increase in
q before the 1995 M7.2 Kobe earthquake, indicating the system’s transition away from equilibrium in preparation for
energy release. Varotsos et al. [16] analysed the entropy change of seismicity under time reversal before the 2011 M9.0
Tohoku earthquake. Moreover, Skordas et al. [17] found that, just before the Tohoku earthquake, the Tsallis entropic index
q of non-extensive statistical mechanics started to show distinct changes. In summary, the non-extensive entropic index
q exhibits a precursory increase before large earthquakes [9].

2. Entropy

The main aim of statistical physics is to describe the macroscopic behaviour of complex systems from their microscopic
properties. Boltzmann showed that entropy could be used to connect microscopic motions of particles to the macroscopic
world; in his analysis, entropy is proportional to the number of accessible micro-states of the system (Ω) and it is
expressed by the Boltzmann equation:

S = k ln Ω (1)

where k is Boltzmann’s constant. Gibbs [18] generalized Boltzmann’s entropy for systems described by other macroscopic
variables as:

S = −k
Ω∑
i=1

pi log pi (2)

where pi is the probability of the system being in the ith state. The concept of entropy was later incorporated into
information theory by Shannon [19] and Shannon andWeaver [20] as a measure for uncertainty. They defined the Shannon
entropy H(p) as the negative information measure; that is:

H (p) = −I (p) = −

W∑
i=1

pi log pi (3)

where H(p) is always positive or zero. Shannon entropy is noted with the symbol H instead of S since it is a measure of
information [1] or the lack of information.

Tsallis [21] introduced a generalization of classical statistical mechanics, termed non-extensive statistical mechanics,
to better describe complex systems. Usually, complex systems exhibit power law distributions between some of their
variables, fractal or multifractal geometries, and long-range interactions [4]. As such, non-extensive statistical mechanics
offers an ideal framework to describe seismic phenomenon, and has given rise to a scientific field known as non-extensive
statistical seismology [22]. While classical statistical mechanics is based on Boltzmann–Gibbs entropy, non-extensive
statistical mechanics is based on Tsallis entropy. Tsallis [23] outlined various disadvantages of Boltzmann–Gibbs entropy
and proposed the definition of non-extensive entropy as:

S =
k

q − 1

(
1 −

W∑
i=1

pqi

)
(4)

where q is a real number called the entropic index. The standard distribution that characterizes Boltzmann–Gibbs statistics
is a particular case of Tsallis entropy with a limit of q = 1. The main difference between classical and Tsallis entropies is
that while the former is an extensive property of the system, the latter is non-extensive [22]. This means that if A and
B are two probabilistically independent systems (i.e., pA+B

ij = pAi · pBj ), for every ith and jth states, then Boltzmann–Gibbs
entropy satisfies:

H (A + B) = H (A) + H(B) (5)

while Tsallis entropy satisfies:

S(A + B)
k

=
S(A)
k

+
S(B)
k

+ (1 − q)
S(A)
k

S(B)
k

(6)

Eq. (6) is the fundamental principle of non-extensive statistical mechanics [4] and the concepts of superextensivity,
extensivity, and subextensivity correspond to q < 1, q = 1, and q > 1, respectively.
2
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In this context, an earthquake is considered a critical phenomenon in a complex system that experiences a phase
ransition; several physical models have been developed to describe their essential properties [24]. Thereby, the maximum
ntropy principle has widely been applied in many out-of-equilibrium systems in physics (and other sciences), providing
ovel insights into their macroscopic states [4]. Berrill and Davis [25], Shen and Manshina [26], and Main and Burton [27]
ioneered the use of the maximum entropy principle to explain distributions of earthquake magnitude and seismic energy
elease.

. Fragment–asperity model

Sotolongo-Costa and Posadas [28] introduced the fragment–asperity interaction model for earthquake dynamics based
n the non-extensive statistical formalism; in this model, the released seismic energy ε is related to the size of the
ragments that fill the space between fault blocks. Silva et al. [29] slightly revised the fragment–asperity model using a
olumetric relationship between seismic energy and fragment size instead of a linear one, in accordance with the standard
heory of seismic moment scaling with rupture length [30]. Subsequently, Darooneh and Mehri [31] and Telesca [32,33]
urther refined the fragment–asperity model by introducing a function between earthquake magnitude and relative energy
eleased as follows [34]:

M ∝
2
3
log (ε) (7)

According to these studies, if N(> M) is the cumulative distribution of the number of earthquakes N with magnitude
greater than M, then:

N(> M)
N

=

⎡⎣ 1 −

(
1−q
2−q

)(
10M

a2/3

)
1 −

(
1−q
2−q

)(
10M0

a2/3

)
⎤⎦

2−q
1−q

(8)

where M0 is the threshold magnitude in the catalogue, a is a real number expressing the proportionality between the
eleased seismic energy and the size of the fragments, and q is the entropic index from Tsallis entropy. Eq. (8) appropriately
generalizes the Gutenberg–Richter relationship over a broad range of magnitudes [35] and exhibits an excellent fit to
earthquake data sets [16,28,36,37]. In fact, the Gutenberg–Richter law can be easily deduced as [10,38]:

b = 2 ·
2 − q
q − 1

(9)

Moreover, q values obtained from different regions of the world [38] are all q ≈ 1.5 − 1.7, suggesting the universality of
this constant.

The aim of this study was to establish the entropy of fragments and asperities within fault fractures (i.e., within gouge
fault zones) and to determine their behaviour during an earthquake. From a statistical mechanics perspective, the higher
the number of microstates, the higher the entropy; and vice versa (Fig. 1).

Tsallis entropy for a continuous distribution p(σ ) of fragments of sizes σ is given by (for simplicity we set k = 1):

S =
1 −

∫
∞

0 pq (σ ) dσ
q − 1

(10)

ubject to two restrictions:∫
∞

0
p (σ ) dσ = 1 (11)

nd ∫
∞

0
σpq (σ ) dσ = ⟨⟨σ ⟩⟩q (12)

here ⟨⟨σ ⟩⟩q is the mean of the distribution. Therefore, the maximum entropy principle allows us to form the following
agrangian:

L (p) =
1 −

∫
∞

0 pq (σ ) dσ
q − 1

− α

∫
∞

0
p (σ ) dσ − β

∫
∞

0
σpq (σ ) dσ (13)

here α and β are the Lagrange multipliers. Imposing the Lagrangian to be extreme:

∂L (p)
= 0 (14)
∂p
3
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Fig. 1. Schematic visualization of the fracture contact zone before and after an earthquake. (Up) Prior to an earthquake, the state of the system,
haracterized by a range of fragment sizes and stress distribution forms many ‘‘microstates’’ compatible with fragment distribution; such entropy
an be assumed to be (relatively) large. (Down) During an earthquake, fragments are broken, while asperities and barriers are overcome. Fragment
izes become homogenized and this decreases the number of possible ‘‘microstates’’, as such, entropy decreases. As this process is abrupt and rapid,
he entropy decreases suddenly; it subsequently recovers as stress starts to re-accumulate.

t is possible to find that:

p (σ ) =

[
1−q
q α

] 1
q−1

[1 + βσ (q − 1)]
1

q−1
(15)

here, implicitly, a cut-off condition has been used for the denominator [39,40]. If the constants A and B are defined as:

A ≡

[
1 − q
q

α

] 1
q−1

(16)

nd

B ≡ β(q − 1) (17)

hen the size distribution function (Eq. (15)) can be rewritten as:

p (σ ) =
A

[1 + Bσ ]
1

q−1
(18)

ubstituting Eq. (18) into Eqs. (11) and (12), a system of equations for A and B can be obtained as follows:

A
B
q − 1
2 − q

= 1 (19)

nd

Aq (q − 1)2
= 1 (20)
B2 2 − q
4
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for which, in this study, 1 < q < 2 and, for simplicity, ⟨⟨σ ⟩⟩q = 1. Hence, solving the system for A and B yields:

A =

(
1

2 − q

) 1
q−2

= (2 − q)
1

2−q (21)

nd

B =
q − 1

(2 − q)
q−1
q−2

= (q − 1) (2 − q)
q−1
2−q (22)

rom these expressions, the distribution function for fragments and asperities is:

p (σ ) =
(2 − q)

1
2−q[

1 + (q − 1) (2 − q)
q−1
2−q σ

] 1
q−1

(23)

inally, by substituting Eq. (23) into that of non-extensive entropy (Eq. (10)) and solving the integral in the numerator,
e can obtain:

S =
1 −

∫
∞

0 pq (σ ) dσ
q − 1

=
1 − (2 − q)

1
2−q

q − 1
(24)

This equation allows us to find the value of the entropy for a dataset and to study its behaviour as a function of the non-
extensive q parameter; therefore, if a windowing process is carried out (i.e., choosing a certain number of earthquakes and
sliding the window in time), it is possible to visualize the dynamic evolution of the seismic series in terms of non-extensive
entropy. The process is as follows:

1. First, the time interval W is determined for the calculation of entropy; in other words, the minimum number of
earthquakes used to calculate S from Eq. (24). In general, the final window size is a reasonable compromise between
the required resolution and smoothing results.

2. Second, parameter b from the Gutenberg–Richter relationship for the chosen window W is determined; this can be
done from the classical expression of Aki [41] and the subsequent correction by Utsu [42]:

b =
log (e)

M − (M0 −
∆M
2 )

(25)

where M0 is the threshold magnitude; ∆M is the resolution of the magnitude (usually ∆M = 0.1); and M is the
average value of all possible magnitudes, which is given by:

M =

∫
∞

M0

Mp (M) dM (26)

The estimation of M0 is performed using the maximum curvature (MAXC) technique [43].
3. Finally, approximation according to Sarlis et al. [38] (Eq. (9)) is used to determine q; then, the non-extensive entropy

is computed for each time t following Eq. (24). By convention, the time attributed to each point of the analyses is
the time of the last seismic event considered in each window.

. Data

Variation in the relative non-extensive entropy from Eq. (24) was tested using data from earthquakes in three different
ectonic environments: the 2009 M6.1 L’Aquila (Italy) earthquake, 2011 M9.0 Tohoku (Japan) megathrust earthquake, and
016 M7.8 Kaikoura (New Zealand) earthquake. For each, we analysed several years of seismic data both before and after
he mainshock.

.1. 2009M6.1 L’Aquila (Italy) earthquake

The M6.1 L’Aquila earthquake occurred on April 6 2009, near the city of L’Aquila, in the Abruzzi region of central Italy,
00 km northeast of Rome. The earthquake resulted from normal faulting on the northwest–southeast-trending Paganica
ault [44] caused ∼300 casualties, and left many more people injured and/or homeless [7]. Data were downloaded
rom the Istituto Nazionale di Geofisica e Vulcanologia (INGV) catalogue (http://iside.rm.ingv.it) and included 33,984
arthquakes of M ≥ 0.1 from 2007 to 2011 (Fig. 2). The Gutenberg–Richter relationship for the dataset is shown in

Fig. 3a; based on MAXC, a threshold magnitude of M = 1.5 was chosen.
0
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Fig. 2. Seismic activity in the Abruzzi region of central Italy from 2007 to 2011 years. The red star denotes the 2009 M6.1 L’Aquila earthquake;
yellow circles are earthquakes of 2.0 ≤ M ≤ 3.5 (4254 events), cyan circles are earthquakes of 3.6 ≤ M ≤ 4.5 (59 events), and blue circles are
earthquakes of 4.6 ≤ M ≤ 5.5 (8 events).

4.2. 2011 M9.0 Tohoku (Japan) earthquake

The M9.0 Tohoku (Japan) megathrust earthquake struck on March 11 2011; it was the strongest earthquake to strike the
region since record keeping began in the late 19th century. The epicentre was located ∼130 km east of the city of Sendai
below the floor of the western Pacific Ocean. The earthquake was caused by a subduction zone rupture associated with the
Japan Trench, which separates the Eurasian Plate from the subducting Pacific Plate [45]. The sudden horizontal and vertical
thrusting of the Pacific Plate generated a huge tsunami that resulted in >15,000 casualties, the injury and displacement
of thousands more, and serious damage to property and infrastructure along the coast, including the Fukushima nuclear
plant [8]. Data were downloaded from the Japan Meteorological Agency (JMA) seismic catalogue (https://www.jma.go.jp),
and included a total of 912,972 earthquakes in the region from 2009 to 2013 (Fig. 4). The Gutenberg–Richter relationship
for the dataset is shown in Fig. 3b for a threshold magnitude of M0 = 1.0.

4.3. 2016 M7.8 Kaikoura (New Zealand) earthquake

The M7.8 Kaikoura (New Zealand) earthquake struck the north-east coast of South Island, New Zealand (north
of Canterbury, near the border with Marlborough) on November 13 2016; the epicentre was 60 km southwest of
Kaikoura [46]. The rupture is considered one of the most complex on record [47], reflecting multiple rupturing processes
along a large number of unconnected (widely spatially separated) fault segments that broke at approximately the
same time. Data were downloaded from the Geo Netseismic catalogue (https://www.geonet.org.nz) and included 12,393
earthquakes in the epicentral area from 2008 to 2020 (Fig. 5). The Gutenberg–Richter relationship for the dataset is shown
in Fig. 3b for a threshold magnitude of M0 = 2.5.

5. Results

Fig. 6a shows magnitude versus time (in days) for earthquakes in the Abruzzi region of central Italy (2007–2011) with
respect to the date of the 2009 M6.1 L’Aquila earthquake. Seismicity increased significantly after the M6.1 mainshock, and
several aftershocks of M5.0–M5.5 occurred at almost the same time; the main M5.4 aftershock is highlighted in Fig. 6a.
6
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Fig. 3. Gutenberg–Richter relationships for selected earthquakes. (a) L’Aquila (2007–2011) seismicity, (b) Tohoku (2009–2013) seismicity, and (c)
Kaikoura (2008–2016) seismicity. The threshold magnitudes (M0) were 1.5, 1.0, and 2.5 for the data in (a), (b), and (c), respectively.

Fig. 6b shows non-extensive entropy S resulting from the windowing process (using Eq. (24)) applied to the seismic
sequence. An abrupt decrease in the relative value of the non-extensive entropy S is coincident with the mainshock; values
then recovered to a level similar to that prior to the mainshock. Smaller decreases followed subsequent earthquakes,
including a M4.4 event on June 22 2009 (77 days after the mainshock) and a M4.1 even on August 28 2010 (509 days
after the mainshock).

Fig. 7a shows magnitude versus time (in days) for earthquakes in the Tohoku region of Japan (2009–2013) with
respect to the date of the 2011 M9.0 Tohoku (Japan) earthquake, including four significant subsequent earthquakes with
magnitudes ranging from M7.3 to M6.9. Fig. 7b shows non-extensive entropy S resulting from the windowing process
(using Eq. (24)) applied to the seismic sequence. An abrupt decrease in non-extensive entropy S was coincident with the
mainshock, after which values partially recovered. Full recovery of non-extensive entropy S values was likely prevented by
the numerous major aftershocks in the hours after the mainshock; in the first 3 h following the mainshock, 16 aftershocks
with magnitudes of > 6.5 occurred (three of them > M7). Further abrupt decreases occurred following major aftershocks
at 120, 360, 630, and 960 days after the mainshock.

Fig. 8a shows magnitude versus time (in days) for earthquakes in the northern Canterbury region of New Zealand
(2008–2020) with respect to the date of the 2016 M7.8 Kaikoura earthquake (November 13 2016). Fig. 8b shows non-
extensive entropy S resulting from the windowing process (using Eq. (24)) applied to the seismic sequence. Seismicity
in the epicentral area was low prior to the mainshock; in the 8 years before the Kaikoura earthquake, only ∼1300
earthquakes of >M2.5 were recorded, among which only a M6.2 on April 24 2015, was significant. Numerous aftershocks
occurred in the hours following the M7.8 Kaikoura mainshock (M5.8–M6.7, with at least four events of >M6.0). After the
mainshock, seismicity remained elevated for a few months, after which it declined again. A moderate M5.6 earthquake
occurred in the area 1 year after the mainshock. Non-extensive entropy S was very stable until the M7.8 Kaikoura
7



A. Posadas and O. Sotolongo-Costa Communications in Nonlinear Science and Numerical Simulation 117 (2023) 106906

o
e
o

y

Fig. 4. Seismicity in the Tohoku region of Japan from 2009 to 2013. The red star denotes the 2011 M9.0 Tohoku earthquake, located ∼130 km east
f the city of Sendai, Miyagi Prefecture, in the Pacific Ocean. Yellow circles denote earthquakes of 3.5 ≤ M ≤ 4.5 (15,637 events), cyan circles denote
arthquakes of 4.6 ≤ M ≤ 5.5 (1853 events), blue circles denote earthquakes of 5.6 ≤ M ≤ 6.5 (259 events), orange triangles denote earthquakes
f 6.6 ≤ M ≤ 7.5 (30 events), and the red triangle denotes an M7.6 aftershock on March 3 2011.

Fig. 5. Seismicity in the northern Canterbury region of New Zealand from 2008 to 2020. The red star denotes the 2016 M7.8 Kaikoura earthquake;
ellow circles denote earthquakes of 3.5 ≤ M ≤ 4.5 (632 events), cyan circles denote earthquakes of 4.6 ≤ M ≤ 5.5 (92 events), blue circles denote

earthquakes of 5.6 ≤ M ≤ 6.5 (11 events), and the orange triangle is a M6.7 aftershock on November 14 2016.
8
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Fig. 6. Regional seismicity (2007–2011) and non-extensive entropy (S) associated with the 2009 M6.1 L’Aquila earthquake. (a) Magnitude versus
time with respect to the mainshock (on April 62009), shown by the large red circle. The main aftershocks are shown by smaller red circles and
include a M5.4 on April 6 2009, M4.4 on June 22, 2009 (77 days after the mainshock), and M4.1 on August 28, 2010 (509 days after the mainshock).
(b) Non-extensive entropy (S). Dashed lines mark slight decreases in entropy coincident with the times of major aftershocks.

mainshock, at which point it decreased abruptly and then recovered, indicating a return to the ‘‘metastability’’ of the
system. An M6.2 earthquake on April 24, 2015 (2 years before the mainshock) and a M5.6 aftershock on October 22 2017,
both caused more limited decreases in entropy values.

6. Conclusions

In this study, we applied a fragment–asperity interaction model [28] to seismic data on order to obtain a mathematical
expression of the non-extensive entropy (S) of fragments and asperities (see Eq. (24)) in the gouge area based on Tsallis
entropy. We were able to derive entropy values for earthquake catalogues depending on the q non-extensive parameter.
Moreover, we developed a methodology to identify the occurrence of earthquakes from the dynamic evolution of non-
extensive entropy. This approach includes: (1) definition of a windowing process, (2) computation of the b value for each
window following Utsu [40] and the MAXC technique [41], (3) estimation of the q non-extensive parameter following
Sarlis et al. [38], and (4) the calculation of non-extensive entropy. Based on analysis of three earthquake sequences (the
2009 M6.1 L’Aquila earthquake, 2011 M9.0 Tohoku megathrust earthquake, and 2016 M7.8 Kaikoura earthquake), our
results show that S offers an indicator of the equilibrium state of seismically active regions. Sudden changes in non-
extensive entropy are associated with earthquakes. Moreover, it is also possible to detect earthquakes considered as
aftershocks or those that are subsequent to a previous event in another part of the seismic system but that would not
have occurred without the mainshock (i.e., triggered earthquakes).

We would like to emphasize that Eq. (24) incorporates the characteristics of non-extensivity into the distribution of
earthquakes entropy and illustrates an important relationship between entropy and the non-extensive parameter q.

Most previous works that have used the original fragment–asperity interaction model [28], or with the improve
version [29,32,33], have concluded that maximum of the entropy occurs at q ≈ 1.6. Fig. 9 shows a graphical representation
9
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Fig. 7. Regional seismicity (2009–2013) and non-extensive entropy (S) associated with the 2011 M9.0 Tohoku megathrust earthquake. (a) Magnitude
ersus time with respect to the mainshock (on March 11 2011), shown by the large red circle. The main aftershocks are shown by smaller red
ircles and include a M7.3 on July 10 2011, M6.9 on March 14 2012, M7.3 on 7 December 2012 (December 7), and M7.1 on October 26 2013. (b)
on-extensive entropy (S). Dashed lines mark decreases in entropy coincident with the times of the mainshock and major aftershocks.

f Eq. (24), as obtained in this study, and explicitly illustrates how this new theoretical result definitively fits the empirical
pplications obtained in different seismically active regions of the world.
Eq. (24) offers a method to identify entropy as a function of the not-extensive parameter q, but also as a function of

eismic magnitude. Indeed, the relationship between geometry (size) of fragments and asperities in the fracture region and
he relaxed seismic energy and, therefore, the magnitude of the earthquake make it possible to identify strong dependence
etween entropy and the parameters q and M.
Finally, through this work, we have illustrated the exportability of some classical concepts of thermodynamics and

tatistical physics, such as entropy and the second law, to others scientific fields, including the study of non-linear
henomena (e.g., earthquakes).
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i

Fig. 8. Regional seismicity (2008–2020) and non-extensive entropy (S) associated with the 2016 M7.8 Kaikoura earthquake. (a) Magnitude versus
time with respect to the mainshock (on November 13 2016), shown by the large red circle. Smaller red circles denote a M6.2 earthquake on April
24 2015 (2 years before the mainshock) and a M5.6 aftershock on October 22 2017. (b) Non-extensive entropy (S). The box shows a zoomed in
view of S before and after the 2015 foreshock.

Fig. 9. Graphical representation of the non-extensive entropy function (Eq. (24)). Maximum entropy is at q ≈ 1.6 which agrees with previous studies
n other seismic zones around the world.
11
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