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bUniversity of Almeŕıa, Agrifood Campus of International Excellence (ceiA3) CIESOL
Joint Centre University of Almeŕıa-CIEMAT, jlredondo, jhervas,
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Abstract

In this work, the energy production of a microgrid is managed to satisfy
the demand while simultaneously minimizing two objectives: CO2 emissions
and the economic cost of operating the microgrid. To this end, a novel en-
ergy management system (EMS) that combines a Model Predictive Control
(MPC), a multi-objective optimization algorithm and a decision-tool, has
been developed. This EMS takes advantage of the individual strengths of
these components to address the changes that frequently appear in the mi-
crogrid operating conditions. Unlike traditional optimization, MPC applies
the concept of receding horizon, so that the optimization problem covers a
prediction horizon instead of the entire simulation time. In addition, it is
rerun at each simulation sample time with updated information, so that the
controller can adapt to changes. The multi-objective optimization algorithm
optimizes the CO2 emissions and the economic cost (these two objectives are
in conflict objectives and need to be optimized simultaneously) and gener-
ates a set of solutions, each of which is a trade-off between the two objec-
tives. These solutions are called Pareto optimal solutions, and they form
the Pareto front. The decision-tool automates the process by managing the
Pareto front obtained from the multi-objective optimization. It acts as an
expert and selects, among those equally suitable solutions, the one that best
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fits the current priorities. To test the performance and robustness of the
MPC and to demonstrate that the decreasing horizon actually helps to mit-
igate the uncertainties in the predictions, two simulations are performed. In
the first one, the forecasting variables are assumed to be predicted without
errors, while in the second one, a prediction error is added to these variables.
For each experiment, the decision-tool has been adjusted to select, from the
Pareto front provided by the multi-objective algorithm, different solutions
satisfying various requirements.

Keywords:
Model Predictive Control, Multi-objective optimization, Decision-tool, CO2

Emissions Minimization, Economic Cost Minimization, Energy
Management System, Changing Operating Conditions, Trade-off Solutions

1. Introduction

In global markets reference indices, the rise in certain fossil fuels, such as
gas and oil, is putting pressure on the price of electricity in most countries’
electricity markets [1]. This increase is due to several factors that are not
necessarily mutually exclusive: i) the fact that the production peak of the
main gas suppliers may have been reached [2]; ii) various geopolitical tensions
affecting supply, such as the war in Ukraine; and, iii) logistical and trans-
portation problems due to the upturn in energy demand once the pandemic
caused by Covid-19 is behind us. These factors are accelerating the energy
change from a model dependent on fossil fuels, which are limited, polluting
and in the hands of a few countries, to another energy model in which renew-
able energies cover, if not all, a significant part of energy demand. Within
this framework, microgrids emerge as a new type of electrical grid based on
renewable energies, which incorporate a control system that also seeks to
maximize energy use from these sources.

Today, microgrids are an essential element within electricity distribution
systems. They are also a technically feasible solution to reduce CO2 emis-
sions. Within microgrids, the control system is a key element, as they allow
the integration of renewable energy sources and storage in point-of-use en-
ergy systems. Among other controllers, Model Predictive Control (MPC)
is a suitable control scheme due to its ability to include demand forecasts,
weather conditions, and renewable energy production. In addition, MPC al-
lows direct optimization of incentives such as CO2 emissions, electricity to the
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main grid, or monetary costs (known as economic MPC). Most of the works
presented in the literature have addressed the optimization of one of these
objectives, either using heuristic optimization techniques or with determinis-
tic algorithms. However, when more than one objective has been considered
simultaneously, the multi-objective problem has often been reduced to a con-
strained single-objective optimization problem [3]. Nevertheless, as stated in
[4], multi-objective optimization has many advantages over single-objective
optimization for energy management in microgrids. For example, the multi-
objective solution offers many more trade-off solutions, eligible according to
the different constraints provided by the decision tool methodology. The
computation time is also more advantageous, since almost the same time
is used to obtain more solutions than in a single-objective problem. This
methodology is perfect for cases where microgrids are scalable and/or condi-
tions change rapidly [5]. Therefore, there is a need for a systematic approach
and formalizing a multi-objective optimization problem [5].

In this context, the contribution of this work is twofold. On the one hand,
it proposes an EMS that combines a stochastic multi-objective optimization
with an MPC to help mitigate the uncertainties introduced by renewable
energy in microgrids. On the other hand, it uses an automatized decision
tool to select, among the available ones, the most suited solution for the
current conditions.

Integrating multi-objective optimization with stochastic methods to im-
prove predictions in the variations introduced by renewable energies, specif-
ically solar and wind, is not widely studied in the literature. As far as we
know, only in [6] an optimization model with probabilistic constraints is
proposed to improve the generation predictions of renewable systems. In
fact, only a few works seek to improve energy management by integrating
techniques such as MPC, fuzzy control and modern control techniques in
multi-objective optimization [5, 7, 8]. In this work, we opt for an MPC since
it is a widely used industrial control scheme that internally uses a model of
the system to be controlled. The MPC monitors the control of a microgrid
and can predict weather conditions or renewable energy production over a
predefined horizon. Finally, it also includes a method that can optimize one
or several objective functions, depending on the problem. This paper con-
siders the energy cost and the emissions produced by fossil fuels, resulting in
a bi-objective optimization problem.

Apart from a few works such as [9], most studies in the microgrids lit-
erature propose the optimization of bi-objective problems [5, 7, 8, 10, 11].
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More precisely, in [9], a multi-objective analysis of more than two criteria for
microgrids is performed, taking into account the social approach that is very
important nowadays for the business environment. The rest of the articles
mainly focus on minimizing energy cost optimization by managing the re-
newable generation and operating costs of different energy sources as one of
the objective functions. The second objective varies depending on the work
considered. For example, works [8, 10] optimize the energy availability due
to the intermittency of both solar photovoltaic and wind systems by man-
aging the storage systems, i.e., implicitly minimizing the degradation rate
of these systems. The work [11] considers the minimization of the environ-
mental pollution rate as a second objective, and the works [5, 12] optimize
the thermal comfort for systems that include heat or cooling generation by
internal combustion engines using biogas and other fuels.

Solving a multi-objective optimization problem is not a mean task. To
deal with it, a genetic algorithm has been considered here. These methods
can find multiple optimal solutions in a single simulation run due to its
population-based search approach [13]. Additionally, they are demonstrated
to be suitable to deal with related optimization problems as [8, 10, 11, 14, 15,
16, 17, 18]. As a result, the multi-objective method does not provide a single
solution that simultaneously minimizes all objective functions. Instead, the
solution consists of several trade-off points in the feasible space known as the
Pareto front [19]. This paper also proposes an online decision tool that selects
the preferable point, according to some pre-specified requirements, without
the intervention of an expert. This idea of selecting the best solution needs
to be explored more profoundly in the microgrids framework, i.e. only a
few papers include the concept of decision maker in the study [10], while
others present an analysis of the metrics and normalization schemes to select
inflexion points of the Pareto front [5].

Finally, to conclude with the review of this topic, we highlight some works
where the storage system of the microgrid is coordinated through a cloud
platform, and the monitoring of the operation of the battery pack is carried
out in real-time [20, 21, 22].

The paper is organized into the following sections: in Section 2, the pro-
posed EMS is presented, both the MPC controller and the model are de-
scribed, and the particular optimization problem for our microgrid as well as
the decision tool are shown. Section 3 shows the case studies and verification
of the simulation results. Finally, section 4 presents the main conclusions
drawn from this work.
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2. Energy management system

As pointed out before, this work proposes an EMS with a unifying frame-
work between multi-objective optimization and MPC. Figure 1 shows a rep-
resentation of the implemented scheme. In the following, the important com-
ponents of the designed scheme are deeply explained.

Figure 1: Implemented EMS scheme.

2.1. Model-based Predictive Control

Generally speaking, MPC is based on the iterative and finite-horizon
optimization of a plant model. At time t, the current output y(t + 1) of
the plant is predicted using a model of the process, and a control strategy
u(t + 1) that optimizes the cost function is computed for a relatively short
future time horizon, Np. Specifically, an online or on-the-fly calculation is
used to explore state trajectories arising from the current state and to find a
cost-optimized control strategy up to the time (t+Nc), where Nc is the control
horizon. Only the first step of the control strategy is implemented. The state
of the plant is sampled again, and all calculations are repeated based on the
new current state, giving rise to further control and new predictions in the
state path v(t + 1). The prediction horizon is constantly updated forward
and, for this reason, it is said that the MPC has the feature of receding
control horizon [23] (see Figure 2).
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Figure 2: Representation of the receding control horizon in an MPC.

2.2. Model

The mathematical models used for the microgrid components in this work
are briefly described in this section. The connection to the main grid is
modelled as a Point of Common Coupling (PCC), which is electrically robust
and is used for unlimited exchange of active and reactive power. The PCCs
are modelled as generation sources that operate at voltage levels within limits
given by the electrical system, as shown in Equation 1. Another essential
element in the microgrid is the storage system; it is modelled as a system
that consumes energy PBcj < 0 when it is charging and as a source that
delivers energy to the microgrid PBdj > 0 when the system is dischargin (see
Equation 2); in addition, the State Of Charge (SOC) of the storage system
can be approximated by Equation 3 for any instant t. The wind system
is modelled as an uncontrolled source of active power that depends on the
speed of the wind Sw, its density δw and the area covered by its blades Aw (see
Equation 4). The model used for the photovoltaic system is widely known
as model of one diode, Equation 5 describes the behaviour of the power
generated by the PV as a function of the terminals current and voltage. The
PV terminal voltage and current equations are described in detail in [24].
The diesel generator is modelled as a system that delivers minimum and
maximum power at appropriate voltage levels. The load model represents
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the constant power for the entire time interval T . Equation 6 describes it.{
V j ≤ V tk

j ≤ V̄j; θj ≤ θtkj ≤ θ̄j
}
∀tk ∈ T (1)

P tk
Bnj = P tk

Bcj + P tk
Bdj; 0 ≤ P tk

Bdj;P
tk
Bcj ≤ 0;∀tk ∈ T (2)

SOCtk
Bj = SOCt0

Bj −
εcj∆t

EBnomj

tk∑
t=1

P t
Bcj −

∆t

EBnomjεdj

tk∑
t=1

P tk
Bdj (3)

P tk
wj = δwAw

(
Stk
w

)3
/2; ∀tk ∈ T (4)

P tk
CDm

(
V tk
CDm, I

tk
CDm

)
= I tkCDmV

tk
CDm;∀tk ∈ T (5)

Stk
li = P tk

li + jQtk
li ∀tk ∈ T (6)

Symbols and acronyms are not described in this section, but the interested
reader can find their meaning in table 1 for symbols and table 2 for acronyms.

2.3. Cost functions: the optimization problem

In this work, the following bi-objective optimization problem is consid-
ered:

{min f1,min f2} (7)

The first cost function, f1, symbolizes the emissions produced by the
fossil fuels used in the main grid for power generation. CO2 equivalents are
considered for traditional generators and diesel generation. The emissions
caused by the photovoltaic system, wind turbine, and batteries are considered
zero. Equation 8 expresses mathematically this objective function.

f1 =

Np∑
tk=1

Nb∑
j=1

χj

(
P tk

)
(8)

where Nb is the number of connecting nodes, χj represents the emission factor
of each connecting node, P (including the main grid, the diesel generator,
the solar system, the wind system, and the batteries) at time tk. According
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to the Environmental Protection Agency (EPA), the emission factor values
are the upper limits of CO2 emissions [25].

The second cost function, f2, represents the cost of energy (see Equa-
tion 9). It is calculated based on the cost of the fuel spent to generate
electricity using the distributed energy resources included in the microgrid,
and the cost of maintenance. Renewable energy sources, such as solar and
wind, are assumed to have a maintenance cost, but no fuel operating costs.
Mathematically, it can be written as:

f2 =

Np∑
tk=1

Nb∑
j=1

aj + bj

(
P tk
DGj

)
+ cj

(
P tk
MGj

)2

(9)

where the parameters a, b, and c are the generation cost coefficients in ¿/kW.
Finally, PMG and PDG are the generation output power of the main grid and
the power of the diesel generator, respectively, both in kW [26].

Our bi-objective problem has also several constraints that must be satis-
fied. Equation (10) represents the equality constraints, which indicates the
microgrid’s active and reactive power balance. More precisely, the first part
of the equation (10) represents the active power balance, while the second
part describes the microgrid’s reactive power balance, and the third block of
the photovoltaic system model [27].

htk
(
xtk

)
=



P tk
MGj + P tk

DGj +
∑

∀j P
tk
Bcj +

∑
∀j P

tk
Bdj +

∑
∀j P

tk
wj+∑

∀j∈i P
tk
CDj −

∑
∀j∈i P

tk
lj −

∑
∀j∈i|j∈NAl,NT

P tk
injj(V ,θ) = 0,

Qtk
MGj −

∑
∀j Q

tk
lj −

∑tk
∀j Qinjj(V ,θ) = 0

j = 1, 2, . . . , NbAC ; = 1, 2, . . . , NbAC | ∀j /∈ NGEN

∆I tkCDm = I tkCDm − fCD

(
V tk
CDm, I

tk
CDm

)
= 0,

∆P tk
CDm = P tk

ACm(V ,θ)−∆P tk
CDm

(
V tk
CDm, I

tk
CDm

)
= 0

∆V tk
CDm = V tk

CDm −
(

π
16

)
V tk
m = 0

m = NbAC + 1, . . . , NbAC +NbCD


∀tk ∈ T

(10)
Some inequality constraints have also been taken into consideration. Equa-

tion (11) represents the interval [SOCmin
Bj , SOCmax

Bj ], where the SOC of the
batteries must be included [28]. Equation (12) represents the inequality con-
straints to a variable that indicates the maximum and minimum values of
voltage, frequency, and power of the microgrid components.
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ztk
(
xtk

)
=

{
SOCmin

Bj ≤ SOCtk
Bj ≤ SOCmax

Bj

}
∀j ∈ NB,∀tk (11)

y
MG

≤ ytk
MG ≤ yMG

y
CD

≤ ytk
CD ≤ yCD

y
B
≤ ytk

B ≤ yB

y
W

≤ ytk
W ≤ yW

y
DG

≤ ytk
DG ≤ yDG


∀tk ∈ T (12)

Once the optimization problem is defined, both common multi-objective
terminology and what it means to solve a multi-objective problem (MOP)
are explained.

Definition 2.1. For two feasible vectors x,x′ ∈ S, we say that x dominates
x′ and f(x) dominates f(x′) if and only if fi(x) ≤ fi(x

′) for all i = 1, . . . ,m,
and there exists one j ∈ {1, . . . ,m} such that fj(x) < fj(x

′).

Definition 2.2. A decision vector x ∈ S is said to be efficient or a Pareto
optimal solution if and only if there does not exist another feasible vector x′ ∈
S dominating x, i.e., none of the objective functions can be improved without
worsening at least one of the others. The set SE of all the Pareto optimal
solutions is called the efficient set or the Pareto optimal set. The image of a
Pareto optimal solution f(x) is called Pareto optimal objective vector and the
set of all the Pareto optimal objective vectors f(SE) is denominated Pareto
optimal front.

Therefore, solving an MOP as formulated in Equation (7) means ob-
taining the whole non-dominated subset formed by all the efficient decision
vectors, whose corresponding objective vectors represent the Pareto optimal
front. Nevertheless, for most MOPs, obtaining an accurate description of the
efficient set (or PF) is not possible because those sets are usually a contin-
uum and include an infinite number of points. Furthermore, the computing
cost may be high, which is an essential issue for hard-to-solve optimization
problems, such as the one considered here.

This work proposes using heuristic multi-objective optimization algo-
rithms (MOEAs), which obtain ‘good approximations’ of the PF in reason-
able computing times. A suitable PF approximation (PFA) as a finite set of
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non-dominated objective vectors which cover the whole PF evenly (see Fig-
ure 1) is defined. Notice that the extreme points corresponds to the solutions
that minimize f1 and f2.

2.4. Optimizer

To solve the optimization problem previosly defined, the multi-objective
genetic algorithm (GA) gamultiobj provided by the MatLab® toolbox has
been chosen [29].

Genetic algorithms search for the solution of a function by employing
procedures that mimic the natural evolution, that is, by using operations
such as crossover, mutation, and selection that are applied to individuals
(candidate solutions) in a population [30]. These mechanisms are executed
from an initial population until a termination criterion is satisfied [31].

Crossing over takes two individuals and produces two new ones, while
mutation alters one individual to create a single new solution. In this work,
a crossover heuristic that penalizes the crossover between candidate solutions
that are too similar is used; this encourages diversity in the population and
helps prevent premature convergence towards a less than optimal solution. In
addition, Adaptive Feasible Mutation is considered, this mutation strategy
randomly chooses an improvement direction and a step length, and moves a
candidate solution whenever the objective function value increases and the
constraints are satisfied [32].

The selection of individuals to produce successive generations plays a vital
role in a genetic algorithm. In this paper, the @selectiontournament tool has
been considered [33], which is a probabilistic method based on the fitness
of the individual, so that the best individuals have a higher probability of
being selected. In our implementation, an individual in the population cannot
be selected more than once, and all individuals in the population have the
possibility of being selected and be part of the next generation.

The initial population considered here is composed of 100 individuals
randomly created, which evolve during the optimization procedure until a
stopping criterion is satisfied, i.e. after 5000 generations are achieved.

As a result of the multi-objective optimization algorithm, a PF approx-
imation is obtained. Then, there are available a set of points that are indi-
vidually satisfactory solutions.
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Figure 3: Decision tool flow chart.

2.5. Decision-tool

In this work, an online decision tool (DT) to select the preferable solution
according to pre-specified criteria is proposed. See Figure 3 for a graphi-
cal representation. In particular, the designed decision scheme will choose,
among the points that compose the PF, the one minimizing the CO2 whether
the Air Quality Index (AQI) is higher than a given threshold upAQI. Simi-
larly, it will choose the solution minimizing the cost of energy if the AQI is
lower than an established boundary lowAQI. Notice that those points are the
extreme points of the PF, depicted in yellow and green colors in Figure ??.
For those cases where the air quality stays in the interval [lowAQI, upAQI],
the decision tool will select a compromise solution to balance the costs and
the emissions of CO2. Specifically, it will select from the PF the solution
that is proportionally away from the minimum distance between the current
AQI and the lowAQI and upAQI boundaries.
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Figure 4: Scheme of the microgrid test.

3. Results and discussion

This section summarizes the simulation framework where the experiments
have been carried out as well as the obtained results.

3.1. Testbed description for simulation

The microgrid considered as a testbed is located in the CIESOL biocli-
matic building at the University of Almeŕıa (Spain). Broadly speaking, a
bioclimatic building is a type of building design that takes into account the
local climate to minimize the use of artificial heating and cooling systems.
This is achieved by utilizing natural ventilation, thermal mass, and other
passive design techniques to regulate the temperature and airflow within the
building and, in this way, the thermal comfort of its users. A bioclimatic
building can include renewable energy systems such as solar panels, wind
turbines, and geothermal systems to generate electricity and provide heating
and cooling. By integrating these systems with the building’s design, a biocli-
matic building can become energy-efficient, reduce its carbon footprint, and
achieve energy self-sufficiency. In our particular case, the CIESOL’s micro-
grid comprises a storage system (battery), a wind turbine, a diesel generator,
a photovoltaic (PV) system connected to the main grid and some loads, see
Figure 4. The power that those elements can produce or consume from the
microgrid are (all in kW) 2, 1, 3, 2 and 6, respectively.

The data inputs for the microgrid simulation are shown in Figure 5. From
top to bottom, it is possible to see: i) the solar radiation profile, ii) the wind
speed profile for Almeria and, iii) the load profile of a part of the bioclimatic
laboratories of CIESOL. The solid blue line shows the current data, and
the dashed red line shows the predictions made by the Double Exponential
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Smoothing (DES) method. The DES method consists of performing two
exponential smoothings from which a forecast is obtained, in this case, of
solar radiation and wind speed. The calculation applies an expression to the
values observed in the time series. Then a second expression is made to the
attenuated series obtained through the first smoothing [34]. The reader can
see that the DES method is able to predict the inputs for the simulation
almost without error.

Figure 5: Forecasting curves for the testbed microgrid.

The hourly information of the air quality index is provided by the Min-
istry for the Ecological Transition and the Demographic Challenge of Spain
(MITECO). In particular, the atmospheric measurements of the air qual-
ity index of the city of Almeŕıa are taken [35]. For the DT, an interval of
[lowAQI, upAQI] = [202, 278] µg/m3 has been considered.

To analyze the performance of the proposed EMS, two simulations have
been carried out. In the first one, it is considered that there are not predic-
tion errors, while in the second one an error is introduced in the forecasting
variables.
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Figure 6: Pareto-front obtained by the multi-objective optimizer when no prediction errors
are considered.

.

3.2. Simulation without error in predictions

In this case, several assumptions have been made. In particular, it is
assumed that there is no error in the prediction of the forecast variables,
see Figure 5. Zero energy cost and CO2 emission coefficients are used for
the PV system, wind system and battery; high cost and low CO2 emission
coefficients are considered for the energy coming from the main grid; low cost
and high CO2 emission coefficients are assigned for the diesel generator; and,
finally, a sampling time for the MPC equal to 15 minutes and a prediction
horizon of Np=10 are set, which means that the optimization is performed
with prediction variables predicted for the next 2:30 hours. Regarding the
multi-objective optimization algorithm, it has been configured to provide at
most 25 solutions in the PF.

Figure 6 shows a graphical representation of the PF obtained. According
to the scheme shown in Figure 1, that PF will be the input of the decision
tool, which will select the preferable solution according to the AQI index and
the preferences summarized in subsection 2.5. In the following, we analyze
the solution provided by the tool when different values of AQI are considered.

Let us consider the case where the AQI ≥ 278 µg/m3, which indicates
that the city has high pollution rates. In this case, the decision tool selects
the point that minimizes CO2 emissions, i.e., the one with values equal to
(f1, f2) = (1.10, 0.278) and which corresponds to the extreme upper solution
in the PF. The results of this simulation are depicted in Figure 7.
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As can be seen, the main grid power is mainly used as primary, since it
has a lower CO2 emission coefficient than the diesel generator. It is worth
mentioning that, each generation source contributes to supply the microgrid
load, represented in the figure by the red solid line. As can be seen, from
00:00 to 8:00 hours, the demand is satisfied by the main grid generation, the
wind turbine and the energy saved in the battery. In addition, the surplus
from the wind turbine is sometimes used to charge the battery. In the period
between 8:01 hours and 18:00 hours, demand is met by the main grid, the
photovoltaic system, since these are the hours of highest solar irradiation,
the battery and minimally by the diesel generator. In addition, the surplus
generated by the PV system contributes to charging the battery. In fact,
it mainly supplies the main grid and the battery in the following hours. In
general, we can conclude that the solution provided is valuable and satisfies
the requirements imposed.

Figure 7: Simulation for the left upper solution of the PF.
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Let us now analyze the opposite case, where the city has the lowest pol-
lution rates and the AQI ≤ 202 µg/m3. Now, the decision tool selects the
point in the lower right corner with values (f1, f2) = (1.69, 0.202). A graph-
ical representation of such a solution is given by Figure 8. In this case, the
objective is to minimize the economic cost of the microgrid, which explains
why the contribution of the diesel generator is greater than that considered
in the previous case. Specifically, in the period from 00:00 to 8:00, it begins
to contribute to the achievement of the demand.. In the stretch from 8:01 to
18:00 (hours of most significant consumption), the contribution of the diesel
generator is the maximum to minimize energy costs in the microgrid. Finally,
it should be noted that, at times of high energy production, the battery is
charged from renewable sources such as the photovoltaic system and the wind
turbine, since these are cheap and non-polluting energies.

Figure 8: Simulation for the right lower solution of the PF.

Finally, Figure 9 shows the compromise solution chosen by the decision
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tool for the case where pollution levels are intermediate in the city. It lies
right in the middle of the PF (f1(x), f2(x)) = (1.40, 0.222). This solution
presents a compromise between minimizing energy cost and minimizing CO2

emissions. It is observed that from 8:00 hours to 18:00 hours, there is an
increase in the energy contribution of the diesel generator trying to balance
the total energy cost in the microgrid. The contribution of the diesel gener-
ator is higher than in the first case (upper left corner of the PF where the
minimization of CO2 emissions has priority) but lower than in the second
case (lower right corner of the PF where the economic cost has priority).
Data on minimum and maximum pollution levels in Almeria city Council
have been provided by the Spanish Ministry for the Ecological Transition
and the Demographic Challenge (MITECO).

Figure 9: Simulation for a compromise solution in the middle of the PF.
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3.3. Simulation with error in predictions
The receding horizon makes the MPC more robust to uncertainties. This

is because at each sample time the values of the forecasting variables are
updated with new information and the optimization is re-run through the
control horizon. However, in other EMS, the optimization is performed only
once at the beginning of the simulation, so these uncertainties may be larger.

Then, to evaluate the robustness of the MPC, an error has been added
to the prediction of the forecast variables, i.e. solar radiation and wind
speed. Specifically, an error of 12% lower than the actual value of the variable
has been considered, as is possible to see in Figure 10. This figure gives a
graphical representation of the error profile. Notice that this error is time-
weighted, i.e., at the beginning of the simulation, time t, the future error for
the next sampling time t+1 is almost negligible, but as the time horizon of
the predictions increases, this error increases significantly. Therefore, as the
information of the prediction variables is updated at each sampling time, this
error will always be bounded.

Figure 11 shows the new PF obtained for the case in which the 12% error
is introduced. As can be seen, there are negligible variations in the PF with
respect to the case in which there is no error.

The same three scenarios considered in subsection 3.2 have now been
analyzed. More specifically: (i) the solution chosen by the decision tool
when the city has the highest pollution rates and the main priority is to
reduce CO2 emission, i.e., the point located in the upper left corner of the
PF (f1(x), f2(x)) = (1.187, 0.283); ii) the solution chosen when the city has
the lowest pollution rates and the priority is to reduce the economic cost, i.e.,
the point in the lower right corner of the PF (f1(x), f2(x)) = (1.78, 0.210),
and; iii) a compromise solution between minimizing energy cost and CO2

emissions, i.e., the midpoint of the PF (f1(x), f2(x)) = (1.486, 0.227). The
simulation results for these three cases are shown in the top image, the middle
image, and the bottom image of Figure 12, respectively.

All simulations have almost the same results as those shown when there is
no error in the forecast variables (see Figures 7-9). In fact, the differences are
not significant at first glance. These results demonstrate the robustness of the
proposed MPC to the uncertainties, which is an advantage over optimizing
only once at the beginning of the simulation, since its efficiency could be
more affected by the errors of the forecast variables.

Finally, taking into account the efficiency of the proposed approach, it is
worth mentioning that in our experiments, the computation time employed
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Figure 10: Forecast curves with a twelve per cent error.

by both the multi-objective algorithm and the decision tool to finally select
the preferred solution was 1709 seconds. The contribution of the decision
tool to this time is practically negligible, which means that the optimization
algorithm consumes most of this time.

To illustrate the efficiency of the proposed approach, a small computa-
tional experiment has been carried out consisting of replacing the multi-
objective algorithm by a single-objective one and then running two experi-
ments in which the functions f1(x) and f2(x) are independently minimized.
For this purpose, we considered the genetic algorithm (GA) included in the
Matlab Global Optimization Toolbox configured to consume the same num-
ber of function evaluations as the multi-objective method. Thus, the compar-
ison is fair since both algorithms have the same budget to reach the optima.

Table 3 summarizes the values of the objective functions obtained and
the computation time consumed by the GA. In addition, for comparison, we
have evaluated the solution obtained when f1(x) is minimized, with the func-
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Figure 11: Pareto-front obtained by the multi-objective optimizer when prediction errors
are considered.

tion f2(x), and vice versa. This calculation is highlighted in the table with
a ”*”, warning that this results from evaluating the optimal solution found
with the other objective function. In addition, for the reader’s convenience,
we have also included the results of the multi-objective algorithm. Specifi-
cally, we have included the total time consumed and the objective function
values associated with the Pareto front endpoints. Notice that those two
solutions correspond to the solutions that minimize f1(x) and f2(x), respec-
tively. Hence, they are comparable in terms of effectiveness with the ones
obtained by the GA. As can be seen, solutions of similar quality are obtained
for the single-objective and multi-objective algorithms, meaning that both
are comparable in terms of effectiveness.

From an efficiency point of view, the multi-objective algorithm used 1709
seconds to obtain 25 different compromised solutions in a single run, in-
cluding those obtained by the single-objective problems. In contrast, with
a single-objective methodology, every time the problem conditions change,
another optimization problem needs to be solved. Then, the single-objective
algorithm required 2511 seconds and two independent runs to obtain only
two solutions, demonstrating that the multi-objective approach outperforms
the single-objective approach in terms of computational complexity.

4. Conclusions

The transition in the electricity markets between the traditional electric-
ity generation model and a new model in which electricity will be generated
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in a distributed manner through microgrids, will only be possible with the
development of efficient energy management systems.

This work takes a step in that direction and presents an EMS capable
of satisfying the energy demand while considering requirements regarding
allowable CO2 emissions and energy cost. More specifically, the EMS can
adapt to frequently changing operating conditions and automatically con-
sider a solution that minimizes CO2 emissions, energy costs or a compromise
solution between the two. To do so, the EMS includes three components: an
MPC that makes the EMS more robust to uncertainties; a multi-objective
algorithm that allows optimizing more than one objective simultaneously and
proposes several candidate solutions; and a decision tool that selects the most
appropriate solution for the current scenario.

To illustrate how MPC helps to increase the robustness and performance
of the proposed EMS, we conducted a study in which no prediction errors
were considered and another in which the prediction failed. The results
showed that thanks to the decreasing horizon feature, the MPC could correct
the erroneous predictions and provide a solution of equal quality to the one
obtained when the prediction was correct.

Moreover, to show the benefits of using both the multi-objective opti-
mization and the decision tool, several solutions from the PF were analyzed.
The experiments showed that different candidate solutions could be obtained
in a single optimization run. The decision tool was responsible for selecting
the most suitable one based on the implemented preferences.

Therefore, it can be concluded that the proposed EMS is a promising tool
for managing the energy flows in the microgrid.

In the future, we plan to extend the problem to more than two objectives
and test other multi-objective techniques, such as those based on preferences.
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tigosa, Multipharm-dt: A multi-objective decision tool for ligand-based
virtual screening problems, Informatica 33 (1) (2021) 55–80. doi:

10.15388/21-INFOR469.

[16] O. Gonzales Zurita, J.-M. Clairand, E. Peñalvo-Lopez, G. Escriva Es-
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