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Abstract: In this paper, we define a multivariate order based on the concept of orthant directional
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in the literature are also studied. We analyze the order between two random vectors in terms of their
associated copulas and illustrate our results with several examples.

Keywords: copula; dependence concept; directional coefficient; stochastic order

MSC: 60E15; 62H05

1. Introduction

There are various approaches to examine how random variables relate in terms of
dependence. Jogdeo [1] highlights that this area stands as one of the most extensively
researched subjects within the realms of probability and statistics. A multivariate model
should be analyzed for the type of dependence structure that it covers so one can know
whether a particular model might be usable for a given application or dataset. Among the
types of dependence studied in the literature, we focus on negative or positive dependence.
A positive dependence notion is any criterion which can mathematically describe the
tendency of the components of a n-variate random vector to assume concordant values [2].
In this work, there is no attempt to be exhaustive in giving all dependence concepts studied
in the literature. We restrict the attention to some dependence structures.

Let (Ω,F ,P) be a probability space, where Ω is a non-empty set, F is a σ-algebra of
subsets of Ω, and P is a probability measure on F . Let n be a natural number such that
n ≥ 2, and let X = (X1, X2, . . . , Xn) be a random vector from Ω to Rn

= [−∞,+∞]n with
distribution function F and survival function F, where F(x1, x2, . . . , xn) = P[X1 > x1, X2 >
x2, . . . , Xn > xn], for all xi ∈ R. It is said that X- or F- is positive upper orthant-dependent
(PUOD) if

F(x1, x2, . . . , xn) ≥
n

∏
i=1

P[Xi > xi] for all xi ∈ R (1)

and X- or F- is positive lower orthant-dependent (PLOD) if

F(x1, x2, . . . , xn) ≥
n

∏
i=1

P[Xi ≤ xi] for all xi ∈ R (2)

(see, e.g., [3]). If both (1) and (2) hold, then X or F is said to be positive orthant-dependent
(POD). Note that, for the bivariate case, (1) and (2) are equivalent—this is not the case in
higher dimensions: see [4] (Example 5.26)—and in this case, the dependence property is
called positive quadrant dependence (PQD). If the inequalities (1) and (2) are reversed, then it
is said that X is negative upper orthant-dependent (NUOD) and negative lower orthant-dependent
(NUOD), respectively. For more details on these and other dependence concepts, see,
e.g., [2,3,5–8].
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In [9], the orthant dependence according to a direction is defined as follows: Let
α = (α1, α2, . . . , αn) ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n. X or F is said to be
orthant positive- (respectively, negative-) dependent according to the directionα—written PD(α)
(respectively, ND (α))—if

P
[

n⋂
i=1

(αiXi > xi)

]
≥

n

∏
i=1

P[αiXi > xi] for all xi ∈ R (3)

(respectively, we reverse the inequality in (3)). Directional coefficients which detect depen-
dence in multivariate distributions are studied in [10].

If X is both PD(α) (respectively, ND(α)) and PD(-α) (respectively, ND(-α)), then X is
said to be strongly positive (respectively, negative), and dependent according to the direction α,
written SPD(α) (respectively, SND(α)).

Note that, for α = 1 = (1, 1, . . . , 1), the concepts of PD(α) (respectively, ND(α)) and
PUOD (respectively, NUOD are the same; and for α = −1 = (−1,−1, . . . ,−1), the concepts
of PD(α) (respectively, ND(α))) and PLOD (respectively, NLOD) are the same.

In the following, we will restrict our study based on the positive PLOD, PUOD,
PD(α), and SPD(α) concepts. Similar results can be obtained if we base it on the respective
negative concepts.

The positive dependence concepts defined above result from comparing a multivariate
vector with a random vector of independent random variables with the same corresponding
univariate margins. Of course, comparisons can be made via dependence orderings.
Several dependence (partial) orderings, which compare the amount of dependence in two
different random vectors of the same length and with the same marginal distributions,
have been studied (see, e.g., [3,5,11–13]). Particularly, in a parametric family of multivariate
distributions, the parameter is interpretable as a dependence parameter if the amount of
dependence is increasing, or decreasing, as the parameter increases. It is the interest of
comparing two multivariate distributions in the sense of some dependence concept.

The next definition recalls some dependence orderings, where Γn(F1, F2 . . . , Fn),
n ≥ 2, denotes the class of all the n-dimensional distributions with univariate marginals
F1, F2, · · · , Fn, that is, the Fréchet class, and the function ϕ : Rn → R is supermodular, i.e.,
which satisfies

ϕ(x) + ϕ(y) ≤ ϕ(x ∧ y) + ϕ(x ∨ y)

for any x, y ∈ Rn, where x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn) and x ∨ y = (x1 ∨
y1, x2 ∨ y2, . . . , xn ∨ yn), where ∧ and ∨ are the minimum and the maximum operators, respec-
tively.

Definition 1. Let X and Y be two random vectors with respective distribution functions F and G
in Γn(F1, F2, . . . , Fn), n ≥ 2, and survival functions F and G. It is said that:

(i) X is smaller than Y in the positive upper orthant dependence order (denoted by X ≤PUOD Y)
if F(x) ≤ G(x) for all x ∈ Rn.

(ii) X is smaller than Y in the positive lower orthant dependence order (denoted by X ≤PLOD Y) if
F(x) ≤ G(x) for all x ∈ Rn.

(iii) X is smaller than Y in the positive orthant dependence order (denoted by X ≤POD Y) if
F(x) ≤ G(x) and F(x) ≤ G(x) for all x ∈ Rn.

(iv) X is smaller than Y in the supermodular order (denoted by X ≤sm Y) if E[ϕ(X)] ≤ E[ϕ(Y)]
for any supermodular function ϕ : Rn → R provided the expectations exit.

Note that, for the bivariate case, the ≤POD order in Definition 1(iii) can be said to be
the ≤PQD order, and from (i), (ii) and (iii), we have

X ≤POD Y ⇐⇒ X ≤PUOD Y and X ≤PLOD Y. (4)
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Moreover,
X ≤sm Y =⇒ X ≤POD Y (5)

(see [13] [Equation (9.A.17)]), and, for n = 2, ≤sm and ≤PQD are equivalent. For further
details about these and others dependence orders, see, e.g., [2,3,5,13–15] and the references
therein.

Joe [5] [p. 39] postulated a number of desirable axioms that a multivariate positive
dependence order should satisfy. Later, Colangelo et al. [2] gave the following slight
variation of these postulates:

P1. It should be a pre-order (reflexive and transitive).
P2. It should be antisymmetric.
P3. It should imply the PQD order of every (corresponding) bivariate marginal distribution.
P4. It should be closed under marginalization.
P5. It should be closed under limits in distribution.
P6. It should be closed under the permutation of the components.
P7. It should be closed under component-wise strictly increasing transformation.
P8. It should be maximal at the upper Fréchet bound; and, in the bivariate case, it should

be minimal at the lower Fréchet bound.

Our main goal in this work is the study, in any dimension greater than or equal to 2, of
the presence of orders that are not “detected” by the well-known PLOD and PUOD orders,
and for this, we use the notion of orthant dependence according to the direction of a vector.

This paper is structured as follows. In Section 2, we define a new order based on the
concept of positive dependence given in [9] and study some of its properties. Also, the
relationship with other dependence orders given in the literature are studied. In Section 3,
we study the comparison of two random vectors in terms of their associated copulas and
provide several examples.

2. New Definitions and Basic Properties

Based on the PD(α) notion given in (3), and with the aim of comparing the strength of
the positive dependence in a particular direction of two underlying multivariate distribu-
tions, we provide the following dependence orderings.

Definition 2 (The PD(α) order). Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
random vectors with respective distribution functions F and G and survival functions F and G. Let
α = (α1, α2, . . . , αn) ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n. X is said to be smaller than Y
in the positive dependence according to the direction α order, denoted by X ≤PD(α) Y, if, for every
x = (x1, x2, . . . , xn) ∈ Rn

, we have

P
[

n⋂
i=1

(αiXi > xi)

]
≤ P

[
n⋂

i=1

(αiYi > xi)

]
. (6)

Note that, from Equations (3) and (6), X is PD(α) if, and only if, XInd ≤PD(α) X, where
XInd is a random vector with the same univariate marginals as X but with independent
components. Also observe that X ≤PD(α) Y is equivalent to αX ≤PUOD αY or −αX ≤PLOD
−αY, where αX = (α1X1, . . . , αnXn) and similarly αY.

From the SPD(α) notion, a stronger order than that of the PD(α) order can be defined
as follows.

Definition 3 (The SPD(α) order). Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two
random vectors with respective distribution functions F and G and survival functions F and G. Let
α = (α1, α2, . . . , αn) ∈ Rn such that |αi| = 1 for all i = 1, 2, . . . , n. X is said to be smaller than Y
in the strongly positive dependence according to the direction α order, denoted by X ≤SPD(α) Y, if,
X ≤PD(α) Y and X ≤PD(−α) Y.
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Based on [2] (Example 2.15), the next example shows two vectors which are ordered
in the sense of the PD(α) order but not in the SPD(α) one.

Example 1. Let X1, X2, X3 be three independent and identically distributed Bernoulli random
variables with a common parameter 0.7, and let Y = (Y1, Y2, Y3) be a random vector such that
P[Y1 = 0, Y2 = 0, Y3 = 1] = 0.2, P[Y1 = 1, Y2 = 1, Y3 = 1] = 0.5 and P[Y1 = 0, Y2 = 1,
Y3 = 0] = P[Y1 = 1, Y2 = 0, Y3 = 0] = P[Y1 = 1, Y2 = 1, Y3 = 0] = 0.1. Note that Y1, Y2 and
Y3 are Bernoulli distributed random variables with parameters 0.7. After some straightforward
calculations, it can be proven that X ≤PD(1,1,1) Y, given that P[X1 > x1, X2 > x2, X3 > x3] ≤
P[Y1 > x1, Y2 > x2, Y3 > x3] for all (x1, x2, x3). However, P[X1 ≤ 0, X2 ≤ 0, X3 ≤ 0] = 0.33 ≥
0 = P[Y1 ≤ 0, Y2 ≤ 0, Y3 ≤ 0], and thus, X ≰PD(−1,−1,−1) Y. Therefore, X ≰SPD(1,1,1) Y.

Some closure properties of the PD(α) order are described in the next theorem, whose
proof is straightforward and we omit it.

Theorem 1. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two random vectors in the
same Fréchet class.

(a) If X ≤PD(α) Y, then XI ≤PD(α∗) YI , for each I ⊆ {1, 2, . . . n}, and where α∗ is the sub-
vector of α whose components are in I. In other words, the PD(α) order is closed under
marginalization.

(b) If X ≤PD(α) Y, then

(g1(X1), g2(X2), . . . , gn(Xn)) ≤PD(α) (g1(Y1), g2(Y2), . . . , gn(Yn)),

whenever gi, i = 1, 2, . . . , n, are n real-valued and increasing functions.
(c) If X ≤PD(α) Y and U ≤PD(β) V, with X and Y independent of U and V, respectively, then,

(X , U) ≤PD(α,β) (Y, V).

Proof. Let J = {1, 2, . . . , n} and I ⊆ J.
Firstly, since X ≤PD(α) Y, for any (x1, x2, . . . , xn) ∈ Rn

, it follows that

P
[⋂

i∈I
(αiXi > xi)

]
= P

⋂
i∈I

(αiXi > xi),
⋂

i∈J\I

(αiXi > yi)


≤ P

⋂
i∈I

(αiYi > xi),
⋂

i∈J\I

(αiYi > yi)


= P

[⋂
i∈I

(αiYi > xi)

]
,

where yi is the left endpoint in support of αiXi for every i ∈ J \ I, whence part (a) has been
proven.



Mathematics 2024, 12, 419 5 of 14

By considering I = {i ∈ J : αi > 0}, part (b) follows from the following:

P
[

n⋂
i=1

(αigi(Xi) > xi)

]
= P

⋂
i∈I

(gi(Xi) > xi),
⋂

i∈J\I

(gi(Xi) < xi)


= P

⋂
i∈I

(Xi > g−1
i (xi)),

⋂
i∈J\I

(Xi < g−1
i (xi))


≤ P

⋂
i∈I

(Yi > g−1
i (xi)),

⋂
i∈J\I

(Yi < g−1
i (xi))


= P

[
n⋂

i=1

(αigi(Yi) > xi)

]
.

Finally, for part (c), let U and V be two random vectors with dimension m. It follows

P
[

n⋂
i=1

(αiXi > xi),
m⋂

i=1

(βiUi > xi)

]
= P

[
n⋂

i=1

(αiXi > xi)

]
P
[

m⋂
i=1

(βiUi > xi)

]

≤ P
[

n⋂
i=1

(αiYi > xi)

]
P
[

m⋂
i=1

(βiVi > xi)

]

= P
[

n⋂
i=1

(αiYi > xi),
m⋂

i=1

(βiVi > yi)

]
,

completing the proof.

Note that the properties in Theorem 1 are some of the desirable postulates that a
multivariate positive dependence order should satisfy (specifically, P4 and P7). Moreover,
the PD(α) order is also reflexive, transitive, and antisymmetric.

The following example shows that the PD(α) order does not imply the PQD order of
every (corresponding) bivariate marginal, that is, postulate P3 is not satisfied.

Example 2. Let X1, X2, X3 be three independent and identically distributed Bernoulli random
variables with respective parameters 0.5, 0.9, and 0.8, and let Y = (Y1, Y2, Y3) be a random
vector such that P[Y1 = 0, Y2 = 0, Y3 = 1] = 0.1, P[Y1 = 1, Y2 = 1, Y3 = 1] = 0.5 and
P[Y1 = 0, Y2 = 1, Y3 = 0] = P[Y1 = 0, Y2 = 1, Y3 = 1] = 0.2. Note that Y1, Y2 and Y3
are Bernoulli distributed random variables with parameters 0.5, 0.9, and 0.8, respectively. After
some straightforward calculations, it can be proven that Y ≤PD(−1,1,1) X, given that P[Y1 ≤ x1,
Y2 > x2, Y3 > x3] ≤ P[X1 ≤ x1, X2 > x2, X3 > x3] for all (x1, x2, x3). However, P[Y1 >
0, Y2 > 0] = 0.5 ≥ 0.45 = P[X1 > 0, X2 > 0], and thus, (Y1, Y2) ≤PQD (X1, X2) does not hold.

Now, we prove that the PD(α) order is closed under weak convergence, where −→st
denotes convergence in distribution.

Theorem 2. Let {Xj}j∈N and {Yj}j∈N be two sequences of random vectors such that Xj −→st X
and Yj −→st Y. If Xj ≤PD(α) Yj for all j ∈ N, then X ≤PD(α) Y.

Proof. If Xj ≤PD(α) Yj for all j ∈ N, then αXj ≤PUOD αYj for all j ∈ N. Moreover, by using
the continuous mapping theorem [16,17], it follows that αXj −→st αX and αYj −→st αY.
Thus, given that the PUOD order is closed under weak convergence, we have αX ≤PUOD αY,
whence X ≤PD(α) Y, which completes the proof.
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In addition, some results related to the Fréchet upper bound for the bi- and trivariate
cases are given. Recall that the Fréchet upper bound F+ in the class Γn(F1, F2, . . . , Fn), n ≥ 2,
is defined as F+(x1, x2, . . . , xn) = min{F1, F2, . . . , Fn}.

Proposition 1. Let X and X+ be two bivariate random vectors with respective distribution functions
F and F+ in Γn(F1, F2), and let α = (α1, α2) such that |αi| = 1, i = 1, 2.

(i) If α1 · α2 = 1, then X ≤PD(α) X+.
(ii) If α1 · α2 = −1, then X+ ≤PD(α) X.

Proof. First, note that, for α = (1, 1) or α = (−1,−1), the PD(α) order is equivalent to the
PQD order between random vectors, and it is well known (see [13, p. 390]) that X ≤PQD X+.
Thus, the result in (i) holds.

Now, consider α = (−1, 1). It follows

P(X1 ≤ x1, X2 > x2) = F1(x1)− P[X1 ≤ x1, X2 ≤ x2]

≥ F1(x1)− P[X+
1 ≤ x1, X+

2 ≤ x2]

= P[X+
1 ≤ x1, X+

2 > x2],

where the inequality follows from (i), that is, F(x1, x2) ≤ F+(x1, x2) for all (x1, x2). Thus,
X+ ≤PD(−1,1) X. The proof for α = (1,−1) is analogously obtained and therefore,
(ii) holds.

The following example shows that, for the trivariate case, the results in Proposition 1
do not hold.

Example 3. Let Y = (Y1, Y2, Y3) be a random vector defined as in Example 2, and let
Y+ = (Y+

1 , Y+
2 , Y+

3 ) be a random vector with the same univariate marginals of Y and joint distri-
bution function given that FY+(y1, y2, y3) = min{F1(y1), F2(y2), F3(y3)}, that is, the trivariate
upper Fréchet bound. It is easy to show that, for α = (−1,−1, 1), we have 0.1 = P[Y1 ≤
0.5, Y2 ≤ 0.5, Y3 > 0.5] > P[Y+

1 ≤ 0.5, Y+
2 ≤ 0.5, Y+

3 > 0.5] = 0, but 0.1 = P[Y1 ≤ 0.5, Y2 ≤
1, Y3 > 0.5] < P[Y+

1 ≤ 0.5, Y+
2 ≤ 1, Y+

3 > 0.5] = 0.3. Moreover, for α = (−1,−1,−1), we
obtain 0 = P[Y1 ≤ 0.5, Y2 ≤ 0.5, Y3 ≤ 0.5] < P[Y+

1 ≤ 0.5, Y+
2 ≤ 0.5, Y+

3 ≤ 0.5] = 0.1, but
0.2 = P[Y1 ≤ 0.5, Y2 ≤ 1, Y3 ≤ 0.5] > P[Y+

1 ≤ 0.5, Y+
2 ≤ 1, Y+

3 ≤ 0.5] = 0.1.

To conclude this section, regarding the relationship with other stochastic orders, we
summarize some straightforward results:

(a) For n = 2, and α = (1, 1) or α = (−1,−1), then

X ≤PD(α) Y is equivalent to X ≤PQD Y.

(b) If n > 2 and α = 1, then

X ≤PD(α) Y is equivalent to X ≤PUOD Y. (7)

(c) If n > 2 and α = −1, then

X ≤PD(α) Y is equivalent to X ≤PLOD Y. (8)

(d) If α = 1, from (4), (7) and (8),

X ≤SPD(α) Y if and only if X ≤PQD Y.

(e) From (5), if X ≤sm Y, then X ≤SPD(α) Y with α = 1.
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(f) In the general case, for α = (α1, α2, . . . , αn) with |αi| = 1, i = 1, 2, . . . , n, from (4), it
follows that

X ≤SPD(α) Y =⇒ αX ≤POD αY and − αX ≤POD −αY.

(g) Finally, X ≤PD(α) Y does not generally imply that αX ≤sm αY. For instance, for α = 1,
it can be seen by using Example 1 and taking into account that X ≤sm Y implies
P[X ≤ x] ≤ P[Y ≤ x] for all x.

3. Directional Dependence Orders and Copulas

Copulas are a very useful tool for studying the positive dependence property of a
random vector—since it contains the dependence properties of the corresponding multi-
variate distribution function, independently of the marginal distributions—and scale-free
measures of dependence, and they represent a starting point for constructing families
of distributions (see [18]). Our goal now is the study of some of the orders given in the
previous section in terms of copulas.

For n ≥ 2, an n-dimensional copula (n-copula, for short) is the restriction to [0, 1]n of a
continuous n-dimensional distribution function whose univariate margins are uniform on
[0, 1]. The importance of copulas in statistics is described in the following result due to Abe
Sklar [19]: let X be a random vector with a joint distribution function F and one-dimensional
marginal distributions F1, F2, . . . , Fn, respectively. Then, there exists an n-copula C (which
is uniquely determined on ×n

i=1RangeFi) such that

F(x) = C(F1(x1), F2(x2), . . . , Fn(xn)) for all x ∈ Rn

(for a complete proof of this result, see [20]). Thus, copulas link joint distribution functions
to their one-dimensional margins. For a survey on copulas, see [4,21] and some results
about positive dependence properties and ordering by using copulas can be seen, for
instance, in [4,5,9,22–25].

Let X be a random vector with associated n-copula C, and let Xij denote the pair
of random variables with components i and j of X. CXij denotes the (i, j)-margin of C,
i.e., Cij(ui, uj) = C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1), for every 1 ≤ i < j ≤ n, which is the
2-copula associated with the pair Xij.

Archimedean copulas are an important class of copulas because they are easily con-
structed and possess many nice properties; there is a great variety of families of copulas in
this class and they have important applications in different areas. Let ϕ be a continuous
and non-increasing function from [0,+∞] to [0, 1] such that ϕ(0) = 1 and ϕ(+∞) = 0, and
let ϕ−1 be the inverse of ϕ. Then, the function given by

Cϕ(u) = ϕ

(
n

∑
i=1

ϕ−1(ui)

)
, u ∈ [0, 1]n,

is an n-copula if and only if (−1)kϕ(k)(t) ≥ 0 for k = 0, 1, . . . , n − 2, where ϕ(k) denotes the
k-th derivative of ϕ, and (−1)n−2ϕ(n−2) is non-increasing and convex. In such a case, we
say that Cϕ is an Archimedean n-copula, and the function ϕ is called a generator of Cϕ. For
more details, see [4,26].

In this section, we deal with the study of n-copulas associated with random vectors
which are ordered in the sense of the PD(α) order.

3.1. The Bivariate Case

By simplicity, we start our study with the bivariate case.

Theorem 3. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with respective associated
2-copulas CX and CY. Let α = (α1, α2) such that |αi| = 1, i = 1, 2.
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(i) If α1 · α2 = 1, then X ≤PD(α) Y if and only if CX(u, v) ≤ CY(u, v) for all (u, v) ∈ [0, 1]2.
(ii) If α1 · α2 = −1, then X ≤PD(α) Y if and only if CY(u, v) ≤ CX(u, v) for all (u, v) ∈ [0, 1]2.

Proof. Consider the random vectors X∗ = (α1X1, α2X2) and Y∗ = (αY1, α2Y2) with
α = (α1, α2) and |αi| = 1, i = 1, 2, and assume that X ≤PD(α) Y. Then, from Definition 2, it
holds that

FX∗(x1, x2) ≤ GY∗(x1, x2) (9)

for all (x1, x2) ∈ R2, where FX∗ and GY∗ are the respective survival functions of X∗ and
Y∗. By using the relationship between the survival function of a random vector and its
associated survival copula (see, [4] [p. 32]), (9) is equivalent to

ĈX∗(Fα1X1(x1), Fα2X2(x2)) ≤ ĈY∗(Fα1X1(x1), Fα2X2(x2)), (10)

where ĈX∗ and ĈY∗ are the respective survival copulas associated with X∗ and Y∗. Moreover,
given that X and Y are in the same Fréchet class and by considering the relationship between
the copula and the corresponding survival copula, (10) is equivalent to

CX∗(Fα1X1(x1), Fα2X2(x2)) ≤ CY∗(Fα1X1(x1), Fα2X2(x2)).

Therefore, X ≤PD(α) Y is equivalent to CX∗(u, v) ≤ CY∗(u, v), for all u, v ∈ [0, 1].
Since copulas are invariant under the strictly increasing transformation of their com-

ponents (see [4] (Theorem 2.4.3)), we have that, for α = (1, 1), X ≤PD(α) Y is equivalent to
CX(u, v) ≤ CY(u, v), for all u, v ∈ [0, 1]. Furthermore, using [4] (Theorem 2.4.4), it follows
that, for α = (−1,−1, ), CX∗(u, v) = u + v − 1 + CX(1 − u, 1 − v), and analogously for
CY∗(u, v). So, for this case, X ≤PD(α) Y is equivalent to CX(1 − u, 1 − v) ≤ CY(1 − u, 1 − v)
for all u, v ∈ [0, 1], that is, (i) is obtained.

By using [4] (Theorem 2.4.4), the result in (ii) is obtained following the same steps as
above, which completes the proof.

In the sequel, with the use of copulas, for the PD(α) order, we will use both the
notations X ≤PD(α) Y and CX ≤PD(α) CY interchangeably.

Example 4. Let CCA
θ be the parametric family of Cuadras–Augé two-copulas given by CCA

θ (u, v) =
(uv)1−θ min{u, v}θ for every (u, v) ∈ [0, 1]2, where θ ∈ [0, 1] (see [4,27]). In [4], (Example 2.19),
it is shown that CCA

θ1
≤PD(−1,−1) CCA

θ2
for θ1 ≤ θ2. Furthermore, if α1 · α2 = 1 (respectively,

α1 · α2 = −1), we have CCA
θ1

≤PD(α) CCA
θ2

if and only if θ1 ≤ θ2 (respectively, θ2 ≤ θ1).

Example 5. Let CAMH
ϕ,δ be the Ali–Mikhail–Haq (AMH) Archimedean 2-copula [28] given by

CAMH
ϕ,δ (u, v) =

uv
1 + δ(1 − u)(1 − v)

for all (u, v) ∈ [0, 1]2, with δ ∈ [−1, 1] and generator ϕ(t) = 1−δ
et−δ

. In [4] (Exercise 2.32), it
is stated that CAMH

ϕ,δ1
≤PD(−1,−1) CAMH

ϕ,δ2
for δ1 ≤ δ2. Furthermore, if α1 · α2 = 1 (respectively,

α1 · α2 = −1), we have CAMH
ϕ,δ1

≤PD(α) CAMH
ϕ,δ2

if, and only if, δ1 ≤ δ2 (respectively, δ2 ≤ δ1).

3.2. The Trivariate Case

Usually, the properties and results obtained for two-copulas become more difficult to
develop in higher dimensions. Next, we show this fact, focusing on the trivariate case, for
the sake of simplicity.

Following the same development as that of [9] (Theorem 2), the next result holds.
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Theorem 4. Let X and Y be two trivariate random vectors with respective associated 3-copulas CX
and CY. Let CXij and CYij denote the (i, j)−margin of CX and CY, respectively, for 1 ≤ i < j ≤ 3.
Then, for all (u, v, w) ∈ [0, 1]3, we have:

(i) X ≤PD(−1,−1,−1) Y if and only if

CX(u, v, w) ≤ CY(u, v, w).

(ii) X ≤PD(−1,−1,1) Y if and only if

CX12(u, v)− CX(u, v, w) ≤ CY12(u, v)− CY(u, v, w).

(iii) X ≤PD(−1,1,−1) Y if and only if

CX13(u, w)− CX(u, v, w) ≤ CY13(u, w)− CY(u, v, w).

(iv) X ≤PD(1,−1,−1) Y if and only if

CX23(v, w)− CX(u, v, w) ≤ CY23(v, w)− CY(u, v, w).

(v) X ≤PD(−1,1,1) Y if and only if

CX(u, v, w)− CX12(u, v)− CX13(u, w) ≤ CY(u, v, w)− CY12(u, v)− CY13(u, w).

(vi) X ≤PD(1,−1,1) Y if and only if

CX(u, v, w)− CX12(u, v)− CX23(v, w) ≤ CY(u, v, w)− CY12(u, v)− CY23(u, w).

(vii) X ≤PD(1,1,−1) Y if and only if

CX(u, v, w)− CX13(u, w)− CX23(v, w) ≤ CY(u, v, w)− CY13(u, w)− CY23(v, w).

(viii) X ≤PD(1,1,1) Y if and only if

CX12(u, v) + CX13(u, w) + CX23(v, w)− CX(u, v, w) ≤
CY12(u, v) + CY13(u, w) + CY23(v, w)− CY(u, v, w).

Proof. Let X be the random vector with the joint distribution function FX and associated
three-copula CX. For α = (−1,−1,−1), we have

P[α1X1 > x1, α2X2 > x2, α3X3 > x3] = P[X1 ≤ x1, X2 ≤ x2, X3 ≤ x3]

= FX(x1, x2, x3)

for all (x1, x2, x3) ∈ R3
. From Sklar’s theorem, we have

FX(x1, x2, x3) = CX(F1(x1), F2(x2), F3(x3)) = CX(u1, u2, u3)

for all (u1, u2, u3) ∈ [0, 1]3, whence part (i) easily follows.
To prove part (ii), note that, for α = (−1,−1, 1), we have

P[α1X1 > x1, α2X2 > x2, α3X3 > x3] =P[X1 ≤ x1, X2 ≤ x2, X3 > x3]

=P[X1 ≤ x1, X2 ≤ x2]− P[X1 ≤ x1, X2 ≤ x2, X3 ≤ x3]

= F1,2(x1, x2)− FX(x1, x2, x3)

for all (x1, x2, x3) ∈ R3
, where Fi,j denotes the (i, j)-margin of FX for 1 ≤ i < j ≤ n. Parts

(iii) and (iv) can be proved in a similar way.
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Part (v)—and similarly, parts (vi) and (vii)—follows from the fact that, for
α = (−1, 1, 1) and for all (x1, x2, x3) ∈ R3

, we have

P[α1X1 > x1, α2X2 > x2, α3X3 > x3] =P[X1 ≤ x1, X2 > x2, X3 > x3]

=P[X1 ≤ x1, X2 > x2]− P[X1 ≤ x1, X2 > x2, X3 ≤ x3]

=P[X1 ≤ x1]− P[X1 ≤ x1, X2 ≤ x2]

−P[X1 ≤ x1, X3 ≤ x3]

+P[X1 ≤ x1, X2 ≤ x2, X3 ≤ x3]

= x1 − F1,2(x1, x2)− F1,3(x1, x3) + FX(x1, x2, x3). (11)

Finally, for part (viii), note that, for every (x1, x2, x3) ∈ R3
and using (11), we have

P[α1X1 > x1, α2X2 > x2, α3X3 > x3] = P[X2 > x2, X3 > x3]

−P[X1 ≤ x1, X2 > x2, X3 > x3]

= P[X2 > x2]− P[X2 > x2, X3 ≤ x3]

−P[X1 ≤ x1, X2 > x2, X3 > x3]

= 1 − x2 − P[X3 ≤ x3] + P[X2 ≤ x2, X3 ≤ x3]

−P[X1 ≤ x1, X2 > x2, X3 > x3]

= 1 − x1 − x2 − x3 +−F1,2(x1, x2) + F1,3(x1, x3)

+F2,3 − FX(x2, x3),

which completes the proof.

Example 6. Let CFGM
θ be the one-parameter three-copula given by

CFGM
θ (u) =

( 3

∏
i=1

ui

)[
1 + θ

3

∏
i=1

(1 − ui)

]
, u ∈ [0, 1]3, (12)

with θ in [0, 1]. CFGM
θ belongs to the Farlie–Gumbel–Morgenstern family of 3-copulas (see [4,21]).

Consider two members of this family, say, CFGM
θ1

and CFGM
θ2

. For ∏3
i=1 αi = −1 (respectively,

∏3
i=1 αi = 1), we have that CFGM

θ1
≤PD(α) CFGM

θ2
if and only if θ1 ≤ θ2 (respectively, θ2 ≤ θ1).

An additional example involving a bi-parametric family of three-copulas and the
three-copula for three independent random variables is given in [9] (Example 3).

The following result, in which =st denotes equality in distribution, shows that if
two (trivariate) random vectors are ordered in all directions, then they have the same
distribution.

Theorem 5. Given the two trivariate random vectors X and Y, we have that X ≤PD(α) Y for every
direction α ∈ [0, 1]3, with |αi| = 1, i = 1, 2, 3, if and only if X =st Y.

Proof. Assume that X ≤PD(α) Y, for all directions α ∈ [0, 1]3. From items (i) and (iii) in
Theorem 4 and for every (u, v, w) ∈ [0, 1]3, it follows that CY(u, v, w) ≥ CX(u, v, w) ≥
CY(u, v, w) + CX13(u, w) − CY13(u, w), and therefore, CX13(u, w) ≤ CY13(u, w). On the
other hand, from (ii) and (v), we obtain CY(u, v, w) + CX12(u, v)− CY12(u, v) + CX13(u, w)−
CY13(u, w) ≥ CX(u, v, w) ≥ CY(u, v, w)+CX12(u, v)−CY12(u, v), and therefore CX13(u, w) ≥
CY13(u, w). Combining both results, it follows that CX1,3(u, w) = CY13(u, w). Similarly, us-
ing the different items, we obtain CX12(u, v) = CY12(u, v) and CX23(v, w) = CY23(v, w). From
(iii), we have CY(u, v, w) ≤ CX(u, v, w) + CY13(u, w)− CX13(u, w) = CX(u, v, w), and hence,
we conclude CY(u, v, w) = CX(u, v, w).
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3.3. The PD(−1) Order for Archimedean n-Copulas

The next result—whose proof can be found in [29] for the bivariate case, and in [30] for
the general case—shows, under some conditions, the PD(−1) order for two Archimedean
n-copulas. For that, we recall that a function f defined on [0,+∞] is super-additive if
f (x + y) ≥ f (x) + f (y) for all x, y ∈ [0,+∞].

Proposition 2. For two Archimedean n-copulas C1 and C2 with respective generators ϕ1 and ϕ2,
if ϕ−1

2 ◦ ϕ1 is super-additive, and then C1 ≤PD(−1) C2.

As an application of Proposition 2, we provide an example.

Example 7. For all t ∈ [0,+∞], given the generators ϕ1(t) = 1−δ
et−δ

, with δ ∈ [0, 1], and
ϕ2(t) = (1 + γt)−1/γ, with γ > 0, we consider the generalizations to n-dimensions of the AMH
family of Archimedean two-copulas—denoted by CAMH

n,ϕ1,δ — given in Example 5 (see [31]) and a
Clayton subfamily of Archimedean two-copulas—denoted by CC

n,ϕ2,γ— (see [31,32]). For the sake of

simplicity, we consider γ = 1. Since (ϕ−1
2 ◦ ϕ1)(t) = et−δ

1−δ − 1 for all t ∈ [0,+∞], we have that,
for all x, y ∈ [0,+∞],(

ϕ−1
2 ◦ ϕ1

)
(x + y) ≥

(
ϕ−1

2 ◦ ϕ1

)
(x) +

(
ϕ−1

2 ◦ ϕ1

)
(y)

if and only if
ex+y − δ

1 − δ
− 1 ≥ ex − δ

1 − δ
− 1 +

ey − δ

1 − δ
− 1,

which is equivalent to
ex+y ≥ ex + ey − 1,

i.e.,
(ex − 1)(ey − 1) ≥ 0,

whence ϕ−1
2 ◦ ϕ1 is super-additive, and hence, from Proposition 2, we have CAMH

n,ϕ1,δ ≤PD(−1) CC
n,ϕ2,1.

Remark 1. As Nelsen [4] notes, verifying the super-additivity of ϕ−1
2 ◦ ϕ1 is not easy, but there

exist several results that give sufficient conditions for that super-additivity—in principle, for the
bivariate case— and can be generalized to n dimensions. We refer to [4,29,33] for more details.

However, in general, the Archimedean copulas are not ordered in the sense of the
PD(α) order for α ̸= −1, as the following example shows.

Example 8. For all t ∈ [0,+∞], given the generator ϕ3,β(t) = exp
(
−t1/β

)
, with β ∈ [1,+∞],

we consider the Gumbel–Hougaard family of Archimedean two-copulas (see [4,34,35]). A gener-
alization to n dimensions of this family, which we denote by CGH

n,ϕ3,β
, can be found in [4] (Example

4.25). We consider two members of this family, i.e., CGH
n,ϕ3,βi

for i = 1, 2. In [4], (Example 4.12), it is

shown that CGH
2,ϕ3,β2

≤PD(−1) CGH
2,ϕ3,β1

if and only if β2 ≤ β1. From Proposition 2, it is easy to prove

that “CGH
n,ϕ3,β2

≤PD(−1) CGH
n,ϕ3,β1

if, and only if, β2 ≤ β1” is also satisfied.

Now, let us consider the direction α = (−1,−1, 1). For (u, v, w) = (0.43, 0.52, 0.43), by
using Theorem 4(ii), we have CGH

3,ϕ3,3
(0.43, 0.52, 1)− CGH

3,ϕ3,3
(0.43, 0.52, 0.43) = 0.06 > 0.02 =

CGH
3,ϕ3,8

(0.43, 0.52, 1)− CGH
3,ϕ3,8

(0.43, 0.52, 0.43); however, for (u, v, w) = (0.29, 0.26, 0.1), we ob-

tain CGH
3,ϕ3,3

(0.29, 0.26, 1) − CGH
3,ϕ3,3

(0.29, 0.26, 0.1) = 0.11 < 0.14 = CGH
3,ϕ3,8

(0.29, 0.26, 1) −
CGH

3,ϕ3,8
(0.29, 0.26, 0.1); therefore, these three-copulas are not ordered in this direction α.
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3.4. Directional Coefficients

One of the most important nonparametric measures of association between the com-
ponents of a continuous random pair (X, Y) is Spearman’s rho, which we denote by ρ(C),
where C is the two-copula associated with the pair (X, Y), being

ρ(C) = 12
∫
[0,1]2

C(u, v)dudv − 3

(see [4] and the references therein for more details). This measure of association—in fact, a
measure of concordance [36]—provides information about the magnitude and direction of
the association between the random variables.

As an immediate consequence of Theorem 3, we have the following result.

Corollary 1. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors with respective associated
two-copulas CX and CY. Let α = (α1, α2) such that |αi| = 1, i = 1, 2.

(i) If α1 · α2 = 1, then X ≤PD(α) Y implies ρ(CX) ≤ ρ(CY).
(ii) If α1 · α2 = −1, then X ≤PD(α) Y implies ρ(CY) ≤ ρ(CX).

Now, we consider the trivariate case (given the complexity in higher dimensions). For
a trivariate random vector (X1, X2, X3) of continuous random variables uniform on [0, 1],
whose distribution function is the 3-copula C, the directional ρ-coefficients are defined for
each (α1, α2, α3), with |αi| = 1 for i = 1, 2, 3, as

ρ
(α1,α2,α3)
3 (C) = 8

∫
[0,1]3

Qα1α2α3(x1, x2, x3)dx1dx2dx3,

where

Qα1α2α3(x1, x2, x3) = P
[

3⋂
i=1

(αiXi > αixi)

]
−

3

∏
i=1

P[αiXi > αixi]

(see [10]). Unlike the measure Spearman’s rho, the coefficient ρ
(α1,α2,α3)
3 is not a multivariate

measure of association.

Example 9. Consider the subfamily of FGM three-copulas given by (12). Then, it is easy to show
that: (i) For ∏3

i=1 αi = −1, we have ρ
(α1,α2,α3)
3

(
CFGM

θ

)
= θ

27 ; and (ii) for ∏3
i=1 αi = 1, we have

ρ
(α1,α2,α3)
3

(
CFGM

θ

)
= − θ

27 .

As a result of our findings, we have the following outcome.

Corollary 2. Let X and Y be two trivariate vectors of continuous random variables uniform on
[0, 1] whose respective distribution functions are the three-copulas CX and CY. Let α = (α1, α2, α3)

be a direction such that |αi| = 1, i = 1, 2, 3. If X ≤PD(α) Y, then ρ
(α1,α2,α3)
3 (CX) ≤ ρ

(α1α2,α3)
3 (CY).

We note that Corollary 2 generalizes that, for the bivariate case, the POD order between
two vectors implies the order between their corresponding Spearman’s ρ coefficients (see,
for instance, [5]).

4. Conclusions

In this paper, we establish a multivariate order by leveraging the principle of orthant
directional dependence and delve into an in-depth exploration of its inherent properties.
Our investigation extends to scrutinizing the connections it shares with alternative depen-
dence orders expounded in existing literature. Furthermore, we engage in a comprehensive
analysis by comparing two random vectors through their respective associated copulas. To
provide a tangible and illustrative dimension to our findings, we incorporate a diverse set
of examples that serve to underscore and elucidate the nuances of our results.
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The study of certain outcomes regarding the Baire category for the stochastic orders
introduced within this work (similarly to those investigated in [37]) stands as a focal point
for future research.
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