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Abstract
Industrial aquaculture has proliferated due to increased world demand for fish and seafood. Aerobic bacterial biofilters typi-
cally perform the nitrogen abatement of wastewater. Recirculation aquaculture systems (RAS) require nitrifying microorgan-
isms developed in the biofilter. Despite the advantages of these biofilters, there are disadvantages, such as the time needed to 
mature, decrease in oxygen concentration, accumulation of organic matter and difficulty of backflushing, among others. On 
the other hand, microalgae effectively eliminate nutrients-pollutants, consuming inorganic carbon, nitrogen, and phosphorus 
and balancing soluble oxygen, conditions not attributable to nitrifying biofilters. The current study used a photo-biofilter to 
determine the depuration capacity of an immobilized co-culture of microalga Tetradesmus dimorphus and nitrifying bacteria 
isolated from a Salmon RAS. Bacteria frorm genera Flavobacterium, Microbacterium, Raoultella, Sphingobacterium, and 
Pseudomonas were identified. Biofilters were tested in sequential batch (lab-scale; 2.85 L) and continuous mode (pilot-plant 
scale; 120 L) attached to a RAS system for rearing rainbow trout. The algal–bacterial community structure was studied using 
16S rRNA gene sequencing. Results showed that at typical loading rates, the algal–bacterial community could simultaneously 
remove ammonium, total ammonium nitrogen (TAN), nitrate and phosphate. Moreover, the system evaluated removed TAN 
daily, at an average of 1.18 kg per  m3 of beads.

Keyword Recirculation aquaculture system · Biofilter · Nitrifying bacteria · Microalgae · Mixotrophic · Microbial 
community

Introduction

Recirculation aquaculture systems (RAS) can potentially 
reduce the environmental impacts of aquaculture compared 
to traditionally used open-flow systems. The latter requires 
an average of 30  m3 of fresh water per year for each kilo-
gram of farmed trout, while RAS fluctuate between 0.3 and 3 
 m3 kg  fish−1  year−1 allowing for 95.9–99.6% of water savings 
(Pedersen et al. 2012; Bregnballe 2015). The water treatment 

step must eliminate nitrogenous compounds (ammonium, 
nitrite and, optionally, nitrate), whose accumulation causes 
toxicity, decreased body size, increased mortality, abnormal 
behaviours, and skeletal deformities in fish (Martins et al. 
2009; Davidson et al. 2014; Ciji and Akhtar 2020). Addi-
tional equipment should also supply the system's oxygen 
consumed by fish and nitrogen abatement. Ammonium and 
nitrite are the most damaging compounds, comparatively. 
For this reason, biological nitrification treatment in "Nitrify-
ing Biofilters" has been the most employed method in RAS. 
In addition to nitrifying biofilters, other processes such as 
reverse osmosis and electrochemical technology have been 
reported to control nutrient concentrations (Qin et al. 2005; 
Gupta et al. 2015). However, its high energy requirement is 
an unavoidable drawback so far.

Additionally, nitrifying biofilters have other significant 
drawbacks that include a decrease in the concentration 
of dissolved  O2, the contribution of  CO2, alkalinity con-
sumption, difficulty in filter back-rinsing, accumulation of 
organic matter and presence of undesired microorganisms. 
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Nitrifying bacteria are obligate autotrophs that use carbon 
dioxide as the primary carbon source and require oxygen 
to grow (Hagopian and Riley 1998). In RAS biofilters, this 
group accounts for roughly 15% of the total bacterial com-
munity (Roalkvam et al. 2020). The fast-growing hetero-
trophic bacteria dominate the rest of the biofilm (Schreier 
et al. 2010). An inoculum with the desired nitrifying spe-
cies is needed to activate a nitrifying biofilter. The biofilter 
containing plastic carriers could be fed with inoculum by 
a closed loop, or the biofilter could use carriers from a 
mature filter (Gutierrez-Wing and Malone 2006; Delong 
and Losordo 2012). Biofilm development on the carriers 
is time-consuming since nitrifying bacteria grow slowly 
(Gutierrez-Wing and Malone 2006; Zhang et al. 2019).

Microalgae already constitute a real possibility for the 
removal of nutrients from urban (de-Bashan and Bashan 
2010; Calicioglu and Demirer 2019), industrial (Bordel et al. 
2009; Wu et al. 2017) and agricultural wastewater (Markou 
and Georgakakis 2011; Jayakumar et al. 2017). Algal photo-
bioreactors (PBR) have been proposed for aquaculture facili-
ties as additional units. However, the two main concerns are 
economic and practical feasibility (light supply, high reten-
tion times) (Ramli et al. 2020). The culture of microalgae 
in wastewater is fascinating since they can take up both N 
and P in their biomass, which could eventually be used in 
agriculture. Microalgae grown in RAS systems could also 
produce biomass for aquaculture feeding (Rawat et al. 2011), 
thereby contributing to the circular economy approaches. 
In addition to the efficiency in removing nutrients, these 
systems can significantly reduce costs related to oxygenation 
and  CO2 degassing (de Godos et al. 2009). The main limita-
tions of using microalgae would be their culture systems, 
which require light-permeable surfaces and larger land areas 
(compared to nitrifying biofilters). In addition, another dis-
advantage of using algae in suspension is their unavoidable 
presence in the fishponds that would increase the turbidity, 
hindering fish feeding. Microalgal culture systems based on 
cell immobilization have attempted to overcome some previ-
ously discussed issues (He and Xue 2010; Pires et al. 2013). 
Cell encapsulation in a polymeric matrix and biofilm forma-
tion on a solid surface (Mallick 2002; Eroglu et al. 2015) 
are the standard methods for microalgal immobilization. 
Common polymeric matrixes are alginate and carrageenan. 
As with nitrifying bacteria, it is almost impossible to main-
tain a monoculture of microalgae in these processes. Far 
from being a problem for nutrient removal, several studies 
reported the advantages of using microalgal-bacterial con-
sortia (Muñoz and Guieysse 2006; Subashchandrabose et al. 
2011; Gonçalves et al. 2017; Sun et al. 2022). These consor-
tia can occur naturally in the environment or be generated 
artificially by combining microorganisms that do not neces-
sarily coexist for a specific purpose. Generally, photosyn-
thetic microorganisms and heterotrophic bacteria constitute 

the microalgae and bacteria consortiums for wastewater 
treatment (Gonçalves et al. 2017). Before full-scale biofil-
ters are designed and built in RAS, tests must be performed 
on pilot-scale units to determine the efficiency and design 
accuracy. Such pilot-scale tests also allow for the evaluation 
of system operation, performance, and economics.

The main goal of this research was to develop a pilot-
scale biofiltration system that could be used to perform 
tests involving the depuration of N and P from Salmon 
RAS water. The specific objectives of this project were to: 
1) Design and build three lab-scale biofilters and a pilot-
scale biofilter with the capability to monitor various param-
eters such as temperature, irradiance, and flow rate, and 
2) Test and compare the performance of the biofilter units 
for removing nitrate and phosphate. The novelty of this 
study also lies in the fact that the algal–bacterial lab-scale 
biofilter tested for N and P depuration was successfully 
scaled to a pilot unit attached to a RAS system for rearing 
rainbow trout.

Materials and methods

Natural aquaculture wastewater

A demonstration aquaculture recirculation system provided 
the wastewater (Department of Oceanography, Universidad 
de Concepción, Dichato, Bio-Bio, Chile). The facility reared 
Oncorhynchus mykiss (rainbow trout) under an intensive 
culture approach. For the optimization assays (described 
below), 0.3  m3 of water leaving the fishponds was treated 
and stored at 3ºC in a sealed container. Treatment consisted 
of 50 μm filtration and disinfection in a recirculated UV 
system for 12 h. The concentration of ammonium, nitrate 
and phosphate was checked daily; averaged values were 
1.6 ± 0.5, 50 ± 0.4 and 7 ± 0.8 mg  L−1, respectively.

Algal–bacterial beads preparation

The inoculum was composed of the microalga Tetrades-
mus dimorphus and nitrifying biomass obtained from the 
nitrification biofilter of the demonstrative aquaculture recir-
culation (Dichato, Bio-Bio, Chile). The microalgal strain 
was isolated from the fishponds using the standard serial-
dilution technique (Button et al. 1993). The bacterial inocu-
lum provided was cultured in agitated flasks (120 rpm) in 
a chamber at 10 °C using wastewater. Suspension of 0.5 g 
 L−1 (dry weight) of T. dimorphus and the bacterial biomass 
was mixed in 1:1 proportion and then cultured in batch mode 
using the aquaculture wastewater supplemented with  NH4Cl 
up to 20 mg  L−1. These cultures were carried out in 2 L 
agitated flasks with 0.75 L of working volume under agi-
tation in an orbital shaker and an irradiance of 100 µmol 
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photons  m−2  s−1. After two consecutive batches, where the 
initial ammonium concentration (20 mg  L−1) was abated 
(approximately 15  days), biomass was concentrated by 
centrifugation from 1.6 to 15 g  L−1. This suspension was 
the feedstock for the formulation of microalgal-bacterial 
alginate beads. Food grade sodium alginate (W201502; 
Sigma-Aldrich) was weighed and dispersed slowly in cold 
distilled water to achieve a concentration of 2% w/v and 
then heated with continued stirring until a clear solution was 
obtained (approximately 30 min). It was then transferred to 
a container and allowed to stand for 24 h to eliminate air 
bubbles formed during homogenization. The algal–bacte-
rial suspension and the alginate solution were mixed in 1:10 
proportion. Then, the alginate solution was dropped into a 
2 w/v% calcium chloride  (CaCl2) solution to form alginate 
beads. The diameter of the discharge tip gives the size of the 
sphere. This study prepared spheres with a nominal diameter 
of 3 mm. Beads were allowed to harden for 5 h before use in 
the photobioreactors.

Algal–bacterial genetic characterization

A genetic analysis assessed the algal–bacterial biomass 
grown. Microbial community analyses were based on 16S 
rRNA. Algal–bacterial biomass was suspended in PBS 
(phosphate buffered saline at pH = 7.5) and then diluted in 
series with a dilution factor of 10. Onehundred μL of the 
algal–bacterial biomass solution was transferred to Trypto-
Casein Soy Agar (TSA) or Luria–Bertani Agar (LBA; Len-
nox) plates for incubation at 18 °C for ten days. Isolated 
colonies were cultured under similar conditions three times 
consecutively. Then the biomass was transferred to a Tryp-
tic Soy Broth (TSB) medium, cultured for four days, and 
harvested (centrifuged at 15,900 RCF for 15 min, followed 
by supernatant removal). DNA extraction followed the pro-
tocol of the EZNA bacterial DNA extraction kit (Omega 
Bio-Tek, USA). Total genomic DNA was quantified using an 
Epoch® micro-volume spectrophotometer system (BioTek 
Instruments, USA). DNA quality was verified in a UV 
transilluminator using agarose gel (1.0% w/v) stained with 
GelRed Nucleic Acid Gel StainTM (Biotium, USA). DNA 
samples were stored at -20 °C. Specific markers for denitri-
fication (nriK and nirS), nitrite oxidation (nxrB), ammonium 
oxidation (amoA and cmx) and nitrogen-fixing (nifh) were 
assayed (Touchdown-PCR; Don et al. 1991). The molecu-
lar classification of the isolated bacterial strains was based 
on the 16S rRNA gene sequences using the commercial kit 
SapphireAmp Fast PCR Master Mix (Takara Bio, Japan). 
The assay used 250 ng of DNA and 200 nM of each primer. 
PCR products were analyzed in a UV transilluminator using 
agarose gel (1.5% w/v) stained with GelRed Nucleic Acid 
Gel Stain (Biotium, USA). Likewise, PCR products were 
purified and sequenced by MACROGEN Inc. (Seoul, Korea) 

using an ABI3730 ADN XL Analyser (Applied Biosystems). 
The platform Geneious R11 (Biomatters Ltd, NZ) processed 
the sequences. The bioinformatics pipeline included clus-
tering, error-trimming, and taxonomic classification. The 
16S rRNA gene sequences are available at GenBank (Ben-
son et al. 2008), ENA (Leinonen et al. 2011) and DDBJ 
(Kaminuma et al. 2010).

Optimization of operating parameters in lab‑scale

An experimental design was carried out in a lab-scale photo-
bioreactor (see details below) to optimize operating param-
eters. A Response Surface Design (Central Composite) was 
the model chosen to evaluate the effect of three factors (inci-
dent irradiance and air and liquid flow) with a total of 17 
experiments (resumed in Table 1). The experiment response 
variables were the concentration of ammonium, nitrate, and 
phosphate, expressed in mg  L−1 over time. The study con-
sidered a duplication of each sample.

Lab‑scale algal–bacterial biofilter

Lab-scale experiments required building three three-
phase f luidized photobioreactors (Fig.  1). Each 3 L 
photobioreactor was custom manufactured using cylin-
drical methacrylate tubes (polymethyl methacrylate, 
PMMA), with external dimensions of 74 cm height and 
9 cm diameter. The working liquid volume was 2.85 L. 
The setup included an air compressor, individual buffer 

Table 1  Experimental design for the optimization of the lab-scale 
biofilter operating conditions

ID code Water flow  
(L  min−1)

Airflow  
(L  min−1)

Irradiance (µmol 
photons  m−2  s−1)

N1 1 0.1 7
N2 5 0.1 7
N3 1 0.5 7
N4 5 0.5 7
N5 1 0.1 405
N6 5 0.1 405
N7 1 0.5 405
N8 5 0.5 405
N9 1 0.3 206
N10 5 0.3 206
N11 3 0.1 206
N12 3 0.5 206
N13 3 0.3 7
N14 3 0.3 405
N15 3 0.3 206
N16 3 0.3 206
N17 3 0.3 206
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tanks, pumps and additional instrumentation for adjusting 
air and fluid inlet flow. Temperature control systems in 
buffer tanks kept the temperature at 10ºC. Light-emitting 
diode (LED) string placed inside the transparent cylin-
drical vessel using a sealed tube with 2 cm of diameter 
supplied light to the photobioreactors.

Pilot‑scale algal–bacterial biofilter

Pilot-scale biofilters were built, installed, and operated in a 
RAS line of an aquaculture facility at Dichato (Bio-Bio, Chile) 
for rearing rainbow trout using commercial polyvinyl chloride 
(PVC) pipes and accessories (Fig. 2). The facility operates 
as a typical RAS system with auxiliary equipment for water 
recirculation (e.g., sand filter, air blowers, submerged nitri-
fying biofilter, etc.). The pilot-scale algal–bacterial biofilter 
used pumped wastewater from a fishpond with fish weighing 
100 and 200 g during operation. The average fish density was 

25 kg  m−3, and the fed rate was 1 to 1.5% of their daily body 
weight. The protocol included daily environmental parameters 
checking. Table 2 summarises lab- and pilot-scale biofilter 
dimensions and alginate beads-related parameters. Vessels 
0.95 m high and 0.4 m wide had a working volume of 120 
L. Air flowed at 6 L  min−1 (0.3 L  min−1 through 20 sparger 
holes). Inlet flow (water recirculation) was 3 L  min−1, and 
40 min of hydraulic retention time. Irradiance was kept at 
200 µmol photons  m−2  s−1 using four fluorescent lamps (T8 
Tuxline F25W/30"/840) located outside the vessel (Fig. 2). 
The study protocol included the analysis of ammonium, nitrate 
and phosphate by duplicating each sample.

Chemical analysis

Standard analytical procedures determined the nutrient 
concentrations. The nitrate and phosphate quantification 

Fig. 1  Scheme of the lab-scale 
algal–bacterial biofilter (3 
L-photobioreactor) system for 
the optimization experiments
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protocols were 4500-P and 4500-N from APHA (APHA 
2012) using a Biotek EpochTM microplate spectropho-
tometer. Ammonium was quantified using Nessler Reagent 
 (K2HgI4) according to a modified version of the ASTM 
D1426-08 method (ASTM 2008). Additionally, nutrient 
removal measurements for batch assays followed the equa-
tion (Eq. 1):

Cinlet and Coutlet are inlet and outlet concentrations (mg 
 L−1) of a particular nutrient. t represents treatment time 
(hours) (the experimental design time setup was 5 h).

For continuous systems, the depuration rate (mg 
 L−1  day−1) equation is:

(1)DR =

(

Cinlet − Coutlet

)

t

(2)DR =

Q

V

(

Cinlet − Coutlet

)

Surface and volumetric depuration rates were calculated 
from Eqs. 3 and 4, respectively:

where Cinlet and Coutlet are inlet and outlet concentrations of a 
particular nutrient, respectively; Q is inlet liquid flow; Abeads 
is the total surface area of alginate beads; V is the working 
liquid volume in the biofilter; Vbeads is the total volume of 
alginate beads; Abeads and Vbeads assumed that the bead shape 
was spherical (3 mm in diameter). SDR and VDR were cal-
culated in mg  m−2  day−1 and mg  L−1  day−1, respectively.

Statistical analysis

Statistical analyses used the multivariate statistical software 
package Statgraphics Centurion XIV (USA). The experi-
mental results were the average values of the two independ-
ent samples (N = 2) and their standard deviation. Normality 
and homogeneity analysis used the Kolmogorov–Smirnov 
and Levene tests. A three-factor ANOVA analysis was per-
formed for the operating condition optimization.

Results

The consortium algal–bacterial (biomass) came from a 
non-axenic isolated microalgal culture and bacterial bio-
mass extracted from a mature biofilter grown on a plastic 
carrier (Kaldness, K1). This biomass forms a dense biofilm 
on the plastic support as the biofilter works for more than 
12 months. The Materials and Methods section indicated 
that algal and bacterial inoculum was mixed and co-cul-
tured. Then, two batches arranged sequentially operate for 
15 days (each) using outlet pond water supplemented with 
an ammonium concentration of 20 mg  L−1. The biomass was 
harvested by centrifugation from an initial concentration of 
1.6 g  L−1 (in the broth) to 15 g  L−1.

The culture condition simultaneously considered bacte-
rial and microalgal growth (See Materials and Methods 
section). Characterizing any RAS biofilter in bacterial 
communities is essential for understanding biofilter per-
formance. The biofilter's stability and efficiency depend on 
the dynamic balance of the bacterial groups that should be 
adapted to the specific conditions of every RAS (Schreier 
et al. 2010). In the present study a source of irradiance 
and the presence of microalgae may also impact bacte-
rial diversity. Consequently, the study included measur-
ing the bacterial composition after the microalgal-bacterial 

(3)SDR =

Q

Abeads

(

Cinlet − Coutlet

)

(4)VDR =

Q

Vbeads

(

Cinlet − Coutlet

)

Fig. 2  Photograph of the pilot-scale algal–bacterial biofilter

Table 2  Parameters of lab-scale and pilot plant algal–bacterial biofil-
ters

Parameter Units Lab-Scale biofilter Pilot-
scale 
biofilter

Diameter m 0.09 0.4
Height * m 0.47 0.95
Diameter/Height ratio - 0.2 0.4
Volume* L 2.85 120
Number of beads - 24 ×  103 106

Total volume of beads L 0.36 15
Beads density g  L−1 8,421 8,333
(*) working volume
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co-culture. Results showed at least twelve viable hetero-
trophic aerobic bacterial strains, recoverable in culture 
using TSA, and five likely heterotrophic aerobic bacterial 
strains, recoverable in the culture at 18 °C using LBA. 
Only ten bacterial strains from the isolated ones showed 
the presence of genetic markers (at least one) associated 
with the denitrification process (nriK and nirS), nitrite oxi-
dation (nxrB), ammonium oxidation (amoA and cmx), or 
nitrogen fixation (nifH). Table 3 lists the classification and 
characterization of isolated bacterial strains.

The study on optimizing the operating conditions of 
algal–bacterial biofilters relied on previous tests. Accord-
ingly, earlier runs in batch mode defined the accurate sam-
pling time for the optimization experiments. As shown in 
Fig. 3A, differences in depletion rates for each nutrient 
compromised the sampling time based on ammonium con-
centration. In other words, the removal of almost all ammo-
nium took 5 h. The removal rate for nitrate was steady after 
the first hour, whereas the phosphate removal rate slope 
slightly decreased after 5 h. The experimental time (24 h) 
was insufficient to remove nitrate and phosphate altogether. 

Additionally, the medium condition combination of airflow 
and irradiance performed well for removing ammonium, 
according to Fig. 3B.

Ammonium depuration rate (mg  L−1  h−1) was the response 
variable for the experimental design. Table 1 shows the exper-
imental design for optimizing the lab-scale biofilter operating 
conditions. A bubble column reactor of 2.85 L with airflow 
rate from 0.1 to 0.5 L  min−1 implied a volume of air/vol-
ume of liquid/time ratio (typically volume/volume/minute) 
of 0.035, 0.105 and 0.176 vvm for low, medium and high 
flow rates, respectively. These are typical values for a bubble 
column reactor with suspended microalgae (Sánchez Mirón 
et al. 2000). On the other hand, bubble column reactors with 
continuous water flow are not typical in microalgal processes, 
and fluid dynamics depend only on bubbling. In our system, 
we imposed liquid flow rates of 1, 3 and 5 L  min−1 (low, 
medium and high, respectively), achieving hydraulic retention 
times of 2.85, 0.95 and 0.57 min, respectively. These values 
were comparatively lower than those of tubular photobioreac-
tors. Tubular PBRs, for instance, keep liquid rates from 0.25 
to 0.5 m  s−1 in the solar collector (Acién Fernández et al. 

Table 3  Classification and characterization of isolated bacterial strains

Strain 

isolated
Cand. Species

Identity

(%)

Coverage

 (%)

GenBank 

reference

nri

K

nir

S

nif

H

cm

x

nxr

B

amo

A

Flavobacterium 

sp. FDM-3

Flavobacterium 

johnsoniae
99.53 62.31 MF737174.1

Flavobacterium

 sp. FDM-5

Flavobacterium 

quisquiliarum
99.92 99.48

NR_158092.1

Microbacterium 

sp. FDM-6

Microbacterium 

natoriense
99.10 99.70 MT367754.1

Flavobacterium 

sp. FDM-10

Flavobacterium 

quisquiliarum
100 100

NR_158092.1

Raoultella sp. 

FDM-11

Raoultella 

terrigena
99.78 100 LR131271.1

Pseudomonas 

sp. FDM-13

Pseudomonas 

kunmingensis
100 100 MZ338617.1

Pseudomonas 

sp. FDM-14

Pseudomonas 

reinekei
97.08 100 KC790314.1 

Flavobacterium 

sp. FDM-15

Flavobacterium 

johnsoniae
99.85 100 MF737174.1

Sphingobacterium 

sp. FDM-16

Sphingobacterium

 mizutaii
99.93 100 JF899285.1

Pseudomonas 

sp. FDM-17

Pseudomonas 

stutzeri
99.93 100 CP073105.1 



1679Journal of Applied Phycology (2023) 35:1673–1683 

1 3

1999; Molina et al. 2001) resulting, for 9 cm diameter tubes, 
in a water flow of around 190 L  min−1. In tubular photobio-
reactors, a turbulent flow regime (high flow rates) is required 
in the tubes for the cells to be equally exposed to light. The 
only source of turbulence is the liquid flow (its velocity). In 
our experiments, water and air flow upward mixed, requiring 
much less flow to homogenates beads. Based on literature, the 
limiting, optimal and saturating irradiance of the microalgal 
strain were 7, 206 and 406 µmol photons  m−2  s−1, respectively 
(Macintyre et al. 2002).

Table 4 summarizes the results from the ANOVA analy-
sis. This analysis explored the influence of A, B and C 
factors on the response variable (ammonium depuration 
rate). Only airflow and irradiance influence the response 
variable (P-value < 0.05). Based on F-ratio values, we can 
conclude that the airflow had a more substantial impact 
on the response variable than irradiance (9.28 vs 6.62). 
Figure 3B shows the dependence of the ammonium dep-
uration rates against the airflow and the irradiance. The 
medium irradiance and airflow conditions achieved the 
maximum values.

The lab-scale biofilter system was scaled up to 120 L. 
The pilot-scale biofilter operated in a steady-state mode for 
20 days at 3 L  min−1 of wastewater. The hydraulic retention 
time was 40 min, higher than the hydraulic retention in lab-
scale system (Table 2). The pilot-scale biofilter considered a 
similar density value of beads to the lab-scale biofilter. The 
aspect ratio was modified, resulting in a less slender biofilter 
(Fig. 2). Pipes and fitting were PVC standard water supply 

items. For bubbling, an inlet airflow of 6 L  min−1 flowed 
through 20 holes homogenously distributed, resulting in a 
flow of 0.3 L  min−1 per inlet hole. The setting of the inlet 
airflow and irradiance considered those operating conditions 
where the lab-scale reactor achieved the maximum ammo-
nium depuration rate (Fig. 3B). Figure 4 shows the evolution 
of inlet and outlet concentrations of ammonium (Fig. 4A), 
nitrate (Fig. 4B) and phosphate (Fig. 4C). For example, 
an initial ammonium concentration of 4 mg  L−1 shown in 
Fig. 4A was reduced to 0.3 mg  L−1, estimating an average 
ammonium depuration rate of 0.1 mg  L−1  min−1 (148.5 mg 
 L−1  day−1). Table 5 summarizes the average depuration rates 
at operation parameters.

The algal–bacterial systems have a distinct advantage 
on removing nitrate and phosphate because microalgae fix 
it into their biomass. Our system consumed 78% and 64% 
of the nitrate and phosphate, achieving removal rates of 
284.7 and 165.5 mg  L−1  day−1, respectively.

Discussion

A wide variety of commercial biofilters are available 
elsewhere for aquaculture facilities running at different 
operation conditions, enabling comparisons within them 
(Malone and Pfeiffer 2006). Bacterial biofilters have two 
approaches, suspended growth and fixed film. Although 
the first is a lesser standard, microbial floc systems were 
proposed to produce tilapia and marine shrimp (McIntosh 

Fig. 3  Operation in lab-scale 
biofilter (batch mode): A) Con-
centration of ammonium, nitrate 
and phosphate and B) Effect of 
operating conditions (airflow 
and irradiance) on ammo-
nium depuration rate at 5 h of 
operation. Error bars represent 
standard deviations (N = 2)
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Table 4  ANOVA analysis of 
experiments in the lab-scale 
optimization

(*) F-ratio is based on mean residual error square; dF: degrees of freedom
P-value < 0.05

Source Sum of squares dF Mean Sum of squares F-ratio* P-Value

A: Water Flow 0.0163808 2 0.0081904 1.11 0.3656
B: Air Flow 0.136382 2 0.0681908 9.28 0.0053
C: Irradiance 0.0973543 2 0.0486772 6.62 0.0147
RESIDUALS 0.0734847 10 0.00734847
TOTAL (Corrected) 0.370819 16



1680 Journal of Applied Phycology (2023) 35:1673–1683

1 3

2001; Browdy et al. 2009). A bacterial biofilm is formed 
either in a moving or fixed carrier. The floating bead fil-
ters used in this study typically depurate at 140 to 350 mg 
 L−1  day−1 (Malone and Beecher 2000). Microbead or fluid-
ized sand biofilters have good volumetric depuration rates 
(200–1000 mg  L−1  day−1 (Timmons et al. 2006); however, 
they are energy-intensive reactors and high-cost operation 
systems (Timmons et al. 2006). The floating bead bio-
reactor uses plastic carriers (e.g., Kaldness K1) to avoid 
clogging. The plastic media have a common surface area 
of 250–500  m2   m−3. The bacterial biomass film cover-
ing the plastic carrier usually achieves depuration rates 
from 200 to 400 mg  L−1  day−1 (Rusten et al. 2006). These 
depuration rates are higher than in this study; however, 
researchers studied and optimized bacterial systems for 
decades, which is still not the case with our biological sys-
tem. In response, we could increase the depuration rates by 
expanding the number of beads per unit of volume though 
we should find an optimum value for irradiance for pilot-
scale biofilter.

Due to its high volatility, a part of  NH3 can be removed 
abiotically. The rate of ammonia volatilization is known to 
be pH-dependent. For pH < 8 the proportion of  NH3 is less 
than 10% (Eshchar et al. 2006). Since, rainbow trout ponds 
were maintained at a pH around 7, most of the ammonia 
would be in its ionized form  (NH4

+). The range of pH for 
bacteria in moving bed bioreactors is similar to microalgal 
cultures (Shitu et al. 2022). Therefore, there are no advan-
tages of one system over the other in this aspect. For both 
systems most of the ammoniacal nitrogen is removed bioti-
cally. For instance, in sparged microalgal cultures with pH 
in the range of 7–8, volatilization was shown to be under 
5% (Yu et al. 2022).

The literature describes only a few examples of immo-
bilized algae systems for RAS. Ramli et al. (2017) com-
pared the performance of bubbling column photobioreac-
tors with suspended Stigeoclonium nanum or S. nanum 
immobilized in alginate beads. The main advantage of 
this species is that its filamentous appearance allows it to 
adapt well to immobilized systems. Their results showed 
higher TAN removal in immobilized alginate beads than 
in free suspension cultures. Notwithstanding, the ammo-
nium depuration rate was less than 1 mg  L−1  day−1 in their 
best scenario (Ramli et al. 2017). Although limited studies 
refer to the use of microalgae in RAS facilities, they pro-
pose integrating microalgal cultures (suspended or immo-
bilized) as an additional treatment unit (Ramli et al. 2020). 
The additional unit could be incorporated alone or with 
a nitrification biofilter. In the first case, the ammonium 
tolerance of the selected microalgal species is critical. 
Accordingly, these systems' high retention times and light 
supply are the two main issues, introducing a meaningful 
impact on production costs. For example, production costs 

Fig. 4  Evolution of A) ammonium, B) nitrate, and C) phosphate con-
centrations in the pilot-scale biofilter operating as a continuous sys-
tem with natural rainbow trout wastewater. Error bars represent stand-
ard deviations (N = 2)
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could grow 20 to 30% if only microalgae assimilate all 
the ammonia-N generated in a tilapia RAS facility (Ramli 
et al. 2020). Although these systems are not yet fully opti-
mized, microalgae introduce other vital advantages.

The microbial communities from RAS biofilters with dif-
ferent fish species vary significantly in their composition 
from one another (Sugita et al. 2005). However, the type 
of water (freshwater or marine) or specific RAS operating 
conditions (e.g., installation of UV lamps and ozonizers) 
leads to unique microbial flora development (Schreier et al. 
2010). A nitrification biofilter was originally the source of 
the bacterial biomass; consequently, it was expected to find 
Nitrosomonas, Nitrosococcus and Nitrospira. Nonetheless, 
Flavobacterium and Sphingobacterium were identified along 
with the heterotrophic bacteria (e.g. Pseudomonas stutzeri), 
also commonly found in RAS systems. Contrary to expected, 
the analysis did not show the heterotrophic denitrifiers since 
anaerobic conditions were incompatible with photosynthetic 
oxygen produced within the algal–bacterial beads.

Ramli et al. (2017) reported significant differences in the 
composition of bacterial communities between a conven-
tional RAS system and a RAS supplemented with an algal 
pond as an additional treatment unit. The authors concluded 
that the bacteria contributing to those differences were 
mainly heterotrophic. This additional unit contributed to sta-
bilized nitrite concentrations after any system perturbation.

Our pilot-scale biofilter reached 78% and 64% of the 
nitrate and phosphate consumption, meaning depuration 
rates of 284.7 and 165.5 mg  L−1  day−1, respectively. These 
values are high compared to systems that use immobi-
lized microalgae for treating wastewater (tertiary/polishing 
treatment) (Taziki et al. 2015). However, different strains, 
operational conditions and immobilization techniques led 
to considerable differences in the depuration rates. Mallick 
and Rai (1994) compared N-nitrate and N-nitrite depura-
tion rates of two photosynthetic cells: Anabaena doliolum 
and Chlorella vulgaris. The comparison between suspended 
cells and cells immobilized in chitosan, agar, alginate, and 
carrageenan showed the best results for chitosan biomedia. 
In this case, A. doliolum and C. vulgaris reached nitrate 
depuration rates of 3.66 and 2.86 μg  mg−1  h−1 (based on 
dry biomass), respectively. Our study reached nitrate depura-
tion rates of 86.2 μg  mg−1  h−1 (based on dry biomass). The 

inhibition effect of high ammonium concentration or other 
inhibitor constituents of the wastewater could explain these 
differences. Algal–bacterial beads used in this study per-
formed well in nitrate removal, even if we compared them 
to suspended microalgal cultures. For example, the best 
results found for C. vulgaris and Neochloris oleoabundans 
are 103.3 and 150.74 mg  L−1  day−1, respectively (Li et al. 
2008; Hulatt et al. 2012).

Unlike nitrate, microalgae actively store phosphate (Pow-
ell et al. 2009). They face low concentrations of phosphate in 
their natural environment. Therefore, microalgae must store 
a large amount of phosphate whenever it becomes available 
(Solovchenko et al. 2019). However, high concentrations 
of phosphate could inhibit growth. For instance, more than 
150 mg  L−1 and 24 mg  L−1 inhibited growth of the green 
microalga Chlorella (Li et al. 2018)) and the dinoflagellate 
Peridinium reticulatum (Gallardo-Rodríguez et al. 2009), 
respectively. Phosphate uptake rates strongly depend on the 
strain and operational conditions. To illustrate, suspended 
C. vulgaris achieved a phosphate depuration rate of 62 mg 
 L−1  day−1 (Singh et al. 2018), but phosphate depuration rates 
by C. vulgaris decreased to 2 mg  L−1  day−1 for wastewater 
(Lavrinovics et al. 2021). Other species showed values even 
lower, as Lavrinovics et al. (2021) reported.

Conclusions

We demonstrated the improvement in the depuration rates 
using a biofilter with immobilized algal–bacterial beads. 
The ammonium depuration rates of the pilot-scale continu-
ous photo-biofilter were comparable to industrial bacterial 
biofilters, but our photo-biofilters could reduce operational 
costs and recycle exhausted algal–bacterial biomass. The 
primary concern is the beads' mechanical and physical sta-
bility and durability. Further investigation should predict 
the life span of beads to determine the harvesting time of 
biofilters biomedia. The algal–bacterial biomass from our 
biofilters is a valuable by-product of the aquaculture facili-
ties, unlike typical plastic biomedia. Microalgae capture dif-
ferent forms of nitrogen and phosphorus, unlike bacteria of 
traditional nitrification–denitrification systems. Accordingly, 
the obvious application for our algal–bacterial biomass is 

Table 5  Average depuration 
rates from the pilot-scale 
biofilter

1  liquid volume estimated from Eq. 2
2  biomedia volume estimated from Eq. 3
3  biomedia surface estimated from Eq. 4

DR1 (mg  L−1  day−1) VDR2 (mg  L−1  day−1) SDR3 (mg  m−2  day−1)

Ammonium 148.5 ± 10.1 1188 ± 81.2 605.9 ± 0.029
Nitrate 284.7 ± 11.9 2277 ± 0.07 1161 ± 48.6
Phosphate 165.5 ± 23.6 1324 ± 184 675 ± 94.1
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the production of biofertilizers and biostimulants. Ongoing 
studies also include transforming biomass into new applica-
tions like biomaterials.
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