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Abstract

This article presents a novel methodology for energy management in microgrids

focused on the demand side. It is inspired by the Tangram puzzle. The en-

ergy demand and production profiles are represented by polygons and managed

through computational geometry. Therefore, an optimization problem is defined

to place n energy demand profiles (pieces) to cover the total energy production

profile (target shape). The optimization problem is addressed with a genetic

algorithm. It tries to calculate the optimal positions of the polygons of the

demands covering the maximum energy production. Since the referred produc-

tion comes from renewable energy sources in the microgrid, this method allows

reducing both the consumption of fossil fuels and energy bills.

Keywords: demand-side management, microgrid, optimization.

1. Introduction

A large part of the energy consumption in smart bioclimatic buildings is car-

ried out through microgrids (MGs) made up of control systems, advanced detec-

tion technologies, communication infrastructures, and smart meters [1, 2]. Over
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time, great challenges have been encountered related to environmental prob-5

lems, security, and energy management of the public grid. Facing them requires

an intelligent energy generation system to obtain an MG featuring maximum

renewable generation, reliability, and intelligence, known as Smart Grid [3, 4, 5].

An MG offers a bidirectional energy flow and information between the energy

provider and the customer. For this purpose, an energy management system10

(EMS) is necessary to guarantee the load demand and the commercialization

of electric energy. EMSs are classified into supply-side management (SSM) and

demand-side management (DSM). These strategies help minimize energy and

operating costs and CO2 emissions and maximize energy production while effi-

ciently managing energy consumption [1, 6, 7].15

Although SSM guarantees efficient energy supply, satisfying energy demand

and reducing polluting emissions and costs, it is affected by market price volatil-

ity. Hence, DSM becomes more attractive and allows the active participation of

users, who can take load demand management decisions affecting the energy us-

age patterns. The aim is to optimize energy consumption, which allows reducing20

the maximum load demand and maintains the stability of the MG [1, 7, 8, 9].

DSM strategies consist of: (i) energetically efficient controllable devices with

different consumption patterns, (ii) control systems that allow load demand

conformation, (iii) ON/OFF controllers or actuators to turn on and off the

devices, and (iv) communication link for users and external agents [10]. The25

objective of DSM is to change energy demand based on energy production,

which directly relates to users’ consumption patterns. Several DSM strategies

have been developed recently, most based on moving energy demands. These

displacements consider aspects such as energy availability, on-peak to off-peak

electricity tariff hours, and improving energy performance [11].30

Recent studies have developed different optimization approaches that aim

to approximate the energy consumption curve with the original consumption

one. For example, Djeudjo et al. [12] use a multi-objective particle swarm opti-

mization model for performing a techno-economic analysis to respond to energy

demand in communities in the Sub-Saharan African region. The authors of35
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[13, 14, 15, 16] focus on demand areas, such as residential, commercial, and

industrial ones, considering controllable loads. They use several optimization

models to satisfy the demand efficiently in energy and economic terms. Addi-

tionally, the authors of [17, 18] proposed an innovate algorithm based on Grey

Wolf Optimization. Its main goal is to reduce energy bills and the peak demand40

of residential, commercial, and industrial microgrids. Alternatively, [19, 20]

use blockchain-connected smart controllers. They aim to improve DSM, energy

efficiency of buildings, and comfort level while reducing CO2 emissions.

Although recent methods, such as particle swarm and Grey Wolf optimiza-

tion, have been used in DSM optimization, genetic algorithms (GAs) are ar-45

guably one the most used population-based optimizers [21, 22]. For instance,

the authors of [23, 24, 25] propose strategies based on GAs achieving substantial

savings, reducing the energy demand, and motivating users to shift their loads

to off-peak hours. The complexity of the resulting problems and the lack of

mathematically exploitable properties, such as linearity and convexity, explain50

the popularity of Evolutionary Algorithms (EA), including GAs [10, 26]. These

optimizers are inspired by the Darwinian theory of evolution. They define a

generic global search strategy in which every solution is treated as an individ-

ual subject to the biological processes of sexual reproduction, mutation, and

selective pressure to survive. As individuals evolve, the corresponding solutions55

improve [24, 27, 28].

This article focuses on EMS by displacing energy demands over time. En-

ergy production is supposed to include renewable sources, so it is fixed in time

and shape. The aim is to minimize electricity costs, carbon emissions, and user

intervention. The main contribution is conceptualizing energy management as60

a shape composition problem in which the energy production and demand pro-

files are handled as polygons. In this context, a genetic algorithm seeks the

optimal position of the demand profiles to fit the production one, which results

in a schedule for using the available devices. This planning allows maximizing

the use of renewable energy instead of the public grid. Therefore, the contribu-65

tions of this work are three: Firstly, it describes a methodology to handle the
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inherently intermittent availability of renewable energy resources. Secondly, it

confirms the aptitude of GAs to let an EMS adapt its configuration to arbi-

trary production profiles despite using a new problem representation. Thirdly

and last, the referred representation conceptually simplifies the underlying op-70

timization problem of covering the energy production profile with the demands

as shape composition. It allows users to assimilate and face a non-linear opti-

mization problem in a simple way. Several case studies have been included to

test the effectiveness of the proposal. Although the first examples are didactic,

there are realistic cases that the methodology also successfully addresses. For75

this purpose, data from a bioclimatic building, the CIESOL research center of

the University of Almeŕıa (Spain), have been used.

The rest of the article is structured as follows: Section 2 presents the pro-

posed methodology for MG demand-side energy management. Then, Section 3

describes the experimentation and the results obtained. Finally, Section 4 shows80

the conclusions and some ideas for future work.

2. Methodology

As introduced, this work focuses on minimizing the cost of electricity and

the associated environmental impact by managing the energy demand in time.

This section explains the proposal, starting with modeling the energy demand85

management as a polygonal shape replication problem. After that, an approach

to evaluate and compare different candidate solutions is exposed, which allows

facing energy demand management as an optimization problem. Finally, the

section ends with a description of the method used for solving the resulting

optimization problem.90

2.1. Problem representation

The main idea of this work is that, in practical terms, DSM resembles the

ancient Chinese puzzle known as Tangram [29]. This logic game consists in

composing desired shapes, such as a house, using only its predefined set of
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pieces. Figure 1 shows the different parts of a Tangram puzzle on the left, some95

simple target shapes in the center, and how to achieve them on the right.

Figure 1: Representation of Tangram puzzle game.

For the problem at hand, the energy demand profile of each device can be

represented by a small polygon in two dimensions, i.e., time and energy con-

sumption. The same occurs with the production profile, which results in a

larger polygonal shape. Both kinds of polygons are considered in a 2D coor-100

dinate system in which the vertical axis is power, in kW, and the horizontal

one is the time of the day, in hours. Accordingly, the total energy expressed in

kWh is the area of the resulting polygon. Figure 2 shows a simulation scenario

determined through the polygons, both energy consumption and production. In

this context, the methodology proposed tries to form the big polygon, i.e., the105

production, by combining the smaller ones, i.e., the consumption profiles. In

contrast to the Tangram game, perfect replication might not always be possible

in this case, but the conceptual similarity of the proposed approach is obvious.

Accordingly, the problem statement consists of n consumption profiles and

the target energy production. They and the candidate solutions will be repre-110

sented by polygons to be handled through computational geometry.
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Figure 2: Sample problem context.

2.2. Problem formulation

Having expressed the problem at hand in terms of composing a target poly-

gon by combining n different ones, addressing it as an optimization problem

comes naturally. The fundamental aspect is to define how to encode and com-115

pare solutions, which allows us to decide if a given configuration is better than

any other one.

As stated, n polygons represent the demand profile of n devices, and they

can be seen as Tangram pieces to place to cover the energy production. Thus,

any candidate solution consists of a vector that assigns a particular position to120

each demand profile. Defining those positions, which are the decision or design

variables, is left to the selected optimization method. However, the strategy for

decoding and assessing each possible solution is decoupled from it and explained

next.

The space in which the polygons are considered has two dimensions, the total125

energy and the time of day. They are placed and shifted in both at optimization.

Accordingly, each candidate solution has two components per demand profile,

i.e., 2n variables. For evaluating any particular distribution or candidate solu-

tion, it is first necessary to put each demand profile where encoded. Then, the

resulting shape must be compared to the production polygon.130

Let Dy
i be the vertical dimension (total power, in kW) and Dx

i the horizontal

one (time of day, in hours). The first stage, i.e., demand polygon placement,

can be defined as in Eq. (1), where the achieved profile, DT , results from

reading the position of each demand polygon, Di for i = 1, · · · , n, and putting
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them appropriately in the energy and time axes. Since the polygons can only135

be translated, they are identified by a single reference point. By convention,

the bottom-left point is considered. The position of the reference point of the

i-th demand polygon Di is labeled as (Dx
i , Dy

i ), where the first component

refers to the first dimension, i.e., time, and the second is linked to the second

one, i.e., power. The abstract function ‘translate’ is responsible for placing the140

demand polygon that is part of the problem input in the position proposed for

its reference point. The first argument is the polygon to place, and the second is

the position of its reference point defined by its coordinates in both dimensions

of interest. These positions will be ultimately adjusted through optimization.

The displaced polygons form a total demand polygonDT using the logical union145

operation, represented by
⋃
.

DT =

n⋃
i=1

translate(Di, (D
x
i , D

y
i )) (1)

Regarding the second and last stage, i.e., polygon comparison, it follows Eq.

(2). FDSM is the area of the difference between the energy production polygon,

PE , and the one composed by the different demand profiles, DT . Hence, it

is a real number in the range [0,∞). The nearer it is to 0, the better the150

shape replication is, so this is the value to minimize for addressing the problem.

Symbol ⊕ represents the exclusive OR (XOR) operation between the area of

both polygons involved. Function ‘area’ is an abstract function taking as input

a polygon and computing its area.

FDSM (DT ) = area(PE ⊕DT ) (2)

The optimization problem can be formulated according to Eq. (3). The aim155

is to find the position of each demand polygon so that the objective function,

i.e., the difference between the target and the composed polygon, is minimized.

The constraints require each demand polygon to stay in the region of interest.

Namely, they limit the coordinates of reference points for the arbitrary bounds

xmin and ymax, which refer to the dimension of power, and tmin and tmax, linked160
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to that of time.


min

Dx
1 ,D

y
1 ,···,Dx

n,D
y
n

FDSM (DT )

s.t. xmin ≤ Dx
i ≤ xmax∀i ∈ {1, · · · , n}

ymin ≤ Dy
i ≤ ymax∀i ∈ {1, · · · , n}

(3)

The previous definitions are mainly conceptual. In practical terms, FDSM is

computed according to Algorithm (1). Notice that PE results from combining

all the renewable and non-renewable energy production profiles available. In

this work, PE might consist of photovoltaic energy production, wind energy165

production, battery supply, electric vehicle energy production, and public grid

supply.

Algorithm 1 Objective function computation

Require: {D1 . . . Dn}, PE , (D
x
1 , D

y
1 , . . . , D

x
n, D

y
n)

1: DT = ∅

2: for i = 1 : n do

3: DT = (DT

⋃
translate(Di, [D

x
i , D

y
i ])) ▷ See Eq.(1)

4: end for

5: [ID, IyD] = PolygonIntersect(Di, DT )

6: DT = DT

⋃
translate(ID, [0, IyD])

7: return area(PE ⊕DT ) ▷ See Eq.(2)

The PolygonIntersect function referred to in Algorithm (1) is highly relevant

for comparing solutions. Conceptually, it aims to identify and correct the over-

lappings of polygons considering their real meaning, i.e., energy consumption170

profiles. Its outputs, ID and IyD, are the intersected polygon and the vertical

displacement of this polygon, respectively. Computationally, it implements Al-

gorithm (2). This process handles the overlapping of energy demand profiles.

The reason is that they cannot absorb each other in the problem context, as

standard boolean operations over polygons suggest. This situation arises while175

the optimization algorithm studies different placements of the energy profiles

considered in time (hours) and magnitude (kW). Algorithm (2) identifies over-
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lapping, and the intersected energy amount is displaced only in magnitude (kW).

This approach does not alter the energy consumption timing, which avoids in-

convenient pauses in the resulting schedule. Hence, notice that despite the plain180

geometric representation, the solution assessment logic must ultimately parse

the different cases in terms of the underlying problem.

Algorithm 2 Function PolygonIntersect

Require: {D1 . . . Dn}, DT .

T olerance = 0.08, Displacement = 0.05, IyD = 0, AID = ∞

2: Control = 0

for i = 1 : n− 1 do

4: for j = 2 + Control : n do

ID = Di

⋂
Dj ▷ Compute intersection

6: if area(ID) > Tolerance then

while AID ≥ Tolerance do

8: IyD = IyD +Displacement

ID = translate(ID, [IxD, IyD]) ▷ Move intersection up only

10: AID = area(DT

⋂
ID)

end while

12: end if

end for

14: Control = Control + 1

end for

16: return ID, IyD

Additionally, it is relevant to mention that the theoretical conception of

the objective function allows modifying its practical implementation, which

could implicitly allow prioritizing demand profiles. In other words, provided185

an optimization method that focuses on comparing objective function values,

its decisions are directly affected by the definition and behavior of the objective

function. Similarly, notice that some devices might represent divisible demand

profiles, such as a washing machine executing several processes. Its stages could
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be provided as input as different polygons, but the evaluation of solutions should190

promote (or require, if possible) that they appear in the appropriate order. Re-

gardless, an exhaustive analysis of these extensions of the proposed formulation

is out of the scope of the present paper.

2.3. Optimization Method

The objective function of the previous optimization problem does not fea-195

ture a closed analytical expression with known mathematical properties to ex-

ploit, such as linearity and convexity [30]. In this situation, nature-inspired

meta-heuristic optimization algorithms are valuable tools. They allow obtaining

acceptable solutions despite the lack of certainty of optimality [30, 22]. Evo-

lutionary algorithms stand out from them as highly-adaptable methods with200

outstanding exploration capabilities. They use a population of candidate so-

lutions or individuals that interact with each other in a simulated context of

biological evolution and randomness [21, 31, 32]. Genetic algorithms [33, 34, 35]

are arguably their most visible exponent due to their high performance, sim-

plicity, and adaptability.205

In this work, the GA shipped with the Global Optimization Toolbox of

MATLAB has been used with its default configuration [36]. However, the reader

should notice that the present methodology is not linked to the optimization

algorithm chosen for implementing the proposal. Instead, any other general-

purpose optimization engine, like one of the plethora of evolutionary methods210

[21, 22], could be used within the same proposed polygonal context. The only

requirement is that they focus on computing and comparing values of the objec-

tive function defined, which could encapsulate any comparison and prioritization

criteria, as previously mentioned.

Centering our attention on the selected GA and according to its official doc-215

umentation, the algorithm starts by initializing a population of candidate solu-

tions. More specifically, it randomly creates a user-defined number of solution

vectors within the bounds of the search space. They are evaluated according to

the objective function, i.e., Eq. (3).
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After initialization, the algorithm executes its main loop. The aim is to cre-220

ate new individuals and evolve them to produce better solutions after several

iterations. The main loop consists of these genetic operators: Selection, Gener-

ation of offspring, and Replacement. It also has an elitist component to ensure

that the best results continue in the active population [33]. The selection op-

erator, which starts every evolutionary loop, chooses some individuals from the225

population to become the parents of a new generation of candidate solutions. As

in nature, every individual can become a parent, but better solutions are more

likely to be selected. In terms of implementation, according to the documen-

tation, the algorithm implements a stochastic uniform selection procedure. It

represents all the candidate solutions in a common segment. The section length230

of each one depends on its quality as a solution, so the better value, the longer

portion. Then, the algorithm moves along the segment taking steps of equal size

and selecting the individual linked to the portion reached every time. Although

individuals can be selected more than once, this approach avoids limiting to the

best individuals and enhances dispersion in the search space [22, 21]. The step235

size is randomly determined by the algorithm.

The generation of offspring creates the new individuals that will form the

population of the next iteration. It consists of elite selection, crossover, and

mutation. Elite selection directly takes the best individuals for the next pop-

ulation. This quantity is defined by a parameter whose default value is 5% of240

the total population size.

Aside from the previous individuals, the optimizer executes a crossover pro-

cess to combine the contents of different progenitors and create potentially better

candidate solutions as their descendants. More specifically, the algorithm makes

pairs of progenitors and obtains a descendant from each. Every descendant is245

defined by randomly selecting the value of one of its parents for each compo-

nent as a solution, i.e., the coordinates of the reference position of every demand

polygon. The number of individuals to create in this way is set by a user-defined

parameter that is a percentage of the population size without considering the

elite size. By default, the percentage is 0.8.250
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Regarding mutation, it is launched when the combination of the individuals

in the elite and the descendants results in fewer individuals than the current

population size, which must be kept constant. In this situation, the algorithm

changes the required number of parents by adding a perturbation vector to

each one. Every component follows a Gaussian distribution with mean 0 and255

standard deviation scaled by considering the range of each variable.

It is relevant to highlight that the new solutions resulting from these steps

must be evaluated. This consideration includes altered or mutated individuals,

which become new solutions in practical terms. The exception is the set of

individuals forming the elite. They do not vary, and it is unnecessary to re-260

evaluate them.

The replacement ends the main loop of the method by establishing the set

of individuals coming from the generation of offspring, i.e., elite, crossover, and

mutation, as the current population.

The GA iterates until one of the following stopping conditions is met. The265

first one is after executing the maximum number of iterations, which is set to

100 times the number of variables of the optimization problem by default. The

second one is to complete a given number of iterations with the average relative

change in the best fitness function value being less than or equal to a given

threshold. It is also possible to define other conditions, such as a maximum270

time or a particular value for the best solution. The interested reader can

access the official documentation for further information.

3. Experimentation and results

The proposed DSM strategy has been implemented in MATLAB using its

built-in functions for polygon handling (polyshape) and the GA provided by275

its Global Optimization Toolbox [36]. It has been tested in seven different

situations to test its effectiveness. The first four have been chosen because they

are easy to understand and solve. Conversely, the fifth example shows a more

realistic scenario, which includes multiple demands of different shapes and is
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harder to solve. Finally, the last two use real data from a bioclimatic building,280

the CIESOL research center of the University of Almeŕıa. The main aim is

to take as much energy as possible from the production profile, i.e., to cover

it with the demand profiles. The section ends with the computational cost of

addressing each case.

The interested reader can find the source code used at the following link:285

https://github.com/ual-arm/DSMoptimizer.

3.1. Simulation setup

The proposed methodology expects as input the demand and production

profiles presented as polygons, as described in Section 2.2. For simplicity and

without loss of generality, the fundamental experimentation considers three en-290

ergy demands of the same area to move in [Dy
i , D

x
i ]. Figure 3 shows them. As

can be seen, all the energy demand profiles have the same shape representing 1

kW during three hours, which results in a total energy consumption of 3 kWh.

Accordingly, the GA will see optimization problems of six variables. It has

been configured with the parameters shown in Table 1, which were tuned after295

preliminary experimentation.

GA parameters

Population Tolerance
Optimization

parameters
Time max (s) Generations

50 0.05 6 10800 36

Table 1: Parameters for GA simulation.

3.2. Simple case 1: Energy production is equal to energy demand without overlap

In the first case, Fig. 4 shows that the energy production starts with 2 kW

during the first 3 hours and ends with 1 kW during the last 3 hours. The total

energy production is 9 kWh, which is the sum of the three demands from Fig. 3.300

As shown in Fig. 5, the developed DSM strategy can cover the whole energy

production by moving the energy demands without overlapping. The optimiza-

13
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Figure 3: Representation of the polygons of energy demands.

Figure 4: Polygon of total energy production.

tion algorithm optimally moved the energy demand. Hence, the total energy

demand consumes all the production profile, which comes from renewable re-

sources and avoids using the public grid. The lower graph shows a negligible305

error of the GA in the excess energy, but it is due to numerical precision.

3.3. Simple case 2: Energy production is equal to energy demand with overlap

In the second case, Fig. 6 shows that the energy production starts with 1

kW during the first 2 hours. Then, the energy production increases its power

to 3 kW for 1 hour. Finally, it decreases to 2 kW during the last 2 hours. The310

total energy production is 9 kWh. It is the same as in the previous case, which
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Figure 5: Results for the first case when energy production and demand are equal without

overlap.

is equal to the sum of the three demands in Fig. 3. However, in this case, it is

impossible to fit any of the demand profiles in the upper part of the production.

Thus, some demand profiles must be split to cover the energy production profile.

Figure 6: Representation of the polygon of total energy production.

Figure 7 shows the results obtained by the proposed DSM strategy when315

energy production equals energy demand with overlap. The optimization algo-

rithm can move the energy demands optimally. The overlap between them is

displaced by the GA so that the energy demand shapes cover the production

profile. Thus, it takes all the available energy generated through renewable re-

sources without consuming it from the public grid. As in the previous case, the320

lines shown in the lower graph are due to numerical precision errors.
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Figure 7: Results for the second case when energy production and demand are equal with

overlap.

3.4. Simple case 3: Energy production below energy demand with overlap

For the third test scenario, the energy production starts with 1 kW during

the first 2 hours and ends with 2 kW in the last 3 hours. The total energy

production is 8 kWh, as shown in Fig. 8. It is less than the sum of the three325

demand profiles from Fig. 3.

Figure 8: Representation of the polygon of total energy production.

Figure 9 shows the results of the proposed DSM strategy for the third case.

The overlap between demands is displaced by the GA outside the production

profile because, as previously pointed out, the total energy demand exceeds the

energy production from renewable sources. Thus, a part of this demand must330

be covered using the public grid. However, the energy consumption from the
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public grid is minimal.

Figure 9: Results for the third case when energy production is below demand with overlap.

3.5. Simple case 4: Energy production higher than energy demand

In this case, the energy production is 3 kW during the 5 hours. As shown

in Fig. 10, the total energy production is 15 kWh, higher than the sum of the335

three demands from Fig. 3.

Figure 10: Representation of the polygon of total energy production.

Figure 11 shows the results of the proposed DSM strategy for the fourth

case. As the energy production is greater than the sum of the energy demands,

the placement of the latter is irrelevant as long as they stay in the production

profile. For this reason, the total energy demand consumes part of the energy340

of the production profile without needing the public grid. The excess of energy
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is significant, and it could be either stored in a power supply system or sold to

electric companies.

Figure 11: Results for the fourth case when energy production is higher than energy demand.

3.6. Complex case

The proposed methodology has also been tested in a more complex scenario345

to demonstrate its applicability to reality. Namely, the production profile used

is more sophisticated, as shown in Fig. 12. It tries to reproduce the energy

production from renewable sources where a constant wind energy source can

produce 3 kW of power during the day. In the middle hours, this production is

complemented by the power of a photovoltaic plant with a maximum produc-350

tion peak of 5 kW. It is worth mentioning that this energy production profile

is the polygonal approximation of a real one. In general, any profile can be

approximated by a polygon of N sides.

Aside from sophisticating the production profile, up to six demands will be

used in this example, as shown in Fig. 13. Besides, in contrast to the previous355

cases, the demand polygons have different shapes, such as rectangular, triangu-

lar, and trapezoidal, and areas. Some of them can be only put in one place of

the energy production profile, e.g., the triangular demands two and three, while

others can be placed in several locations, such as the rectangular demands five

18



Figure 12: Energy production profile for the complex case.

and six.360

Figure 13: Energy demand profiles for the complex case.

Although it is difficult to appreciate it from Fig. 12 and Fig. 13, this case is

similar to the first one, where the energy production equals the sum of energy

demands without overlap. This fact can be seen in Fig. 14. As shown, the

proposed methodology to manage energy demands in microgrids puts each one

in its optimal place to cover all the energy production. Therefore, this example365

confirms that the presented methodology can be successfully applied even with
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complex production profiles and demands that differ in shape and size.

Figure 14: Results for the complex case.

3.7. Real cases

Aside from the previous theoretical examples, the proposed methodology has

also been executed with real data to demonstrate its applicability.370

To this aim, data from a bioclimatic building, the CIESOL research center,

placed at the campus of the University of Almeŕıa, Spain, are used, see Fig. 15.

It is a bioclimatic building with several energy systems for self-consumption,

such as flat solar collectors for hot water and a photovoltaic plant for electricity

generation. The CIESOL has a wide sensor network to monitor hundreds of375

variables, which includes power meters to measure the energy consumed or pro-

duced for their subsystems. Thus, the real energy production of the photovoltaic

plant during a sunny day is presented together with the energy consumption of

one lab of the building.

3.7.1. Real case 1380

This case relies on data obtained from the photovoltaic plant of the CIESOL

building. The upper graph of Fig. 16 shows its total energy production with

a sampling time of 1 hour, dotted line. The observed shape corresponds to a
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Figure 15: CIESOL research center.

typical sunny day in summer, when the photovoltaic plant can reach a maximum

peak of 3 kW, approximately. Moreover, it shows the total energy demand too,385

green area. As it occurs with the energy production, it has been sampled in

intervals of 1 hour. After that, it has been split into four different irregular

polygons, as shown in the lower graph of Fig. 16. It represents the energy

demand of different devices running at one of the laboratories of CIESOL. It is

worth mentioning that these devices do not depend on each other. Thus, none390

of them must wait for any other to start or end.

As shown in Fig. 17, the proposed methodology successfully manages the

energy demand of the laboratory. More specifically, it moves the demand profiles

inside the ‘bell’ corresponding to the energy production of the photovoltaic

plant. The profile of the total energy demand once the individual four demands395

are moved is drawn by a red dotted line. Thus, the use of renewable energy

improves. Moreover, as energy production exceeds the sum of the four demands,

other systems could benefit from the excess.
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Figure 16: Total energy demand and production (upper graph), and its division into four

irregular demand profiles (lower graph).

Figure 17: Results for the real case 1.

3.7.2. Real case 2

The second case with real data uses the production profile shown in the upper400

graph of Fig. 18. It corresponds to the production of the photovoltaic system on

a typical sunny day in winter. As in the previous case, the energy production

polygon has been built with radiation data sampled at intervals of 1 hour. In the
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same graph, the green polygon contains the total energy demand considered for

this example. Again, sampling intervals are of 1 hour each. However, this time405

the total profile has been split into the three demands depicted in the lower

graph of Fig. 18. Notice that one of them simulates a device that is always

working. For instance, it could correspond to a lamp that is always on or a

computer executing a program uninterruptedly.

Figure 18: Representation of the total energy demand polygon.

The energy production is enough to supply all the demand, but one of the410

demand profiles cannot be split. For this reason, there will be a deficit of

energy at the beginning and the end of the day. Although the algorithm can

move the other demands into the production profile, it cannot do anything

with the bigger one. As in the previous case, the total energy demand after

moving the individual four ones is drawn by a red dotted line. However, the415

results obtained show an improvement over the initial conditions. Therefore,

the proposed methodology demonstrates that it can be applied successfully to

realistic situations involving complex and irregular production profiles.
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Figure 19: Results for the real case 2.

3.8. Computational cost

This section provides the reader with an overview of the execution time420

taken by our sample implementation for each case. Table 2 contains the times.

They have been measured in a non-dedicated personal laptop featuring 11th Gen

Intel(R) Core(TM) i5-11400H, 2.70GHz, RAM=16GB and MATLAB version:

Matlab2022b. As can be seen, the execution time Texe is directly proportional

to the number of polygons and overlap cases. Nevertheless, the time records425

remain compatible with realistic use, especially considering the lack of real-time

requirements. This planning should be executed offline and rely on predictions

and recorded consumption patterns. Moreover, the MATLAB implementation

used is a prototype that could be profiled to speed up its execution, if needed,

or even ported to a non-interpreted language, such as C.430

4. Conclusions

Successfully implementing microgrids in the current electricity market re-

quires defining strategies with algorithms that optimize the available energy

from renewable resources. Including these algorithms transforms microgrids

into smart grids since they become able to manage their energy sources. The435
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Study case Demand polygons Texc(min)

Simple case 1 3 5.6748

Simple case 2 3 5.6765

Simple case 3 3 6.2863

Simple case 4 3 1.6851

Complex case 6 12.4117

Real case 1 4 7.8370

Real case 2 3 3.9734

Table 2: Execution times of the proposed DSM methodology.

optimization algorithms can be on the production side, the demand one, or

both.

The main objective of this work is to present a demand-side management

methodology that optimizes the energy consumption profiles of a microgrid. The

DSM strategy is based on the Tangram puzzle since demand profiles are repre-440

sented as polygons to be combined to form the production profile for each target

case. For this reason, this paper proposes an optimization problem focused on

composing the production profile using the demand ones. The representation

and operations with polygons have been implemented with the built-in polyshape

functions of MATLAB. The optimization method used is the genetic algorithm445

included in the Global Optimization Toolbox of MATLAB. This optimization

algorithm calculates the optimal positions of each energy demand to fill the

production shape.

The results obtained in five different scenarios show that the proposed method-

ology can manage several energy demand profiles, with and without overlap, to450

fill an arbitrary production profile. Thus, as energy production comes from

renewable sources, consumption from the public grid is minimized, as well as

energy bills and polluting emissions. Although the first test scenarios include a

few rectangular energy demands and a simple production profile for better un-

derstanding, the proposed methodology can deal with multiple energy demands455
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and irregular shapes. These capabilities are demonstrated in the complex ex-

periment, where only the computational cost of the search increases acceptably,

and the quality of solutions remains high.

In future works, more sophisticated problem formulations will be studied.

For instance, they could include shifting and fixed loads, energy prices, pri-460

oritization, and divisible demands, i.e., devices that can be paused. Besides,

increasing the complexity of the problem might require considering different

optimization algorithms.
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