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Abstract 33 

Accurate identification of the origin of groundwater samples is not always possible in complex 34 

multilayered aquifers. This poses a major difficulty for a reliable interpretation of geochemical 35 

results. The problem is especially severe when the information on the tubewells design is hard to 36 

obtain. This paper shows a supervised classification method based on the Random Forest (RF) 37 

machine learning technique to identify the layer from where groundwater samples were extracted. 38 

The classification rules were based on the major ion composition of the samples. We applied this 39 

method to the Campo de Cartagena multi-layer aquifer system, in southeastern Spain. A large 40 

amount of hydrogeochemical data was available, but only a limited fraction of the sampled 41 

tubewells included a reliable determination of the borehole design and, consequently, of the 42 

aquifer layer being exploited. Added difficulty was the very similar compositions of water 43 

samples extracted from different aquifer layers. Moreover, not all groundwater samples included 44 

the same geochemical variables. Despite of the difficulty of such a background, the Random 45 

Forest classification reached accuracies over 90%. These results were much better than the Linear 46 

Discriminant Analysis (LDA) and Decision Trees (CART) supervised classification methods. 47 
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From a total of 1,592 samples, 805 proceeded from one unique identified aquifer, 403 proceeded 48 

from a possible blend of waters from several aquifers and 279 were of unknown origin. Only 468 49 

of the 805 unique-aquifer samples included all the chemical variables needed to calibrate and 50 

validate the models. Finally, 107 of the groundwater samples of unknown origin could be 51 

classified. The uncertainty on the identification of training samples was taken in account to 52 

enhance the model. Most of the samples that could not be identified had an incomplete dataset.  53 

Keywords: Multi-layer aquifer, Longscreen boreholes, Machine Learning, Random Forest, 54 

Hydrogeochemistry, Hydrogeology.  55 

56 
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1. Introduction 57 

In complex multi-layer groundwater systems, the correct determination of the origin of a sample 58 

is the basic driving condition for a reliable interpretation of geochemical and hydrodynamic 59 

results. However, if there is no available information on the tubewell design, this driving 60 

condition can be hard to validate (Mayo, 2010). As a consequence, despite the large quantities of 61 

geochemical and piezometric data available, only those corresponding to fully documented 62 

tubewells should be used for investigation. Hence, there is a need for a tool that could provide an 63 

automatic and accurate estimation of the aquifer layer from which a water sample has been 64 

extracted. A possibility is to base this tool on geochemical criteria. Such a method must deal with 65 

additional difficulties as similar water types, temporal changes in the origin of groundwater, or 66 

having different ions analyzed in different samples. Moreover, it should be applicable with 67 

common major ion geochemistry. Such a tool could be helpful to all applications of geochemical 68 

data in Hydrogeology, as identifying anthropogenic transformation (e.g. Celle-Jeanton et al., 69 

2009), understanding paleoclimates (e.g. Jiráková et al., 2009), determining mineralization 70 

processes (e.g. Gillon et al., 2012; Lorenzren et al., 2012), assessing groundwater flow patterns 71 

(e.g. Cronin et al., 2005) or calibrating groundwater flow models (e.g. Dahan et al., 2004), among 72 

other uses.  73 

Statistical methods have been widely used in hydrology and hydrogeology (e.g.; Adams et al., 74 

2001 ; Lambrakis et al., 2004 ; Cloutier et al., 2008; Daughney et al., 2012). Generally, as a tool 75 

to subdivide and classify large hydrogeochemical datasets to facilitate interpretation. They might  76 

also be used to estimate mixing proportions (e.g. Valder et al., 2012). The techniques most 77 

applied are principal components analysis (PCA) and hierarchical cluster analysis (HCA). These 78 

techniques highlight tendencies inside groups of samples, allowing an easier representation of the 79 
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results. However, these methods show several limitations, like the subjectivity of the criteria 80 

defining the classes, or its unsupervised nature. That is, they can be used to create a set of classes 81 

out of the whole dataset but they cannot assign samples to a set of a priori classes. 82 

In contrast, in the supervised classification approach, the prediction of the output class of any 83 

new sample is enabled by a set of decision rules (classification model) defined out of a set of  84 

labeled training samples. This approach enables the prediction of the correct output class for any 85 

new input case including the same predictor variables.  Linear Discriminant Analysis (LDA) is a 86 

classical multivariate technique for supervised classification (Vaselli et al., 1997).  87 

However, traditional statistical methods have been proven inadequate to identify complex 88 

patterns and relationships that could be revealed by more sophisticated procedures (De’ath and 89 

Fabricius, 2000). These new procedures include computer intensive machine learning techniques 90 

based on recursion, sampling and randomizations (Babovic, 2005, Prasad et al., 2006). 91 

Approaches based on decision trees (Breiman et al., 1984) are among the most applied supervised 92 

classification methodologies. Random Forest (Breiman, 2001), is the one that have recently 93 

received most interest. It combines a large numbers of decision trees (usually 500 to 2000) to 94 

obtain a more accurate classification without overfitting the model to a specific dataset. 95 

Studies using Decision Trees can be found in Remote Sensing (e.g. Guhimre et al., 2010), 96 

Medicine (e.g. Lempitsky et al., 2009), Genetics (e.g. Cutler and Stevens, 2006), Chemistry (e.g. 97 

Svetnik et al., 2004), Ecology (e.g. Cutler et al., 2007) or Soil Science (e.g. Schmidt et al., 2008). 98 

Only a few studies use supervised classification methods in Hydrogeology. Use of decision trees 99 

as a supervised classification method has been limited to the studies by Loos and Elsenber (2011) 100 

on the links between overland flow generation and topography, and by Peters et al. (2008) on 101 



 

 6 

groundwater-dependent vegetation patterns. LDA has been applied to classify groundwater 102 

samples only in rare occasions (e.g. Lambrakis et al., 2004). Other machine learning methods as 103 

Neural Networks can be found in Hydrogeology (e.g. Kurtulus and Razack, 2007), but they are 104 

more difficult to calibrate and were not used in the present study. Except the recent studies by 105 

Smith et al. (2010) on bacterial source tracking in lakes and Olson and Hawking (2012) on 106 

stream base-flow water chemistry, we have not been able to find any studies using Random 107 

Forest neither in Hydrogeology nor for the analysis of hydro-geochemical datasets. 108 

Our main goal was to test the Random Forest classification method to determine the origin of 109 

groundwater samples based on their geochemistry. The study was conducted in an intensively 110 

irrigated region with hundreds, many of them undocumented, tubewells. These tubewells provide 111 

a large geochemical dataset whose interpretation is hazardous due to the lack of design-112 

information. Linear discriminant analysis and a simple classification tree were also used to 113 

compare results. 114 

2. Study site 115 

The Campo de Cartagena, in southeastern Spain (Figure 1), is a 1,440 km
2
 coastal plain whose 116 

elevation ranges between 0 and 200 m a.m.s.l. The climate is semiarid with an average 117 

temperature of 18 °C and an average rainfall of about 300 mm per year. High variability is 118 

another characteristic of precipitation. Several years have registered values lower than 200 mm 119 

and, at the same time, more than 150 mm can be registered during a few days, mainly in spring 120 

and autumn. The main consequence is the lack of permanent watercourse, though several 121 

ephemeral streams drain the area. Groundwater and the Tagus-Segura water transfer, initiated in 122 

1980 to derive water from the Tagus basin to the Segura basin, are the main sources of water 123 
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supply (Baudron et al., 2013).  124 

The economy of the area relies on the agro-industrial sector with crops covering 1/3 of the total 125 

surface. Due to the low precipitation rate and a lack of permanent surface water, intensive 126 

irrigated agriculture has historically been mainly supported by groundwater extraction from the 127 

regional multi-layer aquifer system.  128 

 129 

Figure 1 : Map of the Study Area, with the location of all registered wells and the geological 130 

cross-section of Figure 2. 131 

 132 

2.1. Hydrogeological settings 133 

The Campo de Cartagena area corresponds to a Neogene-Quaternary sedimentary basin located 134 

on the eastern part of the Betic Cordillera. The permeable sedimentary deposits, with a maximum 135 

thickness of 2,000 m, created one of the most important aquifers of the Mediterranean basin 136 

(Margat and Vallée, 2000). The main geological and hydrodynamic characteristics of the area, 137 

detailed by Jiménez-Martínez et al. (2012), are summarized hereafter. From the Tortonian to the 138 

Quaternary, several layers of high-permeability rocks (limestones, sands and conglomerates) 139 

were deposited (Figure 2), interlayered with detrital, low-permeability marls. Sands and 140 

conglomerates of Tortonian age, organic limestones of Messinian and sandstones deposited 141 

during the Pliocene form the three confined layers of the aquifer. The detrital Quaternary 142 

sediments form the upper unconfined aquifer. A fifth aquifer, corresponding to slightly evolved 143 

Triassic limestone from the substratum, appears locally. A small compartment of the Pliocene 144 

aquifer in the Northeastern part, is isolated of the rest of the system by a normal fault. It  145 
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All layers are intensively exploited by agriculture, with a maximum estimated extraction of more 146 

than 200 hm
3
 per year with high temporal variability. Natural recharge is scarce and depends on 147 

the extent of the layer’s respective outcrop areas. Underlying the crops, the Quaternary aquifer is 148 

mainly recharged by the irrigation return flow.  149 

More than 40 years of groundwater survey by the Geological Survey of Spain (Instituto 150 

Geológico y Minero de España, IGME) provide a large quantity of geochemical and piezometric 151 

data, covering a large spatio-temporal range. Nevertheless, due to the lack of design information 152 

for most tubewells, the origin of groundwater samples is usually unclear. Identifying 153 

representative samples from each aquifer layer, a basic step for any hydrogeological study, is a 154 

difficult task. 155 

 156 

Figure 2 : A-A’ Geological cross-section of the study area. 157 

 158 

3. Dataset and Methods 159 

3.1. Geochemical dataset 160 

The first step in building a supervised classification model is to collect and prepare a "learning" 161 

or "training" dataset to be analyzed. It is used to learn how the value of a qualitative variable, or 162 

« target variable » (here, the aquifer layer) is related to the values of a set of « predictor » 163 

variables (here, the geochemical ions).  164 



 

 9 

3.1.1. Collecting data 165 

The dataset was obtained by collecting geochemical data from a wide variety of sources. More 166 

than 80% of the data came from the official groundwater quality surveys performed between the 167 

early 1970s and early 2000s by IGME. Complementary data was provided by the River Segura 168 

Basin Authority (Confederación Hidrográfica del Segura, CHS), in several sampling campaigns 169 

from 2005 to 2008 and from 2010 to present. Additional geochemical results came from research 170 

projects conducted by the Universities of Granada (2009, unpublished data), the University of 171 

Murcia (2009 and 2011, unpublished data) and the IDES laboratory of the Paris Sud University 172 

(2011, unpublished data). Data from unpublished IGME reports and groundwater analysis kindly 173 

eased in the field by wells owners was also included. Finally, the dataset was composed by 1,592 174 

groundwater samples (Table 1) collected over a wide range of years, sampling conditions and 175 

analytical means and corresponding to different aquifer layers. Most boreholes of the study area 176 

are undocumented and were constructed by private owners on their own initiative. Therefore, 177 

determination of the borehole design is only available for 300 (15%) of the boreholes. In order to 178 

check the descriptions, these 300 boreholes were reviewed in the field. 179 

3.1.2. Review of borehole-design information 180 

In order to determine the original aquifer of each sample, we collected and reviewed all available 181 

borehole-design information corresponding to more than 1200 tubewells in the area. Most data 182 

came from the last inventory of wells by IGME, started in 1973 and partly updated at the 183 

beginning of the 1980s. Complementary partial inventories (e.g. Conesa-García, 1990) were 184 

added, as well as technical reports provided by well owners and drilling companies. The review 185 

of the data was based on the following criteria: depth, localization of the screen, presence of a 186 

cement ring, age and state of conservation of the tubewells, and the water table evolution (when 187 
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available). No geochemical criterion was considered. Finally, we could establish that 805 out of a 188 

total of 1,592 groundwater samples came from a single identified aquifer layer (Table 1). 189 

Based on the criteria of the above-described data review, we established an Aquifer Reliability 190 

(AR) to weight the reliability of the aquifer assessment for each tubewell. Three levels were 191 

defined: A (high reliability), B (medium reliability) and C (low reliability). This index did not 192 

take into account any chemical data, but only construction criteria. Indeed, this review of the 193 

inventory of wells highlighted that some previous hydrogeological studies could have relied on 194 

partially inappropriate aquifer assessment, leading to hazardous interpretations.  195 

3.1.3. Water types 196 

Based on the 805 samples assigned to just one aquifer layer, the geochemical water-type of each 197 

aquifer can be assessed. The Piper diagram for samples with high and medium degree of 198 

reliability (AR=A and AR=B) is presented in Figure 3. The Tortonian and Triassic aquifers are 199 

well differentiated, with Mg-Na-HCO3 and Ca-SO4 water types, respectively. Nonetheless, the 200 

Quaternary, Pliocene and Messinian aquifer are all included in the same Na-Ca-Cl to mixed-Cl 201 

water type.  202 

This similarity between water types is a strong limitation to the identification of the characteristic 203 

geochemical signature of the three upper aquifer layers. Hypotheses to explain this situation are 204 

based on: i) the quite similar geological composition of the aquifer compartments, responsible for 205 

a similar mineralization of groundwater (confirmed by similar saturation rates); ii) the irrigation 206 

return-flow to the Quaternary aquifer, mixing water coming from the lower layers into the upper 207 

ones; and iii) the inside-borehole mixings between water masses (Jiménez-Martínez et al., 2011), 208 

which could even have reached a regional scale.  209 



 

 11 

The 805 samples from a single identified aquifer were used to calibrate the model. The model 210 

was then used to estimate the aquifer of origin of the 279 samples (Table 1) for which no design 211 

information was available and had a complete dataset. The geochemical ions (thereafter called 212 

variables) selected to perform the classification are the concentrations (expressed in mg/l) of Cl-, 213 

SO42-, HCO3-, NO3-, Ca2+, Na+, Mg2+, K+ and SiO2. One of the problems encountered was 214 

that the 8 concentrations were not measured in all the samples. Only 468 of the 805 labeled 215 

samples included all the variables needed to calibrate and validate the models (Table 1). Minor 216 

and trace elements were not taken in consideration due to the very limited number of samples 217 

featuring their determination.  218 

 219 

Figure 3 : Piper diagram for the training samples from single identified aquifer tubewells 220 

with AR=A. 1=Quaternary, 2=Pliocene, 3= Messinian, 4=Tortonian, 5=Triassic. 221 

 222 

3.2. Models used 223 

3.2.1. Linear Discriminant Analysis (LDA) 224 

LDA (Vaselli et al.,1997) is one of the most simple methods for supervised classification. It is 225 

used to classify samples into mutually exclusive groups on the base of independent variables. 226 

This objective is attained by maximizing the between-group variance and minimizing the within-227 

group variance. It is closely related to the unsupervised principal component analysis (PCA) in 228 

that they both look for linear combinations of variables that best explain the data. An important 229 

assumption of LDA is that the independent variables are normally distributed. If only two 230 

variables are available, the separators between the groups will become lines. If three variables are 231 

http://en.wikipedia.org/wiki/Principal_component_analysis
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available, the separator is a plane. When the number of variables is higher than three, the 232 

separators become a hyper-plane.  233 

3.2.2. Decision Trees 234 

Decision trees are used to build a model by a recursive binary partition of a labeled dataset into 235 

increasingly homogeneous nodes. Homogeneity is measured with the Gini index (Breiman et al., 236 

1984), defined as G = Σk pk · (1 - pk), where pk is the proportion of observations in the k
th

 class. 237 

This index is minimized when all observations belong to the same class. At each step the node 238 

with the highest G value is split; a an optimization is done to select the predictor variable and the 239 

numeric threshold, or group of values is the variable is categorical, that would produce the lowest 240 

G value in the subsequent nodes The splitting process continues until no further subdivision can 241 

reduce the Gini index (Cutler et al., 2007).  242 

The final result should be a fully-grown classification tree whose lower nodes include cases 243 

belonging to just one class. However, the lower nodes are seldom, if ever, completely 244 

homogeneous. In this case, the predominant class is used to label the node, being the other cases 245 

classification errors. On the basis of these errors it is possible to prune the tree to allow a higher 246 

generalisation capacity. A typical pruned classification tree has 3 to 12 terminal nodes. This 247 

trained decision tree can then be used to classify an unlabeled dataset. Interpretation of 248 

classification trees increases in complexity as the number of terminal nodes increases (Cutler et 249 

al., 2007). 250 

3.2.3. Ensemble Learning 251 

The main problem of classifying with a unique tree is its high sensitivity to the input data, small 252 

modifications in the dataset can produce completely different models. Ensemble Learning 253 
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techniques have recently received much interest as a tool to overcome this limitation of decision 254 

trees, to obtain better predictive performance.  255 

Bagging (Breiman, 1994) is one of the most used ensemble learning methods. It generates 256 

independent trees by re-sampling the same dataset by bootstrapping. That is generating new 257 

datasets of the same size as the initial one by random sampling with replacement. Around 67% of 258 

the original observations occur at least once in each new generated dataset. Observations not 259 

included in any of the new datasets are called “out-of-bag” observations. The trees obtained are 260 

not pruned and are used to classify the out-of-bag observations. As each initial observations is 261 

included inside the out-of-bag of several trees, its class is estimated several times. The final 262 

estimation assigns each observation to the most “voted” class (Liaw and Wiener, 2002).  263 

3.2.4. Random Forest (RF) 264 

Random Forest (RF) is a bagging based method proposed by Breiman (2001). It generates several 265 

trees (500 to 2,000) using bootstrapping; each tree is then trained using a randomized subset of 266 

the predictors. This somewhat anti-intuitive modification adds randomness to bagging and 267 

decreases the correlation between trees. Uncorrelation is a desiderable property in ensemble 268 

learning classifiers to guarantee that different results give sense to the voting system. Random 269 

Forest produces very good results compared to other machine learning based classification 270 

systems (Support Vector Machines or Neural Networks) or to other decision tree algorithms 271 

(Breiman, 2001; Liaw and Wiener, 2002).  272 

Random Forests do not overfit the model to the dataset since the classification error of one 273 

permutation can be overcome by the ensemble of permutations (Ghimire et al., 2010). This way 274 

the large number of trees reduces generalization error (Breiman, 2001; Pal, 2005 ; Prasad et al., 275 
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2006). Since the out-of-bag observations are not used in the fitting of the trees, the out-of-bag 276 

estimates can be used to perform a cross-validation accuracy estimation (Cutler et al., 2007).  277 

One of the parameters that can be set up by the user is the number of variables included in each 278 

classification tree. Nevertheless, the method does not seem to be very sensitive to this value, 279 

which is by default the square root of the total number of variable used (Gislason et al., 2006). 280 

Another user configurable parameter is the number of generated trees, although a higher number 281 

does not seem to provide a substantial increase in the classification accuracy (Liaw and Wiener, 282 

2002). In general, random forests do remarkably well and require very little tuning (Hastie et al., 283 

2003).  284 

A disadvantage of Random Forest compared to the simple classification tree approach is that 285 

individual trees cannot be examined separately, thus becoming a “black box” approach (Prasad et 286 

al., 2006). However, it does provide several metrics that help in interpretation. Variable 287 

importance is evaluated based on how much worse the prediction would be if the data for that 288 

predictor were permuted randomly. The resulting values can be used to compare relative 289 

importance among predictor variables. In this way, the procedure is much more interpretable than 290 

methods such as Neural Networks, and it has been called a “grey box” approach (Prasad et al., 291 

2006). 292 

3.2.5. Validation 293 

Random Forest includes its own cross validation procedure (out-of-bag cross validation). While 294 

some authors consider it unnecessary to perform a separate cross-validation (Efron and 295 

Tibshirani, 1997; Breiman, 2001; Svetnik et al., 2004), others like Mitchell (2011) affirm that this 296 

internal cross validation can generate biases in the classification. Although it is computationally 297 
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more intensive, we preferred to perform a separate leave-one-out cross validation to compare 298 

Random Forest results with other methods’ (LDA and decision trees) with the same validation 299 

tool.  300 

The results of a cross-validation are organized in a confusion matrix (Table 2) where columns (j) 301 

correspond to real classes, and lines (i) show the model results. Each element of the nij matrix 302 

represents the number of observations corresponding to class j that were classified as class i. 303 

Several indices measuring the accuracy of the classification can be generated from the confusion 304 

matrix (Congalton and Green, 2008). The overall accuracy is the proportion of cases in the 305 

principal diagonal. The omission error of class i is the proportion of cases from class i not 306 

classified as such. The commission error of class i is the proportion of cases incorrectly classified 307 

as class i. Finally, the kappa index corrects the overall accuracy for random chance agreement as 308 

detailed in Congalton and Green (2008): 309 

 310 

3.3. Formulation of tested models 311 

A general schema of the methodology used in this study is shown in Figure 4. Five models were 312 
tested: 313 

1. Linear Discriminant Analysis (LDA) 314 

2. Classification Tree using the CART algorithm (CART) 315 

3. Random Forest (RF0) 316 

4. Random Forest eliminating unreliable samples (RF1) 317 

5. Random Forest eliminating variables to increase accuracy (RF2) 318 
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 319 

Several algorithms to apply classification tress have been proposed. In this study we have used 320 

the Classification and Regression Trees (CART) proposed by Breiman et al. (1984). 321 

Model RF1 was an attempt to increase the accuracy of the results by the detection and 322 

elimination of unreliable samples (Figure 4). Two strategies were applied. First, the ionic balance 323 

for each water sample was calculated to determine if errors in classification could be related with 324 

errors in the balance. Secondly, we considered the qualitative evaluation of the reliability of the 325 

initial aquifer assessment (AR) for each borehole. As for the previous case, the aim was to assess 326 

whether unreliable ground water samples decreased the accuracy of the classifications. 327 

6. The purpose of model RF2 was to deal with 328 

 the decrease in accuracy observed when the number of variables reaches a certain threshold. This 329 

phenomenon is known as Hugues effect, or Curse of Dimensionality (Hugues, 1968). It can be 330 

attributed to a significant reduction of the sample density in the space of variables as the increase 331 

in the number of variables is not compensated by an increase in the sample size. Several models 332 

were built to analyze this phenomenon and check its effects. We started with the simplest model, 333 

with only the most important variable, using Random Forest variable ordination. Then, we added 334 

the variable that most increased the accuracy of the model. Because of the random behavior of 335 

the Random Forest, the selection of this variable was not based on only one classification but on 336 

50 different classifications of each new generated model. Thus, we obtained the corresponding 337 

distribution of accuracy parameters, in this case calculated using out-of-bag cross-validation 338 

instead of leave-one-out cross validation to save computing resources and because in this case 339 

different Random Forest results are being compared. Using a similar procedure, the other 340 
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variables were progressively added. The expected result was a fast increase in accuracy when 341 

adding the first variables, followed by a stabilization or even a decrease in accuracy, due to the 342 

Hugues effect with the incorporation of the less important variables.  343 

3.3.1.  344 

 345 

The work was carried out with the R programming language (R Development Core Team, 2010) 346 

using the R packages rpart (Therneau et al., 2011) and randomforest (Liaw and Wiener, 2002) 347 

that implement the CART and Random Forest algorithms, respectively.  348 

Figure 4 : Methodological scheme 349 

 350 

4. Results and discussion 351 

4.1. Linear Discriminant Analysis (LDA) 352 

Table 3 shows the results of the LDA classification. Overall accuracy reaches 84.8% with a 353 

kappa index of 0.764. Despite of these significantly high values, omission and commission errors 354 

reach 100% for the Pliocene aquifer. This means that no sample from the Pliocene was classified 355 

as such and that all samples classified as Pliocene were incorrectly classified. 356 

4.2. Classification and Regression Trees (CART) 357 

According to the confusion matrix (Table 4), the results are quite good, with an overall accuracy 358 

of 88%. As for LDA, the omission error reaches 100% in the case of the Pliocene aquifer; 359 
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however, the commission error was 0%, meaning that no sample was classified as Pliocene. 360 

In the decision tree produced (Figure 5), each one of the 8 internal nodes is defined by a 361 

condition. The sample continues on the left branch if this condition is fulfilled and on the right 362 

branch if not. The 9 final nodes correspond to the 5 layers, except Pliocene which, as has been 363 

said, did not receive any observation. Figures 6 to 8 illustrate and explain the main geochemical 364 

nodes of the classification tree obtained. They show how the first decision rules split the space of 365 

the variables into a set of different subregions corresponding to different aquifers. Another way to 366 

display the nodes is to use a binary axis. In the space defined by NO3
-
 and Ca

2+
 (Figure 6), a high 367 

number of Quaternary samples were correctly classified because of NO3
-
 concentrations above 44 368 

mg/l. The number of badly classified samples was 6 from the Pliocene aquifer, 6 from the 369 

Messinian and 2 from the Triassic aquifer. One possible explanation could be a mixing with 370 

Quaternary water with high contents in NO3
-
. As well, all samples with less than 44.0 mg/l of 371 

NO3
-
 and less than 55.5 mg/l of Ca

2+
 are directly classified as Tortonian. These include 92% of 372 

the Tortonian samples and 3 samples coming from other aquifers, therefore badly classified. The 373 

samples with less than 44.0 mg/l of NO3
-
 and more than 55.5 mg/l of Ca

2+
 generate two sub-trees 374 

that are analyzed in Figure 7 and Figure 8. The first sub-tree involves samples with less than 44.0 375 

mg/l of NO3
-
 and Ca

2+
 between 55.5 mg/l and 277.5 mg/l (Figure 7). The definitive assignation 376 

(Messinian or Quaternary) of the samples is based on the Mg
2+

 and Cl
-
 contents. The second sub-377 

tree (Figure 8) includes three variables: Cl
-
 on the abscissa, HCO3

-
 on the ordinate and the 378 

threshold in Cl
-
, highlighted by the size of the points. Figure 8 also shows how successful the 379 

classification in this part of the tree is, with only one error for the Triassic aquifer and three for 380 

the Pliocene, probably partly explained by the mixing process cited above.  381 

The confusion between Pliocene and Quaternary can be explained by Quaternary nitrate-rich 382 
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(NO3
- 
<44.0 mg/l) water entering the Pliocene through long-screen boreholes, and in some cases 383 

with high Cl
-
 as well. The confusion with the Messinian seems to be linked to the same problem, 384 

but it also has to be taken in account that both sample types are located in the same regions of the 385 

space of the variables. 386 

 387 

Figure 5 : Classification tree generated by CART 388 

Figure 6 : Plot of the NO3
-
 < 44, Ca

2+
 >= 55.5  and Ca

2+
 < 277.5 nodes of the decision tree 389 

obtained by the CART model. Note: values in mg/l 390 

Figure 7 : Plot of the Mg
2+

 < 179.5 and Cl
-
 < 1024 nodes of the decision tree (CART model).  391 

Note: values in mg/l 392 

Figure 8 : Plot of the Cl
-
 >= 716, HCO3

-
 < 542.5 and K

+
 >= 20.5 nodes of the decision tree 393 

(CART model). Note: values in mg/l 394 

 395 

4.3. Random Forest (RF0) 396 

The confusion matrix after applying Random Forest to the whole dataset and all the available 397 

variables is shown in Table 5 together with its analysis. Compared to the CART model, overall 398 

accuracy increased from 88.0% to 90.6%, i.e. 21.7% of the total scope of improvement. The 399 

omission error for the Pliocene aquifer decreased from 100% to 70.0%, showing a clear 400 

enhancement, although this value remains high. The commission error for the Pliocene is also 401 

high  (40.0%). Table 6 shows the importance of each variable according to one of the Random 402 
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Forest importance criteria: the increase in accuracy provided by this variable to the classification. 403 

4.4. Random Forest after elimination of unreliable samples (RF1) 404 

Figure 9 shows the distribution of the ionic balance error (absolute values) for each result of the 405 

model. The actual and the estimated classes appear separated by a dot on the horizontal axis. 406 

Well-classified samples (1.1, 2.2, 3.3, 4.4, 5.5) seem to have a lower ionic balance error than 407 

badly classified samples. Nevertheless, overlapping areas between categories are very large, so 408 

no clear threshold can be assessed. As a general rule, we decided to eliminate all samples above 409 

5% of absolute ionic balance error (2 samples) for the calibration of the model. Anyway, there is 410 

a slight tendency to obtain better classifications in samples with a low error in the ionic balance. 411 

We think this supports the use of this classification method. 412 

 413 

Figure 9 : Absolute Ionic Balance Error 414 

 415 

Depending on the borehole, the initial aquifer assigned to the samples is more or less reliable. 416 

The Aquifer Reliability (AR) expresses three levels of confidence: A (high), B (medium) and C 417 

(low). Figure 10 shows the distribution of AR for each one of the 25 possible classification cases 418 

(correct and incorrect). It is organised as a confusion matrix in which the elements are pie charts 419 

displaying, for each combination of real and estimated classes, AR distribution. The colors are 420 

chosen as follows: green (AR=”A”), yellow (AR=”B”) and red (AR=”C”) while the number in 421 

brackets indicates the number of cases. Nine combinations never occur (white circles); for 422 

example, samples from the Quaternary aquifer wrongly classified as Tortonian. In most cases of 423 
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bad classification, a predominance of low reliability initial aquifer assignment (AR=”C”) is 424 

found. Specifically for Quaternary and Pliocene samples incorrectly classified as Messinian, most 425 

samples feature a highly reliable initial aquifer assignment (AR=”A”). In some cases (Pliocene, 426 

Messinian and Trias), well-classified samples present relatively high percentages of medium and 427 

low AR. In view of these results, it was decided to eliminate the samples featuring low AR. 428 

After eliminating all samples with AR=”C”, together with those with an ionic balance error 429 

higher than 5, the classification accuracy increases (Table 7). Especially relevant is the decrease 430 

from 70% to 48% in the omission error of the Pliocene aquifer. The commission error for the 431 

same layer reaches a reasonable value of 13.3%. Overall accuracy, increases from 90.6% to 93%. 432 

 433 

Figure 10 : Distribution of reliability index (ARI) for the different combinations of actual 434 

and classified aquifers 435 

 436 

4.5. Random Forest after elimination of variables (RF2) 437 

To assess if any of the variables was producing a decrease in accuracy, different models were 438 

generated by adding and eliminating variables. We started with a model containing only NO3
-
, 439 

the variable that had obtained the higher importance in the RF0 model. This one-variable model 440 

reached an accuracy of 71%. Then we check which variable produced the highest increase in 441 

accuracy. It, turned out to be Ca
2+

. This two-variable model attained an accuracy of 81%. 442 

Continuing step by step with the same procedure, a model including all the variables was 443 

obtained (Figure 11). Due to the random behavior of Random Forest, the results can vary from 444 
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one run to another. Therefore, the protocol was repeated 50 times for each model. The accuracy 445 

results were obtained by out-of-bag cross-validation.  446 

 447 

Figure 11 : Accuracy of different models generated by adding and eliminating variables 448 

 449 

A decrease in accuracy was observed after adding the last variable (Cl
-
). Eliminating chloride 450 

therefore improved the model (Table 8): a reliability of 94.3% was reached with a decrease of the 451 

commission error for all classes. Specially important is the decrease in the omission error of the 452 

Pliocene aquifer, from 48% to 40%. Removing Cl
- 
 also seemed to reduce the confusion between 453 

Pliocene and Messinian aquifers.  454 

It is interesting to compare the evaluation of variables given by Random Forest with the  decision 455 

tree generated by the CART model (Figure 5), In the former, NO3
-
 remains as the most important 456 

variable, Ca
2+

 and Mg
2+

 maintain a fairly high importance. The main difference is the importance 457 

that Random Forest gives to  Na
+ 

and the rejection of Cl
- 

that seems to reduce the confusion 458 

between Pliocene and Messinian.  459 

4.6. Statistical models comparison 460 

The similarity between water types was initially expected to be a strong limitation to the 461 

identification of the characteristic geochemical signatures of the three upper layers. Another 462 

problem is that groundwater mixings between aquifer layers are accumulative over time, 463 

producing temporal variation in the geochemistry of groundwater samples. Despite such 464 

limitations, RF2 model reaches high accuracy and low omission error for the Pliocene compared 465 
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to the other methods (Figure 12), Therefore, the RF2 model is selected as the best model. Out of 466 

the 171 tubewells of unknown design featuring geochemical data, and based on the training set of 467 

73 tubewells, it succeeded to identify the aquifer corresponding to 66 tubewells (Figure 13).  468 

 469 

Figure 12 : Accuracy indicators for the different models: LDA, CART, RF, RF1 and RF2. 470 

Figure 13 : Map of the RF2 results 471 

 472 

4.7.  Predictive capacities of the model 473 

 The results of the RF2 model for unknown samples are represented in a Piper diagram (Figure 474 

14). Piper diagrams display geochemical water-types, i.e. the relative proportion of several 475 

geochemical species in the total mineralization of a sample. They use slightly different data than 476 

the used by Random Forest. First, data appear as percentages whereas the model is built on 477 

concentration values; secondly, some of the ions appear added. So, we think that a Piper diagram 478 

of the classified samples can be used as a second validation approach and to check the predictive 479 

capacity of the model. 480 

The water types displayed on Figure 14 (classified samples) are similar to those showed on 481 

Figure 3 (training samples), confirming the reliability of the method to identify the origin of 482 

groundwater samples. Two problems, not directly attributable to the model, still appear. Some of 483 

the samples could not be identified because not all the ion concentrations had been measured 484 

when the samples were collected, making the classification impossible. Secondly, some of the 485 
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classified samples could actually represent a mixing between different aquifers layers; this 486 

already mentioned phenomenon is characteristic of the study area. Both problems, incomplete 487 

datasets and mixing samples, are to be dealt in future works. 488 

 489 

Figure 14 : Piper diagram for samples from unknown origin featuring all variables and 490 
identified with the RF2 model. 1=Quaternary, 2=Pliocene, 3= Messinian, 4=Tortonian, 491 
5=Triassic. 492 

 493 

5. Conclusions and perspectives 494 

Based on training samples featuring all variables, the first two models (LDA and CART) showed 495 

overall accuracies of 84.8 and 88.0% (respectively). A high disparity was found between 496 

geochemically easy distinguishable aquifer layers (Tortonian, Triassic) and others that present 497 

higher geochemical similarity (Quaternary, Pliocene and Messinian). Although these values seem 498 

quite acceptable, these models did not succeed to correctly classify any of the Pliocene training 499 

samples. With the same dataset, the first Random Forest model (RF) reached slightly higher 500 

overall accuracies (90.6%) and succeeded to classify part of the Pliocene samples. The 501 

elimination of less-reliable samples, based on both geochemical and tube-well design criteria, 502 

provided a stronger Random Forest model (RF1) with exactitude of 93.0%. After eliminating the 503 

less useful variables, the final Random Forest model (RF2) achieved an overall accuracy  of 504 

94.3% and the best classification.  505 

These good results prove that Random Forest allows to identify the aquifer of origin of 506 

groundwater samples based on commonly available major ions geochemistry, even when the 507 

different aquifer layers have similar geochemical water types. Random Forest also provide more 508 
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accurate classification than LDA or CART. The identification of the aquifer of origin of unknown 509 

samples optimizes the hydrogeochemical dataset, enhancing the possibilities of geochemical 510 

interpretations. The results of this study present a wide interest limited neither to this kind of 511 

problem nor to the Campo de Cartagena aquifer system. Indeed, many multi-layer aquifer 512 

systems feature long-screen boreholes, and could benefit from this methodology to increase the 513 

geochemical knowledge. More generally, the Random Forest methodology does show potential 514 

for a wide range of hydrological, hydrogeological and geochemical applications, and offers novel 515 

prospects in this field. 516 

Still, developing several aspects could enhance the present classification model. Firstly, a strategy 517 

to identify water samples produced by the mix of groundwater from different layers inside 518 

longscreen boreholes would improve the results. Secondly, several samples were not used to 519 

calibrate the model because not all the 8 predictor variables had been measured. It would be 520 

necessary to check the accuracy of the method with samples with much less information. Thirdly, 521 

temporal variability is an accumulative factor that can introduce temporal variation in the 522 

geochemistry of samples and, consequently, noise in the models. Finally, the spatial variability of 523 

the agricultural activity, and the introduction of NO3
-
 in the aquifers, is not the same in the whole 524 

area. This spatial variability could be also affecting the models. In forthcoming works, these 525 

tracks will be investigated. 526 

527 



 

 26 

Acknowledgments 528 

We thank Dr Christian Leduc (IRD, UMR G-EAU) for his constructive comments on the 529 

manuscript. This work was developed within the scope of the Project “Modelación Hidrológica 530 

en Zonas Semi Aridas” financed by the Regional Ministry of Universities, Business and Research 531 

(Region of Murcia, Spain). The authors acknowledge the Fundación Instituto Euromediterráneo 532 

del Agua (Murcia, Spain) for its fundamental financial support. Additional supports came 533 

through the “CARTAG-EAU” project financed by the French “SICMED-MISTRALS” initiative 534 

and the 08225/PI/08 research project financed by “Programa de Generación del Conocimiento 535 

Científico de Excelencia” of the Fundación Seneca, Región de Murcia (II PCTRM 2007-10). 536 

Some co-authors thank the SWAM Project (“Increasing Regional Competiveness through 537 

RTD&I on Sustainable Water Resources Management”, 7FP, Grant Agreement nº 245427), for 538 

the international visibility of groundwater research at the Campo de Cartagena case study. 539 

 540 

References 541 

Adams, S., Titus, R., Pietersen, K., Tredoux, G., Harris, C., 2001. Hydrochemical characteristics 542 

of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology. 241, 91–543 

103. 544 

Babovic, V., 2005. Data Mining in Hydrology. Hydrological Processes. 19, 1511-1515. 545 

Baudron P, Barbecot F, García-Aróstegui JL, Leduc C, Travi Y, Martinez-Vicente D. 2013. 546 

Impacts of human activities on recharge in a multilayered semiarid aquifer (Camp de Cartagena, 547 

SE Spain). Hydrological Processes, in press. DOI: 10.1002/hyp.9771 548 

Breiman, L., 1994. Bagging predictors. Technical Report No. 421. 549 



 

 27 

Breiman, L., 2001. Random Forests. Machine Learning. 45(1), 5–32. 550 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and regression trees. 551 

Wadsworth and Brooks/Cole, Monterey, California, USA. 552 

Celle-Jeanton, H., Huneau, F., Travi, Y., Edmunds, W.M., 2009. Twenty years of groundwater 553 

evolution in the Triassic sandstone aquifer of Lorraine: Impacts on baseline water quality. 554 

Applied Geochemistry. 24, 1198–1213. 555 

Cloutier, V., Lefebvre, R., Therrien, R., Savard, M.M., 2008. Multivariate statistical analysis of 556 

geochemical data as indicative of the hydrogeochemical evolution of groundwater in a 557 

sedimentary rock aquifer system. Journal of Hydrology. 353, 294–313. 558 

Conesa-García, C., 1990. El Campo de Cartagena. Clima e hidrología de un medio semiáárido. 559 

Universidad de Murcia, Ayuntamiento de Cartagena. Comunidad de Regantes del Campo de 560 

Cartagena. 561 

Congalton, R.G., Green, K., 2008. Assessing the Accuracy of Remotely Sensed Data. Principles 562 

and Practices. CRC Press. 563 

Cronin, A.A., Barth, J.A.C., Elliot, T., Kalin, R.M., 2005. Recharge velocity and geochemical 564 

evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. Journal of Hydrology. 565 

315, 308–324. 566 

Cutler, A., Stevens, R.J., 2006. Random forests for microarrays. Methods in Enzymology. 411, 567 

422–432. 568 

Cutler, D.., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 2007. 569 

Random Forest for Classification in Ecology. Ecology. 88(11), 2783–2792. 570 

Dahan, O., McGraw, D., Adar, E., Pohll, G., Bohm, B., Thomas, J., 2004. Multi-variable mixing 571 

cell model as a calibration and validation tool for hydrogeologic groundwater modeling. Journal 572 

of Hydrology. 293, 115–136. 573 



 

 28 

Daughney, C., Raiber, M., Moreau-Fournier, M., Morgenstern, U., van der Raaij, R., 2012. Use 574 

of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality 575 

monitoring network: comparison of New Zealand’s national and regional groundwater 576 

monitoring programs. Hydrogeology Journal. 20, 185–200.  577 

De’ath, G., Fabricius, K., 2000. Classification and regression trees: a powerful yet simple techn 578 

ique for ecological data analysis. Ecology 81, 3178-3192. 579 

Efron, B., Tibshirani, R., 1997. Improvements on Cross-Validation: The .632+ Bootstrap 580 

Method. Journal of the American Statistical Association. 92, pp. 548–560. 581 

Ghimire, B., Rogan, J., Miller, J., 2010. Contextual land-cover classification: incorporating 582 

spatial dependence in land-cover lassification models using random forests and the Getis statistic. 583 

Remote Sensing Letters. 1:1, 45–54. 584 

Gillon, M., Renard, F., Crancon, P., Aupiais, J., 2012. Kinetics of incongruent dissolution of 585 

carbonates in a Chalk aquifer  using reverse flow modelling. Journal of Hydrology. 420, 329–586 

339. 587 

Gislason, P.O., Benediktsson, L.A., Sveinsson, J.R., 2006. Random Forests for land cover 588 

classication. Pattern Recognition Letters. 27, 294–300. 589 

Guhimre, B., Rogan, J., Miller, J., 2010. Contextual land-cover classification: incorporating 590 

spatial dependence in land-cover classification models using random forests and the Getis 591 

statistic. Remote Sensing Letters. 1:1, 45–54. 592 

Hastie, T., Tibshirani, R., Friedman, J., 2003. The Elements of Statistical Learning: Data Mining, 593 

Inference, and Prediction. Springer. 594 

Hughes, G.F., 1968. On The Mean Accuracy Of Statistical Pattern Recognizers. IEEE Trans. on 595 

Information Theory 14-1, 55–63. 596 



 

 29 

Jiménez-Martínez, J., Aravena, R., Candela, L., 2011. The Role of Leaky Boreholes in the 597 

Contamination of a Regional Confined  Aquifer. A Case Study: The Campo de Cartagena 598 

Region, Spain. Water Air Soil Pollut. 215, 311–327. 599 

Jiménez-Martínez, J., Candela, L., García-Aróstegui, J.L., Aragón, R., 2012. A quasi 3D 600 

geological model of the Campo de Cartagena, SE Spain: Hydrogeological implications. 601 

Geologica Acta. 10(2), 1–13. 602 

Jiráková, H., Huneau, F., Celle-Jeanton, H., Hrkal, Z., Coustumer, P.L., 2009. Palaeorecharge 603 

conditions of the deep aquifers of the Northern Aquitaine region (France). Journal of Hydrology. 604 

368, 1–16. 605 

Kurtulus, B., Razack, M., 2007. Evaluation of the ability of an artificial neural network model to  606 

simulate the input-output responses of a large karstic aquifer: the La  Rochefoucauld aquifer 607 

(Charente, France). Hydrogeol. J. 15, 241–254. 608 

Lambrakis, N., Antonakos, A., Panagopoulos, G., 2004. The use of multicomponent statistical 609 

analysis in hydrogeological environmental research. Water Research. 38, 1862–1872. 610 

Lempitsky, V., Verhoek, M., Noble, J.A., Blake, A., 2009. Functional Imaging and Modeling of 611 

the Hear. 612 

 613 

Liaw, A., Wiener, M., 2002. Classication and Regression by randomForest. R News. 2(3), 18–22. 614 

Loos, M., Elsenbeer, H., 2011. Topographic controls on overland flow generation in a forest – An 615 

ensemble tree approach. Journal of Hydrology. 409, 94–103. 616 

Lorenzen, G., Sprenger, C., Baudron, P., Gupta, D., Pekdeger, A., 2012. Origin and dynamics of 617 

groundwater salinity in the alluvial plains of western Delhi and adjacent territories of Haryana 618 

State, India. Hydrological Processes 26, 2333–2345. 619 



 

 30 

Margat, J., and Vallée, D. 2000. Water Resources and Uses in the Mediterranean Countries: 620 

Figures and Facts. Blue Plan for the Mediterranean. Regional Activity Centre, Sophia-621 

Antipolis, France, 224 pp. 622 

Mayo, A., 2010. Ambient well-bore mixing, aquifer cross-contamination, pumping stress, and 623 

water quality from long-screened wells: What is sampled and what is not? Hydrogeology Journal. 624 

18, 823–837. 625 

Mitchell, M., 2011. Bias of Random Forest Out-of-Bag (OOB) Error for Certain Input 626 

Parameters. Open Journal of Statistics. 1, 205–211. 627 

Olson, J.R., Hawkins, C.P., 2012. Predicting natural base-flow stream water chemistry in the 628 

western United States. Water Resources Research. 48. 629 

Pal, M., 2005. Random forest classifier for remote sensing classification. International Journal of 630 

Remote Sensing. 26, 217–222. 631 

Peters, J., Baets, B.D., Samson, R., Verhoest, N.E.C., 2008. Modelling groundwater-dependent 632 

vegetation patterns using ensemble learning. Hydrol. Earth Syst. Sci. 12, 603–613. 633 

Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression tree techniques: 634 

bagging and random forests for ecological prediction. Ecosystems. 9, 181–199. 635 

R Development Core Team, 2010. R: A language and environment for statistical computing. R 636 

Foundation for Statistical Computing, Vienna, Austria. 637 

Smith, A., Sterba-Boatwright, B., Mott, J., 2010. Novel application of a statistical technique, 638 

Random Forests, in a bacterial source tracking study. Water Research. 44, 4067–4076. 639 

Svetnik, V., Liaw, A., Tong, C., Wang, T., 2004. Application of Breiman’s Random Forest to 640 

modeling structure-activity relationships of pharmaceutical molecules, in: MCS. Springer-Verlag, 641 

pp. 334–343. 642 



 

 31 

Therneau, T.M., Atkinson, B. 2011. rpart: recursive partitioning. R package version 3.1-41. R 643 

port by Brian Ripley.  644 

Valder, J.F., Long, A.J., Davis, A.D., Kenner, S.J., 2012. Multivariate statistical approach to 645 

estimate mixing proportions for unknown end members. Journal of Hydrology 460–461, 65–76. 646 

Vaselli, O., Buccianti, A., Siena, C.D., Bini, C., Coradossi,N., Angelone,M, 1997. Geochemical 647 

characterization of ophiolitic soils in a temperate climate: a multivariate statistical approach. 648 

Geoderma 75, 117-133. 649 

 650 

Table 1: Summary of the groundwater samples included in the dataset. Most samples 651 

marked with an asterisk (*) did not feature a full set of variables. 652 

Table 2: Mathematical illustration of a confusion matrix. Adapted from Congalton and 653 

Green (2008). 654 

Table 3 : Confusion matrix of discriminant analysis 655 

Table 4 : Confusion matrix of CART classification tree 656 

Table 5 : Confusion matrix of random forest 657 

Table 6 : Importance of variables in relation to the corresponding accuracy increase 658 

Table 7 : Confusion matrix of random forest eliminating doubtful samples (RF1) 659 

Table 8 : Confusion matrix of random forest eliminating Cl
-
 660 



Highlights 

 

 Identification of the origin of groundwater samples based on their 

geochemistry. 

 Enhancement of a geochemical dataset featuring doubtful samples. 

 Novel application of Random Forest (RF) machine learning technique in 

hydrogeology. 

 High discrimination capacity, beyond similar water types and heterogeneous 

dataset. 

 Optimization of the classification model by assessing the most useful 

variables. 

 

Highlights (for review)



Figure 1 : Map of the Study Area, with the location of the registered wells and 

the geological cross-section of Figure 2. 

Figure 2 : A-A’ Geological cross-section of the study area. 

Figure 3 : Piper diagram for the labelled training samples from single identified 

aquifer tubewells with AR=A. 1=Quaternary, 2=Pliocene, 3= Messinian, 

4=Tortonian, 5=Triassic. 

Figure 4 : Methodological scheme 

Figure 5 : Classification tree generated by CART 

Figure 6 : Plot of the NO3
-
 < 44, Ca

2+
 >= 55.5 and Ca

2+
 < 277.5 nodes of the 

decision tree obtained by the CART model. Note: values in mg/l 

Figure 7 : Plot of the Mg
2+

 < 179.5 and Cl
-
 < 1024 nodes of the decision tree 

(CART model). Note: values in mg/l 

Figure 8 : Plot of the Cl
-
 >= 716, HCO3

-
 < 542.5 and K

+
 >= 20.5 nodes of the 

decision tree (CART model). Note: values in mg/l 

Figure 9 : Absolute Ionic Balance Error 

Figure 10 : Distribution of reliability index (AR) for the different combinations 

of actual and classified aquifers 

Figure 11 : Accuracy of different models generated by adding and eliminating 

variables 

Figure 12 : Accuracy indicators for the different models: LDA, CART, RF, RF1 

and RF2. 

Figure 13 : Map of the RF2 results 

Figure 14 : Piper diagram for samples from unknown origin featuring all 

variables and identified with the RF2 model. 1=Quaternary, 2=Pliocene, 3= 

Messinian, 4=Tortonian, 5=Triassic 

Figure captions



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605182&guid=69fc6723-f122-46d2-8958-cc62e676f15f&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605183&guid=90ed91ad-7d87-4a3f-b6df-7859c9c77172&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605207&guid=5ccd2a0b-39c0-44c0-9533-6da9cb0a9252&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605208&guid=d62fbeff-2540-47a2-86fb-9b43541b3569&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605184&guid=5cbd548c-e8f7-4d5c-8142-4b78976de94d&scheme=1


Figure 6
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605185&guid=567a1dfe-053c-4dd4-bc96-076fb644e876&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605186&guid=dfb556a1-304b-47ab-9cf3-a767fea20576&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605187&guid=08a27909-6092-4b24-a5a9-453e79c448a4&scheme=1


Figure 9
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605188&guid=9c0331d7-2262-42e7-b4f6-29dcbde17565&scheme=1


Figure 10
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605189&guid=a50dbbfe-f95c-4e6c-abd1-44faac16bcc7&scheme=1


Figure 11
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605190&guid=b070744f-9b4d-4a1d-b21d-2978df229832&scheme=1


Figure 12
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605191&guid=d579f9da-ad6f-40bc-9650-6769b2c99a42&scheme=1


Figure 13
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605209&guid=6e336316-009a-49a0-a9c4-b591ec9e2609&scheme=1


Figure 14
Click here to download high resolution image

http://ees.elsevier.com/hydrol/download.aspx?id=605210&guid=e78b7cf2-fca6-4def-89b7-dccb8704ec90&scheme=1


Whole dataset 1592 

Samples from one only aquifer 

Total 805 

Featuring all 

variables 468 

With missing 

variables 337 

Samples of unknown origin 

Total 282 

Identified with 

RF2 107 

Not identified with 

RF2* 175 

Samples identified as mixing 403 

* 

Table 1
Click here to download Table: Table1.doc

http://ees.elsevier.com/hydrol/download.aspx?id=605211&guid=8605da91-99a8-4f02-a75b-7bcf7454b61b&scheme=1


  
j=columns (true class) 

 

row 

totals 

  

i=rows 

(model 

class) 

  

  

  1 2 3 … J ni+ 

1 n11 n12 n13 … n1J n1+ 

2 n21 n22 n23 … n2J n2+ 

3 n31 n32 n33 … n3J n3+ 

… … … … … … … 

I nI1 nI2 nI3 … nIJ nI+ 

tot. 

column 

n+j n+1 n+2 n+3 … n+J n 

 

Table 2
Click here to download Table: Table2.doc

http://ees.elsevier.com/hydrol/download.aspx?id=605212&guid=fc38ae04-4567-4195-af34-1e8b7797ca48&scheme=1


 Q P M To Tr 

Quaternary 206 7 5 0 0 

Pliocene 0 0 1 0 1 

Messinian 26 22 130 1 2 

Tortonian 1 1 0 24 0 

Trias 0 0 4 0 37 

Commission error 5.5 100 28.2 7.7 9.8 

Omission error 11.6 100 7.1 4 7.5 

=0.764      

Overall accuracy=84.8%      
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 Q P M To Tr 

Quaternary 227 11 11 0 2 

Pliocene 0 0 0 0 0 

Messinian 5 18 127 2 2 

Tortonian 1 1 1 23 0 

Trias 0 0 1 0 36 

Commission error 2.57 0 10 8 10 

Omission error 9.56 100 17.64 11.54 2.7 

=0.809      

Overall accuracy=88%      
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 Q P M To Tr 

Quaternary 225 4 7 0 2 

Pliocene 2 9 16 1 0 

Messinian 6 16 129 0 1 

Tortonian 0 1 0 25 0 

Trias 0 0 1 0 36 

Commission error 5.46 40 15.13 3.85 2.7 

Omission error 3.43 70 7.86 0 10 

=0.853      

Overall accuracy = 90.6%      
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ion NO3
−
 Mg

2+
 Na

+
 Ca

2+
 Cl

-
 SO4

2−
 K

+
 

HCO3

−
 

SiO2 

Overall 

accuracy 

0.270 0.107 0.104 0.098 0.085 0.060 0.051 0.035 0.015 
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 Q P M To Tr 

Quaternary 210 3 6 0 0 

Pliocene 0 13 2 0 0 

Messinian 5 9 72 0 0 

Tortonian 0 0 0 25 0 

Trias 1 0 0 0 25 

Commission error 4.11 13.33 16.28 0 3.85 

Omission error 2.78 48 10 0 0 

κ =0.882      

Overall accuracy = 93%      
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 Q P M To Tr 

Quaternary 211 3 4 0 0 

Pliocene 0 15 2 0 0 

Messinian 4 7 74 0 0 

Tortonian 0 0 0 25 0 

Trias 0 0 0 0 25 

Commission error 3.21 11.76 12.94 0 3.85 

Omission error 2.31 40 7.5 0 0 

κ =0.905      

Overall accuracy = 94.3%      
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