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Abstract— Predictive control strategies with implicit
feedforward action are known for enhancing solar collector
field system performance. Nevertheless, the nature of the
systems’ disturbances, such as solar irradiance, is char-
acterized mainly as being stochastic, which compromises
the disturbance rejection performance due to the model
prediction uncertainties. Therefore, this work proposes a
stochastic model predictive control based on a Chance-
Constraints (CC) formulation for controlling a real solar
thermal plant. The controller is presented as a CC Practi-
cal Nonlinear Model Predictive Control (CC-PNMPC), and
it is implemented in the AQUASOL-II facility, located at
Plataforma Solar de Almerı́a (Spain). This work first in-
vestigates the solar collector field plant model based on
a parameter identification framework, and the irradiance
model predictions, using three different models for fore-
casting. After studying the benefits of the CC-PNMPC in
distinct simulated scenarios, which presented about 7%
less error out of the output limits than the deterministic
strategy, the stochastic controller is implemented in the
actual AQUASOL-II facility to validate and demonstrate the
advantages of the proposed control approach. The results
show that the stochastic strategy can straightforwardly ac-
count for disturbance uncertainties in the control optimiza-
tion layer without additional computational cost or mathe-
matical efforts. Furthermore, for the irradiance prediction
uncertainties case, simulations demonstrate that the CC-
PNMPC systematically reduces the temperature threshold
extrapolation compared to the deterministic strategy.

Index Terms— Stochastic control, MPC, Chance Con-
straints, Solar energy, Irradiance forecast

I. INTRODUCTION

THE current necessity to develop sustainable and clean
solutions to replace non-renewable and polluting energy
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sources is an urgent concern in the scientific community
worldwide. In this context, solar thermal energy raises as a
crucial key to increase the share of renewable energy sources
and diversifying the global power supply. The primary purpose
of the solar thermal facilities is to collect the maximum amount
of solar energy and direct it to secondary systems, for instance,
distillation and fermentation processes [1]–[3], indoor thermal
comfort systems [4], and electric production [5]. As a result,
thermal solar systems play an essential role as a primary
energy source and contribute to reducing fossil fuel demands
and minimizing greenhouse gas emissions.

Although different types of equipment are employed to
improve the overall system performance, the solar thermal
facilities operation is commonly performed controlling the
solar collector field outlet temperature by manipulating the
heat transfer fluid (HTF) flow [6]. Nonetheless, this elementary
concept is not trivial to be implemented in real scenarios.
The unpredictable and intermittent nature of solar irradiance
combined with the solar collector field nonlinear dynamics
challenge the performance of classical control systems [6]–[8].
Appropriate control strategies, mainly related to nonlinear and
robust frameworks, associated with highly representative math-
ematical models, stand out as an important tool to improve
solar plants operation, helping to reduce costs and increase
the solar plant operational hours [9]–[12].

Regarding optimal control solutions, Model Predictive Con-
trol (MPC) strategies have demonstrated their potential for
high-performance control of solar plants over the past 20 years
[6], [13]. The MPC formulation employs the process model
in order to predict the solar collector field outlet temperature
and then computes optimal control actions that lead it to the
desired reference trajectory. The controller’s internal model
must achieve the best compromise between process repre-
sentativeness and computational effort to accurately calculate
control actions relative to actual plant operation within the
controller’s sampling time [14]. Nevertheless, one of the
MPC control concerns for controlling solar thermal systems
is related to disturbances and their predictions. In fact, the
MPC strategy can account for implicit feedforward action by
using disturbance models to estimate the output prediction.
However, the stochastic nature of the meteorological distur-
bances, such as solar irradiance, ambient temperature, and
wind speed, drives the predictive control strategies to consider
more conservative and approximated solutions. Commonly,
the current disturbance measurement is used, and time-series
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models are implemented to predict the disturbance’s future
behavior in a deterministic manner, neglecting the handling of
uncertainties in the disturbance predictions [10], [15], [16].

Robust MPC (RMPC) frameworks can systematically assess
the solar collector field model and its disturbance uncertainties,
providing optimal control movements in a reasonable com-
putational time [8]. Regardless, the system uncertainties are
generally treated by the robust strategies as deterministic and
bounded, which makes this assumption extremely conservative
in many cases. For instance, min-max MPC strategies rely on
always solving the worst-case event, even when the probability
of this scenario is minimal, leading to an evidently over-
conservative solution [17]–[19]. Moreover, it is expected that
the uncertainties of real-world systems are often evaluated by
probabilistic terms.

Hence, in case their stochastic nature can be characterized,
it becomes natural to consider it explicitly in the control
optimization problem, culminating in Stochastic MPC (SMPC)
approaches [20]. These strategies are mainly developed as
Chance Constraints (CC) framework, in which the stochastic
nature of uncertainties and its statistical characterization are
used to reformulate the deterministic constraints into prob-
abilistic ones, resulting in a closed-loop constraint violation
probability [21], [22]. This feature is very attractive for
consideration in the control of solar thermal plants since the
higher performance of these plants is in the vicinity of the
system security level or the restricted operating condition of
the demand system. Another solution to deal with disturbance
uncertainties is to employ Extended State Observers (ESO).
The ESO and its different designs have been widely studied
in the recent literature [23]–[25]. Nevertheless, using ESO
yields different solutions compared to the CC-MPC. Firstly,
ESO demands the convergence of the disturbance estimate
online, which must be handled appropriately to avoid violating
process boundaries. In addition, the ESO does not explicitly
consider the violation of the output limits nor the adjustment of
the constraint reduction parameter based on prior knowledge
of disturbance uncertainties. These features, as well as the
disturbance prediction error estimation, can be performed
directly offline, employing the CC-MPC stochastic strategy.

Controlling the solar collector field systems based on
stochastic control formulations still lacks content in the lit-
erature, as more recent works focus on improving the over-
all management of the renewable system, mainly dealing
with smartgrids and integrated renewable/conventional energy
sources [26]–[35]. Recently, in [36], a bi-level stochastic
model with CC formulation aiming to evaluate the impact of
variability in the solar and wind energy source was proposed.
Using the CC formulation to consider the uncertainties on
the production capacity and associating the solar and wind
historical data profiles, the authors have demonstrated that
risks above 30% do not correlate with further benefits, such
as reduced electricity prices. In turn, in [37], the authors have
proposed a CC-MPC controller considering the uncertainties
of solar irradiance and ambient temperature for Building
Energy Management Systems (BEMS) in Smart Sustainable
Building (SSB). As a result, based on simulated results, the
CC-MPC reduces the thermal comfort temperature violation

at the expense of increased energy cost, culminating in a
compromise solution between occupant comfort and cost re-
duction. Furthermore, emphasis should be placed on the results
achieved in [38], in which the authors proposed a stochastic
CC-MPC considering estimates of solar irradiance and wind
and solar energy production for a sugar cane power plant.
Hence, in [38] the authors could maximize the energy produc-
tion of the hybrid system by employing the CC approach for
electric power thresholds to keep the system operating within
the strict rules defined by contract in order to avoid economic
losses.

Therefore, being aware of the potential of stochastic predic-
tive control strategies in dealing with systems uncertainties,
the scope of this work is to present a stochastic nonlinear
CC-MPC for controlling a solar collector field. The goal is
to investigate the solar collector field’s temperature control
improvements by implementing the proposed control approach
considering uncertainties in disturbance prediction models.
The predictive control strategy chosen is the Practical Nonlin-
ear MPC (PNMPC), an attractive solution for solar collector
fields since it employs nonlinear models and includes an
output error filter for robustness purposes, besides having a
straightforward implementation framework. In addition, the
PNMPC can be extended to assess the implicit feedforward
(FF) formulation, which makes it possible to include future
disturbance predictions required for the presented stochastic
control. The control framework is first studied under sev-
eral simulation scenarios, considering realistic experiments
for different irradiance prediction models. Herein, a clear-
day model and two distinct time-series models, Autoregres-
sive with Moving Average (ARMA) and Double Exponential
Smoothing (DES), are employed to forecast solar irradiance.
Thus, after examining the proposed stochastic controller’s
effects and comparing it with its deterministic version regard-
ing feasibility, computational cost, and control performance,
the CC-PNMPC is implemented in an existing system at
the AQUASOL-II plant at the Plataforma Solar de Almerı́a
(Spain). The provided real experiments aim to corroborate the
beneficial capabilities of the CC PNMPC algorithm.

Based on the literature examination, this work exploits
the absence of stochastic chance-constrained control applied
in solar collector fields, which offers a promising solution
to improve this system operation. Herein, the advantages of
implementing SMPC in thermal solar plants are investigated
based on applying representative models for forecasting the
solar irradiance and incorporating a stochastic formulation in
the predictive controller to reduce the temperature threshold
extrapolation. To the best of the author’s knowledge, the
CC-MPC has not yet been implemented in a real case,
although comprehensive simulated studies have been devel-
oped throughout the years [21]. Moreover, as treated in [39],
challenging concerns are related to CC-SMPC approaches
implementation, such as i) obtaining an appropriately accurate
model for the probabilistic system uncertainties, ii) determin-
ing the amount by which the constraints should be tightened,
and iii) studying Stochastic Nonlinear MPC (SNMPC). Ac-
cordingly, aiming to overcome these issues, this work presents
the following investigations:
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• The first stage is to obtain a validated nonlinear model
of the AQUASOL-II solar collector field by using a
parameter identification procedure to identify the non-
linear model coefficients accurately and, hence, perform
trustworthy simulated experiments.

• Further, the goal is to investigate the best irradiance pre-
diction model, analyze its statistical error and define the
better adjustment for tightening the process constraints
based on the probability density function of the prediction
errors for the three proposed models. The prediction
errors are studied considering several performance indices
to measure the precision of the irradiance model.

• In sequence, the SMPC is developed as a PNMPC
algorithm with its online model linearization, in which
the formulation of CC is included. In this way, the
stochastic nature of the disturbance variable is charac-
terized linearly, which can accomplish a closed-form for
the propagation of the disturbance uncertainties in the
prediction of the system outputs.

• Finally, the proposed CC-PNMPC is implemented at
AQUASOL-II facility to demonstrate that the complexity
of the SMPC strategy does not necessarily reflect the
increasing cost of online computing. Besides, these out-
comes demonstrate that SMPC can systematically deal
with constraints violations, which contributes to improve
the efficiency of solar thermal plants.

This paper is divided as follows: Section II details the
AQUASOL-II model and its parameter identification proce-
dure, as well as the formulation of the deterministic PNMPC
and the study of three different irradiance prediction mod-
els. In Section III, the stochastic CC-PNMPC formulation
is presented, and the irradiance model prediction errors are
investigated for the calculation of the CC. Section IV explores
the simulation results of the proposed stochastic controller. In
Section V the experimental tests in the actual AQUASOL-
II system are presented. Finally, the findings and principal
conclusions are presented in Section VI.

II. PRIOR STUDY OF AQUASOL-II AND IRRADIANCE
MODELS

Initially, this section details the model of the solar collector
field of the AQUASOL-II plant and the model validation
results. The goal is to obtain a validated model to accomplish
reliable simulations and evaluate the control performance
before implementation. Furthermore, the PNMPC formulation
is presented since the output predictions of the optimization
problem are used as a deterministic scheme. Finally, three
distinct irradiance models are evaluated for implementation
in the PNMPC with FF action for irradiance forecast. The
irradiance model selection is crucial for developing the CC-
PNMPC control scheme since the key to the success of
the SMPC approaches is the maintenance of the accurate
disturbance estimate [39].

A. AQUASOL-II solar collector field model validation
The AQUASOL-II facility is located at Plataforma Solar

de Almerı́a (PSA), a dependency of the Spanish Centro de

Investigaciones Energéticas, Medioambientales y Tecnológicos
(CIEMAT) and is proposed as the case study system in this
work (Fig. 1). The AQUASOL-II solar field is composed of
60 flat-plate collectors with a total thermal power output of
323 kWth under nominal conditions. This facility is devoted
to study its behavior with thermal desalination systems at
low-temperature levels (60-90 ºC). The object of this work
comprises one loop of the solar collector field in the primary
circuit, composed of 4 flat-plate collectors in parallel, inte-
grated with a heat exchanger, a centrifugal pump and an air
cooler to simulate energy demand variations. Fig. 2 represents
the AQUASOL-II system configuration. The plant model

Fig. 1. AQUASOL-II flat-plate solar collector field (courtesy of the PSA).

Fig. 2. First loop of the AQUASOL-II solar field.

is a simplified lumped-parameter dynamical model with the
goal to represent the system dynamic truthfully and provide
a reasonable computational effort for solving the PNMPC
optimization problem. Equation (1) depicts the AQUASOL-
II solar collector model.
dTsc,o(t)

dt
=

β

ρ · Cp ·Asc
· I(t)−

H

ρ · Cp ·Asc · L
· (Tsc,m(t)− Ta(t))

−
q(t− dq)

Asc · cf
·
Tsc,o(t)− Tsc,in(t− dTin

)

L
(1)

wherein Tsc,o(t) and Tsc,in(t) are the outlet and inlet temper-
ature of the solar collector field, respectively, I(t) and Ta(t)
are the solar irradiance and ambient temperature respectively,
Tsc,m(t) is the mean between the inlet and outlet temperature,
that is Tsc,m(t) = (Tsc,o(t) + Tsc,in(t − dTin

))/2. The delay
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time dTin
is associated with the inlet temperature and dq

is associated with the water flow rate. Herein the water
flow q(t) [L/min] is the manipulated variable, the controlled
variable is the system output temperature Tsc,o(t) [oC] and the
system disturbances are the inlet temperature Tsc,in(t) [oC],
the ambient temperature Ta(t) [oC] and the solar irradiance
I(t) [W/m2].

As can be noted from (1), the coefficients β [m] and H
[J/(s·oC)] are related to the panel absorption efficiency and
the heat losses, respectively. The parameter β summarizes
the efficiency and geometrical losses of the solar irradiance
power, which is a function of the glass cover transmissivity,
the absorber surface absorptance, and absorption plate reflec-
tivity. On the other hand, the coefficient H concentrates the
thermal losses that occur mainly in the absorber tube and
the HTF pipe. Although these coefficients can be explicitly
calculated analytically [6], a practical model with concentrated
parameters simplifies this formulation by assuming general
representations, in which β and H parameters absorb structural
modeling uncertainty [4], [40], [41].

Therefore, a parameter calibration procedure is proposed to
determine the coefficients β and H and the delay time dTin

and
dq of the dynamic model. Actual data from the AQUASOL-
II plant from February 3rd, 2022, are used for calibration
and from February 4th, 2022 for validation, wherein, in both
cases, the input flow, solar irradiance and inlet temperature
(and therefore, the outlet temperature) covered a wide range
of operating conditions so that the obtained parameters can be
considered valid. Thus, the model is calibrated to determine
the optimal values of β, H , dTin and dq that minimize
the Mean Square Error (MSE) between the model output
temperature Tsc,o(t) and the plant data.

Fig. 3 depicts only the validation results, wherein a MSE
index of 0.85 oC and an R2 coefficient of determination of
0.9883 are achieved. The parameter values and their descrip-
tion are depicted in Table I.

Fig. 3. Model validation results for the parameter identification proce-
dure.

It is noteworthy that the scope of the present work is
to investigate the effects of the stochastic control strategy
applied to control the proposed solar collector field, modeled
in Eq. (1). As treated in comprehensive works of literature
( [6], [11], [13]), the delay time are fundamental features
that must be considered in the controller approach, mainly
considering the time-varying delay in the inlet temperature
related to the HTF flow and the apparent delay associated

TABLE I
MODEL PARAMETERS DESCRIPTION FOR THE SOLAR COLLECTOR

FIELD. THE TERMS DENOTED WITH ∗ WERE FOUND BY THE

OPTIMIZATION PROCEDURE.

Parameter Description Unit
Asc Solar collector pipe cross-section area 7.85·10−5 [m2]

Conversion factor, (number of 12 ·106
cf parallel modules and unit [s·L/(min·m3)]

conversion)
Cp Specific heat capacity of water 4190 [J/(kg·oC)]
H∗ Global heat losses coefficient 0.9118 [J/(s·oC)]
L Equivalent absorber tube length 1.94 [m]
β∗ Irradiance model parameter 0.0697 [m]
ρ Water density 975 [kg/m3]
dTin

∗ Tsc,in(t) delay 57.2 [s]
d∗q q(t) delay 52.4 [s]

with the irradiance. Nonetheless, aiming to focus on the
CC-PNMPC performance concerning threshold violations, a
simplified model formulation is proposed, in which the dTin

is represented as an average value in the flow range, and no
apparent delay is considered for either the inlet temperature
or the irradiance [11]. Even though, as can be noted from
Fig. 3 and the MSE and R2 indices, the identified parameters
can portray the plant dynamics accurately, which can provide
reliable information for developing the CC-PNMPC algorithm.

B. Deterministic PNMPC formulation

The main idea of the PNMPC strategy is to predict the
nonlinear system outputs for a prediction horizon Np, as an
approximated linear function of the future control increments
∆u and the estimate disturbances increments ∆d. In this
approach, although it considers the forced response as a linear
function in relation to the inputs and disturbance increments,
the system nonlinearities are accounted into the free-response
matrix F , which can fairly represent the real nonlinear system
for small changes [42].

Considering that ∆u(k) = u(k) − u(k − 1), ∆d(k) =
d(k) − d(k − 1), Nc is the control horizon, the vectors
∆u = [∆u(k) ∆u(k + 1) · · · ∆u(k + Nc)] are the future
optimal input increments, and ∆d = [∆d(k) ∆d(k +
1) · · · ∆d(k + Np)] are the future estimated disturbances,
the predicted outputs computed by the PNMPC approach can
be described as follows:

Ŷ = F +G ·∆u+Gd ·∆d (2)

wherein F is calculated using the set of present and past
values of outputs y, inputs u and disturbances d, that is
F = f(

←−
Y ,←−u ,∆u(k),

←−
d ,∆d(k)), wherein the notation ←−x

refers to the past values of variable x. Matrices Ŷ ([Np ·
ny × 1]), F ([Np · ny × 1]), G ([Np · ny × Nc · nu]) and
Gd ([Np · ny ×Np · nd]) are formulated considering that ny

is the number of outputs, nu the number of inputs, and nd

the number of disturbances, The linearization is formulated
online, at each control sample time, by applying a gradient
of the prediction outputs relative to the vector of the input
increments G = ∂Ŷ

∂∆u and the prediction outputs relative to
the disturbances increments Gd = ∂Ŷ

∂∆d . That is, to generate
the matrices G and Gd, by using the nonlinear model, small
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increments regarding the last collected data are made in the
respective input/disturbance past value at each time, while the
other inputs variables are kept constant along the prediction
horizon. The resulting output values are collected and form
the construction of columns in G and Gd. A comprehensive
explanation of the PNMPC approach is detailed in the work
of Plucenio et al. [42].

In the case there are unmeasured disturbances or model
uncertainties, the original formulation includes a low-pass
filter in the predicted outputs, intending to increase the
robustness of the PNMPC closed-loop response, similar to
the Dynamic Matrix Controller (DMC) and the Generalized
Predictive Controller (GPC) algorithms [43]:

Ŷ = F +G ·∆u+Gd ·∆d+ Γ (3)

in which Γ = C
D ·(y(k)− ŷ(k)), being C and D the numerator

and denominator of the discrete-time low pass-filter. As the
output prediction is given by (2), the control optimization
problem can be formulated as follows:

min
∆u(t)

J,

J =

j=Np∑
j=1

|ŷ(k + j)− ysp(k + j)|2R +

j=Nc−1∑
j=0

|∆u(k + j)|2Q
(4)

subject to:

Equation (3) (5a)

Y min ≤ Ŷ ≤ Y max (5b)
∆umin ≤ ∆u ≤ ∆umax (5c)
umin ≤ uk ≤ umax (5d)

in which uk = [u(k) u(k + 1) · · · u(k + Nc)], Y min and
Y max are the lower and upper limit vectors of the output
variables, respectively, ∆umin and ∆umax are the lower and
upper limit vectors of the inputs increments, respectively. In
addition, ysp is the outlet temperature setpoint (reference), R
and Q are the positive definite matrices for weighting the
output prediction error and the input movements, and umin

and umax are the input vector bounds.
As a result, the control optimization problem provides the

future optimal input values for the predicted output. Since the
control approach employs the future estimated disturbance, it
goes without saying that prediction uncertainties compromise
the PNMPC closed-loop performance. Additionally, carefully
modeling the stochastic disturbance strength the formulation
of the SMPC approaches. Therefore, model estimations for the
irradiance disturbance variable are investigated as follows.

C. Irradiance forecast
Solar irradiance is a singular variable of the solar plants,

as it is the primary energy source and, in contrast, cannot
be directly manipulated. Hence, this variable is assumed as
disturbance input for the control design. Due to its stochastic
behavior, this disturbance variable is usually represented by
time-series models, such as Autoregressive (AR), AR Moving
Average (ARMA), AR Integrated MA (ARIMA), and AR
Integrated MA with eXogenous variables (ARIMAX), as a
manner to estimate its future values. These methods use past
data, which is considered autocorrelated and associated with

trend variations, aiming to predict future behavior along the
prediction horizon [6]. On the other hand, the knowledge of
clear-day sky solar irradiance is also fundamental in solar
irradiance study, which is extensively used in estimation and
forecasting models [44], [45].
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Fig. 4. Comparing clear-day, ARMA and DES models prediction with
real irradiance data on January 25th (Day 1).

It is worth mentioning that, although the proposed so-
lar collector model presents three disturbance variables
(I(t), Ta(t), Tsc,in(t)), the temperature increments present a
very slow dynamic in comparison with the system behavior,
which does not significantly affect the output prediction within
the controller sample time and the prediction horizon. Thus, in
the present work, only the irradiance prediction is investigated.

Therefore, based on the historical meteorological data of
the location of the proposed studied AQUASOL-II system,
which is mainly characterized by having frequent days of clear
sky, this work proposes the use of three irradiance prediction
models: (i) an empirical seasonal clear-day sky, (ii) a time-
series ARMA structure model and (iii) a DES model. The
purpose is to compare these three distinct models to evaluate
the accuracy of disturbance predictions before implementing
the control strategy.

In the case of the clear-day sky model, filtered solar irra-
diance data acquired from a day without passing clouds of
the AQUASOL-II plant is chosen. The heuristic method used
to determine the clear-day model is proposed as a straight-
forward formulation to obtain a simpler solution than the
theoretical calculations, avoiding several complex variables,
for instance, the atmospheric interference that attenuates the
solar irradiance that reaches the solar panels. Thus, dataset
from the AQUASOL-II facility is used as a reliable source
to define the clear-day sky model that actually influences the
solar collector field. For the ARMA approach, an AR(p = 10)
and MA(q = 1) models are used, in which p and q are the
AR and MA orders, respectively. All models use ten days of
irradiance data for calibration, from January 15th to January
24th, 2022. The ARMA and the DES coefficients are found
though an optimization method and the models details can be
reviewed in [15], [46].

Fig. 4 shows the validation results of the proposed models
for one day of collected data from the AQUASOL-II facility,
although four different days from January 25th to 28th, 2022
are used for validation. For the sake of simplification, the
ARMA and DES models are depicted only for 1 s sample
time ahead of forecast rather than for every prediction, since
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TABLE II
PERFORMANCE COMPARISON FOR THE CLEAR DAY, ARX AND DES MODELS.

Index Day 1 Day 2 Day 3 Day 4
Clear day ARMA DES Clear day ARMA DES Clear day ARMA DES Clear day ARMA DES

MSE [W2/m4] 12164.0 9525.1 15589.0 131.79 395.45 7.13 441.23 638.40 282.39 7723.8 3605.0 2585.8
RMSE [W/m2] 57.90 53.79 48.32 10.33 17.14 2.23 12.47 19.49 6.80 44.71 35.30 21.46

nRMSE [-] 0.1521 0.1171 0.1059 0.0187 0.0320 0.0034 0.0249 0.0355 0.0106 0.1136 0.0921 0.0565
ē [W/m2] 48.60 45.09 40.20 10.12 15.96 1.96 11.70 17.94 5.98 42.78 31.85 18.62
ē% [%] 18.79 13.74 12.19 1.84 2.98 0.30 2.39 3.28 0.93 11.43 9.47 5.57

the models’ predictions are updated at each instant, and the
predictions are recalculated in a receding horizon manner.

In order to measure the models’ prediction accuracy, the
following performance indices are proposed as quantitative
metrics: MSE, Root Mean Square Error (RMSE), normalized
RMSE (nRMSE), average absolute error ē and average percent
error ē% (see [6] for the indices description). Notice that,
since the goal is to compare the irradiance prediction, the
performance indices are calculated for a prediction horizon
of 300 samples ahead at each instant following a receding
horizon method, in which the final index is the mean value
of the entire dataset. Table II depicts the performance indices
results.

As can be seen from Table II, the proposed clear-day model
can predict the irradiance very well for a day without passing
clouds, presenting even better indices than the ARMA model
on days 2 and 3. However, this precision is compromised on
a cloudy day. Although it is relatively trivial, this fact can
present intriguing alternatives for control implementation. As-
suming the plant insights by the operating managers, the clear-
day model can be applied as an irradiance model considering
meteorological measures of the plant location. As the clear-day
model is easy to be calculated and does not require online com-
putation, it can be effortless to be implemented in the control
layer. Nevertheless, comparing the prediction errors indices
in Table II, the DES model can forecast the irradiance with
smaller errors among the three models when passing clouds
situation attenuates the solar irradiance. As can be observed
from the ARMA and DES method, forecasts are produced by
weighting the recent past data. However, in the DES technique,
the weights decay exponentially as the observations get older,
unlike in the ARMA model, which is kept constant (relating
to each respective model parameters). As the nature of the
irradiance variable is highly unpredictable, weighting recently
collected data more than old ones can improve the trend
prediction of irradiance models. Moreover, these results are
in accordance with achieved results in the literature that also
presented the DES model as a satisfactory estimate method
for predicting solar irradiance over large prediction horizons
[15]. Therefore, the DES time-series technique is chosen to be
implemented in the CC-PNMPC controller.

III. CHANCE CONSTRAINTS PRACTICAL NONLINEAR
CONTROL

In this section, the CC-PNMPC is formulated considering
the stochastic behavior of the solar irradiance DES model.
Furthermore, the DES prediction errors are studied concerning
its statistical data.

A. CC-PNMPC formulation
Consider the outlet temperature prediction of the

AQUASOL-II solar collector field as follows:
Ŷ = F +G ·∆u+GI ·∆I +GTa ·∆Ta +GTin

·∆Tin + Γ. (6)

For a stochastic characterization of the irradiance disturbance,
the irradiance increments at one sample time can be modeled
as:

∆I(k) = ∆Id(k)︸ ︷︷ ︸
deterministic

+ ∆Is(k)︸ ︷︷ ︸
stochastic

(7)

wherein ∆Id(k) is provided by the DES model and ∆Is(k) is
the uncertain component of the model prediction. Consider that
the stochastic component is a random Gaussian variable, with
mean µI and variance σ2

I , ∆Is ∼ N (µI , σ
2
I ). This stochastic

term can be represented as standard form by replacing for a
random variable ∆z(k) of mean µz = 0 and variance σ2

z = 1,
∆z ∼ N (0, 1), as follows:

∆z(k) =
∆Is(k)− µI√

σ2
I

. (8)

Using the proposed substitution, the output prediction can be
calculated not as a deterministic value but as an expected value
due to the random variable ∆z. The final output prediction
equation is expressed for the prediction horizon as follows:

E[Ŷ ] =F +G ·∆u+GI ·∆Id +GµI + E[ΣσI ·∆z]+

GTa ·∆Ta +GTin
·∆Tin + Γ

(9)

in which GµI
= GI · µI and ΣσI

= (G⊤
I ΣGI)

1/2. The
Σ is the diagonal matrix containing the variance values. As
can be seen in (9), the terms GµI

and E[ΣσI
·∆z] are the

only ones related to the stochastic formulation, while the other
terms are the previously deterministic form formulated in (3)
considering the three disturbance variables (irradiance, inlet
and ambient temperatures).

It is important to note that the nonlinear process model
is treated as a linear function of the input and disturbances,
wherein the nonlinearities are accounted into the free-response
matrix and the online linearization method of the forced-
response matrices. Thus, the stochastic term of the irradiance
model uncertainty component is characterized linearly, allow-
ing to obtain a closed-form of the disturbance uncertainties
propagation along the prediction horizon for nonlinear models.
Therefore, based on (9), the CC-PNMPC optimization problem
is expressed as:

min
∆u(t)

E[J ]

E[J ] =

j=Np∑
j=1

|ŷ(k + j)− ysp(k + j)|2R +

j=Nc−1∑
j=0

|∆u(k + j)|2Q

(10)
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subject to Equation (9), Equation (5c), Equation (5d) and:

Pr{Y min ≤ Ŷ ≤ Y max} ≥ δ (11)

Equation (11) is described as being the probability that the
predicted outputs do not violate the output limits, in which
this probability is defined by tuning the parameter δ. The
expression Pr{h ≤ v} is the probability of the variable h
being less or equal than a given value v, which is equivalent
to calculating the Cumulative Density Function (CDF) for the
given value v. Hence, with the goal to formulating the CC and
considering just the output upper limit inequality, (11) can be
written as:

Pr{Ŷ ≤ Y max} ≥ δ

Pr{Ŷ deterministic +GµI +ΣσI ·∆z ≤ Y max}} ≥ δ

Pr{∆z ≤ Σ−1
σI

· (−Ŷ deterministic −GµI + Y max)} ≥ δ

φ{Σ−1
σI

· (−Ŷ deterministic −GµI + Y max)} ≥ δ

(12)

in which φ(−) is the CDF. Consequently, the equivalent
deterministic chance constraints is expressed as follows:

Y max −GµI −ΣσI · φ−1(δ) ≥ Ŷ deterministic. (14)

Similarly, the lower limits are defined as:

Y min −GµI +ΣσI · φ−1(δ) ≤ Ŷ deterministic (15)

wherein φ−1(δ) is the inverse of the CDF. Notice that, in
practice, the output limits are restricted by the terms GµI

+
ΣσI
·φ−1(δ) and GµI

−ΣσI
·φ−1(δ) which is function of the

predicted disturbance errors. This is the main achievement of
the CC approach: the formulation systematically accounts in
the control formulation for the required back-off value that the
constraints must be shifted to obey the probability of threshold
violation based on a statistical analysis of the forecast error.
In addition, the parameter δ directly affects the size of the
constraints back-off, which is used as a tuning parameter for
the CC formulation.

B. Irradiance statistical analysis
For developing the CC in (14) and (15), the DES irradiance

model is studied concerning its prediction errors following
a conservative control formulation, employing a prediction
horizon of 80 samples for a sample time of 20 s. Notice that
the errors between the DES model and the collected data are
those used for developing the stochastic components of the
CC-PNMPC, not the predicted DES model outputs, which are
essentially different. Therefore, comparing historical data of
10 days of operation in the AQUASOL-II facility with the
DES model prediction, it is possible to obtain the histogram,
the empirical Probability Density Function (PDF), and the
CDF of the irradiance prediction error. Fig. 5 and 6 depict
the statistical results. It is possible to see that the proposed
DES model presents minor errors since most of the data is
near zero. The calculated mean value is µI = −0.9891 and
the standard deviation is σI = 9.7259. However, from Fig. 6,
it can be noticed that the greater the probability δ, the greater
the φ−1(δ), and thus the greater the constraint back-off, which
makes this adjustment factor critical for the control optimiza-
tion problem as its tuning can lead to infeasible closed-loop
solutions. Consequently, the following section investigates the
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Fig. 5. Histogram of the predicted irradiance errors.
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effect of the chance constraint violation and control parameters
tuning concerning the control trade-off between feasibility and
performance proposed for controlling the solar collector field
system.

IV. STOCHASTIC CC-PNMPC ANALYSIS

This section investigates the proposed CC-PNMPC applied
in a simulated scenario of the AQUASOL-II plant to an-
alyze the behavior of the stochastic controller before real
implementation. The resulting discussions are presented in
sequence, comparing the performance of the proposed stochas-
tic controller with the same control strategy formulated as a
deterministic solution.

A. Simulation results

The AQUASOL-II solar collector field is treated as the
identified model in Section II-A. The purpose is to control the
solar collector field outlet temperature at 78.5 oC, simulating
an energy demand required for a secondary circuit. In addition
to the solar collector field, the AQUASOL-II plant is simulated
as the existing system, using a heat exchanger model as
the load system (detailed in [4]) and an actuator set model
composed of a pump and a frequency inverter (identified as a
first order system). The temperature limits of the load system
are proposed very stringent to evidence the effects of the CC
strategy. Thus, a condition of ±1.5 oC around the reference
is imposed.

Fig. 7 details the control scheme. Notice that the control
strategy is in a cascade formulation, in which the master CC-
PNMPC controller provides the water flow reference qref for
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a classical Proportional-Integral (PI) slave controller, which
takes care of setting the % of frequency for the pump
frequency inverter. Moreover, notice that the CC-PNMPC
feedforward action accounts only for the irradiance prediction,
considering that the ambient and inlet temperatures have
slow dynamics and their values are kept constant along the
prediction horizon.

Fig. 7. CC-PNMPC control structure.

First, the stochastic behavior of the irradiance prediction er-
ror is studied regarding the output predictions and the resulting
CC thresholds. As seen previously, the computation of GµI

and ΣσI
·φ−1(δ) results in a contraction of the output restric-

tions along the control horizon. Notice that, since σI is positive
and the chosen value of δ should represent a large probability,
by using the model evolution of the irradiance disturbance,
these values tend to increase along the prediction horizon.
It culminates that, for an extensive prediction horizon, the
CC formulated in (14) and (15) will result in an increasingly
more restricted constraint, leading to an infeasible solution.
This effect can be noticed in the studied application for
controlling the solar collector field. The AQUASOL-II model
is simulated using the open-loop prediction equation, and the
CC is calculated considering the irradiance errors presented
previously. In Fig. 8, the outlet temperature is at a steady-state
point at 78.5 oC, and its prediction is calculated considering
variations only on the stochastic part of the irradiance model
for 50 random scenarios. In addition, the output constraints
are computed considering φ−1(δ) for four values of δ (0.95,
0.9, 0.7 and 0.55). As noted from Fig. 8, the output prediction
tends to disperse while the constraints become tighter along
the prediction horizon, including being crossed-over earlier at
the start. As treated in [47], the necessity to limit the prediction
horizon to attend the CC formulation is challenging since the
MPC horizons are linked to the system’s dynamic properties.
Thus, the authors propose the concept of closed-loop vari-
ance based on the receding horizon MPC algorithm. In this
formulation, the first computed value of matrix ΣσI

· φ−1(δ)
is repeated along the prediction horizon, which avoids using
limited horizon or reduced constraints violation probabilities.
In order to illustrate the effects of closed-loop covariance, the
CC-PNMPC optimization problem is simulated considering
the AQUASOL-II model in the same steady-state presented
in Fig 8. For the 50 random scenarios, δ is chosen to be 0.95
and the control horizon is chosen as 60. As can be seen in
Fig. 9, in all scenarios, the first output prediction respects the
constraints, which is the basis of the closed-loop covariance
concept as only the first covariance prediction value plays a

role in modifying the constraints based on the receding horizon
formulation.

The convergence analysis of the presented approach follows
the same basis of previous work that can be found in the
literature [22], [39], [47]. Notice that as the probability density
function is already known, the formulated probabilistic con-
straints are substituted by a deterministic one, and the entire
optimization problem can be handled as typical quadratic
programming, wherein no convergence issue is encountered.
Still, on this matter, the feasibility of the problem solution
is increased compared to conventional CC solutions since the
closed-loop covariance method overcomes the case of crossed-
over limits and short prediction horizons, as is thoroughly
surveyed in [47]. Therefore, based on the previous concepts,
the proposed CC-PNMPC is formulated following the closed-
loop variance assumption for controlling the AQUASOL-II
plant. The stochastic controller is simulated in three different
scenarios, seeking to analyze the effects of the irradiance
prediction for i) clear day (Scenario 1), ii) passing clouds day
(Scenario 2), and iii) cloudy day (Scenario 3). Moreover, the
CC-PNMPC performance is compared with two deterministic
PNMPC: the first uses the DES irradiance model to calculate
the future irradiance values, and the second uses the exact
irradiance future values in the control disturbance increments.
The goal is to compare the effect of applying the CC-PNMPC
when disturbance prediction errors occur, given the PNMPC
with a perfect prediction as a reference. For the simulated
scenarios, the controller tuning parameters are chosen based
on the system dynamics and the time delays after preliminary

Fig. 8. Open-loop effects of the stochastic variable ∆z on the
output prediction and variations on the tuning parameter δ for the CC
formulation.
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simulated tests, and are depicted in Table III. Notice that
the chosen PNMPC prediction horizon is shorter than that
selected for irradiance model analysis, which results in a
conservative approach for the stochastic variables since the
variance increase with the forecast horizon. This choice allows
formulating a predictive controller considering adjusting its
tuning parameters without compromising the solution of the
optimization problem to achieve the desired control perfor-
mance concerning the plant dynamics. Regarding the PNMPC
low-pass filter of the output prediction error, Γ(z) = 0.8647

z−0.1353 ,
it is chosen by an empirical method after several simulation
experiments considering the compromise of eliminating the
steady-state error and control effort.

Fig. 10 illustrates the meteorological conditions and the
inlet solar collector field temperature, and Fig. 11 presents the
controllers’ performance with the outlet temperature and the
water flow for all scenarios only during the operating periods,
wherein the system has enough energy to achieve the desired
reference. Intending to provide quantitative information, Table
IV presents the Sum of the Absolute Error (SAE) (considering
as error only when the temperature is out of the output thresh-
olds), the Sum of the Control Increments (SCI) indices, and
the mean processing time during the controllers’ computation
(tproc). The total indices are calculated for the period of
operation of the simulation, starting from the initial time ti
until the end time tf . The simulation results are obtained in
MATLAB® R2019b from Mathworks, using a Intel Core i7-
7700 CPU 3.6 GHz, 16GB RAM computer.
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Fig. 10. Meteorological conditions for the simulated Scenarios 1, 2 and
3.

B. Discussion
Firstly, as can be observed from Fig. 11, the performance

of CC-PNMPC is very similar to that of the deterministic
strategies, even when strong irradiance disturbances occur,
and they can satisfactorily deal with such disturbances, which
demonstrates that the PNMPC is an attractive solution for
real implementation. Likewise, the controllers’ processing time
is equivalent for all controllers with negligible differences
due to multitasking computer usage, demonstrating that the
stochastic approach does not necessarily increase the com-
putational effort and can be perfectly employed in existing
systems considering the controller sample time. In addition,
it is noteworthy to mention that the output threshold is only
violated when there is insufficient solar energy, which escapes
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Fig. 11. Outlet solar collector field temperature and water flow for
Scenarios 1, 2, and 3 comparing the CC-PNMPC, the PNMPC using the
DES irradiance model and the PNMPC with ideal prediction. (The time
axis are out of scale for the sake of demonstrating only the operating
portion of the results.)

TABLE III
CONTROL TUNING PARAMETERS FOR THE CC-PNMPC AND PI

CONTROLLERS.

Control Parameters Description Values
TsCC−PNMPC Sample time CC-PNMPC 10 [s]

TsPI Sample time PI 1 [s]
Y ref Output reference 78.5 [oC]
Np Prediction Horizon 86
Nc Control horizon 60

∆umax Maximum input variation 2 [L/min]
∆umin Minimum input variation −2 [L/min]
umax Maximum input limit 26 [L/min]
umin Minimum input limit 5.2 [L/min]
Q Output error weight 10 · diag(Np)
R Input variation weight 50 · diag(Nc)

Ymax Maximum output limit 80 [oC]
Ymin Minimum output limit 76 [oC]
KpPI Proportional gain 17.60 [(%)·min/L]
TiPI

Integral gain 12.86 [s]

TABLE IV
CONTROL PERFORMANCE INDICES.

PNMPC
(ideal prediction)

PNMPC
(DES model) CC-PNMPC

Scenario
1

SAE [oC] 0.095 0.095 0.019
SCI [-] 2.27 2.37 2.89

tproc [s] 0.105 0.106 0.107

Scenario
2

SAE [oC] 80.50 93.11 87.18
SCI [-] 7.05 11.46 12.30

tproc [s] 0.107 0.096 0.095

Scenario
3

SAE [oC] 74.96 79.81 75.46
SCI [-] 5.29 7.63 8.94

tproc [s] 0.107 0.088 0.089

from the strategies’ performance as they cannot overcome this
issue.

Furthermore, also from Fig. 11, it can be noted that all
controllers can keep the temperature at desired reference,
which is the main control objective, since it offers a degree
of freedom for the optimal inputs to deal with disturbance
variations without extrapolating the temperature limits. Due to
this control performance, the CC back-off effect could not be
clearly evidenced in these simulated scenarios. Nevertheless,
still in this context, the stochastic CC-PNMPC plays an
important role. Notice that the CC-PNMPC is slightly shifted
from the temperature reference, 78.5 oC, and remains above
the other PNMPC deterministic outputs. This point can also be
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noted from the inputs values, wherein the CC-PNMPC keeps
the water flow lower than the PNMPC’s strategies. This fact
can be positive regarding economic aspects, as operating at
a lower water flow rate reflects lower electrical consumption
by the pump. This issue is directly related to the formulation
of the optimization problem of the stochastic CC-PNMPC, to
the output prediction formula, and the calculated irradiance
prediction errors. Notice that the obtained irradiance mean
value is µI = −0.9891, which is small concerning acceptable
prediction errors but sufficient to change GµI

matrix. For
being a negative value, the predicted outlet temperature is
always denoted slightly lower, which causes the optimization
problem to calculate a lower water flow for the real system
to achieve the reference. Although operating in low HTF
flow can difficult controllers’ performance due to the system’s
nonlinearities, this effect is very advantageous for the CC-
PNMPC, as can be seen in Table IV, wherein the stochastic
strategy presents a lower error performance index compared to
the PNMPC using the irradiance DES model. It results that, by
keeping the temperature slightly above, when strong irradiance
disturbances occur, CC-PNMPC spends less time outside the
temperature lower limit (see the zoomed graphic in Fig. 11).

A critical comment must be placed on the irradiance dis-
turbances and their prediction errors. Due to the irradiance
nature, strong disturbances only happen when the clouds block
the solar rays, which reduces the irradiance and generates
negative errors in the forecast models. The advantage of the
stochastic CC-PNMPC is that it can systematically account
for this particularity in the control optimization problem and
compensate for disturbance prediction errors. In addition, since
the irradiance prediction errors can be previously characterized
by using the validated model and historical data, it allows
calculating the CC parameters, such as δ and the CDF,
offline, avoiding any additional computational cost during
the optimization problem solution. Moreover, the PNMPC
algorithm permits the use of a linearized formulation for
nonlinear models, contributing to compute the propagation of
the covariance along the prediction horizon straightforwardly
for complex nonlinear systems.

Concerning the control effort estimated using the SCI index,
since the control strategies use a disturbance model, the
computed optimal inputs may differ from those calculated
using an exact prediction. This issue requires a controller’s
additional effort to correct the mismatch values calculated in
the past instant by using the receding horizon concept. In
addition, the stochastic CC-PNMPC uses a random variable
∆z, which affects the control signal by randomly including
multiples of σI in the output prediction. All these outcomes
are observed in Table IV, wherein the CC-PNMPC presents
a higher SCI value and the PNMPC with exact prediction
presents the lower index.

Finally, from the comparison of the three proposed cases,
it can be noteworthy that when better irradiance models are
used, the results approximate the ideal case, which is knowing
precisely the disturbance’s future values. As the disturbance
model precision increases, the computed back-off values of
the CC reduce, approaching more from the system’s original
constraints. Nevertheless, since the irradiance model uncertain-

ties are intrinsic to the system nature, formulating predictive
controllers as a stochastic solution, as presented herein in the
CC-PNMPC, is an attractive alternative for controlling solar
collector fields.

Based on the previous discussion, the stochastic CC-
PNMPC is implemented in the AQUASOL-II plant, as pre-
sented in the next section.

V. EXPERIMENTAL RESULTS

The presented CC-PNMPC controller is implemented to
control the actual AQUASOL-II solar thermal plant in order
to demonstrate the performance of the proposed stochastic
predictive controller. As presented previously in Section II,
the real system is configured as depicted in Fig. 2. The CC-
PNMPC parameters slightly differ from those presented in
Table III due to the actual system conditions related to the sec-
ondary circuit temperatures on the days of experimental tests.
In addition, model uncertainties and unmodeled dynamics led
to a fine-tuning of the control’s aggressiveness compared to
the tuning adjustments performed in the simulated scenario.
Therefore, the input maximum limit is now umax = 15.4
L/min, the temperature reference 75 oC, and the input variation
weight is chosen R = 100 · diag(Nc) after a preliminary
calibrating test. The tests occur in two days, the first one
on February 16th, 2022, when passing clouds disturb the
system, and the second on February 17th, 2022, for a clear
day test. Fig. 12 and 13 depict the control variables and the
meteorological conditions for both tests. The CC-PNMPC

Fig. 12. CC-PNMPC results on February 16, 2022.

Fig. 13. CC-PNMPC results on February 17, 2022.

satisfactorily maintains the system’s outputs in the reference
for both sunny and cloudy days. These results are in line
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with expectations, based on the simulation results described
in Section IV. As observed in simulated scenarios, on the first
day of tests, the outlet temperature only extrapolates its limits
when the control signal is saturated at the minimum, which
increases the SAE index, achieving the total of 1026.8 oC for a
sample time of 1 s and a SCI of 21.11. Moreover, shortly after
13 h, there is a disturbance in the inlet temperature, which
requires a control effort to keep the temperature within the
proposed limits. The oscillations presented in the first test day
come from unmodeled dynamics of the entire AQUASOL-II
plant, which causes a mismatch scenario between the internal
CC-PNMPC model and the real system. On the other hand, the
CC-PNMPC has no struggles in keeping the outlet temperature
at the reference regarding the sunny day test, keeping the SAE
error index zeroed, with a SCI of 11.37. In this scenario, no
strong disturbance occurs, which simplifies the outlet solar
collector field temperature control, and the CC-PNMPC keeps
the outlet temperature always within its limits with less control
effort, compared to the first day.

The experimental results reinforce the proposal that stochas-
tic predictive control strategies can be advantageous for con-
trolling the solar collector field, since this approach can be
formulated with no extra computational effort for the control
optimization problem. Furthermore, there are no complications
in calculating stochastic variables, as direct substitutions can
be made to transform probabilistic expressions into determinis-
tic ones, and in this way, the resulting control strategy presents
an elegant solution that systematically considers the output
prediction uncertainties.

VI. CONCLUSIONS AND FUTURE WORKS

This work presents a stochastic model predictive controller
for controlling a thermal solar collector field. The control
strategy has been developed following the CC-PNMPC for-
mulation and the closed-loop covariance concept, wherein the
CC back-off value is calculated using the irradiance prediction
errors. For that, three distinct models are investigated in order
to determine the best irradiance prediction model considering
clear and cloud days. Firstly, the CC-PNMPC is tested in
different simulation scenarios using a validated AQUASOL-II
solar collector field model and a DES irradiance model. After
a comprehensive investigation of stochastic strategy effects
in the temperature control performance, the CC-PNMPC is
implemented in the real system.

The results demonstrate that the irradiance errors tend to be
negative since the irradiance disturbance is due to the block
of the solar way, which reduces its magnitude. As a result, the
irradiance error has a negative mean value, which affects the
temperature prediction and results in a slight offset between
the output and the reference. This essential fact must be
considered before implementing the CC with irradiance model
uncertainties in case precise reference tracking is required.
Nevertheless, considering output threshold extrapolation, the
irradiance errors characterization contributes to avoid the so-
lar collector field temperature overpassing the lower limit,
which is advantageous to implement the CC-PNMPC for
controlling such systems. As can be noted in the simulated

scenarios, the CC-PNMPC presents, approximately, 7% less
error considering the output limits extrapolation compared to
the deterministic PNMPC.

Furthermore, the present work applies the stochastic
controller strategy with a satisfactory result in an actual
AQUASOL-II solar plant, which had not yet been employed
in an existing facility, demonstrating that the CC-PNMPC can
compute optimal input movements considering the disturbance
uncertainties systematically into the optimization problem
without increasing the computational effort. In addition, the
ability of the PNMPC for dealing with nonlinearities is a
promising solution to consistently consider the covariance
propagation of nonlinear systems along the prediction horizon.
Another concern regarding the performance of the stochastic
CC-PNMPC is the use of the random variable in the opti-
mization problem. As noted in Section IV, the control effort
is increased in comparison to the deterministic approach due
to the effect of random values associated with the stochastic
behavior of the predicted irradiance. This effect can result in
noisy input behavior and compromises control performance in
sensitive systems.

Future studies must consider several disturbance variables
to formulate the stochastic strategy. Although the ambient tem-
perature presents slow dynamics for the proposed application
in a low-level of solar system control, such variable must be
evaluated over forecast uncertainties and large prediction hori-
zons, mainly when hierarchical controllers are developed. In
addition, solar collector model parameter uncertainties are an
essential field to be evaluated for stochastic control strategies,
in which model coefficients variations can be studied following
the CC formulation. Finally, as previously concluded, the more
representative the disturbance model, the better the control
performance, demonstrating that the investigation of solar
irradiance models associated with predictive control strategies
and faithful solar field models, mainly considering varying
and apparent transport delays, is a promising field to improve
solar thermal systems performance. Furthermore, although this
work has focused on solar field application, the developed
methodology and technique can be extended for different
stochastic processes.
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