
Manual of fusionImage, an R package for pan-sharpening images in

open-source software

Fulgencio Cánovas-Garćıa, Francisco Alonso-Sarŕıa and Paúl Pesántez-Cobos

July 2, 2020

1 Introduction

This document is the user’s manual for the R package fusionImage. It is included, along with some test
images, in the supplementary materials of the paper ”fusionImage: An R package for pan-sharpening images
in open-source software”.

It is intended for the pan-sharpening of multispectral and panchromatic images coded as Digital Numbers.
It has not been tested to merge multispectral images with radiance or reflectivity values. If atmospheric,
illumination or topographic correction are intended, it is recommended that the images are pan-sharpened first.

The package has been tested under GNU/Linux (Xubuntu 16.04 64-bit) and under Windows 7 with version
3.4.2 of R. All the images described in the aforementioned article were tested. If problems appear with other
images, please let us know and provide us with the necessary data to reproduce and fix the problem. Check out
the Github page http://github.com/pacoalonso/fusionImage and CRAN repository for new versions.

2 Algorithms

2.1 High Pass Filter (HPF) algorithm

The proposal of Gangkofner et al. (2008) [5] has been implemented. The conceptual model (figure 1) consists
on applying a high-pass filter to the panchromatic image (PAN) and combining this information with the
multispectral images (MS) using a map algebra operation. This can be summarized in three steps:

1. Applying a high-pass filter to the panchromatic image with the aim of preserving the high frequency
components and attenuate the low frequencies; it implies an enhancement of the contours of the objects
or linear features in the image. This operation is achieved using a High Pass Kernel (HPK) as filtering
matrix. The size of this HPK is a function of the ratio R (table 1), defined as:

R =
rms

rpan
(1)

where rms is the spatial resolution of the multispectral band and rpan is the spatial resolution of the
panchromatic band.

All kernel coefficients equal -1 with the exception of the central value, which can take three values. The
smallest of these is the default one, as shown in the table 1.

It should be noted that the filtered image will be reduced in size depending on the size of the HPK, as
the edges of the image are not processed.

2. Gangkofner et al. (2008) [5] proposes to add the filtered image (step 1) to each multispectral band
previously resampled to the spatial resolution of the panchromatic image (DsMS). The resampling
options included in the raster package are nearest neighbor and bilinear interpolation. A W weighting
factor is introduced

Wn =
sd.MSn

sd.HPF
×M (2)

1

http://github.com/pacoalonso/fusionImage

Figure 1: Conceptual model of the High Pass Filter algorithm.

Table 1: Size and central value of the High Pass Kernel as a function of the ratio R (ERDAS IMAGINE, 2011)

R value HPK size Central Value
Default value Optional values

1 < R < 2.5 5× 5 24 28 32
2.5 ≤ R < 3.5 7× 7 48 56 64
3.5 ≤ R < 5.5 9× 9 80 93 106
5.5 ≤ R < 7.5 11× 11 120 150 180
7.5 ≤ R < 9.5 13× 13 168 210 252
R ≥ 9.5 15× 15 336 392 448

2

Table 2: Range of M values depending on the ratio R (ERDAS IMAGINE, 2011)

HPK Maximum Default value Minimum
size
1 < R < 2, 5 0,30 0,25 0,20
2, 5 ≤ R < 3, 5 0,65 0,50 0,35
3, 5 ≤ R < 5, 5 0,65 0,50 0,35
5, 5 ≤ R < 7, 5 1,00 0,65 0,50
7, 5 ≤ R < 9, 5 1,40 1,00 0,65
R ≥ 9, 5 2,00 1,35 1,00

where Wn is the weighting factor of the n band, MSn is the standard deviation of each multispectral
band, sd.HPF is the standard deviation of the filtered image and M is a parameter that determines the
intensity in the application of the filter, which is a function of the ratio of the images (table 2).

The calculation of each pan-sharpened band is given by a linear combination:

FMSn = Ds.MSn + (HPF ×Wn) (3)

where FMSn is each pixel of the merged image, Ds.MSn is each pixel of the resampled multispectral
image, and the second term is a scalar product with HPF as the filtered panchromatic image and Wn as
the weighting factor described in the equation 2.

3. Linear expansion of the histogram adjusts the image resulting from step 2 so that the mean and standard
deviation match those of the original image. This allows a direct visual comparison between the pan-
sharpened image and the original. The following equations are used:

FMS2n = (FMSn ×Gan) +Bin (4)

where

Gan =
sd.MSn

sd.FMSn
(5)

and

Bi = MSn − (Gan × FMSn) (6)

where FMS2n is the merged image applied linear expansion; FMSn is the merged image in step 2.
Gan (Gain) and Bin (Bias) are adjustment parameters calculated from MSn and FMSn, which are the
average of the original multispectral bands (MSn) and FMSn, respectively. sd.MSn and sd.FMSn,
standard deviation of MSn and FMSn, respectively.

As mentioned above, the methodology adopted to program the function was proposed by Gangkofner et
al. (2008) [5] and implemented in ERDAS IMAGINE 2011. However, this methodology indicates that for the
calculation of the Wn weighting factor, equation 2, the standard deviation of the multispectral band being
merged will be used. Thus, it is not specified whether it corresponds to the standard deviation of the original
multispectral band or the downsampled band. After testing the function with both options, it has been seen
that the second option gives, in general, better results, and is the one that has been implemented in the function.

3

Figure 2: Conceptual model of Principal Components Analysis fusion algorithm.

4

2.2 Principal Components Analysis (PCA) algorithm

PCA involves a linear transformation of the multispectral bands, the substitution of a variable in the transformed
space, and the inverse transformation to the original space [13]. The process diagram is shown in figure 2.

PCA is a statistical technique that transforms a multivariate data set (in this case a set of multispectral
bands) into a new set of uncorrelated components called Principal Components [15]. The number of components
equals the number of multispectral original bands, and the first component (PC1) captures the greatest variance
of the dataset [11].

The high-resolution panchromatic image is adjusted to have the same variance and average as PC1. The
adjusted panchromatic image replaces the first component before performing a reverse transformation to the
original space. The reason for this substitution is that the panchromatic image is approximately equal to PC1,
as this component contains information that is common to all bands, while the unique spectral information of
each band is represented in the other components [3]. It is considered that this substitution maximize the effect
of the high-resolution panchromatic band on the resulting pan-sharpened bands [13].

In short, the calculation of the PCA merger comprises the following steps [4]:

1. Resampling of multispectral bands to the spatial resolution of the panchromatic band.

2. Application of PCA to resampled bands.

3. Adjustment of the panchromatic band according to the mean and standard deviation of PC1.

4. Replacement of PC1 with the adjusted panchromatic band and inverse transformation to obtain the
pan-sharpened multispectral bands into high resolution.

The function implemented in this package performs the Principal Component Analysis transformation, which
includes the calculation of the covariance matrix and the matrix of eigenvectors. In some cases, the results were
inconsistent, so the matrix of eigenvectors was calculated from other programs (ENVI and ERDAS), the values
of certain eigenvectors differed in the sign maintaining the same absolute values. An example of the problem
and how its solution has been addressed is given in the section on 3.3.

2.3 Gram-Schmidt (GS) algorithm

The GS transformation is a common technique in linear algebra and multivariate analysis whose purpose is
to eliminate redundant information generally present in nearby bands of the electromagnetic spectrum. The
procedure is described below [7] and the flow process diagram is shown in figure 3.

1. To calculate of a low resolution simulated panchromatic band. Two options are proposed: 1) a weighting
average according of the n multispectral bands:

PANsim =

N∑
n=1

wn ×MSn (7)

where wn is a weighting factor based on sensor calibration parameters and is different for each band. 2)
resampling the high-resolution panchromatic band.

Other studies [1, 9, 6, 16, 12], propose to construct this simulated band from the mean of all multispectral
bands used (equation 8). This last option offers better visual results [2] and is the one that has been
implemented.

PANsim =

N∑
n=1

MSn

N
(8)

The simulated panchromatic band, PANsim, is now used as a first band to be added to the low resolution
multispectral data set and is used as input for the Gram-Schmidt transformation.

GS1(i, j) = PANsim(i, j) (9)

5

Figure 3: Conceptual model of Gram-Schmidt fusion algorithm.

6

2. The Gram-Schmidt transformation is performed. Laben and Brower (2000) [7], introduce a modification:
to each pixel of the image that is going to be transformed, the average of its band is subtracted before
carrying out the rotation, which allows to optimize the computational calculations. In the Gram-Schmidt
transformation, each GSt band is calculated from the previous GSt−1, and can be expressed as:

GSt(i, j) = [Bt(i, j)− µt]−
t−1∑
l=1

φ(Bt, GSl) ∗GSl(i, j) (10)

where t is the band being transformed, B is the original band and µt is the average of band T . φ(Bt, GSl)
is calculated as:

φ(Bt, GSl) =
σ(Bt, GSl)

σGSl

(11)

that is, the covariance between the calculated GS band and the original B band, divided by the GS band
variance.

3. The high-resolution panchromatic band is adjusted so that its mean and standard deviation match those
of GS1. This setting helps to preserve the spectral characteristics of the original multispectral bands. The
procedure is performed following the equations 4 to 6.

4. The adjusted panchromatic band replaces the first Gram-Schmidt band (GS1). The remaining transformed
bands are resampled to the spatial resolution of the panchromatic band, and the inverse transformation
of the data is performed. The equation that describes the process is:

Bt(i, j) = [GSt(i, j) + µt] +

t−1∑
l=1

φ(Bt, GSl) ∗GSl(i, j) (12)

2.4 Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)

The ERGAS index is used to compare the spectral quality of the pan-sharpened images. It was proposed by
Wald (2000) [14] and tries to satisfy three main requirements:

1. To be independent of units, i.e. radiance values or quantities without units.

2. To be independent of the number of bands considered in the fusion.

3. To be independent of the resolution ratio between high and low spatial resolution images.

It uses the root mean square error:

RMSE =

√√√√ 1

P

P∑
p=1

(Ds.MSp − FMSp)2 (13)

to measure how different are two bands. To calculate this statistic the original multispectral bands are
downsampled to the spatial resolution of the panchromatic image. p is each of the pixels in the band, P is the
total number of pixels, FMSp is the value of the pixel in the pan-sharpened band and DsMSp is the value
of the pixel in the downsampled multispectral band. Once the RMSE for each band has been obtained, the
ERGAS index can be calculated:

ERGAS = 100
rpan
rms

√√√√ 1

N

N∑
n=1

RMSE2
n

Ds.MS
2

n

(14)

where rpan is the spatial resolution of the panchromatic image, rms is the spatial resolution of the multi-
spectral image, n refers to each of the multispectral bands involved in the pan-sharpening, N is the number of
bands and Ds.MSn is the arithmetic mean of the downsampled multispectral band n.

The value of ERGAS shows a strong tendency to decrease when the quality of the fused product increases.
Values lower than 3 indicate good fusion quality [14, 10] which improves as it approaches zero.

7

2.5 Spatial ERGAS

As the ERGAS index only considers the spectral characteristics of the image, Lillo-Saavedra et al. (2005)
[8] propose a new index called spatial ERGAS, introducing a spatial RMSE that can be calculated for each
pan-sharpened band, defined by the equation:

spRMSE =

√√√√ 1

P

P∑
p=1

(AdPANp − FMSp)2 (15)

where p are the pixels in the image, P is the number of pixels in the image, AdPANp is each of the pixels
of the image obtained by adjusting the histogram of the original panchromatic image to the histogram of the
downsampled multispectral band in question (Ds.MSn).

spERGAS = 100
rpan
rms

√√√√ 1

N

N∑
n=1

spRMSE2
n

Ds.MS
2

n

(16)

where rpan is the spatial resolution of the panchromatic image, rms is the spatial resolution of the multi-
spectral image, the subscript n refers to each of the multispectral bands involved in the fusion, N is the number
of bands and DsMSn is the arithmetic mean of Ds.MSn.

3 Using the package

3.1 Installing and loading the package

This package depends on sp and raster packages.

GNU/Linux setup. Assuming that the file fusionImage 0.0.1.tar.gz has been downloaded in
/home/user

install.packages("/home/user/fusionImage_0.0.1. tar.gz", repos = NULL , type

= "source")

Installing package into ’/home/user/R/x86_64-pc-linux -gnu -library/3.6’

(as ’lib’ is unspecified)

* installing *source* package ’fusionImage ’ ...

** using staged installation

** R

** data

*** moving datasets to lazyload DB

** inst

** byte -compile and prepare package for lazy loading

** help

*** installing help indices

** building package indices

** installing vignettes

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation

path

* DONE (fusionImage)

>

If it does not work, it is possible to run R as superuser and then enter the previous command.

8

GitHub setup on GNU/Linux. The devtools package is needed.

> library(devtools)

Loading required package: usethis

Once installed, the fusionImage package can be installed from GitHub.

> install_github("pacoalonso/fusionImage")

Installing package into "/home/user/R/x86_64-pc-linux -gnu -library/3.6"

(as "lib" is unspecified)

* installing *source* package "fusionImage" ...

** using staged installation

** R

** data

*** moving datasets to lazyload DB

** byte -compile and prepare package for lazy loading

** help

*** installing help indices

** building package indices

** installing vignettes

** testing if installed package can be loaded from temporary location

** testing if installed package can be loaded from final location

** testing if installed package keeps a record of temporary installation

path

* DONE (fusionImage)

>

Windows 7 setup. Assuming that the file fusionImage 0.0.1.tar.gz has been downloaded in
C:\Users\fulgen\Downloads. Replace ”fulgen” with the actual username.

> install.packages("C:/Users/fulgen/Downloads/fusionImage_0.0.1. zip",

type="source")

Installing package into C:/Users/fulgen/Documents/R/win -library/3.4

(as lib is unspecified)

Warning message:

package C:/Users/fulgen/Downloads/fusionImage_0.0.1. zip is not available

(for R version 3.4.1)

>

If as in the above case, the installation is not successful because of an outdated R version, it can be tried
with:

utils ::: menuInstallLocal ()

A file selection dialogue will appear. Go to Downloads and select the file fusionImage 0.0.1.zip. If all
went well, we’ll get the following message :

package fusionImage successfully unpacked and MD5 sums checked

>

Both in Windows and GNU/Linux the package is loaded using the function library:

> library(fusionImage)

Loading required package: raster

Loading required package: sp

>

9

3.2 The hpf fusion function

First, we import the image:

> l8.pan = raster("images/l8_pan_cuenca.tif") # The panchromatic image

> l8.mis = brick("images/l8_3ms_cuenca.tif") # The multispectral image

>

In the following function, mis indicates the object containing the lower resolution multispectral bands to
be pan-sharpened, pan indicates the panchromatic image, method the resampling method, which can be ngb

(nearest neighbour) or bilinear (bilinear interpolation) and bits indicates the number of bits with which the
image is encoded.

> l8.hpf.nn = hpf_fusion(mis=l8.mis , pan=l8.pan , method="ngb", bits =16)

>

Here we have an example of the function using bilinear interpolation as a resampling method:

> l8.hpf.bil = hpf_fusion(mis=l8.mis , pan=l8.pan , method="bilinear",

bits =16)

>

Now, we plot the two pan-sharpened images:

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(l8.hpf.nn , r=3, g=2, b=1, stretch="lin") # The one of the

nearest neighbor is printed

> plotRGB(l8.hpf.bil , r=3, g=2, b=1, stretch="lin") # The one of the

bilinear interpolation is printed

>

Next, we zoom into a detail of the image (wastewater treatment plant of the city of Cuenca -Ecuador-).

> subset = extent(c(728054.6 , 730733.3 , -318397.8 , -316375.2))

pan -sharpened image

> plotRGB(l8.hpf.bil , r=3, g=2, b=1, stretch="lin", ext=subset)

Original multiespectral image

> plotRGB(l8.mis , r=3, g=2, b=1, stretch="lin", ext=subset)

>

3.3 The pca fusion function

Implementation in R of the Principal Components Analysis image fusion algorithm.
First, we import the input image:

> n08.pan = raster("images/n08_pan_balsa.tif")

> n08.mis = brick("images/n08_mis_balsa.tif")

>

In the following function, the parameters are the same than in the hpf fusion function.

> n08.pca.nn = pca_fusion(mis=n08.mis , pan=n08.pan , method="ngb", bits =16)

>

The graphic monitor is split in two, the original multispectral image is placed on the left and the pan-
sharpened image on the right.

> par(mfrow=c(1,2))

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin")

> plotRGB(n08.pca.nn , r=1, g=2, b=3, stretch="lin")

>

An example of the function using bilinear interpolation as a resampling method:

10

> n08.pca.bil = pca_fusion(mis=n08.mis , pan=n08.pan , method="bilinear",

bits =16)

>

We display the two pan-sharpened images

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin")

> plotRGB(n08.pca.bil , r=1, g=2, b=3, stretch="lin") # The one of the

bilinear interpolation is printed

>

And the visualization zooming in on a detail of the image:

> subset = extent(c(588116.5 , 588160 , 4214560 , 4214586)) # the subset

definition

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(n08.pca.nn , r=1, g=2, b=3, stretch="lin", ext=subset) # nearest

neighbour

> plotRGB(n08.pca.bil , r=1, g=2, b=3, stretch="lin", ext=subset) #

bilinear interpolation

>

In some cases, it has been observed that this function produces anomalous results. Some dark pixels appear
with colours close to white. The following lines provide an example of this case, we also provide comments on
how to identify the error and use a parameter of the function to correct it.

New data is imported and displayed:

> n08.pan = raster("images/n08_pan_archivel.tif")

> n08.mis = brick("images/n08_ms_archivel.tif")

> par(mfrow=c(1,1)) # In case the monitor was split into one part

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin")

>

The image does not have any problem, except for the particularity that its contour is irregular. We are not
sure what influence this may have on the anomalous results, but we have observed that they usually appear
when working with irregular contour images.

The fusion is done:

> n08.pca = pca_fusion(mis=n08.mis , pan=n08.pan , method="bilinear", bits =16)

WARNING: First component negatively correlated with bands. Use mode=-1

>

One of the results of the fusion is a warning. It tells us that the first component has negative coefficients and
suggests that we use the parameter mode with the value -1. Negative signs in the first component are associated
with anomalous results.

Now, we display the results:

Display 1

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin") # Original image

> plotRGB(n08.pca , r=1, g=2, b=3, stretch="lin") # Pan -sharpened image

Display 2 (in detaill)

> subset = extent(c(587417.2 , 587544 , 4214319 , 4214405))

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin", ext=subset)

> plotRGB(n08.pca , r=1, g=2, b=3, stretch="lin", ext=subset)

>

11

The result are clearly anomalous. Now let’s solve the problem with the parameter mode. This is a parameter
with two possible values: 1 (default option) and -1. If -1 is passed, the coefficients of the first component are
multiplied by -1. In most cases, this option solves the problem. Let’s look at an example:

> n08.pca2 = pca_fusion(mis=n08.mis , pan=n08.pan , method="bilinear",

bits=16, mode=-1)

>

There is no warning.
We display the result:

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin") # Original image

> plotRGB(n08.pca2 , r=1, g=2, b=3, stretch="lin") # Pan -sharpened image

>

It can be seen that the results are good as expected.
Finally, the function allows us to enter a matrix with the component coefficients by ourselves. One possible

application would be when mode=-1 does not work. In this case you can try to invert all the coefficients. In our
case, just with the intention of doing a test, we will change the sign to all negative coefficients.

The matrix is created:

> mtx.pca = matrix(data=c(0.5614608 , 0.5894995 , 0.4356138 , 0.3840478 ,

0.03621311 , 0.233387 , 0.4129613 , 0.879592 , 0.7914442 , 0.2037065 ,

0.5131109 , 0.2623679 , 0.2388858 , 0.7460057 , 0.6135314 , 0.09994122) ,

nrow=4, byrow=TRUE)

> mtx.pca # The matrix is printed on screen

[,1] [,2] [,3] [,4]

[1,] 0.56146080 0.5894995 0.4356138 0.38404780

[2,] 0.03621311 0.2333870 0.4129613 0.87959200

[3,] 0.79144420 0.2037065 0.5131109 0.26236790

[4,] 0.23888580 0.7460057 0.6135314 0.09994122

>

The fusion using the matrix parameter:

> n08.pca3 = pca_fusion(mis=n08.mis , pan=n08.pan , method="bilinear",

bits=16, matrix=mtx.pca)

>

We print the results:

Display 1

> par(mfrow=c(1,3)) # We split the layout in three

> plotRGB(n08.mis , r=1, g=2, b=3, stretch="lin") # mode=1

> plotRGB(n08.pca2 , r=1, g=2, b=3, stretch="lin") # mode=-1

> plotRGB(n08.pca3 , r=1, g=2, b=3, stretch="lin") # matrix

Display 2 (in detail)

> par(mfrow=c(1,3))

> plotRGB(n08.pca , r=1, g=2, b=3, stretch="lin", ext=subset)

> plotRGB(n08.pca2 , r=1, g=2, b=3, stretch="lin", ext=subset)

> plotRGB(n08.pca3 , r=1, g=2, b=3, stretch="lin", ext=subset)

>

The result using a different matrix than the one provided by mode=1 or mode=-1 is not good, as expected.
In this case it was only intended to show how to use the function, not to get a good result.

3.4 The gs fusion function

Implementation in R of the Gram-Schmidt image fusion algorithm.
First, we import the input image:

12

> l8.pan = raster("images/l8_pan_cuenca.tif")

> l8.mis = brick("images/l8_3ms_cuenca.tif")

>

In the following function, the parameters are the same than in hpf fusion.

> l8.gs.nn = gs_fusion(mis=l8.mis , pan=l8.pan , method="ngb", bits =16)

>

The function returns an object of class brick with the pan-sharpened multispectral bands.
The display is split in two, the original multispectral image is placed on the left and the pan-sharpened

image on the right.

> par(mfrow=c(1,2))

> plotRGB(l8.mis , r=3, g=2, b=1, stretch="lin")

> plotRGB(l8.gs.nn , r=3, g=2, b=1, stretch="lin")

>

Now, an example using bilinear interpolation as a resampling method:

> l8.gs.bil = gs_fusion(mis=l8.mis , pan=l8.pan , method="bilinear",

bits =16)

>

We display the two pan-sharpened images:

> par(mfrow=c(1,2)) # We split the layout in two

> plotRGB(l8.gs.nn , r=3, g=2, b=1, stretch="lin") #The one of the nearest

neighbour is printed

> plotRGB(l8.gs.bil , r=3, g=2, b=1, stretch="lin") # The one of the

bilinear interpolation is printed

>

And zoom into a detailed area:

> subset = extent(c(728054.6 , 730733.3 , -318397.8 , -316375.2)) # The object

indicating the extension is created

> plotRGB(l8.gs.bil , r=3, g=2, b=1, stretch="lin", ext=subset) # Bilinear

interpolation

> plotRGB(l8.mis , r=3, g=2, b=1, stretch="lin", ext=subset) # Original

image

>

3.5 The ergas spec function

Implementation under R of the Erreur Relative Globale Adimensionnelle de Synthèse algorithm.
First, we import the input image:

> l8.pan = raster("images/l8_pan_cuenca.tif") # Panchromatic

> l8.mis = brick("images/l8_3ms_cuenca.tif") # Multiespectral

>

GS fusion is applied (see section ??):

> l8.gs = gs_fusion(mis=l8.mis , pan=l8.pan , method="bilinear", bits =16) #

GS fusion

>

Now, we compute ERGAS for the GS pan-sharpened image. The spatial resolution of the panchromatic
image is specified in rp, the spatial resolution of the original multispectral image can be specified in rms,
although if this value is not supplied it is computed from the multispectral image. The original multispectral
image with the lowest spatial resolution is indicated in original, the pan-sharpened image is indicated in

13

modified. The function resamples the images to the corresponding resolution. The sampling method can be
nearest neighbour, ngb, or bilinear interpolation, bilinear. The function returns the ERGAS index, i.e. a
vector of length one. The closer the value is to zero, the better the result of the fusion will be.

> ergas_spec(rp=15, original=l8.mis , modified=l8.gs , method="bilinear")

[1] 2.184561

>

We get the same result if we indicate the spatial resolution of the

multispectral image with rms=30

> ergas_spec(rp=15, rms=30, original=l8.mis , modified=l8.gs ,

method="bilinear")

[1] 2.184561

>

3.6 The ergas spat function

Implementation under R of the Spatial Erreur Relative Globale Adimensionnelle de Synthèse algorithm.
First, we import the input image:

> l8.pan = raster("images/l8_pan_cuenca.tif") # Panchromatic

> l8.mis = brick("images/l8_3ms_cuenca.tif") # Multiespectral

>

GS fusion is applied (see section ??):

> l8.gs = gs_fusion(mis=l8.mis , pan=l8.pan , method="bilinear", bits =16) #

GS fusion

>

The original multispectral image with the lowest spatial resolution is indicated in original, the pan-
sharpened image with the highest spatial resolution is indicated in modified and the original panchromatic
image is specified in pan. The spatial resolution of the panchromatic image can be specified in rp and the
spatial resolution of the original multispectral image can be specified in rms , although if these values are not
supplied they are read from the corresponding images. The sampling method can be nearest neighbour, ngb, or
bilinear interpolation, bilinear. The function returns the Spatial ERGAS index, i.e. a vector of length one.
The closer the value is to zero, the better the result of the fusion.

> ergas_spat(original=l8.mis , modified=l8.gs , pan=l8.pan , method="bilinear")

[1] 0.79499

>

In this case the function provides a value of 0.79499.
We get the same result if we indicate the spatial resolution of the panchromatic, with rp=15, and the

multispectral, with rms=30:

> ergas_spat(rp=15, rms=30, original=l8.mis , modified=l8.gs , pan=l8.pan ,

method="bilinear")

[1] 0.79499

>

Acknowledgements

This manual is partially the result of a postdoctoral contract (20023/SF/16) under the Saavedra Fajardo
Program funded by the CARM (Region of Murcia Authority), through the Séneca Foundation-Agency for
Science and Technology. We would like to thank the CARM Environmental Integration and Management
Service (SIGA) and the United States Geological Survey for providing us with the Natmur-08 and Landsat
imagery, respectively.

14

References

[1] B. Aiazzi, S. Baronti, M. Selva, and L. Alparone. Enhanced Gram-Schmidt Spectral Sharpening Based on
Multivariate Regression of MS and Pan Data. pages 3806–3809, 2006.

[2] F. Cánovas-Garćıa and F. Alonso-Sarŕıa. Comparación de técnicas de fusión en imágenes de alta resolución
espacial. GeoFocus, 14:144–162, 2014.

[3] P.S. Chavez, Stuart C, and J.A. Anderson. Comparision of Three Different Methods to Merge Multireso-
lution and Multispectral Data: Landsat TM and SPOT Panchromatic. Photogrammetric Engineering and
Remote Sensing, 57:295–303, 1991.

[4] A. Darvishi Boloorani. Remotely Sensed Data Fusion as a Basis for Environmental Studies: Concepts,
Techniques and Applications. PhD thesis, Universität zu Göttingen, 2008.

[5] Ute G. Gangkofner, Pushkar S. Pradhan, and Derrold W. Holcomb. Optimizing the High-Pass Filter
Addition Technique for Image Fusion. Photogrammetric Engineering & Remote Sensing, 74(9):1107–1118,
2008.

[6] S. Klonus and M. Ehlers. Performance of evaluation methods in image fusion. In 12th International
Conference on Information Fusion, pages 1409–1416, Seattle, USA, July 2009.

[7] C.A. Laben and B.V. Brower. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using
Pan-Sharpening. Technical report, United States Patent 6.011.875, 2000.

[8] M. Lillo-Saavedra, C. Gonzalo, A. Arquero, and E. Martinez. Fusion of multispectral and panchromatic
satellite sensor imagery based on tailored filtering in the Fourier domain. International Journal of Remote
Sensing, 26(6):1263–1268, 2005.

[9] S. Nussbaum and G. Menz. Object-Based Image Analysis and Treaty Verification. Springer, 2008.

[10] A. Ozdarici Ok and Z. Akyurek. Evaluation of Image Fusion Methods on Agricultural Lands. Journal of
Earth Science and Engineering, 1:107–113, 2011.

[11] C. Pohl and J.L. Van Gendreen. Multisensor image fusion in remote sensing: concepts, methods and
applications. International Journal of Remote Sensing, 19(5):823–854, 1998.

[12] Gulcan Sarp. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul.
European Journal of Remote Sensing, 47:19–28, 2014.

[13] V.K. Shettigara. A Generalized Component Substitution Technique for Spatial Enhancement of Multi-
spectral lmages Using a Higher Resolution Data Set. Photogrammetric Engineering & Remote Sensing,
58(5):561–567, 1992.

[14] L. Wald. Quality of high resolution synthesised images: Is there a simple criterion ? In Fusion of
Earth data: merging point measurements, raster maps and remotely sensed images, pages 99–103, Sophia
Antipolis, France, January 2000. SEE/URISCA.

[15] H. Yésou, Y. Besnus, and J. Rolet. Extraction of spectral information from Landsat TM data and merger
with SPOT panchromatic imagery - a contribution to the study of geological structures. ISPRS Journal
of Photogrammetry and Remote Sensing, 48(5):23–36, 1993.

[16] Y. Zhang and R. K. Mishra. A review and comparison of commercially available pan-sharpening techniques
for high resolution satellite image fusion. In Geoscience and Remote Sensing Symposium (IGARSS), pages
182–185, 2012.

15

	Introduction
	Algorithms
	High Pass Filter (HPF) algorithm
	Principal Components Analysis (PCA) algorithm
	Gram-Schmidt (GS) algorithm
	Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)
	Spatial ERGAS

	Using the package
	Installing and loading the package
	The hpf_fusion function
	The pca_fusion function
	The gs_fusion function
	The ergas_spec function
	The ergas_spat function

