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Abstract

Four-bar mechanisms are widespread in industrial and quotidian applications, but their design requires deep
knowledge and experience in Mechanisms and Machine Theory. In this area, path synthesis is a common
problem. It consists in calculating the length of the bars defining a mechanism so that a particular point
of its structure follows the desired trajectory. This paper presents SALAR Mechanism Synthesizer, a new
open-source software package that aims to be an easy-to-use yet powerful tool for addressing this kind of
problem. This tool offers four different optimizers from the literature, one of them specially designed for
mechanism synthesis. It also includes a new method for expressing and comparing paths, and hence, to
define the optimization criterion. This method, referred to as normalized shape-descriptor vectors (NSDV)
and presented in this paper, allows us to handle paths without being affected by translation, rotation,
and scale changes. The software package has been used for addressing six well-known problems from the
literature. According to the results achieved, it arises as a valuable tool in terms of accuracy, convenience,
and availability.
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1. Introduction

For years, four-bar mechanisms, also known as linkages, have been widely used in industrial and everyday
applications. There exist two different approaches for studying them: analysis and synthesis. Analysis may
focus on i) kinematics, that is, the movement that mechanisms describe without attending forces, and ii)
dynamics, i.e., when considering forces and inertial parameters. In both cases, the analyzed mechanisms must5

have been previously designed. On the contrary, synthesis deals with initially determining their geometrical
parameters to perform the desired motion. Depending on the requirements, this second approach can be
further classified into function, motion, and path synthesis, which are explained below.

Function synthesis techniques focus on defining a relation between the crank input angles and the angular
displacement of the rocker, which usually acts as the output link of the mechanism. Automobile steering10

systems [1] and solar trackers [2] are application examples of this approach. In motion synthesis, the goal
is to control the movement of the coupler link, also known as the floating link or connecting rod, including
its position and orientation. For instance, this strategy is valuable for loading machines [3] and airplane
high-lifts [4]. Concerning path synthesis techniques, they focus on the motion described by a specific point of
a linkage, referred to as the coupler point, for a given set of input angles. These angles can be either part of15

the requirements, leading to a prescribed-timing problem, or can be freely chosen by the designer. Walking
machines [5] and machining tools [6] are some fields in which this kind of problem arises.

This work deals with path synthesis, which requires minimizing the difference between the desired path
and the one described by the coupler point of the linkage. In this context, it is common to use the Euclidean
distance between the points of both curves to define the cost function [7, 8, 9], which is known as an absolute20

error-based metric. This strategy is straightforward yet limited: It cannot appreciate similarity when the path
produced by the considered mechanism is either translated, rotated or scaled with respect to the reference.
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However, these variations might not prevent the engineer from accepting the studied configuration after
transforming its variables adequately. For this reason, there exist alternatives to describe paths regardless of
their size and position. For instance, Nadal et al. [10] propose to use turning functions [11], which are popular25

for pattern recognition [12, 13, 14], to compare paths. Another valid option considered for this purpose is
the use of Fourier descriptors [15, 16]. Despite not being widely used in mechanism synthesis yet, they are
promising strategies according to the results found by the referred authors. This work also proposes a new
method to represent paths: normalized shape-descriptor vector(s) (NSDV(s)), which are similar to turning
functions but simpler to define.30

There exist three main resolution approaches to address the three types of synthesis problems explained
above: graphical, analytical, and optimization-based methods. Graphical strategies allow obtaining approxi-
mate solutions fast, but they lack accuracy. Analytical methods are the most accurate, but their complexity
significantly increases with the number of target points. Finally, optimization-based strategies offer accuracy
levels similar to the previous group but without the limitations in the number of target points that can35

be handled. The apparition of computers boosted these methods. The recent literature reflects numerous
applications of them [17], and they are also the choice in this work. In this context, the use of evolutionary
optimizers is significantly extended [7, 8, 9, 10, 18, 19]. However, there are alternatives. One of them is the
proposal in [20, 21], which combines global evolutionary algorithms and local gradient-based optimization.
Other alternatives are the approach presented in [6], based on the Haar Wavelet, the utilization of artificial40

neural networks in [16], non-convex optimization [22], and particle swarm algorithms [23].
Concerning software packages, there exist powerful CAD/CAE tools for the analysis and simulation of

linkages. Solidworks, Solidedge, MSC-Adams, and the open-source package FreeCAD are the most popular
tools for these tasks. However, as far as the authors of this paper know, there are fewer options for mechanism
synthesis. One of the most popular packages is ASOM [24], which is commercial and can be used for both45

analysis and synthesis of different types of multi-bar linkages. There exist other commercial alternatives such
as SAM [25], WinMecC [26], and the tool presented in [27]. It is also possible to mention MotionGen [28],
which is for mobile devices and can solve problems of up to five precision points. Unfortunately, none is
open-source; some are expensive and do not permit trying different optimization strategies.

The principal motivation of this work is to reduce the lack of open-source tools for path synthesis of50

mechanisms by releasing a fully-featured tool, written in MATLAB, for this purpose. Besides, this work
presents a new methodology for defining the underlying optimization problem, and it is included in the
software package. The released tool also features an easy-to-use graphical user interface that allows users
to choose between the different built-in optimization algorithms and cost functions. The rest of the paper
is structured as follows: Section 2 states the problem formulation and the simulation context. Section 355

introduces the new method proposed for shape encoding and comparison. Section 4 presents the optimization
methods included in the tool. Section 5 describes the test problems used to assess the tool. Finally, Section
6 contains the conclusions and future work.

2. Problem description

This section explains the different types of path synthesis problems supported by the implemented software60

package. Before that, it provides the reader with the underlying concepts related to four-bar mechanism
modeling and their implications in the synthesis problem.

2.1. Preliminary concepts

The path synthesis problem consists in determining the length and orientation of the bars comprising a
linkage. The objective is that a particular point of its floating link, known as coupler point, describes the65

desired path when the crank moves. Thus, in a machine like the one depicted in Figure 1a, the milling tool
connected to the coupler link must describe the specified working path.

According to the nomenclature used in Figure 1b, the tip of the tool corresponds to coupler point Ci =[
CiX CiY

]T
when projected onto a two-dimensional plane. The linkage parameters to optimize can be gathered

into a vector x = [r1 r2 r3 r4 rCx rCy x0 y0 θ0]. The components from r1 to r4 refer to the length of the
different bars. Namely, r1 is that of the fixed link, r2 is that of the crank, r3 is that of the coupler link
containing point C, at distance {rCx, rCy} from its origin, and r4 is that of the rocker link. These variables
are in a local coordinate system, Or, which is fixed to the rotation center of the crank. Hence, It is possible
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Figure 1: Four-bar cutting machine and its corresponding kinematic diagram.

to locate the coupler point in a global coordinate system, O, through x0, y0, and θ0. Proceeding in this way,
one can compare the positions of the points defining the desired path to those reached by the coupler point
for a given sequence of turns performed by the crank. These coordinates can be expressed as follows:

CXr = r2 cos θ2 + rCx cos θ3 − rCy sin θ3 (1)

CY r = r2 sin θ2 + rCx sin θ3 − rCy cos θ3 (2)

They can be related to the global coordinate system, O, as follows:[
CX
CY

]
=

[
cos θ0 − sin θ0
sin θ0 cos θ0

] [
CXr
CY r

]
+

[
x0
y0

]
(3)

The four-bar mechanism has a single degree of freedom that corresponds to the input motion provided by
the crank link, θ2. Hence, it is possible to obtain θ3 from the closed-loop equations defining the mechanism
as follows:

~r1 + ~r4 = ~r2 + ~r3 (4)

Equation (4) can be expressed in polar notation as follows:

r1e
jθ0 + r4e

jθ4 = r2e
jθ2 + r3e

jθ3 (5)

By applying Euler’s formula to Eq. (5) and separating the real and imaginary parts, the following expression
is obtained:

r1 cos θ0 + r4 cos θ4 = r2 cos θ2 + r3 cos θ3 (6)

r1 sin θ0 + r4 sin θ4 = r2 sin θ2 + r3 sin θ3 (7)

By setting θ0 = 0 in Freudensteins equation, it is possible to express θ3 and θ4 in terms of θ2 as follows:

K1 cos θ4 −K2 cos θ2 +K3 = cos(θ2 − θ4) (8)

K1 cos θ3 +K4 cos θ2 +K5 = cos(θ2 − θ3) (9)
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with K1, K2, K3, K4 and K5 defined in the following way:

K1 =
r1
r2

(10)

K2 =
r1
r4

(11)

K3 =
r22 − r23 + r24 + r21

2r2r4
(12)

K4 =
r1
r3

(13)

K5 =
r24 − r21 − r22 − r23

2r2r3
(14)

Finally, for a linkage configuration as depicted in Figure 1b, the angles θ4 and θ3 can computed from Eq. (6)
and Eq. (7) as follows:

θ4 = 2 tan−1

(
−B −

√
B2 − 4AC

2A

)
(15)

θ3 = 2 tan−1

(
−E −

√
E2 − 4DF

2D

)
(16)

with:

A = cos θ2 −K1 −K2 cos θ2 +K3 (17)

B = −2 sin θ2 (18)

C = K1 − (K2 + 1) cos θ2 +K3 (19)

and with:

D = cos θ2 −K1 +K4 cos θ2 +K5 (20)

E = −2 sin θ2 (21)

F = K1 − (K4 − 1) cos θ2 +K5. (22)

2.2. Problem variants

There exist three types of problems depending on the relation between the crank angles and the points
described by the coupler point, C:70

• Prescribed timing (type 1): For i = 1, .., N , where N is the number of points defining the desired path,
each point Ci must be achieved for a given angle of the crank, θi2. The parameter vector to optimize
only consists of the length of each bar along with the location and orientation of the coordinate system
of the mechanism.

• Prescribed timing with free starting angle (type 2): This is a variant of the previous type in which75

the initial angle of the crank also has to be calculated. Hence, the parameter vector includes it as
variable θ12 along with the geometrical parameters of the linkage.

• Non-prescribed timing (type 3): In this case, each coupler point Ci of the curve can be achieved for
any arbitrary angle of the crank θi2. Thus, the parameter vector contains as many angles as reference
points in the target path, in addition to the previous geometrical variables.80

Depending on the cost function used to define the optimization problem, it is possible to distinguish
between methods based on the absolute error and those linked to the shape error:
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� Absolute-error-based approach: This is the classical strategy for path synthesis. It relies on the
Euclidean distance between the desired points and their equivalent ones achieved by the synthesized
coupler to assess solutions. This method will be referred to as the absolute error cost function in what85

follows. The corresponding optimization problem can be formulated in the following way:

minimize
x

f(x) =

N∑
i=0

[(
CiX − CiXd

)2
+
(
CiY − CiY d

)2]
subject to lib ≤ xi ≤ uib,∀xi ∈ x,

r1 + r3 > r2 + r4,

r1 + r4 > r2 + r3,

r3 + r4 > r1 + r2

(23)

The first constraint requires every variable to be in its valid range defined by a lower (lb) and an upper
(ub) bound. The others ensure that the resulting mechanism meets Grashof’s law. Notice that the
definition followed herein is more flexible than the one used in [8, 9] because the longest bar is not fixed,
only the shortest one. Additionally, take into account that for the case of non-prescribed problems, the90

sequentiality of the crank displacement must be ensured by adding the following constraint:

θj2 > θ
mod(j+1,N)
2 > ... > θ

mod(j+N,N)
2 , θj2 = min

{
θi2
}
. (24)

� Shape-error-based approach: Instead of comparing coordinates, this approach focuses on measuring
the similarity of the desired and the obtained curve by studying their intrinsic properties. Fourier’s
descriptors, turning functions, and the new shape codification method proposed in Section 3 can be used
for this purpose. This approach increases the flexibility at search because the assessment is not biased95

by the necessity of matching coordinates, but it evaluates the underlying differences in shape. However,
as it occurs with turning functions or the method proposed herein, shape codification strategies achieve
flexibility by becoming invariant to changes in scale, rotation, and translation of the curves. Thus, it
is ultimately necessary to transform any configuration found to make the output of the corresponding
mechanism not only equivalent to the target in shape but also in size and orientation. Otherwise, the100

resulting mechanism might replicate the target shape, but it could not work in the same context.

Figure 2 summarizes the transformation procedure mentioned above. The perimeter (total length) of
the path found through optimization might differ from the target one. Thus, it is necessary to start by
scaling the bars of the corresponding mechanism by the ratio of both perimeters. After that, a process
that tries to superimpose the desired path and the one obtained with minimal error starts. It iteratively105

seeks the most appropriate rotation angle θ0 and translation of the synthesized mechanism. For every
angle considered, the translation is performed by defining the coordinates x0 and y0. They are the
difference between the X and Y coordinates of the centroids of the desired path and the one achieved,
(GXd, GY d) and (GX , GY ), respectively. Mathematically, these values are computed as follows:

x0 = GXd −GX , y0 = GY d −GY (25)

with:

{GXd, GY d} =

{∑N
i=0 C

i
Xd

N
,

∑N
i=0 C

i
Y d

N

}
, {GX , GY } =

{∑N
i=0 C

i
X

N
,

∑N
i=0 C

i
Y

N

}
(26)

Finally, for closed paths like the one shown in Figure 2, it is also necessary to find the most appropriate110

starting point to compare them from a common origin. This is achieved by the reordering stage, which
involves shifting the array with the crank angles and evaluate the absolute error to select the best
option.
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Figure 2: Transformations after shape-based optimization for direct comparison of the desired and optimized path.

Having described the variants of the problem supported by the software tool implemented, Table 1 sum-
marizes the variables considered in each one of them. As can be seen, x0, y0 and θ0 appear in every115

absolute-error-based problem. However, this is not the case for shape-error-based ones since these variables
are computed through the transformation process explained above. Therefore, this approach involves less
optimization variables to handle.

Table 1: Variables involved in each problem type and method

Absolute-error-based approach Shape-based approach
Type Optimization variables Optimization variables Post-processed variables

1 [r1 r2 r3 r4 rcx rcy x0 y0 θ0] [r1 r2 r3 r4 rcx rcy] [x0 y0 θ0]

2
[
r1 r2 r3 r4 rcx rcy θ

1
2 x0 y0 θ0

] [
r1 r2 r3 r4 rcx rcy θ

1
2

]
[x0 y0 θ0]

3
[
r1 r2 r3 r4 rcx rcy θ

1
2...θ

N
2 x0 y0 θ0

] [
r1 r2 r3 r4 rcx rcy θ

1
2...θ

N
2

]
[x0 y0 θ0]

3. Normalized shape-descriptor vectors

3.1. Overview120

As introduced, the tool presented in this work also includes an ad-hoc method to represent paths without
being affected by translation, rotation, and scale changes. The approach, known as normalized shape-
descriptor vector(s) (NSDV(s)), is explained in this section.

3.2. Definition

Let P be an N -vertex simple polygon, i.e., a single region without self-intersections and either convex125

or concave. Its corresponding NSDV, vP , is a description of its shape in 2N components. It would allow
anyone to reproduce P in an arbitrary 2D-Cartesian coordinate system at any scale. The meaning of every
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component depends on its position: For any odd i in 1, . . . , 2N , vPi refers to the length of a certain side
divided by the longest one, L. However, for any even i, vPi

contains the interior angle of P defined by the
sides of vPi−1

and vPi+1
, divided by 360◦, and with vPi+1 = v1 for i = 2N . Thus, every component vPi

is130

in [0, 1] ⊆ R, and the use of local angles and normalized lengths make them independent of the size and
orientation of P .

By definition, vP describes the shape of P counterclockwise, starting at the longest side. Accordingly,
every vP1

will always be L
L = 1. The starting side is the one that results in the highest initial sequence

of values, which covers the possibility of more than a single side of length L. Every P must have a single135

corresponding vP based on its shape, regardless of how its information (vertices) is stored or modified (e.g.,
scale changes). This aspect is crucial for using NSDVs to seek and compare polygons. In fact, if vP is used
to reproduce P , the scale will depend on the length assigned to the first component. Similarly, its position
and orientation will vary with the coordinate system defined. Hence, it is impossible to replicate the original
P from vP unless the initial longest side is known in position and length.140

3.3. Computation procedure

Algorithm 1 describes the main steps to compute the NSDV of a simple polygon, P , with N vertices. P is
defined as an ordered list of the X and Y coordinates of each vertex in an arbitrary 2D-Cartesian coordinate
system, i.e., P = {P1, · · · , PN} =

{
P1x , P1y , · · · , PNx

, PNy

}
. The last vertex is assumed to form a side with

the first one.145

Algorithm 1: Pseudo-code to compute the NSDV of a given polygon

Input: Polygon P = (P1x , P1y , · · · , PNx , PNy ) ∈ R2N

Output: NSD Vector vP ∈ [0, 1]2N

1 if IsClockWiselyOrdered(P ) then
2 P = ReversePolygon(P );
3 end
4 Real L, Integer focus = SeekLongestSide(P );
5 vP = CreateV ector(V alues = 0, Length = 2N);
6 2D-Point A = (Pfocus, Pfocus+1); /* 1st vrt. of the lgst. side */

7 2D-Point B = (Pfocus+2, Pfocus+3); /* Go to P1 if focus = 2N − 1 */

8 for i = 1 to 2N do
9 if i%2 == 1 then

10 Side
−→
AB = B−A

‖B−A‖ ;

11 vPi =
‖
−−−→
B−A‖

L
;

12 focus = focus+ 2; /* Wrap-around if needed */

13 F = A; /* Tracking the point for concavity check */

14 A = B;
15 B = (Pfocus+2, Pfocus+3); /* Wrap-around if needed */

16 else

17 Side
−−→
CD = A−B

‖
−−−→
A−B‖

; /* Origin adaptation */

18 Real angle = cos−1
(−→
AB·
−−→
CD

)
;

19 if CheckLocalConcavity(F,A,B) then
20 angle = (360◦ − angle);
21 end

22 vPi =
angle
360

;

23 end

24 end
25 return vP = StandarizeOrder(vP )

As shown between lines 1-3, the procedure starts by detecting whether the list of points is in clockwise
order or not. If so, it inverts the order by using the ‘ReversePolygon’ function, which is expected to transform
the list from clockwise to counterclockwise order. A valid option is to swap the last vertex and the first one,
the penultimate and the second one, and so on. The orientation detection applies Gauss’s area formula, also
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known as the ‘shoelace’ method [29, 30]. It allows computing the signed area, A, of an arbitrary simple150

2D polygon according to Eq. (27), which assumes that the last vertex of the list is linked to the first one.
Namely, if A is positive, the points are listed in counterclockwise order, while it is negative otherwise.

A =
1

2

N∑
i=1

(
PixPi+1y − Pi+1xPiy

)
(27)

In line 4, the longest side of P is sought by using the ‘SeekLongestSide’ function. It goes through every
vertex of the list and computes the length of the side that it forms with the next one. This function must
return both the length of the longest side, L, and the position of the x coordinate of its leftmost vertex,155

focus. If there is more than a side of length L, the result can be any of them (e.g., the last found in
the implementation proposed). This position will define the initial order of the NSDV, vP , which must be
standardized, as explained later in this section. The vector is first initialized to 0 and length 2N in line 5.

In lines 6 and 7, the two vertices of the longest side are loaded. They are stored in variables A and B,
respectively. Notice that reading the next vertex may require wrapping around to the first point of the list,160

as commented in line 6. This possibility must be considered every time the focus changes and its next point
has to be read. Storing the first side prepares the execution of the main loop in line 8. This loop performs
two main tasks: At odd iterations, it analyzes the current side to store its normalized length and moves the
focus to the next one. At even iterations, it uses the former next side to compute the angle that it forms
with the previous one.165

The actions linked to the first task occur between lines 10 and 15. vP is updated in line 11 by saving
the result of dividing the length of the current side, whose unitary vector was computed in line 10, by that
of the longest one, L. After that, the polygon focus is moved by setting focus = focus + 2, which goes
from the x component of point i to that of i+ 1 (and may require wrapping around, as introduced). In line
13, the first vertex of the current side is stored in F . This variable will serve to check the concavity of the170

interior angle defined by the current side and the following, as explained below. Finally, the vertices of the
contiguous side replace those of the current one by setting A = B (line 14) and B to its next one. Wrapping
around is necessary when the new A comes from the last two components of P .

The actions of the second task start in line 17 with the computation of
−−→
CD. It is the unitary vector of

the side after the one used to obtain the last normalized length in vP (stored at the end of the previous set175

of steps). Notice that its direction is opposite to that of
−−→
AB. By proceeding this way, the arc-cosine of the

dot product of
−−→
AB and

−−→
CD, computed in line 18, is equal to the interior angle formed by both sides when P

is convex. If so, angle is not further modified and is used to compute the normalized angle as angle/360 in
line 22. However, the local concavity between the two sides involved is checked in line 19. This analysis may
require setting angle = 360− angle (line 20).180

The local concavity check studies the three vertices that define the angle between both sides involved, i.e.,
the last one used to compute a particular length component of vP and its next side. According to Algorithm
1, the vertices are F (i.e., A of the first side), A (i.e., the first vertex of the next side or B of the first side)
and B (i.e., the last vertex of the next side). They are used to define the orientation matrix O in Eq. (28).
Since P must be counterclockwise, the determinant of O will be negative when the studied interior angle is185

concave. Analogously, this value will be positive for convex angles, and it will be 0 if the studied points are
collinear.

O =

1 xF yF
1 xA yA
1 xB yB

 (28)

Algorithm 1 ends with the re-ordering of vP to return it in line 25. As introduced, NSDVs are required
to start with the highest sequence of values so that the result does not depend on the longest side selected
when there are more than a single one of length L. Figure 3 presents an imaginary situation in which it is190

necessary to adapt the order of an NSDV and how it is accomplished. As shown, Algorithm 1 could return
any of the three alternatives as its result before the standardization in line 25, which must ultimately choose
the last option.

For this purpose, the ‘StandarizeOrder ’ function proceeds as follows: It identifies every component vPi = 1
for i = 1, 3, · · · , 2N − 1, i.e., the odd positions, which refer to side lengths. Then, it reads the next value195
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(1.0, 0.50, 0.75, 0.50, 1.0, 0.14, 0.80, 0.30, 1.0, 0.50, 0.75, 0.50)

Potential initial points:

Possible preliminary NSD vector:

a) (1.0, 0.50, 0.75, 0.50, 1.0, 0.14, 0.80, 0.30, 1.0, 0.50, 0.75, 0.50)

b) (1.0, 0.14, 0.80, 0.30, 1.0, 0.50, 0.75, 0.50, 1.0, 0.50, 0.75, 0.50)

c) (1.0, 0.50, 0.75, 0.50, 1.0, 0.50, 0.75, 0.50, 1.0, 0.14, 0.80, 0.30)

𝑣!! , 𝑣!" , 𝑣!#

𝑣!!:

𝑣!#:

𝑣!":

Figure 3: Example of NSDV with different possible starting points and the expected result of standardization.

of each selected position, and only those equal to the highest one of them keep as valid options. After that,
the next value of each valid option is read, and only those equal to the maximum found are kept. This
procedure, which might require wrapping around the vector when reading, is repeated until no more than
a single option exists. It is also possible that the whole vector is iterated through with more than a single
option remaining, which indicates shape symmetry. Finally, the vector is rewritten starting from the initial200

point selected. Regarding the example in Figure 3, vP5
is discarded when 0.14 is found to be less than 0.5.

Both vP1
and vP9

remain possible until the first path reaches 0.14 and the other one is at 0.5 (vP2
after

wrapping around).
Figure 4 shows the NSDV of a sample concave polygon. As can be seen, the same shape is presented in

two different positions and sizes, but the resulting NSDV, which starts counterclockwise where highlighted205

by an arrow, does not vary.
Addressing path generation problems with NSDV requires defining the cost function as the Euclidean

distance between the NSDV of the desired path and that achieved by any candidate solution. The lower the
distance is, the better result it represents. Thus, it leads to a minimization problem as it occurs with the
absolute-error-based approach.210

4. Optimization methods

Four state-of-the-art optimization methods have been considered to find the optimal variables for the
mechanisms to be designed: i) Teaching-Learning-Based Optimization [31], ii) Differential Evolution [32], iii)
Málaga University Mechanism Synthesis Algorithm [8], and iv) Interior-Point [33] (provided by MATLAB’s
FMinCon in its Optimization Toolbox [34]). The first three optimizers are stochastic population-based215

algorithms with global scope. The latter is a local deterministic method that has been combined with
a multi-start component. The interested reader is invited to consult the references provided for further
information. Nevertheless, this section briefly describes them for the sake of completeness. It is also relevant
to highlight that users may add new optimizers since the tool is open-source.

4.1. Teaching-Learning-Based Optimization (TLBO)220

TLBO, recently proposed by Rao et al. [31], is a numerical optimization algorithm that falls into the
meta-heuristics category [35]. This aspect means that it applies a problem-independent strategy to find the
extremes (optima) of a function. Namely, it simulates an academic context defined by a classroom of students
who iteratively improve their skills. This situation is modeled by a pool (population) of randomly generated
candidate solutions (individuals), which classifies this method as a stochastic population-based optimizer [35],225

as introduced. This algorithm has attracted considerable attention because of its simplicity, performance,
and minimalist set of parameters [36].

TLBO takes as input the size of the population and the number of iterations to execute. It then generates a
random set of individuals. Each of them is a vector in which the component i corresponds to the optimization
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Figure 4: Polygon in two different positions and sizes featuring the same NSDV.

variable i and must be within its valid range. All of them have to be evaluated by comparing the target230

path to the one produced by the mechanism resulting from the evaluated configuration. Thus, assessing an
individual implies simulating the corresponding mechanism and computing one of the error metrics previously
explained, which becomes the objective function in Optimization terms. After this initialization stage, TLBO
executes the user-given number of iterations. Each of them starts with the teacher phase and ends with the
learner one.235

The teacher phase aims to improve the solutions by trying to shift each student towards the best one,
which becomes the teacher, T . It starts by calculating a vector M with the mean of every component i from
the individuals in the current population. After that, every student S is modified to obtain a variant S′

according to Eq. (29), which is defined in terms of every component i. ri is a random real number between 0
and 1 linked to component i. TF , referred to as the ‘teaching factor’, is a random integer that can be either 1240

or 2. Both ri and TF are globally computed for the current step. Finally, every S′ is evaluated and replaces
S if its error metric is better, while it is discarded otherwise.

S′i = Si + ri (Ti − TFMi) (29)

The learner phase simulates how students interact with each other to improve their skills. At this step,
every student S is paired with any other different one, W . Again, a modified individual S′ is generated and
will replace S after the process if it has a better (lower) error value. However, every component i is computed245

according to Eq. (30) this time. ri is a random real number between 0 and 1, linked to component i, and
globally computed for the current step. As can be seen, movements go towards the best individual solutions.

S′i =

{
Si + ri (Si −Wi) if error(S) < error(W )

Si + ri (Wi − Si) otherwise
(30)

After executing all the iterations, TLBO returns the best solution in its population.

4.2. Differential Evolution (DE)

DE, proposed by Storn and Price in [32], is a prevalent method for numerical optimization [37]. Like250

TLBO, DE relies on a population of randomly generated candidate solutions that progressively converge to
the optima of the studied function. Every candidate solution or individual is also a vector concatenating
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every variable under optimization. However, its procedure is different after the initial generation of a solution
pool of the constant size decided by the user, NP . Its terminology is closer to traditional Genetic Algorithms
[38]. Namely, its iterations or generations consist of mutation, crossover, and selection steps.255

Mutation defines, for each individual Sj , j = 1, · · · , NP , a mutant vector, vSj , which is created according
to Eq. (31). r2 and r3 are different random integer indices in the range [1, · · · , NP ]. r1 can be either a
random integer like the two previous ones or the index of the best candidate solution in the population. The
former approach is called ‘rand’ strategy, while the latter is known as ‘best’. Similarly, Sr2 − Sr3 defines a
single difference vector, but it is possible to use more. The most popular alternative combines two instead,260

which redefines the term multiplied by F as Sr2 − Sr3 + Sr4 − Sr5 . Finally, F is a real factor between 0 and
2 that controls the amplification of the differential variation. It can be a user-given constant for the whole
process or be randomly redefined in the range [0.5, 1] for either each generation or mutant vector. The latter
strategy is called dither, and it improves the convergence rate for noisy objective functions.

vSj = Sr1 + F (Sr2 − Sr3) (31)

Crossover combines each candidate solution, Sj , with its associated mutant vector, vSj . Combination265

results in the trial vector Sj
′
, which can be seen as the descendant between the plain individual and its

mutant vector in terms of genetic algorithms. It takes place according to Eq. (32), which describes how to
compute any component i of the trial vector. As can be seen, the component i of the trial vector of Sj comes
from its mutant one or remains unaltered. It depends on a real user-given parameter, CR ∈ [0, 1], known
as the crossover rate or probability. It controls every selection with a real random number generator in the270

range [0, 1]. This method is called ‘binomial’ crossover because the number of selected locations follows the
so-named distribution. However, notice that at least one of the components of the trial vector must come
from the mutant one. For this purpose, a random index is set before the crossover starts. The imaginary
function chosen models the equality test throughout the process.

Sj
′

i =

{
vSj

i
if rand(i) ≤ CR or chosen(i)

Sji otherwise
(32)

Each generation ends with the evaluation of every trial vector to select the individuals of the next one.275

Every Sj
′

that outperforms its progenitor, Sj , replaces it, while those that do not are discarded. After
executing all the iterations, DE returns the best individual in the population.

4.3. Málaga University Mechanism Synthesis Algorithm (MUMSA)

MUMSA, a recent method proposed by Cabrera et al. in [8], can be seen as an extension of DE. According
to its name, the algorithm is specially designed for mechanism synthesis. That is also its application scope280

in the later paper by the same authors in [10]. However, like the previous methods, MUMSA is a general-
purpose optimizer in reality. It is based on a DE method with a single difference vector, ‘best’ selection
strategy, and binomial crossover. In this context, MUMSA adds a new mutation procedure to crossover,
while the rest of the process remains unaltered.

Mutation allows further modifications of every trial vector according to Eq. (33). As can be seen, each285

component of the trial vector will be randomly moved in ± range around its current value with probability
MP . This modification is independent of whether the component comes from the current individual or its
mutant vector. Therefore, range and MP are MUMSA-specific parameters added to those inherited from
DE.

Sj
′

i =

{
rand() ∈

[
Sj
′

i ± range
]

if rand(i) < MP

Sj
′

i otherwise
(33)

This addition is an extra in-breadth search component that increases variability (like the standard ‘mu-290

tation’ phase of traditional genetic algorithms [35]). It aims to attenuate a potential problem of plain DE
called ‘stagnation’ [39], which complicates escaping from local optima, especially when the population size
is small. In this situation, the number of candidate solutions that DE can explore is too small because it
ultimately depends on the components that it can interchange from the initial population.

11



4.4. FMinCon’s Interior-Point (FMC)295

Interior-point methods refer to a widespread type of algorithm for solving linear and non-linear optimiza-
tion problems [33]. A defining characteristic of an interior-point algorithm is that its iterations stay in the
feasible region of the search space by using different techniques. As introduced, the interior-point method
used in this work is the one shipped with the Optimization Toolbox of MATLAB in its solver FMinCon
(FMC). This algorithm addresses the original optimization problem by solving a sequence of approximate300

ones resulting from adding slack variables and a barrier function [33, 34]. The approximations are less difficult
to solve than the underlying problem.

FMC starts exploring the search space at a given initial point that can significantly affect the quality
of the result. At each iteration, it takes one of two kinds of steps to solve the corresponding approximate
problem [34]. The first one is a direct or Newton step that applies a linear approximation. The alternative305

is a conjugate gradient step using a trust region. By default, FMC first opts for the direct one. If that is
not possible, for instance, because the approximate problem is not locally convex near the current position,
it chooses the other method.

This kind of method is known to be optimal for convex problems and may return local solutions otherwise.
Up to the authors’ knowledge, the convexity of the problem at hand has not been demonstrated, and the310

results vary with the initial point at experimentation. For this reason, FMC is included in a generic multi-
start procedure [35]. Accordingly, the local optimization is launched from a user-given number of different
initial points to return the best final solution. In general, they are randomly generated, but the first one
can be specified by the user. By proceeding this way, the exploration quality improves, and so does the
probability of achieving the global optimum if the selected initial point is in its region.315

5. Results

5.1. The SALAR mechanism synthesizer

The proposed software tool, which is called SALAR Mechanism Synthesizer, has been developed in MAT-
LAB. It provides a graphical user interface (GUI) that allows users to input the required information, such
as the desired curve, the type of problem, the design constraints, and the configuration of the selected op-320

timization methods. These data can be introduced using the editable fields of the GUI or loaded from an
appropriate ‘*.mat ’ file.

The tool supports all the processes explained in the previous sections. Namely, it can use either the
absolute or the shape (NSDV-based) error cost function to launch any of the optimizers described in Section
4 (notice that FMC requires a valid license of the MATLAB’s Optimization Toolbox). The calculation of325

turning distances is partially supported, that is, to study the results, but not for optimization. The tool
also includes the required post-processing steps for the results. After obtaining a solution, it is possible to
compare the obtained curve to the desired one by inspecting their coordinates, observing the graphics, and
studying the error metrics provided. The input information and the results can be saved to a ‘*.mat ’ file for
later use. For instance, FMC lets the user start from an existing solution to try to improve it. This option330

allows hybridizing global procedures with this local method, which is similar to what is done by Sedano et al.
[20]. Furthermore, SALAR includes simple yet convenient capabilities of performing kinematic simulations
with the results achieved.

Figure 5 contains an image of the GUI. The software can be publicly downloaded from (Not available
until acceptance. Attached copy to the reviewers). The referred repository contains both the source code and335

the standalone version, which can be used by simply installing the MATLAB Runtime Environment. It also
includes the documentation of the tool and the configuration files used for the experimentation.
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5.2. Numerical examples and tests

SALAR has been tested with six different problems from the literature, including a comparison with
the results obtained by other authors. The following subsections contain the problem statement and the340

comparative analysis for each one. Notice that all the angles are in radians, while length units are omitted
because they depend on the implementation size of the mechanism. The execution platform is MATLAB
2020a running in Microsoft Windows 10 on an Intel Core i7-3770 CPU at 3.40 GHz.

5.2.1. Configuration guidelines

Since there is no way to know the most appropriate cost function in general, each problem has been solved345

with the absolute and the NSDV error cost functions independently. First, all the available optimizers were
enabled without initial information and under competition. After that, all the optimizers except FMC were
disabled. This method was then reconfigured to take the former solution as its initial point to try to improve
its quality. This strategy allows implementing a hybrid optimizer combining an evolutionary method with a
local one, as suggested in [20].350

The methods have been configured for each problem independently, and the corresponding files can be
found alongside the tool. The configuration strategy is as follows: When FMC starts from an existing result,
it has been launched once. This approach is suitable when a promising solution is known in advance or to
refine a previous one. Otherwise, the number of random starts is iteratively increased until achieving good
results for the target problem.355

Regarding TLBO, its base configuration starts with 100 individuals and 50 cycles. In this context,
increasing the population size allowed ensuring finding feasible solutions, while doing so with the number of
cycles lead to improving their final quality when needed.

Concerning DE, the configuration process considers some of the guidelines provided by its authors.
Namely, the number of individuals starts as ten times that of variables. The mutation is binomial and360

uses a single difference vector with random selection. In general, the cross rate and F have been set to 0.9
and 0.8, respectively, but per-generation dither was used when there were convergence problems. As done
with TLBO, the lack of feasible solutions has been addressed with a larger population and low quality with
more cycles.

In relation to MUMSA, it inherits the main guidelines from DE. However, its F factor is 0.6 in general365

(and lower for the hardest cases). Its mutation probability has been set to values significantly lower than
the cross rate, i.e., 0.1 (and slightly raised, e.g., to 0.2, for the most difficult cases to enhance exploration
capabilities).

Additionally, notice that all the random initial points of FMC are filtered to ensure that the shortest
bar is the one expected by the simulator and that the angles fulfill the sequence requirements when needed.370

For the population-based methods, 10% of their initial and random solutions are filtered in the same way to
provide the population with some problem-specific knowledge and improve the convergence rates. SALAR
performs these tasks autonomously.

Each population-based method has been executed five times independently to store the best result, which
is also natively supported by SALAR. This option allows checking the means of error and the standard375

deviations, which might be relevant for stochastic methods.

5.2.2. Problem 1.1

This is a type 1 problem that was first formulated and solved in [40]. The solution was later improved
by Cabrera et al. [8]. In this problem, the coupler point has to describe an open curve (Cides) for a given
sequence of angles, θi2:

Cid = {(3, 3), (2.759, 3.363), (1.890, 3.862), (2.372, 3.663), (1.890, 3.862), (1.355, 3.943)}
θi2 =

{
θ12, θ

2
2, θ

3
2, θ

4
2, θ

5
2

}
= {π/6, π/4, π/3, 5π/12, π/2}

The variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 5]

rcx, rcy ∈ [−5, 5]
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Figure 6: Coupler curves of the selected problems. The points define the desired path, and the curves represent that achieved
by the optimized mechanism. In each case, number one shows the initial point, and number two indicates the sense.
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The best solution provided by SALAR was achieved with FMC, using the absolute error cost function,
and configured to perform 10 random restarts. The absolute error of the configuration found is 7.790× 10−7.
According to Table 2, this value is better (lower) than the one achieved in [8], which is 1.768× 10−6. Re-380

gardless, both are very accurate solutions, as shown in Figure 6a. For the sake of completeness, Table 2
shows the linkage parameters that correspond to the solution achieved and the error values of NSDV and
turning distance (TD). However, the NSDV cost function is not available for optimization because this is a
fixed-to-origin problem.

Table 2: Solution for each problem and the corresponding metrics: Absolute error (AE), normalized shape-descriptor vector
(NSDV), and turning distance (TD).

r1 r2 r3 r4 rcx rcy x0 y0 θ0 AE NSDV TD

1.1
Cabrera 2011 [8] 3.77 2.00 4.12 2.75 1.68 1.67 0.00 0.00 0.00 1.768× 10−6 - -
SALAR 3.56 2.00 3.87 2.67 1.67 1.69 0.00 0.00 0.00 7.790× 10−7 7.200× 10−4 7.359× 10−3

1.2
Cabrera 2011 [8] 50.00 1.35 1.35 50.00 11.38 4.44 10.19 -3.69 6.22 1.216 - -
SALAR 49.75 1.34 1.34 49.75 11.45 4.26 10.22 -3.68 6.23 1.219 7.259× 10−2 2.489× 10−1

2.1

Cabrera 2011 [8] 4.45 0.30 3.91 0.85 -2.07 1.66 -1.31 2.81 2.74 1.960× 10−2 - 2.615× 10−1

Nadal 2015 [10] 2.46 0.24 0.94 3.16 0.03 0.48 0.57 0.35 4.79 1.135× 10−1 - 1.848× 10−1

SALAR 1.05 0.42 0.91 0.60 0.37 0.40 0.27 0.15 0.28 9.026× 10−3 6.810× 10−1 2.377× 10−1

3.1
Cabrera 2011 [8] 31.79 8.20 24.93 31.39 34.19 14.42 -6.37 56.84 4.02 2.057× 10−4 - -
SALAR 30.42 9.50 28.30 40.12 43.02 2.79 -12.80 54.21 4.12 6.812× 10−7 7.779× 10−5 -

3.2

Cabrera 2011 [8] 79.52 9.72 45.84 51.43 8.21 -2.95 2.02 13.22 5.60 4.700× 10−3 - 1.795× 10−2

Nadal 2015 [10] 560.2 8.97 406.1 337.9 13.19 -88.48 -50.43 75.94 -0.05 6.899× 10−4 - 1.481× 10−2

SALAR 79.57 8.07 50.59 42.01 -10.72 -1.53 8.20 -0.65 3.93 4.121× 10−4 1.496× 10−1 5.861× 10−3

3.3

Nadal 2015 [10] 33.07 21.37 29.04 26.49 2.51 -9.73 25.69 18.10 3.81 1.099× 10−1 - 2.746× 10−2

Sancibrian [21] 28.16 16.94 23.05 32.68 -0.42 -7.12 19.05 12.69 3.42 * - -
SALAR 46.53 28.81 68.18 67.56 1.78 -14.49 33.90 27.11 3.83 6.062× 10−3 1.212× 10−2 3.530× 10−2

5.2.3. Problem 1.2385

This is a type 1 problem that was first formulated and solved by Acharyya and Mandal [9]. The solution
was later improved by Cabrera et al. [8]. In this problem, the coupler point must follow a semi-circular arc
for a given sequence of angles. Whereas the path of the coupler must be described clockwise, the prescribed
motion of the crank is counterclockwise, which increases the difficulty. The coupler points and the crank
angles are the following:

Cid = {(0, 0), (1.9098, 5.8779), (6.9098, 9.5106), (13.09, 9.5106), (18.09, 5.8779), (20, 0)}
θi2 =

{
θ12, θ

2
2, θ

3
2, θ

4
2, θ

5
2

}
= {π/6, π/3, π/2, 2π/3, 5π/6, π}

The variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 50]

rcx, rcy ∈ [−50, 50]

θ0 ∈ [0, 2π]

According to Table 2, the best solution provided by SALAR is similar to that presented in [8]. It has
been found by the MUMSA optimizer, using NSDV as the cost function, and configured with the following
parameters:

NP : 80 CP : 0.90 MP : 0.10 Range : 0.50

F : 0.60 Itermax : 100 Restarts : 5

This configuration leads to an absolute error of 1.295. After being refined by FMC, the error was later
reduced to 1.219, while that presented by Cabrera et al. is 1.216 [8]. Figure 6b shows the coupler curve
obtained by both approaches. As can be seen, their performance is very similar and acceptable, considering
the challenging nature of the problem.
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5.2.4. Problem 2.1390

This is a type 2 problem that was first formulated and solved by Kunjur and Krishnamurty [40]. Their
solution was later improved in [8, 10]. In this problem, the coupler point must describe a closed curve,
counterclockwise, for a given sequence of angles. It has to start at an arbitrary angle, θ12. The coupler points
and crank angles are the following:

Cid = {(0.5, 1.1), (0.4, 1.1), (0.3, 1.1), (0.2, 1.0), (0.1, 0.9), (0.05, 0.75), (0.02, 0.6), (0, 0.5),

(0, 0.4), (0.03, 0.3), (0.1, 0.25), (0.15, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), (0.5, 0.7), (0.6, 0.9), (0.61)}
θi2 =

{
θ12, θ

1
2 + (π/9)i

}
, i : 1..17

The variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 50]

rcx, rcy ∈ [−50, 50]

θ0, θ
1
2 ∈ [0, 2π]

The best solution provided by SALAR is achieved with MUMSA and NSDV as the cost function. This
solution leads to an absolute error of 4.800× 10−2 using the following parameters:

NP : 100 CP : 0.90 MP : 0.10 Range : 0.50

F : 0.60 Itermax : 120 Restarts : 5

After refining it, the absolute error is reduced to 9.026× 10−3. Table 2 shows this solution and those achieved
in [8, 10]. The linkage parameters found with SALAR include an initial crank angle θ12 = 1.938. As can
be seen, this solution is of high quality in terms of absolute error and shape similarity. Figure 6c allows
comparing these results visually.

5.2.5. Problem 3.1395

This is a type 3 problem that was first formulated and solved by Cabrera et al. [7]. The results were later
improved in [8]. In this problem, the desired path is a straight line traversed by the coupler point upwards
(Cides), for any arbitrary sequence of angles θi2. The points of the desired path are the following:

Cid = {(20, 20), (20, 25), (20, 30), (20, 35), (20, 40), (20, 45)}

The variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 60]

rcx, rcy ∈ [−60, 60]

θ0, θ
1
2, ..., θ

6
2 ∈ [0, 2π]

The best solution returned by SALAR results from using FMC and the absolute error as its cost function.
It is achieved without initial conditions after 300 random restarts. The refinement stage reduces the error
to 6.812× 10−7. Table 2 shows the variables found and the associated errors. It also includes the solution
obtained in [8], which leads to an absolute error of 2.057× 10−4. Figure 6d shows both. As can be seen, they
meet the requirements accurately. The crank angles of the solution obtained by SALAR are the following:

θi2 =
{
θ12, θ

2
2, θ

3
2, θ

4
2, θ

5
2, θ

6
2

}
= {2.3643, 2.808, 3.232, 3.665, 4.128, 4.6763}

5.2.6. Problem 3.2

This a type 3 problem that was first formulated and solved by Acharyya and Mandal [9]. The solution
was later improved by Cabrera et al. first [7], and by Nadal et al. later in [10]. In this problem, the coupler
point must follow a counterclockwise elliptical path (Cides) for any arbitrary sequence of angles θi2. The points
of the target path are the following:

Cid = {(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.928),

(0.60307, 12.736), (0.60307, 7.2638), (5, 3.0718), (11.736, 2.1215), (17.66, 4.8577)}
(34)
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The variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 80]

rcx, rcy ∈ [−80, 80]

θ0, θ
1
2, ..., θ

9
2 ∈ [0, 2π]

The best solution provided by SALAR is obtained with FMC using the absolute error cost function and 1000
random restarts. After the refinement stage, the error of the solution is 4.121× 10−4. As shown in Table 2,
it is better than those presented in [8, 10], which lead to absolute errors of 4.700× 10−3 and 6.899× 10−4,
respectively. Figure 6e confirms that all of them meet the requirements. The crank angles of the solution
found with SALAR are the following:

θi2 =
{
θ12, θ

2
2, ..., θ

9
2

}
= {2.415, 3.122, 3.806, 4.489, 5.173, 5.866, 0.2827, 0.9890, 1.704}

5.2.7. Problem 3.3

This problem was first formulated and solved by Sedano et al. [20] as a type 2 problem. Their solution
was later improved in [10, 21]. However, the prescribed angles were not provided. Thus, the problem has
been modeled as a type 3 instance herein, which increases the difficulty. In this case, the coupler point must
follow an open and counterclockwise path (Cides) resulting in a right angle, for any arbitrary sequence of
angles θi2. The coordinates of the points defining the desired path are the following:

Cid = {(0, 15), (0, 12), (0, 9), (0, 6), (0, 3), (0, 0),

(3, 0), (6, 0), (9, 0), (12, 0), (15, 0)}

Despite being omitted in the original problem, the variables to optimize must be in the following ranges:

r1, r2, r3, r4 ∈ (0, 100]

rcx, rcy ∈ [−100, 100]

θ0, θ
1
2, ..., θ

11
2 ∈ [0, 2π]

The best solution of SALAR is obtained by FMC using the absolute error as the cost function, without initial
conditions, and with 1500 random restarts. After the refinement process, the absolute error is 6.062× 10−3.
Table 2 shows the solutions achieved in [10, 21] together with the one obtained herein. As can be seen,
the result of SALAR features less absolute error than the configuration presented in [10]. This value could
not be compared to that published in [21], since different metrics are used. However, according to the
graphical representation of the solutions shown in Figure 6f, the solution obtained by SALAR achieves the
best performance. Its crank angles are listed below:

θi2 =
{
θ12, θ

2
2, ..., θ

11
2

}
= {5.538, 5.643, 5.752, 5.869, 6.008, 6.274, 0.258, 0.397, 0.514, 0.623, 0.728}

6. Conclusions

This work has highlighted the relevance of four-bar mechanisms in industry and reviewed the main
approaches to design them. After that, it has focused on the path synthesis design approach by describing400

the underlying problem formulation and presenting a new open-source MATLAB software package for this
purpose. The referred problem is defined by the path that the coupler point of the mechanism has to follow
and the constraints imposed on the bar lengths and angles.

The proposed tool, called SALAR Mechanism Synthesizer, supports three variants of this problem, de-
pending on the relationship between the coupler points and the crank angles. The main advantages of this405

proposal are three key aspects: First, the tool includes four different optimizers that can compete and col-
laborate. Secondly, SALAR offers a novel cost function for shape-error-based problems, called normalized
shape-descriptor vectors (NSDV), along with the well-known absolute error metric. Thirdly, it is an open-
source tool that can be freely used, distributed, and modified. SALAR also features an intuitive graphical user
interface that facilitates its usage. It allows checking the results obtained both graphically and numerically.410

Furthermore, SALAR includes an analysis section to perform kinematic simulations.
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Six experiments from the literature have been conducted to assess the performance of the tool. In these
experiments, the different optimizers and cost functions included in SALAR have been tested. The best
solution obtained for each problem has been compared to the results presented in the corresponding reference
papers. In all the cases, similar or even better results were achieved by SALAR in terms of absolute error.415

The comparisons were carried out numerically and graphically, and the configuration files are provided with
the source code. Therefore, the main contribution of this work is a tool that supplies the lack of open-source
software for path synthesis and solves problems from the literature, either with the same quality or even
better. Besides, NSDV can be of general interest as a simple alternative to describe and compare paths
representing polygons.420

As future work, it is possible to consider the inclusion of new optimization algorithms and the support
of other kinds of mechanisms. Similarly, the tool could be extended to handle motion and precision point
synthesis problems.
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