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Abstract Quantum image processing focuses on the use of quantum computing
in the field of digital image processing. In the last few years, this technique has
emerged since the properties inherent to quantum mechanics would provide the
computing power required to solve hard problems much faster than classical
computers. Binarization is often recognized to be one of the most important
steps in image processing systems. Image binarization consists of converting
the digital image into a black and white image, so that the essential properties
of the image are preserved. In this paper, we propose a quantum circuit for
image binarization based on two novel comparators. These comparators are
focused on optimizing the number of T gates needed to build them. The use of
T gates is essential for quantum circuits to counteract the effects of internal and
external noise. However, these gates are highly expensive, and its slowness also
represents a common bottleneck in this type of circuit. The proposed quantum
comparators have been compared with other state-of-the-arts comparators.
The analysis of the implementations have shown our comparators are the best
option when noise is a problem and its reduction is mandatory.
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1 Introduction

Quantum computing has emerged as a new and promising science that has new
challenges. One of them is that quantum computing is counterintuitive since it
has some interesting but not intuitive features like entanglement and quantum
parallelism [13]. Just a few years ago, the interest of researchers in quantum
computing was focused on mathematical and physical fields because of the lack
of real quantum computers and efficient quantum simulators. Recently, IBM, D-
Wave, Google, and other important organizations have built real and functional
quantum computers [18]. Moreover, Microsoft, QuTech, Intel, Amazon and
other vendors have opened new services based on several kind of computers
and architectures [5].

There are different paradigms in quantum computing. For instance, quan-
tum annealers, like the D-Wave machine, are focused on solving problems that
can be expressed as energy minimization [18]. On the other hand, topological
quantum computers work with two-dimensional quasiparticles to process quan-
tum information, which allows a better resilience against perturbations [17]
(nevertheless, topological quantum computers have not even been built nowa-
days, and only theoretical models have been developed. Furthermore, several
ambitious quantum simulators have been developed recently, for example,
QuEST, ProjectQ and myQLM [6,8,19].

Despite the fact that quantum technology is very innovative and powerful,
there are many challenges to make quantum computing be practical. One of its
main limitations is that quantum computers are difficult to program because
their computational models are quite different from the classical one. The most
well-known model is based on quantum circuits, where each specific procedure
involves the design of particular quantum circuits. Because of the scarcity of
quantum resources and the strong sensibility of the quantum computers to
noise, the design of quantum circuits should be optimized in terms of number of
resources and fault-tolerance. Therefore, an active research line is the optimal
design of basic quantum operations involved in complex algorithms [14,15,16,
20].

Quantum image processing (QIMP) is an interdisciplinary subject between
quantum computation and image processing. In recent years, along with the
bright future of quantum computers, QIMP has become a hot research field.
Combining quantum mechanics with image processing is an effective approach
to improve the processing speed of images [21]. Its main functionality is to
capture, manipulate and recover quantum images by means of the quantum
computing [27]. According to the literature, QIMP techniques could improve
classical processing algorithms in terms of performance, guaranteed security
and minimal storage requirements [7,27]. The benefits of such techniques have
been demonstrated in a wide number of applications such as image classification,
morphology, registration, synthesis, segmentation, filtering, and pseudocolor
[28].

In this work the focus is the quantum image binarization. The binarization
is a crucial step in many image processing techniques. Binarization is a simple
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thresholding process over the image where the pixels with gray-levels lower
than a given threshold are classified into a class (i.e. the background), and all
the remaining pixels into another (i.e, the foreground). It is well known that
the key of a binarization process is the comparison between each pixel and the
threshold value. So, our intention is to design an efficient circuit to compare
two quantum logic states and to identify whether they are equal or, otherwise,
which of them is the largest [22].

There are already many classical methods proposed for image binarization
[11]. However, quantum image processing provides an opportunity for faster
image processing; therefore, recently received some attention in the quantum
research community. Probably, the first proposed quantum comparator for
image binarization is presented in [1]. A novel 8-bit half comparator was
proposed in the context of binarization in [25], and in [26] it was optimized
by rearranging the quantum gates. A quantum version of the Otsu’s threshold
selection method which contains image binarization procedure was designed
in [10]. These publications showed that quantum computing offers a potential
solution to efficiently deal with image binarization; however, currently, research
content is very limited.

In this work, we propose two fault-tolerant comparators focused on opti-
mizing the number of T gates. Quantum circuits are very sensitive to external
and internal noise, therefore the noise reduction and fault tolerance are two of
the most important objectives in quantum computing. The T gates are used
to make possible the use of error-correcting codes to ensure fault-tolerance
in quantum circuits. However, they are more expensive than other gates in
terms of space and time cost due to, precisely, their increased tolerance to noise
errors [12,29]. In the design of quantum circuits, it is very relevant to specify
the metrics used to evaluate the efficiency of such circuits. In order to evaluate
our proposed and state-of-the-arts quantum circuits, we have considered the
number of T gates a circuit has (T-count), the number of steps involving T
gates, that is, the number of T gates which must be computed sequentially
(T-depth) and the number of ancilla qubits.

The main contributions of the paper can be summarized as follows: (1)
Development of a fault-tolerant quantum comparator; (2) Integration of the
comparators in a circuit for image binarization that can be used as part of
QIMP circuits that outperforms their classical counterparts [3,2,23]; and, (3)
Evaluation of the proposed and other state-of-the-arts quantum comparators.

The manuscript is written as it follows. Section 2 describes the quantum
image binarization circuit design. In Section 3 we propose efficient quantum
comparators. In Section 4, a comparative evaluation is carried out between
our comparator and others of the state-of-the-art. Finally, we present the
conclusions in Section 5.
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Fig. 1: A 23-color range image represented in NEQR. C7
Y X ...C0

Y X is the codifi-
cation of the pixel, and XY the location.

2 Quantum image binarization circuit design

Our proposal is based on the binarization algorithm described by Xia et al [25].
This algorithm assumes that the image to be binarized is encoded in NEQR
representation (Novel Enhanced Quantum Representation) [30]. In the NEQR
representation, an image is represented according to the following equation:

|CY X〉 =
1

2n

2n−1∑
Y=0

2n−1∑
X=0

|Cq−1
Y X Cq−2

Y X ...C1
Y XC0

Y X〉 ⊗ |Y X〉 (1)

Where |Cq−1
Y X Cq−2

Y X ...C1
Y XC0

Y X〉 codifies the value of the pixel (Y,X), n is related
to the size of the image (it is a 2n × 2n image), and q defines the color range
as 2q. Y X encodes the spatial location of the pixel. A visual example of this
representation for the 23 color range case is shown in Fig. 1.

For the sake of clarity, Algorithm 1 shows the pseudo-code for the 23 color
range case. This algorithm needs two external values for each pixel of the image
to be binarized: the codification I = Cq−1

Y X Cq−2
Y X ...C1

Y XC0
Y X of the pixel, and a

threshold value which is used to decide whether the pixel should be black or
white. The algorithm consists of two steps:

– The first part compares CY X with the threshold value b. There is no need
to perform a complete comparison since it is only needed to compute if
CY X < b or CY X ≥ b. Therefore, a half comparator can be used. It should
return c = 1 if CY X < b, and 0 otherwise.

– The second part changes Cq−1
Y X Cq−2

Y X ...C1
Y XC0

Y X to 0 if c = 1, or to 1 if
c = 0. That is, the algorithm sets the pixel as black if its original value is
lesser than the threshold value, or sets it as white if its original value is
greater or equal than the threshold value.

A quantum circuit to implement Algorithm 1 is shown in Fig. 2. On the
one hand, the implementation of the second part of this circuit involves several
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Fig. 2: Circuit implementation for Algorithm 1. This algorithm consists of
two parts: a comparison between the pixel CY X and the threshold b; and the
assignment of the value 0 or 1 using swap gates to the pixel, according to the
result of the previous comparison.

swap gates. Such gates set the qubits of the pixel to 0 or 1 depending on the
result of the comparison. The operation may seem simple, but it involves n
inputs in state |0〉 and n in state |1〉. These states are swapped with the original
pixel value under the conditions described in the previous paragraph. Also, and
since we do not know beforehand into which group of inputs (|0〉 or |1〉) the
original values of the pixels will be exchanged, we can therefore consider that
we have 2n garbage outputs. On the other hand, the implementation of the
half comparator is far from trivial [9,24,25]. This implementation is discussed
in the next section.

Algorithm 1: Image binarization in quantum computing proposed
in [25].

Result: A binary image bw.
b = |b7b6b5b4b3b2b1b0〉;
I = |C7

Y XC6
Y XC5

Y XC4
Y XC3

Y XC2
Y XC1

Y XC0
Y X〉;

c0 = |0〉;
if I < b then

c0 = |1〉;
end
Swap each quantum logic bit in I with co;
bw = I;
return bw;
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Fig. 3: Temporary logical-AND gate and its uncomputation.

3 Proposed quantum comparators

In this section we describe our proposed comparators. Two comparators have
been developed as part of this work. The first one is focused on reducing the T-
count, and the second comparator is focused on reducing the T-depth. They use
the temporary logical-AND gate [4] in order to reduce the number of involved
T gates. This gate performs an AND operation of two inputs (qubits), saving
the result in an ancilla qubit. This is similar to the Toffoli gate, but the T-count
of the temporary logical-AND is 4, and its T-depth is 2 (for the Toffoli gate,
these values are 7 and 3, respectively). Moreover, the uncomputation of the
temporary logical-AND does not involve T gates, whereas the uncomputation
of the Toffoli gate involves another Toffoli gate. The temporary logical-AND
gate (and its uncomputation gate) is shown in Fig. 3.

As it will be shown later, both of them have lower T-count and T-depth
than existing quantum comparators.

The first proposed comparator is shown in Fig. 4. It is based on the
methodology of the adder developed by Gidney in 2018 [4], which is the best
adder in terms of T-count currently available [14]. The comparison between
two bit strings a and b is carried out performing the operation a − b. This
operation can be performed using an adder, computing a + b. Actually, we are
only interested in the sign of the operation, so that we can determine that a
is lower than b if the sign of a− b is negative, or that a is greater (or equal)
than b if the result is positive. Therefore, several simplifications can be done to
perform only the computation of the sign. The circuit can be reproduced for
any size n of bits following these steps:

– For i = 0 to i = n− 1, to apply a Pauli-X gate at every bit ai to perform a.
These operations are computed in parallel as it is shown in circuit example
of Fig. 4.

– Perform the operation a0b0 using a temporary logical-AND gate instead
of a Toffoli gate to save T-count and T-depth. Each temporary logical-
AND will require an extra qubit, which must be initialized to the state
1√
2
(|0〉+ e

iπ
4 |1〉). These ancilla qubits are marked as A in Fig. 4.
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Fig. 4: Example of the first proposed comparator for the n = 4 case. This
circuit is focused on reducing the T-count. ai and bi are the bit strings to be
compared. A are ancilla qubits.

– For i = 1 to i = n− 1, apply two CNOT gates to compute (ai−1bi−1)⊕ ai
and (ai−1bi−1)⊕ bi. Then, to apply a temporary logical-AND to compute
aibi. Finally, to apply another CNOT gate to perform (ai−1bi−1)⊕ (aibi).
Each step of the loop must be computed sequentially.

– The result is given by the last operation of the last iteration computed in
the previous step. However, uncomputation is required to avoid garbage
outputs. Applying two CNOT gates to perform (an−2bn−2) ⊕ an−1 and
(an−2bn−2)⊕ bn−1.

– For i = n− 2 to i = 1, apply a CNOT gate to perform (ai−1bi−1)⊕ (aibi).
Then, apply the uncomputation circuit for the logical and operation at
aibi. Finally, apply two CNOT gates at (ai−1bi−1)⊕ ai and (ai−1bi−1)⊕ bi.
Again, each step of the loop must be computed sequentially.

– Finally, for i = 0 to i = n − 1 apply a Pauli-X gate at every bit ai to
uncompute them. All the qubits except the one that contains the result
have been uncomputed.

The second proposed comparator is shown in Fig. 5. It is based on the
methodology of the adder developed by Thapliyal et al. in 2020 [20], which
is the best adder in terms of T-depth currently available [14]. Again, the
comparison is performed computing a + b. This circuits involves the use of a
huge amount of ancilla qubits to achieve a logarithmic T-depth since every
and operation is performed using temporary logical AND gates. These gates
could be replaced totally or partially to reduce the number of ancilla inputs.
However, this will increase the T-depth and also the T-count of the circuit.
The comparator can be reproduced for any size n of bits following these steps:

– For i = 0 to i = n− 1, to apply a Pauli-X gate at every bit ai to perform a.
Then, apply a temporary logical-AND gate to calculate aibi. According to
the original adder, this value will be renamed as g[i, i + 1].

– For i = 1 to i = n− 1, to apply a CNOT gate at ai ⊕ bi. This value will be
renamed as p[i, i + 1].
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– For i = 2 to i = log(n)− 1, and for j = 1 to j = n
2i − 1, apply a temporary

logical AND at locations p[x, y], p[y, z], being x = 2ij, y = 2ij + 2i, and
z = 2ij + 2i−1, respectively.

– For i = 1 to i = log(n), and for j = 0 to j = n
2i − 1, apply a temporary

logical AND and an uncomputation gate at locations g[x, y], g[y, z], being
x = 2ij, y = 2ij + 2i, and z = 2ij + 2i−1, respectively.

– For i = log( 2n3 ) to i = 1, and for j = 1 to j = n−2i−1

2i , to apply a temporary
logical-AND and its uncomputation at g[0,x], p[x,y] y g[x,y], being x = 2ij,
and y = 2ij + 2i−1, respectively.

– For i = 1 to n− 1, to apply a CNOT gate at p[i, i+1] and g[0, i].
– For i = 1 to n− 1, to apply a CNOT gate at p[0, 1] and the corresponding

ancilla input. Steps 3, 2, and 1 (in this order) must be computed again to
uncompute garbage outputs.

4 Analysis and comparison

The proposed comparators consist of only four kind of gates: Pauli-X gates,
CNOT gates, temporary logical-AND gates, and the uncomputation gate for
the temporary logical-AND gate. Among these gates, only the temporary
logical-AND involves T gates. Therefore, the T-count and the T-depth of our
circuits can be obtained from the total number of temporary logical-AND gates
they have and the number of temporary logical-AND gates that the circuits
must compute sequentially, respectively. The T-count and the T-depth of the
temporary logical-AND gate are 4 and 2, respectively (Fig. 3).

The first circuit involves n consecutive temporary logical-AND gates. Then,
it has a T-count of 4n and a T-depth of 2n. Since the circuit only uses the
ancilla qubits involved in the logical-AND operations, it can be concluded that
the first comparator needs n ancilla qubits. On the other hand, the second
comparator involves 3n− 2W (n)− log(n) temporary logical-AND gates, being
W (n) the number of ones in the binary expansion of n. Therefore, its T-count
is 12n − 8W (n) − 4log(n). The T-depth is not trivial to compute since the
depth of the circuit, depends on the value of n. However, we have shown that
the circuit grows logarithmically. Then, its T-depth can be set as log(n).

Circuit Comparator T-count T-depth Ancilla qubit

Xia et al. (2018) [24] 14n 6n 2
Xia et al. (2019) [25] 14n− 7 6n− 3 2

Li et al. (2020) [9] 14n− 7 6n− 3 1
Proposed comparator 4n 2n n
Proposed comparator 12n− 8W (n) − 4Log(n) Log(n) 4n− 2W (n) − 2log(n)

Table 1: Evaluation of comparators in terms of T-count, T-depth and Ancilla
qubits as functions of n. W (n) is the number of ones in the binary expansion
of n.
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Fig. 5: Example of the second proposed comparator for the n = 8 case. This
circuit is focused on reducing the T-depth. ai and bi are the bit strings to be
compared. A are ancilla qubits.

Table 1 shows a comparison in terms of T-count, T-depth, and number
of ancilla inputs between the most recent comparators in the state-of-the-art
and our two proposed circuits. In terms of T-count and T-depth, it is shown
that our circuits outperform the other comparators. Focusing on the T-count,
the first proposed is the best option with a T-count of 4n. The circuit with
best T-count in the literature is the proposal of Li et al. [9]. This circuit has
a T-count of 14n− 7, which is a value three times greater than our proposal.
Our second proposal has a T-count of 12n− 8W (n)− 4log(n), which is still
better than the circuit of Li et al [9].
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Focusing now in the T-depth, the only logarithmic circuit is our second
proposal. The other comparators are lineal. Again, the circuit of Li et al. is
the best option in the literature, with a T-depth of 6n− 3. Our first proposal,
with a T-depth of 2n, also outperforms the circuit of Li et al.

However, the circuit of Li et al. [9] has an important feature: it is the best
in terms of necessary qubits. It is the only comparator with a single ancilla
qubit. In these terms, out best proposal is the first one with n ancilla qubits.
Therefore, the circuit of Li et al. [9] improves us in n− 1 qubits.

5 Conclusion

In this paper, we continue the work started in [25] about binarization in
quantum computing. In particular, we have improved a quantum circuit for
binarization providing two novel comparators focused on the reduction of the
internal and external noise. Although we work in a binarization framework,
these comparators are valid for a general purpose.

Our two circuits are able to reduce the number of necessary T gates (with
involves the reduction of the T-count and T-depth), thanks to the use of the
temporary logical-AND gate proposed by [4], and also using the most efficient
methodologies for noise reduction in quantum binary adders. Our first circuit
is focused on the reduction of the T-count, and the second one is based on the
reduction of the T-depth. However, the two circuits improve both in T-count
and T-depth to the currently available circuits.

As a complement, we have carried out a comparison between our circuits
and the most prominent comparators in the literature. The conclusions are
that our circuits are the best option when noise is a problem and its reduction
is mandatory. However, we also shown than the circuit proposed in Li et al. [9]
is the best option when the focus is to minimize the number of qubits.
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