
The Journal of Supercomputing

On solving the unrelated parallel machine scheduling problem: active microrheology as
a case study

--Manuscript Draft--

Manuscript Number:

Full Title: On solving the unrelated parallel machine scheduling problem: active microrheology as
a case study

Article Type: S.I. : High Performance Computing in Science and Engineering – CMMSE-2019

Keywords: Parallel scheduling; heterogeneous cluster; unrelated machines; genetic algorithm

Corresponding Author: Gloria Ortega, PhD
University of Almeria
Almeria, Spain SPAIN

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Almeria

Corresponding Author's Secondary
Institution:

First Author: Francisco Orts

First Author Secondary Information:

Order of Authors: Francisco Orts

Gloria Ortega, PhD

Antonio Manuel Puertas

Inmaculada García Fernández

Gracia Ester Martín Garzón

Order of Authors Secondary Information:

Funding Information: Spanish Science and Technology
Commission (CICYT)
(RTI2018-095993-B-I00)

Not applicable

Spanish Science and Technology
Commission (CICYT)
(FIS2015- 69022-P)

Dr. Antonio Manuel Puertas

Junta de Andalucía
(P12-TIC-301)

Not applicable

Spanish Science and Technology
Commission (CICYT)
(TIN2015-66680)

Not applicable

Abstract: Modern computational platforms are characterized by the heterogeneity of their
processing elements. Additionally, there are many algorithms which can be structured
as a set of procedures or tasks with different computational cost. Balancing the
computational load among the available processing elements is one of the main keys
for the optimal exploitation of such heterogeneous platforms. When the processing
time of any procedure executed on any of the available processing elements is known,
this workload balancing problem can be modelled as the well-known scheduling on
unrelated parallel machines problem. Solving this type of problems is a big challenge
due to the high heterogeneity on both, the tasks and the machines. In this paper, the
balancing problem has been formally defined as a global optimization problem which
minimizes the makespan (parallel runtime) and a new heuristic based on a Genetic
Algorithm, called Genetic Scheduler (GenS), has been developed to solve it. In order to
analyze the behavior of GenS for several heterogeneous clusters, an example taken
from the field of statistical mechanics has been considered as a case study: an active
microrheology model. Given this type of problem and a heterogeneous cluster, we

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

seek to minimize the total run-time to extend and analyze in depth the case of study. In
such context, a task consists of the simulation of a tracer particle pulled into a cubic
box with smaller bath particles. The computational load depends on the total number of
the bath particles. Moreover, GenS has been compared to other dynamic and static
scheduling approaches. The experimental results of such a comparison show that
GenS outperforms the rest of the tested alternatives achieving a better distribution of
the computational workload on a heterogeneous cluster. So, the scheduling strategy
developed in this paper is of potential interest for any application which requires the
execution of many tasks of different duration (a priori known) on a heterogeneous
cluster.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Noname manuscript No.
(will be inserted by the editor)

On solving the unrelated parallel machine scheduling
problem: active microrheology as a case study

F. Orts · G. Ortega · A.M. Puertas ·
I. Garćıa · E.M. Garzón

Received: date / Accepted: date

Abstract Modern computational platforms are characterized by the hetero-
geneity of their processing elements. Additionally, there are many algorithms
which can be structured as a set of procedures or tasks with different computa-
tional cost. Balancing the computational load among the available processing
elements is one of the main keys for the optimal exploitation of such hetero-
geneous platforms. When the processing time of any procedure executed on
any of the available processing elements is known, this work load balancing
problem can be modeled as the well-known scheduling on unrelated parallel
machines problem. Solving this type of problems is a big challenge due to the
high heterogeneity on both, the tasks and the machines. In this paper, the
balancing problem has been formally defined as a global optimization problem
which minimizes the makespan (parallel runtime) and a new heuristic based
on a Genetic Algorithm, called Genetic Scheduler (GenS), has been developed
to solve it. In order to analyze the behavior of GenS for several heterogeneous

F. Orts
Informatics Department, University of Almeŕıa, ceiA3, Carretera Sacramento s/n, Almeŕıa,
Spain
Tel.: +34950214393
E-mail: francisco.orts@ual.es

G. Ortega
Computer Architecture Department, Campus Teatinos, Universidad de Málaga, Málaga,
Spain

A.M. Puertas
Department of Applied Physics, University of Almeŕıa, Carretera Sacramento s/n, Almeŕıa,
Spain

I. Garćıa
Computer Architecture Department, Campus Teatinos, Universidad de Málaga, Málaga,
Spain

E.M. Garzón
Informatics Department, University of Almeŕıa, ceiA3, Carretera Sacramento s/n, Almeŕıa,
Spain

Manuscript Click here to access/download;Manuscript;template.pdf

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/supe/download.aspx?id=239685&guid=3dcb762f-d1da-4451-89e4-f186cd518f59&scheme=1
https://www.editorialmanager.com/supe/download.aspx?id=239685&guid=3dcb762f-d1da-4451-89e4-f186cd518f59&scheme=1
https://www.editorialmanager.com/supe/viewRCResults.aspx?pdf=1&docID=11843&rev=0&fileID=239685&msid=9f11346a-abf3-45f4-ab5a-253494e90721

2 F. Orts et al.

clusters, an example taken from the field of statistical mechanics has been
considered as a case study: an active microrheology model. Given this type of
problem and a heterogeneous cluster, we seek to minimize the total run-time to
extend and analyze in depth the case of study. In such context, a task consists
of the simulation of a tracer particle pulled into a cubic box with smaller bath
particles. The computational load depends on the total number of the bath
particles. Moreover, GenS has been compared to other dynamic and static
scheduling approaches. The experimental results of such a comparison show
that GenS outperforms the rest of the tested alternatives achieving a better
distribution of the computational workload on a heterogeneous cluster.So, the
scheduling strategy developed in this paper is of potential interest for any
application which requires the execution of many tasks of different duration (a
priori known) on a heterogeneous cluster.

Keywords Parallel scheduling · heterogeneous cluster · unrelated machines ·
genetic algorithm

1 Introduction

Modern computational systems consist of heterogeneous clusters which are
composed by the interconnection of Processing Units (PUs) with different
computational power, such as CPU-cores, GPUs and so on [1]. Algorithms
developed for this kind of platforms have to treat such heterogeneity to effi-
ciently exploit the different resources on modern computers. To this effect, the
programmer is responsible for explicitly selecting the devices and mapping the
tasks among PUs. So, scheduling techniques become one of the most challenging
problems, having a tremendous impact on performance. Many examples of
parallel applications consist of a set of independent tasks, with different compu-
tational cost, which have to be scheduled on a set of heterogeneous processing
units in an optimal way. This problem can be modeled as a scheduling tasks
on unrelated parallel machines problem, which is NP-complete [2] and very
well-known in the field of operational research [3].

There are two different approaches for the scheduling problems, dynamic
and static. The dynamic one is based on the definition of a global queue of tasks
from which every available PU picks a new task up. A dynamic scheduling does
not need any a priori information and usually is the best option when the tasks
load is unpredictable. However, dynamic scheduling can produce non-optimal
solutions when the tasks runtime is strongly heterogeneous. Several dynamic
interfaces have emerged in the last few years to face scheduling in heterogeneous
clusters. For instance, StarPU [4], Qilin [5] and Scout [6] offer different methods
to map tasks to CPU and GPU. The disadvantage of these paradigms are that
they require the programmers to rewrite their codes using a new programming
language in the case of StarPU or Scout or using specific APIs in Qilin [7].

On the other hand, static approaches are useful when it is possible to have
an estimation of the runtime of the tasks a priori. In such cases, they can provide
results near optima since they consider the problem from a holistic view. This

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 3

paper is focussed on such context. Although this kind of problems is challenging,
it can be efficiently solved if an a priori knowledge about the runtime of every
task on every machine is considered. The proposed scheduling is of potential
interest for any problem that meets the above mentioned premises.

In this work an Active Microrheology Model (AMM) in hard colloids has
been selected as a case study to illustrate the scheduling of simulations of bulk
systems on heterogeneous platforms. From the computational point of view,
simulations of bulk systems have huge requirements and can be structured as
a set of independent tasks with different computational loads (simulations of
systems with different sizes).

Here, a finite size analysis is used to extrapolate the results from a finite
system to an infinite one, requiring simulations of systems with different (large)
sizes. In active microrheology, the mechanical and flow behavior of a complex
fluid is studied at the microscopic level[11,12]. Therefore, in order to compute
the microviscosity for a bulk system, it is necessary to run simulations of
systems with different sizes, and extrapolate to the infinite system relying
on the model. Note that for every system size, many tracer trajectories must
be evaluated (typically 500 in this work) to obtain a good estimation of the
average tracer velocity. In the context of AMM simulations, it is feasible to
have a good a priori estimation of the simulation time on different processing
units.

So, a static scheduling based on a global analysis is an appropriate option to
optimize the parallel execution of such simulations. In this paper, the scheduling
strategy is formally defined as a global optimization problem which minimizes
the makespan (parallel runtime of the simulation processes). Then, a new
heuristic based on a Genetic Algorithm is developed to solve the scheduling
on unrelated parallel machines. Hereinafter, it is referred to as the Genetic
Scheduler (GenS). Other scheduling approaches (two dynamic and two static
strategies) are revised and comparatively evaluated with respect to GenS. Our
results show that GenS outperforms the other scheduling methods in terms of
makespan using the paradigmatic case study.

The main contributions of the paper can be summarized as follows: (1) a
new scheduling heuristic based on a Genetic Algorithm to efficiently distribute
the heterogeneous tasks on heterogeneous resources has been designed and
comparatively evaluated; (2) this scheduling makes feasible to solve compu-
tationally harder simulations of the active microrheology case study; (3) a
scheduling software to efficiently distribute a set of independent tasks with
different costs on heterogeneous processing units, called GenS, is provided
(https://github.com/2forts/GENS). Thus, this software can be useful for all
problems which can be modeled by scheduling on unrelated parallel machines
beyond the case study of this paper.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 F. Orts et al.

1
1

K

k

i

xk,i

Number of tasks of size

Ni on the k-th PU

I

P
ro

ce
ss

in
g
 U

n
it

s

(P
U

s)

Tasks sizes (Ni)

Total number of

tasks on the k-th

PU

Mapping of tasks

of size Ni on the

PUs

Fig. 1: Matrix X defines the assignment of tasks to PUs.

2 Scheduling problem on unrelated parallel machines

Let assume that a cluster has K PUs (Processing Units), that is, for example
the total number of available CPU-cores plus GPUs. Let {Rm} be the set of

tasks that defines the model, with m = 1, . . . ,M and M =
∑I

i=1Qi represents
the total number of tasks to compute, I denotes the number of different system
sizes Ni, with 1 ≤ i ≤ I, and Qi represents the number of tasks with system
size Ni.Then, the goal is to find a scheduling that minimizes the makespan,
Cmax

Find: X to

minimize: Cmax

subject to: tk =

I∑
i=1

xk,itk,i ≤ Cmax, 1 ≤ k ≤ K (1)

K∑
k=1

xk,i = Qi, 1 ≤ i ≤ I

xk,i ∈ {0, 1, . . . , Qi}, 1 ≤ k ≤ K; 1 ≤ i ≤ I

where xk,i represents the number of tasks of size Ni assigned to the k-th PU;
xk,i is an element of the matrix, X, that defines the assignment of tasks to PUs
(machines); tk,i represents the runtime to compute a task of system size Ni on
the k-th PU. The constraints for X mean that every task is computed on a
single PU and every set of Qi tasks with the same size is distributed among all
the PUs. The k-th row of X defines the set of tasks assigned to k-th PU and
the i-th column establishes the distribution of the tasks of size Ni among the
K PUs (See Fig 1).

The scheduling problem defined by Eq. 1 includes the runtime of every task
at every PU, tk,i. The estimation of tk,i can be accurately and fast computed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 5

a priori, because the K × I matrix T = (tk,i) includes a high percentage of
identical rows related to the same kinds of PUs. The runtime of the tasks can
be characterized by a matrix T of reduced dimensions S× I where S represents
the number of different kinds of PUs.

The scheduling on unrelated parallel machines is a challenge because of
the heterogeneity of both, the required tasks and cluster architecture. Then,
it is necessary to define an appropriate task scheduling to obtain the optimal
parallel performance.

3 Scheduling approaches

According to the formalism introduced, the static methodology to optimize
the task distribution among the heterogeneous PUs consists of three stages:
(1) Profiling stage, which estimates the values of every element of the matrix
T , according to the different sizes of the systems involved in the analysis and
the number of Processing Units, PUs; (2) Optimal scheduling estimation to
identify the set of tasks which every PU should compute, bearing in mind the a
priori knowledge provided by the profiling stage, so a parallel runtime can also
be estimated; and (3) Parallel execution of all simulations on the heterogeneous
PUs of the cluster according to the scheduling defined in the second stage.

The optimal scheduling estimation (stage 2) could be simpler if there was
a single type of tasks and PUs, since we could easily reach a good solution
using a homogeneous distribution. However, in general, this estimation is more
complex, even with a single type of PU, because the parallel software may
include tasks with different computational loads. Of course, the computational
complexity of the optimal scheduling estimation increases for high values of
I, M and K. The scheduling on a heterogeneous cluster is NP-complete [14].
Our goal is to apply a heuristic which provides near optimal solutions for the
scheduling problem [14].

3.1 Genetic Scheduler (GenS)

There are previous works where Genetic Algorithms (GAs) are used to solve
scheduling problems according to a static scheme [15]. In this work, a GA is cus-
tomized for solving the unrelated parallel machine scheduling on heterogeneous
clusters.

A GA works with a set of individuals which represents possible solutions of
the scheduling policy problem (population). It is an iterative procedure which
starts with a random set of individuals, P (0), and at every iteration, iter,
a selection mechanism and genetic operators are applied to the population,
P (iter). Thus, the population is constantly evolving. The selection mechanism
allows the individuals of the next generation to be closer to the optimal solution
(see Algorithm 1).

To apply the Algorithm 1 to the problem of finding a near optimal scheduling,
it is necessary to specify the following concepts: individual, fitness function,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 F. Orts et al.

Algorithm 1 Genetic Algorithm

1: iter ← 0
2: Initialize random population P (0)
3: Evaluate the fitness for the population P (0)
4: while termination condition is not true do
5: iter ← iter + 1
6: Select P (iter) from P (iter − 1)
7: Apply genetic operators (crossover and mutation) to P (iter)
8: Evaluate the fitness for P (iter)

9: end

and genetic operators (crossover and mutation). We propose to adapt a GA to
the aforementioned scheduling problem, resulting the GenS algorithm.

Bearing in mind the formalism introduced above, every individual in P (iter)
is represented by a K × I matrix X which defines the assignment of tasks to
the PUs according to the definition in Eq. 1 (and Fig 1). After the evaluation
of the fitness function (UB) for the whole population, individuals are ordered
according to their fitness. Thus, the individuals with smaller UB will be selected
while the GA advances.

At every iteration of Algorithm 1, two operations are applied to the popu-
lation to promote the evolution. Firstly, a random set of pairs of individuals
(parents) is defined and then, new individuals (children) are produced by the
crossover operator. Then, the well-known single point crossover operator is
applied. Fig 2 describes how the crossover is applied. A random column is
selected to split the matrices of both parents and new individuals are gen-
erated swapping the four sets of columns. In this scheme, the children can
be considered as valid solutions since the constraints for the columns of their
matrices are verified. After the crossover, the mutation operator acts on every
descendant and it can alter the distribution of every column (with a probability
of 1%). It is a random exchange of tasks of the same size between a pair of
PUs, i. e. elements in the same column of the corresponding matrix interchange
their tasks partially. Every iteration starts with the same population size (PS).
The selection phase only consists of choosing/ keeping the best PS individuals
since the population has been previously ordered according to the fitness, UB.
The procedure stops when the UB over 10 iterations does not change for the
30% of best individuals. Summarizing, if {tk,i} with 1 ≤ k ≤ K and 1 ≤ i ≤ I
is known, GenS is able to identify a near optimal distribution of tasks among
the set of PUs.

3.2 Additional static approaches

An example of static approach is the Polynomial Time Approximations Scheme
(PTAS) algorithm [14]. The PTAS algorithm can give a good estimation of
the optimal scheduling, with the additional advantage that it is possible to
estimate theoretically the ratio to the optimal solution. However, PTAS has a
high computational overhead due to the large amount of information that it

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 7

1

Parents

1

K

k

X2

Children

X1’ X2’

i

xk,i

number of tasks of

size Ni on the k

processing element

I

X1

Fig. 2: Crossover procedure to produce new individuals in the population.

is necessary to store. This is the reason PTAS has not been included in the
comparative study of GenS.

An alternative approach to GenS consists of a cyclic distribution of the
tasks over the set of PUs.First of all, the tasks are ordered according to their
computational load. Afterthat, they are distributed in a cyclic order among the
PUs. In this way, every PU computes similar percentages of tasks of different
costs. Hereinafter, this scheme will be referred to as Cyclic. It is probable that
it achieves a near optimal schedule in homogeneous clusters.

A greedy heuristic following the scheme considered in [16] can also be
defined to solve the scheduling problem (Greedy). For a given system size, (Ni),
the a priori estimation of the runtime allows us to identify the slowest PU, and
the acceleration factor of the remaining PUs with respect to it. These factors
define the percentage of tasks of a specific size that will be executed in every
PU. So, every set of Qi tasks with the same work-load are distributed among
the PUs. The PUs with less computational power compute fewer simulations
and PUs with more power will compute the percentage of tasks defined by the
corresponding acceleration factor. This procedure is repeated for every subset
of tasks, obtaining a near optimal distribution in every case, with the aim of
obtaining a global optimal solution.

3.3 Dynamic approaches

Several kinds of scheduling policies without a priori estimations of the tasks
runtime can be defined. However, our interest is focussed on two dynamic
approaches that partially use this information, since the starting point of both
is an ordered tasks queue according to their computational load, Ni.

The Simple Tasks Queue (STQ) solves the problem dynamically, managing
a single queue. Each PU will compute a task from this queue and when it
finishes, it takes the new task from the head of the queue.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 F. Orts et al.

Another dynamic approach is to use a Double-Ended Queue in combination
with a classification of the devices in two categories, slow and fast devices.
In this scheme slower devices takes the lighter tasks of the queue, and faster
devices the heavier ones. It will be referred to as Double-Ended Tasks Queue
(DETQ) and it considers a priori information about the loads of tasks and the
power of machines.

4 Active Microrheology Model (AMM) as a case study

As mentioned above, AMM is considered here as case study because from the
computational of view it can be seen as a set of independent tasks of several
different loads which can be executed on heterogeneous clusters. In active
microrheology, the mechanical and flow behavior of a complex fluid is studied
at the microscopic level [12,17]. For this, an intruder particle, typically of
colloidal size, is introduced and pulled through the system, and its dynamics
is monitored. In particular, the microviscosity can be computed from the
stationary tracer velocity at long times.

In our case study, the host fluid is modeled as Brownian quasi-hard spheres,
mimicking hard colloids. Brownian motion is described by the Langevin equation
[18], which for particle j reads:

mj
d2rj
dt2

=
∑
i

Fij − γj
drj
dt

+ ηj(t) + Fextδj1 (2)

where the terms in the r.h.s. are the interaction forces (
∑

i Fij), friction

with the solvent (−γj drj
dt), random force (ηj(t)), and external force (Fextδj1),

respectively; γj is the friction coefficient with the solvent, which is related to
the random force via the fluctuation dissipation theorem [18], and depends
linearly on the particle radius. The external force, Fext, which acts only onto
the tracer, labeled by j = 1, is constant in our model (this fact is expressed by
the well-known Kronecker delta, denoted by δj1). The interaction forces are
derived from the interparticle potential V (rij) = kBT (rij/dij)

−36, where rij is
the center to center distance, and dij = (ai + aj)/2, where ai is the radius of
particle i.

The simulations are run in a cubic box, with N particles and periodic
boundary conditions. The bath particles and tracer have radii ab and at,
respectively, and all particles have the same mass, m. Details of the features
of the simulations can be found in [20]. Fig 3 presents a snapshot of a system
with N=15625 particles.

In the simulations, the tracer particle is pulled at a constant force, and its
trajectory is recorded. The effective friction coefficient of the tracer with the
bath, γeff, is obtained from the average tracer velocity using the stationary
state relation: Fext = γeff〈v〉. A large number of trajectories is therefore needed
to obtain reliable values of γeff. However, the tracer distorts the bath as it
displaces, and since it is much larger than the bath particles, FSE can be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 9

Fig. 3: Snapshot of the system with N = 15625 particles. The tracer, three
times larger than the bath particles, at = 3ab, is marked in red, and the
particles in front of it have been removed.

present. In fact, due to the periodic boundary conditions, an array of particles
is simulated with the lattice sparing equal to the box size. Starting from
the Navier-Stokes equation, Hasimoto [21] showed that the effective friction
coefficient measured by an array of particles in an incompressible Newtonian
fluid depends on the lattice spacing, L, as:

1

γeff
=

c

L
+

1

γ∞
(3)

where c is a constant that depends on the structure of the array, and γ∞ is
the effective friction coefficient measured by an isolated particle [21]. Following
this theoretical result, γ∞ can be obtained running simulations with different
system sizes, L, in order to obtain γeff(L), and extrapolate linearly to 1/L→ 0.
Note that changing the system size implies changing the number of particles
because the volume fraction is constant. Fig 4 shows the results of γeff for seven
system sizes, with the number of particles ranging from N = 216 to 15625. The
inverse friction coefficient is indeed linear for small systems, but deviates for
1/L→ 0, due to the approximations in the theoretical model.

The full analysis of the finite size effects in the system necessitates a large
number of simulations or tasks of i) systems with different number of particles,
Ni with 1 ≤ i ≤ I, and ii) a large number of trajectories (Qi) for every system
size (Ni), requiring iii) solving Ni equations of motion repeatedly for each
trajectory. Therefore the computational requirements of AMM models are very
high which are provided by modern multi-GPU clusters. The model exhibits
several parallelism levels, which allows the appropriate exploitation of such
heterogeneous clusters. Previous works focused on accelerating the computation
of a single tracer trajectory (bottom parallelism level) on the GPU [22,23].
However, to advance in this kind of models, it is necessary to run efficiently
many simulations in parallel on heterogeneous clusters (the highest parallelism
level).

This way, the model defines a set of M =
∑I

i=1Qi tasks which compute
every tracer trajectory. So, tracer trajectories can be computed in parallel on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 F. Orts et al.

N=256

N=512
N=1000

N=2197
N=4096

N=8000

N=15625

Fig. 4: Inverse friction coefficient vs. inverse length of the simulation box for a
system with a volume fraction of φ = 0.50, and a tracer of size at = 3ab pulled
with a force F = 2.5 kBT/ab. The labels indicate the number of particles used
in every simulation. The number of trajectories analysed for every point is 500.

the CPU-cores and GPUs of a cluster. Every CPU-core (GPU) can execute the
sequential code (CUDA code) to compute one tracer trajectory, and the set
of tasks can be computed with the collaboration of all processing units (PUs)
of the cluster, CPU-cores and GPUs (PUs). Consequently, to get an optimal
exploitation of heterogeneous clusters of models AMM is necessary to solve
the scheduling problem on unrelated parallel machines defined in Sec. 2.

5 Results

In this section, the above mentioned strategies for load balancing (GenS, Cyclic,
Greedy, STQ and DETQ) the case study in AMM are evaluated on a wide
variety of heterogeneous clusters. For all the estimations and tests, the same
problem is used: System sizes of Ni= 216, 512, 1000, 2197, 4096, 8000 and
15625, with 250 trajectories of 500 time units (corresponding to 106 time steps).
Four kinds of PUs have been considered:

Core1 : 1 core of Bullx R424-E3 Intel Xeon E5 2650 with 8GB RAM
GPU1 : NVIDIA Tesla M2070 GPUs (Fermi)
Core2 : 1 core of Bullx R421-E4 Intel Xeon E5 2620v2 with 64GB RAM
GPU2 : NVIDIA Kepler GK210 (NVIDIA K80)

The characteristics of the GPU devices are given in Table 1. From these
PUs, seven test clusters have been defined (five heterogeneous clusters and two
homogeneous ones) to evaluate the scheduling methods (see Table 2).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 11

Two implementations have been considered to simulate every tracer tra-
jectory: a sequential CPU version coded in Fortran and a GPU version imple-
mented in ANSI C and CUDA. Moreover, a Python’s Multiprocessing module
has been used to code the schedulers considered in the experimental evaluation.

Firstly, focusing the attention on the static policies the profiling stage has
been carried out. Hence, an estimation of the runtime for all system sizes
involved in the case study and the four kinds of PUs (CPU-cores and GPUs)
was obtained (matrix T) and shown in Table 3. AF stands for the acceleration
factor of each kind of device versus the slowest device for each system size. These
values are used in the Greedy strategy, as it was mentioned in the previous
section. Let us remark that the execution time increases with Ni. Moreover, the
use of GPU computing is not beneficial to accelerate microrheology problems
when Ni is low. However, when Ni ≥ 1000, GPUs increase the performance.

Secondly, focusing our attention on the second stage of our methodology,
Table 4 shows the estimated parallel runtime (Cmax) in hours. Analyzing the
homogeneous platforms (F and G), it is observed that GenS achieves the best
makespan, equalling or improving the other strategies by 3%. So, for these
platforms, the advantages of GenS are maintained although they are not very
relevant. But for all the heterogeneous platforms (A - E), the experimental
results of GenS are significantly better than the other approaches, and this
improvement is more evident as the heterogeneity and size of the platform
increase. The Cyclic strategy always has the worst runtime by far, STQ obtains
reasonable runtime close to the DETQ (the second best one), and the Greedy,
although it improves the cyclic one, has large makespan.

Table 1: Characteristics of the GPU devices.

M2070 GK210
(GPU1) (GPU2)

Peak performance (double prec.) (TFlops) 0.51 2.91
Peak performance (simple prec.) (TFlops) 1.03 8.74

Device memory (GB) 5.2 24
Clock rate (GHz) 1.2 0.82

Memory bandwidth (GBytes/s) 150 480
Multiprocessors 14 13

CUDA cores 448 2496
Compute Capability 2.0 3.7

Table 2: PUs provided for every test cluster (A–F).

Core1 GPU1 Core2 GPU2 K
A 14 2 16
B 28 4 32
C 28 8 36
D 56 8 64
E 56 8 10 2 76
F 8 8
G 64 64

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 F. Orts et al.

Table 3: Total execution time (in seconds) for seven tasks sizes (Ni). tGPU1,i

(tGPU2,i) and tCPU1,i (tCPU2,i) columns identify the runtime to compute a
single trajectory on a GPU of kind 1 (2) and a CPU-core of kind 1 (2). AFs,
with 1 ≤ s ≤ 4, are the acceleration factors of every kind of device versus the
slowest one for each Ni.

s = 1 s = 2 s = 3 s = 4
Ni tGPU1,i tCPU1,i tGPU2,i tCPU2,i AF1 AF2 AF3 AF4

216 1580 790 1406 101 1,0 2,0 1,1 15,6
512 1785 1860 1714 507 1,0 1,0 1,1 3,7

1000 2240 3715 2030 2319 1,7 1,0 1,8 1,6
2197 2930 8710 2112 5315 3,0 1,0 4,1 1,6
4096 4450 18065 3235 10465 4,1 1,0 5,6 1,7
8000 7650 43080 4587 24427 5,6 1,0 9,4 1,8

15625 12050 113940 10043 63788 9,5 1,0 11,3 1,8

Table 4: Makespan, in hours, for each strategy for cases exposed in Table 2.
The scheduling scheme that obtains the best performance is marked in bold.

Heterogeneous Homogeneous
A B C D E F G

STQ 489,6 244,8 184,8 129,6 108,0 283,2 211,2
DETQ 412,8 223,2 141,6 122,4 103,2 283,2 211,2
Greedy 504,0 261,6 177,6 136,8 112,8 290,4 211,2
Cyclic 844,8 422,4 369,6 211,2 211,2 290,4 211,2
GenS 410,4 206,4 139,2 102,5 79,2 283,2 206,4

It is relevant to underline that due to the non-deterministic behavior of
GenS, it has been executed 10 times in order to check its robustness and the
dispersion of the results has been less than 0, 15%. Therefore, we can remark
the high robustness of the GenS solution.

To demonstrate that a simple random search is not competitive with respect
to GenS, it has been executed during a time interval significantly greater than
the GenS runtime to solve the same problem. Results have shown that the
GenS overcomes the random search in terms of makespan. For the sake of
clarity, this study has not been included.

Let us now focus our attention on the heterogeneous cluster with more
resources, E. Fig 5 (a–e) shows the runtime for every device from each strategy
and (f) shows the percentage of task sizes in every platform scheduled by the
GenS (the colors show the task size, as given in the legend). In the STQ strategy
(a), large tasks that consume a lot of time are computed on the CPU-cores
meanwhile the GPUs are inactive, causing important imbalances with large
makespans. In the DETQ strategy (b), the number of heavy tasks that come to
the CPU-cores is not so important (the Core2 does not take any, for example)
and therefore the makespan is reduced, but there are still large imbalances. The
Cyclic strategy (d), as the distribution is made without taking into account
the heterogeneity of the platform, is the worst one. The Greedy strategy is
also far from the optima. GenS tries to fit the heterogeneity of the tasks and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 13

Table 5: Estimated (stage 2) and experimental makespan (stage 3), in
hours, obtained by GenS scheduling, for heterogeneous clusters D and E
from Table 2.

Estimated Experimental
D E D E

CMax 102,5 79,2 105,4 82,5
CMin 101,8 76,4 104,4 79,4

the hardware of the platform, so its evolution makes the most powerful PUs
compute the largest tasks (see that the Core2 has more large tasks than Core1)
and being the less powerful devices those that are in charge of the light ones
Fig 5(f). If we analyze the unbalance among the different platforms in Fig 5(e),
we can conclude that the GenS solution is not far from the optimum since all
devices finish almost at the same time (a makespan of 79,2 hours).

So, the GenS scheduling obtains the minimum estimation of parallel runtime.
Then, the next step is to analyze the parallel executions on the test clusters
(stage 3) to verify that GenS estimations are realistic. Real executions on the
clusters D and E (the clusters which have the largest number of devices) have
been tested. Table 5 shows the estimated makespan by GenS, in hours, in
comparison with executions using GenS scheduling on both clusters. Analysing
the execution time, it can be concluded that the estimation of the GenS is
close to the makespan of the real experimentation. Experimental runtime is
a little larger than the predicted one because GenS estimation does not take
into account the runtime to prepare and to send a task to the corresponding
machine and also the contention among the PUs in the clusters.

Therefore, using GenS to schedule a model composed by heterogeneous
tasks on a heterogeneous cluster has resulted in an important reduction of the
impracticable runtime of the previous versions of such model. For the study
case, if the set of simulations are computed on a Core1 the estimated sequential
runtime would be 13205, 6 hours. Then, an acceleration factor of ×129 (×167)
is achieved on cluster D (on cluster E) using the GenS scheduling.

6 Conclusion

In this work, the scheduling of heterogeneous tasks on unrelated parallel
machines has been studied. An approach for distributing the workload in a
near-optimal way based on a Genetic Algorithm (GenS) has been analyzed.
GenS has been comparatively evaluated with respect to other schedulers using
a real problem from the field of statistical mechanics (Active Microrheology
Model) as a case study. The goal of such model is the computation of the
effective friction coefficient of complex fluids where Finite Size Effects are
dominant. The computational cost for these models is huge because they are
based on statistical analysis of the dynamics of a tracer particle for several
system sizes. Therefore, the use of appropriate scheduling approaches on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 F. Orts et al.

Fig. 5: Fig (a–e) show the runtime, in hours, for all the devices of every strategy
on cluster E. Each column k, shown as several stacked bars, corresponds to a
device. A stacked bar represents the time spent by device k to compute the
tasks of size i assigned to the device, so the entire column represents its total
runtime. Fig (f) shows the percentage of the sizes of the tasks scheduled by
GenS on each platform.

tk

k

0

20

40

60

80

100

120

GPU_A GPU_B CPU_A CPU_B

GPU_1 GPU_2 Core_1 Core_2

(a) STQ

tk

0

20

40

60

80

100

120

GPU_A GPU_B CPU_A CPU_B

k
GPU_1 GPU_2 Core_1 Core_2

(b) DETQ

k

tk

0

20

40

60

80

100

120

GPU_A GPU_B CPU_A CPU_B

216 512 1000 2197 4096 8000 15625

GPU_1 GPU_2 Core_1 Core_2

1 76

(c) Greedy

tk

0

50

100

150

200

250

GPU_A GPU_B CPU_A CPU_B

k
GPU_1 GPU_2 Core_1 Core_2

(d) Cyclic

tk

0

10

20

30

40

50

60

70

80

90

GPU_A GPU_B CPU_A CPU_B

GPU_1 GPU_2 Core_1 Core_2

k

(e) GenS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GPU_A GPU_B CPU_A CPU_B

P
er
ce
n
ta
g
e
o
f
co
m
p
u
te
d

tr
a
je
ct
o
ri
es

CPU 1 CPU 2

GenS

GPU 1 GPU 2

(f) Percentage of task of every type of PU
solved by the GenS

heterogeneous clusters has been a key to strengthen the applicability of these
models.

Experimental results have shown that GenS achieves a near-optimal load
balance, even when the cluster supplies a large and heterogeneous set of
processing units, outperforming other studied strategies. GenS improves the
performance with respect to the second fastest scheduling (DETQ) up to
23, 56% on the cluster E (the highest heterogenous one). Thus, the advantages
of GenS are more relevant as the cluster heterogeneity increases.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

On solving the unrelated parallel machine scheduling problem 15

Only the evolution of GenS has allowed to define the assignment task/processing-
unit according to the load-of-task/computational-power optimally for highly
heterogeneous tasks and processing units. This way, all processing units finish
their computation almost simultaneously. A suitable definition of the operators
and individuals involved in the Genetic Algorithm has been relevant to achieve
these scheduling results.

The main contribution of this work has been to design and to provide a
scheduling software for efficiently distributing a set of independent tasks varying
in cost on heterogeneous processing units (https://github.com/2forts/GENS).
Thus, this software can be useful for all problems which can be modeled by
scheduling on unrelated parallel machines beyond the case study.

Acknowledgements This work has been supported by the Spanish Science and Technology
Commission (CICYT) under contracts TIN2015-66680, RTI2018-095993-B-I00 and FIS2015-
69022-P; Junta de Andalućıa under contract P12-TIC-301 in part financed by the European
Regional Development Fund (ERDF). G. Ortega is a fellow of the Spanish ‘Juan de la Cierva
Incorporación’ program.

References

1. Hennessy JL, Patterson DA. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann; 2011.

2. Lenstra JK, Shmoys DB, Tardos E. Approximation Algorithms for Scheduling Unrelated
Parallel Machines. Math Program. 1990;46(3):259–271.

3. Shmoys DB, Tardos E. An Approximation Algorithm for the Generalized Assignment
Problem. Math Program. 1993;62(3):461–474. doi:10.1007/BF01585178.

4. Augonnet C, Thibault S, Namyst R, Wacrenier P. StarPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. Concurr Comp-Pract E.
2011;23(2):187–198.

5. Luk C, Hong S, Kim H. Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping. In: Proc. of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture. MICRO 42. New York, NY, USA: ACM; 2009. p. 45–55.

6. McCormick Pea. Scout: a data-parallel programming language for graphics processors.
Parallel Comput. 2007;33(10):648 – 662.

7. Chend Q, Guo M. Task Scheduling for Multi-core and Parallel Architectures: Challenges,
Solutions and Perspectives. Springer; 2017.

8. Privman V. Finite Size Scaling and Numerical Simulation of Statistical Systems. Springer;
1998.

9. Guyon E, Huling JP, Petit L, Mitescu CD. Physical hydrodynamics. Oxford University
Press; 1994.

10. Landau LD, Lifshitz EM. Fluid Mechanics. Butterworth-Heinemann; 1987.
11. Cicuta P, Donald AM. Microrheology: a review of the method and applications. Soft

Matter. 2007;3:1449–1455.
12. Puertas AM, Voigtmann T. Microrheology of colloidal systems. J Phys Condens Matter.

2014;26(24):243101.
13. Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load Balancing Task Scheduling Based on

Genetic Algorithm in Cloud Computing. In: Proc. of the 2014 IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing. DASC ’14. IEEE Computer
Society; 2014. p. 146–152.

14. Gehrke JC, Jansen K, Kraft SEJ, Schikowski J. A PTAS for Scheduling Unrelated
Machines of Few Different Types. In: SOFSEM 2016: Theory and Practice of Computer
Science. vol. 9587 of Lecture Notes in Computer Science. Berlin, Heidelberg: Springer;
2016. p. 45–55.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 F. Orts et al.

15. Sels V, Coelho J, Dias AM, Vanhoucke M. Hybrid tabu search and a truncated branch-
and-bound for the unrelated parallel machine scheduling problem. Computers & Operations
Research. 2015;53:107 – 117. doi:https://doi.org/10.1016/j.cor.2014.08.002.

16. Woodside CM, Monforton GG. Fast allocation of processes in distributed and parallel
systems. IEEE Transactions on Parallel & Distributed Systems. 1993; 2: 164 – 174.

17. Waigh TA. Advances in the microrheology of complex fluids. Rep Prog Phys.
2016;79(7):074601.

18. Dhont JKG. An Introduction to Dynamics of Colloids. Studies in Interface Science.
Elsevier Science; 1996.

19. Paul W, Yoon DY. Stochastic phase space dynamics with constraints for molecular
systems. Phys Rev E. 1995;52:2076–2083.

20. Orts F, Ortega G, Garzón EM, Puertas AM. Finite size effects in active microrheology
in colloids. Comput Phys Commun. 2019;236(1):8–14.

21. Hasimoto H. On the periodic fundamental solutions of the Stokes equations and their
application to viscous flow past a cubic array of spheres. J Fluid Mech. 1959;5:317–328.

22. Ortega G, Puertas AM, de Las Nieves FJ, Garzón EM. GPU Computing to Speed-Up
the Resolution of Microrheology Models. In: Algorithms and Architectures for Parallel
Processing: Proc. of ICA3PP Conference. Cham: Springer International Publishing; 2016.
p. 457–466.

23. Ortega G, Puertas AM, Garzón EM. Accelerating the problem of microrheology in
colloidal systems on a GPU. J Supercomput. 2017;73(1):370–383.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

