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Abstract

Reversible adders are essential circuits in quantum computing systems. They

are a fundamental part of the algorithms implemented for such systems, where

Shor’s celebrated factoring algorithm is one of the most prominent examples

in which reversible arithmetic is needed. There is a wide variety of works in

the existing literature which tackle the design of an adder for quantum sys-

tems, and today there is still a great interest in the creation of new designs

and the perfection of the existing ones. Similar to how it happens in classical

digital systems, there are different methodologies to approach the addition us-

ing reversible circuits. Some methodologies focus on minimizing the necessary

resources, others on optimizing computing time, etc. In this work we analyze

the reversible adders in the state-of-the-art for quantum computing, classifying

them according to their type, and finally, comparing each other using referenced

and validated metrics that allow highlighting the strengths and weaknesses of

each adder.
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1. Introduction

Reversible computation was first considered in the pioneering works of Lan-

dauer [1], Lecerf [2] and Bennet [3] in the context of the energetic cost of com-
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putational operations. These authors unveiled deep connections between the

thermodynamics of computation (in particular, the minimum amount of heat5

that a physical computing machine needs to dissipate per instruction) and the

logical irreversibility of some operations. Surprisingly enough, it was discov-

ered that the only computational task that implies a energy consumption is

information erasure. Thus, in principle, computations may be physically exe-

cuted without using energy as long as all operations are kept reversible and no10

information is lost in the process.

These profound results motivated further studies of, among others, Fredkin

and Toffoli [4, 5], who showed how any function computed by a logical circuit

can be also computed by a reversible circuit. The key element is the existence of

reversible gates that are universal in the sense that they can be used to simulate15

any other possible logic gate (reversible or not). With them, any circuit can be

transformed in a reversible one with only a linear increase in the number of

wires and gates [5]. This opens the possibility of using reversible circuits in

order to decrease the energetic consumption of computations, a topic that has

gained interest in recent years [6, 7, 8, 9].20

Interest in reversible computation in general, and in reversible gates in par-

ticular, also comes from an intimate connection with quantum computing [10].

Quantum computing is a computational paradigm that exploits the physical

properties of subatomic particles in order to achieve speedups in solving com-

putational problems [11, 12]. Far from being solely a theoretical model, several25

quantum computer prototypes have been constructed in recent years [13, 14, 15].

In fact, Google has recently reported solving, with a quantum computer, a prob-

lem that would be unfeasible to solve with only classical resources, thus achieving

the so-called quantum supremacy [16].

The main model of quantum computing is that of quantum circuits, in which30

logical gates are replaced with quantum ones [10]. These gates must obey the

laws of quantum physics and, as a consequence, they are always reversible. Re-

versibility is therefore no longer the interesting energy saving option that we

have described: it is now a fundamental requirement of quantum computing.
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This quantum paradigm requires us to reversibly implement even the most triv-35

ial algorithms that exist in classical computing. In fact, classical reversible gates

such as the Toffoli gate play a very important role in quantum computing since

they can be used, in combination with a few others, to approximate any possible

quantum circuit [17]. But in general, this conversion to a reversible methodol-

ogy is not trivial, and implies an increase in the necessary resources compared40

to the classic counterpart (with the consequent effort to optimize their use), and

even the search for more efficient alternative approaches from the point of view

of reversibility [18, 19].

Circuits for performing the addition are especially relevant for several quan-

tum algorithms that achieve a speedup over the best known classical methods.45

Chief among them are Shor’s algorithms, which can famously factor numbers

and compute discrete logarithms in polynomial time [20], with momentous impli-

cations for classical cryptographic protocols such as the RSA cryptosystem [21]

or Diffie-Hellman key exchange [22]. For instance, the most computationally in-

tensive part of the algorithm for integer factorization is the modular exponenti-50

ation circuit. The most usual approach to compute the modular exponentiation

is to use modular multiplier circuits, which are constructed using adders [23].

Although classically tractable, the design of the arithmetic part of the method

usually requires considerable ingenuity in order to minimize the number of gates

used and reduce the operational error, especially because all the operations must55

be conducted in a reversible way, making actual implementations highly non-

trivial, as we have mentioned previously.

If checking that reversible adders are used in the most computationally crit-

ical part of the probably most important quantum algorithm were not enough

to highlight the importance of such circuits, there are more examples. In addi-60

tion to Shor’s algorithms, quantum methods for achieving a quadratic speedup

over classical algorithms in search and detection tasks have been proposed, most

notably Grover’s algorithm [24] and quantum walks [25]. Although, in general,

these methods do not involve arithmetical operations, they use a quantum oracle

that is problem-depending and that may, in some cases, benefit from optimized65
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reversible circuits for addition, as for instance when algebraic structures are

involved [26, 27].

Then, to build a circuit that implements any of these algorithms, is it neces-

sary to design a reversible adder? Are there alternatives already implemented?

In the literature, there is a wide variety of reversible circuits for basic arithmetic70

operations such as addition or multiplication. However, it is not always easy

to analyze or compare them, because, on the one hand, the reported figures

of merit are not consistent from one author to another and, on the other, not

all parameters that are of potential interest are always clearly acknowledged.

How can we know if a circuit is the right one for us if we do not have all of its75

information? How do we know that there is no better one?

For these reasons, together with the above mentioned connections of re-

versible circuits to computation energy reduction and to quantum computing,

we think that a thorough, exhaustive, clear and impartial review of the exist-

ing reversible circuits for binary addition is needed. A review that seeks and80

establishes suitable metrics to accurately and verifiably measure a reversible

circuit. A review that finds and analyzes the state-of-the-art adders based on

these metrics, conveniently and visually offering all this information to anyone

interested in using a reversible adder. A review that, in summary, is a reliable

database of reversible adders. In this work, we aim to provide such a review,85

with special emphasis on being consistent on the parameters under which the

circuits are evaluated and on highlighting their particular merits and flaws. We

report the analysis of more than 40 references on reversible adders, clearly clas-

sifying them according to their different types and studying all their relevant

parameters (including delay, quantum cost and the presence of garbage out-90

puts). We also summarize all the pertinent information in several tables that

interested researchers can quickly refer to in order to select the adder that is

more suitable for their needs and provide original figures that exemplify some

of the most prominent reversible adders for some values of their inputs.

The rest of the paper is organized as follows. In Section 2, we introduce95

and explain the different metrics that will be used to compare all the reversible
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adders studied in this work (Section 2.1), explaining how we have used them to

carry out the review (Section 2.2). Since the adders are analyzed and compared

based on their methodology, the types of adders and their main characteristics

are presented in Section 3. Section 4 reviews the reversible adders that have been100

proposed in the literature, paying attention first to half-adders (Subsection 4.1),

then to full adders (Subsection 4.2) and, finally, to carry propagate adders

(Subsection 4.3, which includes ripple-carry adders and carry-lookahead adders).

The comparison of all these adders is carried out in Section 5, where we also

provide summary tables for quick reference of our findings in each category.105

Finally, in Section 6, we raise some conclusions of our study.

2. Metrics

2.1. Choice and justification of metrics

In the classical, non-reversible setting, measuring the complexity of a dig-

ital circuit is usually straightforward. A set of universal gates (for instance,110

AND, OR and NOT or just NAND) is fixed and the circuit complexity can be

computed as the number of gates plus the number of bits that are needed to

implement it together with a measure of its depth (which captures how many

gates can be executed in parallel). When dealing with reversible circuits, in ad-

dition to considering the number of gates and the depth of the circuit, it is also115

important to take into account other aspects, such as the presence of garbage

outputs. Also, as previously mentioned, one of the most important applications

of reversible circuits comes from its use in quantum computing, something that

affects the gates that can used to decompose the circuits. For these reasons, in

this section we clearly define the parameters that will be used throughout the120

paper in order to study the complexity of reversible adders.

There are a large number of adder circuits available for quantum computing,

as will be seen in this review. They all have a common goal: to make the addition

of two numbers as efficient as possible. However, the concept of efficiency often

changes among the authors of these circuits. And most importantly, each author125
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frequently measures his circuit using the metrics he considers appropriate or

even metrics defined by himself. Comparing adders becomes a tedious task

because each circuit has been evaluated differently and therefore their metrics

cannot be directly compared. We want to illustrate this problem with a specific

example. Li et al. presented in [28] an adder which involves 28 quantum gates to130

perform and addition between two 5-digit binary numbers. On the other hand,

Gidney presented an adder that needs 29 gates to perform the same operation

[29]. However, none of them mentioned this information in their results. Li

et al. evaluated their circuit in terms of the quantum cost and delay, while

Gidney measured his circuit in terms of the T-count. This example reveals the135

difficulty in comparing the different quantum adders and the need to carry out

a comparative study according to a wide and recognized set of characteristic

parameters associated with quantum circuits.

The objective is to measure and to compare the existing adders using a com-

mon methodology that allows a direct comparison between them, also avoiding140

differences in the nomenclature. For instance, the quantum cost of a circuit is

defined in several works as the number of gates which composes a circuit. Ac-

cording to this, a circuit which consists of 2 Toffoli gates has the same quantum

cost than other circuit which consists of 2 CNOT gates. Taking into account

that a Toffoli gate is composed of 2 CNOT gates and other 3 gates [10], this145

definition of quantum cost is imprecise. Moreover, an entire personalized circuit

built with 5 Toffoli gates could be defined as a novel reversible gate, being its

quantum cost 1. Comparing this new gate with a circuit which has 2 Toffoli

gates would show that the first one has a quantum cost of 1 and the second one

a quantum cost of 2.150

This review is focused on the digital and logic levels of the adders. Therefore,

exact and verifiable metrics at these levels are desirable. For these reasons, the

metrics defined in [30] are followed. Four parameters are defined in [30] to

evaluate reversible circuits:

• Quantum Cost (QC): the quantum cost of a circuit or a X × X gate is155
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defined as the number of the 1×1 and 2×2 gates which composes it. The

quantum cost of 1× 1 and 2× 2 gates is 1. This is a sensible metric, since

we are mainly interested in the possibility of using arithmetical reversible

circuits in quantum computing and most quantum computers use only

1× 1 and 2× 2 gates as primitives.160

• Delay (D): the delay of a circuit defines its speed. A higher delay implies

that a circuit is slower. 4 is the unit of delay defined in [30]. 1×1 and 2×2

gates have a delay of 14. The delay of a circuit or a X×X gate is defined

by the number of 1 × 1 or 2 × 2 which must be computed sequentially.

Therefore, if 2 or more gates can be computed in parallel, the delay will be165

determined by the delay of the slowest gate. To facilitate the evaluation

of the delay, several schematic diagrams of this work graphically analyze

the steps to complete the corresponding specific operations.

• Number of auxiliary Inputs (I): inputs which are set to a constant value

(usually 0 or 1) and are used to do auxiliary operations.170

• Garbage Outputs (GO): outputs which cannot be used at the end of the

circuit since they have useless values. Garbage outputs must be reversibly

removed (uncomputed) or these outputs may not be used later, which

would result in a waste of resources. An output which is uncomputed

to its original (and known) value is not considered as a garbage output.175

Uncomputing garbage outputs is especially important if the circuits are

to be used in quantum computations, for garbage outputs can prevent the

interference that quantum algorithms need to work properly.

According to [30], the quantum cost and delay of the basic gates used by the

adders studied in this work are shown in Table 1, and their symbols in Fig. 1.180

Several gates are only used in specific adders, and they are analyzed along such

adders.

The final idea is to show as much useful information as possible about a

circuit (using the same metrics across all circuits to enable comparisons), un-
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Gate QC D

Pauli-X 1 1

V 1 1

V + 1 1

Feynman/CNOT 1 1

Controlled-V 1 1

Controlled-V + 1 1

Peres [31] 4 4

Toffoli [10] 5 5

Table 1: Gates and their quantum cost and delay.

V

(a)

V+ V V+

(b) (c) (d) (e) (f) (g) (h)

Figure 1: Gates symbols: (a) Pauli-X, (b)V , (c)V +, (d)Feynman/CNOT , (e)Controlled-V ,

(f)Controlled-V +, (g)Peres and (h)Toffoli.

derstanding that there is no single better parameter. For example, on a machine185

with few resources, the general interest might be to reduce the number of qubits

and the quantum cost; while in a machine that has more resources the interest

could be to reduce the delay. However, we recognize that these metrics are not

perfect and that it needs to be supplemented in some aspects. First, and as

described below, there are various methodologies for performing addition. That190

is why we have considered it appropriate to classify and compare the adders

according to their methodology instead of making a single comparison. The

types of adders are explained in the next section. Second, there is a growing

interest in implementing adders that allow the use of error detection and correc-
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tion codes. These adders suffer from an increase in their metrics, but they have195

the advantage that they allow such error handling. In the review, we considered

it convenient to indicate which adders have this capacity. It is important to

mention that in these cases, the implementation of the gates in Table 1 may

be different, increasing the quantum cost and the delay due to, usually, the

incorporation of T gates. In relation to this matter, we also want to remark the200

work done in [29], which is focused on improving the number of T gates needed

to build N -bit adders.

There is a third point to consider. As it has been mentioned, this work is

focused on the logic level of the adders. However, it must be remarked that

behind this level there are several physical realizations of these reversible gates205

and circuits like quantum computation, optic computation, quantum-dot cellu-

lar automata or ultra low power V LSI design [32]. Each of these technologies

has its own rules and limitations, which are out of the scope of this paper. For

instance, we use the version of the Toffoli gate described in [10] (except for

several adders focused on error detection) since it optimizes the quantum cost210

and delay. Nevertheless, in linear optics, it is more important to optimize the

number of controlled-unitary gates since the CNOT gate can only be proba-

bilistically implemented [33]. In these terms, versions of the Toffoli gate like the

presented in [34, 35] are better options than the one described in [10] since they

are focused in reducing the number of controlled gates.215

2.2. Review methodology

In this review, we have tried to analyze all the adders published at the time

of writing these lines. However, it could be possible that we did not notice

the existence of some adders due to the enormous amount of related works,

which sometimes include the design of adders as part of a larger circuit without220

indicating it externally. Therefore, the existence of such adders goes unnoticed

by anyone who does not read the article in depth. On the other hand, we have

tried to make a thorough review in terms of the metrics described in the previous

subsection. We have not limited ourselves to gather the information described
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in each work, but we have 1) implemented and tested the corresponding adder,225

and 2) measured the circuit using the proposed metrics.

For the implementation and testing of each adder, we have used the ProjectQ

simulator, an open-source software framework for quantum computing [36]. The

circuits have been implemented in Python under this framework and subjected

to software tests to verify their correct operation. On the other hand, the230

measurement in terms of the metrics of [30] has also been done in Python over

the circuits taking into account the following:

• The quantum cost can be easily measured setting a weight for each circuit

and multiplying the number of gates of each type by its weight.

• The delay can be measured by dividing the circuit into levels in which no235

qubit acts twice. The delay of each level is given by the gate with the

greatest weight.

• To count the number of ancilla inputs is trivial.

• The number of garbage outputs is measured by labeling the qubits which

are not used to contain the result, and checking if they have been reverted240

symmetrically.

Some circuits offer designs adaptable to variable data size. In these cases, the

circuit has been implemented in a way that dynamically adapts to the size of

the input data. Thus it is possible to obtain the corresponding equation to each

metric since the part to repeat of each circuit to increase it by each digit is245

perfectly defined.

Finally, we have made a comparison with the information obtained, gather-

ing this information in tables to facilitate both its understanding and its use.

In order not to make the comparison unnecessarily long, some of the analyzed

adders have not been included. The main reason for discarding is the presence250

of garbage outputs in circuits that do not improve in any metric to those that

do not present garbage outputs.
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2.2.1. About the implementation of functions

Several types of adders are presented in the next section. The first two,

called half adder and full adder, are functions that implement a truth table of 2255

and 3 inputs, respectively (see Tables 2 and 3). However, the implementation of

these small functions has no merit: since we have the optimal implementations

for the gates described in Table 1, it is possible to determine the optimal design

of these functions in terms of the metrics described in this work using a SAT

solver [37].However, for the completeness of the review, we have included the260

the analysis corresponding to the half and full adders.

2.2.2. About error detection and correction codes

We have mentioned that when analyzing an adder, we indicate whether or

not it is fault-tolerant. However, an equivalent but fault-tolerant circuit can be

obtained from any adder presented in this review by following these steps:265

1. To apply the “Initial expansion algorithm” presented in [38] to map the

adder into a Clifford+T Circuit.

2. To remove redundant gates if necessary.

3. To minimize and parallelize the T gates according to the method described

in [39].270

This review focuses on finding, analyzing, and comparing the work done by

authors, so we do not make this adaptation in the circuits. Therefore, when in

this review it is indicated that a circuit is fault-tolerant, it is because the authors

of the adder have oriented its methodology to optimize it in these terms. In

other words, authors present a circuit already prepared for fault-tolerance.275

3. Types of adders

Addition is one of the basic operations in digital systems [40]. Despite its

apparent simplicity, there are a wide variety of ways to implement an adder.

Since the review analyzes and catalogs the adders according to their type, it is

important to make clear what each of the different types of adders consists of.280
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We have followed the terminology and classification order of adders described

in [40] for classical adders:

• The half adder is the simplest case of an adder. This kind of circuit

has two inputs: two digits A and B. Its objective is the computation

of A + B. Notice that the result of the half adder needs two digits as285

the case 1 + 1 returns 10. Therefore, the half adder has two outputs: S,

which contains the least significant digit of the addition, and Cout, which

contains the most significant digit (usually called carry out). Table 2 shows

the truth table of the half adder. As consequence, it can be established

that Cout = AB and S = A⊕B.290

A B Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Table 2: Truth table of the half adder.

• A full adder is similar to a half adder, but accepting the carry in, Cin,

as an input. Therefore, a full adder has 3 inputs (A,B and Cin) and 2

outputs S and Cout. According to its truth table (Table 3), it can be

deduced that S = A⊕B ⊕ Cin and Cout = AB + ACin + BCin.

• Carry propagate adders are able to sums two N -bit numbers A and B295

(usually with a carry in Cin). Their output consists on a N -bit number

S, the result of the addition, and the carry out of that operation, Cout.

The name carry propagate adder is used because the Cout of every pair

of bits Ai and Bi is propagated into the next pair Ai+1 and Bi+1 [40].

There are two kinds of carry propagate adders: ripple-carry adders and300

carry-lookahead adders.
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Cin A B Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Table 3: Truth table of the full adder.

– A N -bit ripple-carry adder is built chaining N full adders, just con-

necting the Cout output of every full adder with the Cin input of the

next full adder. This is shown in Fig. 2.

Cout2Full 
Adder

A0 B0

S0

Cin
Full 

Adder

A1 B1

S1

Full 
Adder

A2 B2

S2

Cout0 Cout1 Full 
Adder

AN-1 BN-1

SN-1

Cout

Figure 2: N ripple-carry adder.

– Carry-lookahead adders divide the addition into blocks to accelerate305

the computation of the carry out.

4. Analysis of adders

4.1. Half Adder

On the one hand, a half adder can be built using a Toffoli gate to compute

Cout = AB followed by a CNOT gate to compute S = A⊕B [10]. This circuit310

has a quantum cost of 6, a delay of 64, an auxiliary qubit and no garbage
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outputs, as it is shown in Fig. 3. This design has been widely used to implement

schemes in different experimental systems [41, 42, 43, 44, 45, 46]

B
0

A
S
Cout

A

Steps: 1 2

Figure 3: Quantum implementation of the half adder proposed in [10].

On the other hand, the Peres gate [47] can also act as a half adder [48, 49].

The version of the Peres gate presented in [31] achieves the best quantum cost315

among the 3× 3 reversible gates [32]. This version consists of 1 CNOT gate, 1

Controlled-V gate and 2 Controlled-V + gates. The Peres gate has 3 inputs A,B

and C, and produces 3 outputs P = A,Q = A ⊕ B and R = AB ⊕ C. Setting

C = 0, the outputs are P = A,Q = A⊕B and R = AB, which are the outputs

of a half adder. Fig. 4 shows this use of the Peres gate. It has a quantum cost320

of 4, a delay of 44, an auxiliary qubit and no garbage outputs.

V+

B
0

A

S
Cout
A

Steps: 1 2

V+ V

3 4

Figure 4: Peres gate acting as a half adder, using the quantum implementation proposed in

[31].

In [50], a quantum circuit for half adder is mentioned in Fig. 3 of Section

2.2 as an example of semi-classical quantum circuit. The circuit is reproduced

in Fig. 5. It has a quantum cost of 5 and a delay of 54. To illustrate how

it works, its truth table is shown in Table 4. In a similar way than the Peres325

gate, this circuit works as a half-adder if C is set to 0 and the variables P and
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Q denote Cout and S, respectively. Considering this case, the circuit has not

garbage output and a auxiliary qubit.

A

V+

B
C

P

Steps: 1 2

V

3 4

V

5

Q
R

Figure 5: Quantum implementation of the half adder presented in [50].

A B C P Q R

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 1 1 0 1

1 0 0 0 1 1

1 0 1 1 1 0

1 1 0 1 0 0

1 1 1 0 0 1

Table 4: Truth table of the half adder of Fig. 5.

There are several reversible half adder/subtractors (that is, circuits which

compute half addition and subtraction at once) in the literature. These circuits330

have a quantum cost higher than regular half adders since they also perform

the subtraction. A fault tolerant1 full adder/subtractor using reversible gates

1A fault tolerant circuit protects the information while it dynamically undergoes computa-

tion. This kind of circuit is specially useful since the error probability per gate is guaranteed

to be lower than a given constant threshold. Of course, they need extra quantum cost to

achieve this result [10]. Although interesting, the study of the techniques used to achieve this

remarkable result is beyond the scope of this review.
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was presented in [51]. The circuit of [51] consists of two Feynman double gates

(quantum cost 2 [52]) and two Fredkin gates (quantum cost 5), with a total

quantum cost of 14, the same delay, 3 auxiliary inputs, 1 selection qubit and335

3 garbage outputs. [53] presented a novel reversible half adder and subtractor

circuit. This circuit has a quantum cost of 5, the same delay, 1 auxiliary qubit

and no garbage outputs. It is shown in Fig. 6. Authors named this circuit RSG

gate, and it can also be used to build a full adder/subtractor circuit. That

functionality will be analyzed in the next section. In the same year, 2018, [54]340

presented a fault tolerant half adder/subtractor, which is similar in terms of

quantum cost to [51] (it also consists of two Fredkin gates and two Feynman

double gates). The circuit of [54] improves the number of garbage outputs and

auxiliary inputs, from 5 to 3 and from 4 to 2 respectively. However, it has

fan-out. Fan-out is not allowed in reversible logic design [10]. Both circuits are345

shown in Fig. 7 and Fig. 8.

B

V

A
0

Borrow

Steps: 1 2 3 4

V

5

Sum/Diff
CarryV+

Figure 6: Quantum implementation of the reversible half adder and subtractor circuit pre-

sented in [53].

B
0
0
A
0

F2

F2 FK

0

FK

Ctrl

Sum/Diff

Carry/Borrow

g1
g2

g3
g5
g4

Figure 7: Circuit of reversible fault tolerant half Adder/subtractor proposed in [51]. F2

represents a Feynman double gate, and FK a Fredkin gate.
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B
0

A
0

F2

F2 FK

Gnd

FK

Vdd

Sum/Diff

Carry/Borrow

g1
g2

g3

0

Figure 8: Circuit of reversible fault tolerant half Adder/subtractor proposed in [54]. F2

represents a Feynman double gate, and FK a Fredkin gate.

4.2. Full Adder

A simple way to build a full adder is to use three half-adders. A first half

adder is used to compute S1 = A ⊕ B and Cout1 = AB. Then, a second half

adder computes S = S1 ⊕ Cin and Cout2 = S1Cin. Finally, a third half adder350

computes Cout = Cout2⊕Cout1 and an unused value (garbage) Cout2Cout1. This

circuit is shown in Fig. 9, and can be built using any of the half adders described

in the previous subsection. However, this design can be improved using 2 Peres

gates [55]. A first Peres gate computes Q = A ⊕ B and R = AB (second and

third outputs respectively), and a second one accepts Q,Cin and R as inputs355

to compute S = Q ⊕ Cin and Cout = QCin ⊕ R (second and third outputs

respectively). This circuit can be seen in Fig. 10. It has a quantum cost of 8, a

delay of 84, 1 auxiliary qubit and 1 garbage output. These metrics have been

calculated considering the version of the Peres gate presented by [31].

B

Cin

A
Cout

SHalf
adder

Half
adder Half

adder
Not used

Figure 9: Quantum implementation of a full adder using half adders.

[56] proposed a full adder which uses the Fredkin gate (the Fredkin gate360

has a quantum cost of 5). This circuit consists of 5 Fredkin gates, so it has a

quantum cost of 25. This version was improved in [57], reducing the necessary

number of Fredkin gates into 4. In 2004, [58] proposed a new ripple-carry adder.
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B

Cin

A
PG

A

0
A    B (garbage)

PG S

Cout

Figure 10: Quantum implementation of a full adder using two Peres gates.

It is based in 2 components (gates): a gate called Majority (MAJ), and another

called UnMajority (UMA). These two gates can be combined to act as a full365

adder. The MAJ gate has three inputs, Cin, B and A, and three outputs,

U = Cin⊕A, V = B⊕A and Cout. Once the MAJ gate has been applied, Cout

must be used or saved since the computation of the UMA gate will reverse this

value into A. When the use of Cout is finished, the UMA gate is computed. It

has three inputs (U, V and Cout) and three outputs: Cin and A (those values370

are reversed to avoid garbage outputs) and the sum S. The complete circuit

to compute this process is shown in Fig. 11. It has a quantum cost of 14, the

same delay, 0 auxiliary qubits and no garbage outputs (the complete ripple-

carry adder of [58] will be analyzed in a later section). The design of [58] was

improved in later works [59, 60, 61, 62]. In 2016, [63] proposed a new design375

which keeps Cout. This circuit is shown in Fig. 12. It has a quantum cost of 10,

a delay of 84, 1 auxiliary qubit and no garbage outputs.

UMA gate

Cin

B
A

Steps: 1 2 3 4 5

S
A

MAJ gate

Cin

Cout

6

Figure 11: Full adder proposed in [58]. It consists of two gates called MAJ and UMA. Cout

must be used before applying the UMA gate.

[64] designed a full adder which consists of 1 Controlled-V + gate, 3 Controlled-

V gates and 2 CNOT gates. As it is shown in Fig. 13, this adder has a quantum

cost of 6, a delay of 44, 1 auxiliary qubit and 1 garbage output. In [65], it was380
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Figure 12: Full adder proposed in [63]. The first sub-circuit S1 computes Cout and the second

one computes S starting from the outputs of S1 without erasing Cout.
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Figure 13: Full adder proposed in [64].
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Figure 14: Full adder proposed in [66].

presented a full adder with a quantum cost of 12, delay 124 and keeping 1 aux-

iliary qubit but avoiding garbage outputs. A circuit proposed in [66] improves

them. This circuit has the same quantum cost, delay and number of auxiliary

qubits than [64], but with no garbage outputs. It consists of 3 Controlled-V +

gates, 1 Controlled-V gate and 2 CNOT gates. The circuit of [66] is shown in385

Fig. 14. Also in 2016, [67] proposed two alternative designs of full adder based

on reversible gates, but none of them improves the adder of [66]. The best of

the adders of [67] has a quantum cost of 8, a delay of 84, 1 auxiliary input and

1 garbage output.

Several fault tolerant full adders have been proposed. As it was mentioned,390

a fault tolerant circuit has a higher quantum cost because of parity preservation

[68]. For instance, [69] proposed a fault tolerant full adder with a quantum cost

of 11, the same delay, 2 auxiliary inputs and 3 garbage outputs. Previously

to [69], several fault tolerant full adders were proposed: [70] with a quantum

cost of 14 and 3 garbage outputs, [57] which has been already analysed in this395

section, and [71] with a quantum cost of 18 and 6 garbage outputs. Other fault
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tolerant adders are [72] with a quantum cost of 14 and 3 garbage outputs, [73]

with a quantum cost of 14 and 3 garbage outputs, and [74] with a quantum cost

of 8, delay 7 and 2 garbage outputs (Fig. 15). The circuit of [68] has a quantum

cost of 10 and 3 garbage outputs, but it offers interesting benefits against [74]400

in terms of the transistor count or the total logical calculation (the number of

XOR, AND, and NOT operations).

C
B
A

S
g1
A

Steps:1 2 3 4

0 V Cout

0 g2

V V V+

5 6 7

Figure 15: Fault tolerant full adder proposed in [74].

Similar to what happened with half adders, there are several reversible full

adder/subtractors in the literature. Again, these circuits have a quantum cost

higher than normal full adders since they also perform the subtraction. [75]405

proposed three designs. The best one consists of 2 CNOT gates and 2 Peres

gate. It has a quantum cost of 10, the same delay, 1 auxiliary qubit and 3

garbage outputs. It also needs an extra selection qubit in order to select the

operation to be computed (addition or subtraction). The half adder/subtractor

of [51] can be used to build a fault tolerant full adder/subtractor. 2 of these410

half adder/subtractors and 1 Feynman double gate (quantum cost 2 [52]) are

needed, with a total quantum cost of 30, the same delay, 9 auxiliary inputs, 1

selection qubit and 11 garbage outputs. A similar circuit was proposed in [76],

which consists of 4 Feynman double gates and 2 Fredkin gates, reducing the

quantum cost to 18, the auxiliary inputs to 5 and the number of garbage ouputs415

to 6. Moreover, [77] improved this design, using 3 Feynman double gates and

only 1 Fredkin gate (total quantum cost of 11). It has 4 garbage outputs and

4 auxiliary inputs. The full adder of [66] (Fig. 14) can be converted into a full

adder/subtractor adding a selection qubit and a CNOT gate, having a quantum
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cost of 8 and a delay of 54. On the other hand, the RSG gate presented in [53],420

whose use as half adder/subtractor has been studied in the previous section, can

be used to built a full adder/subtractor. It is able to compute both operations

in parallel, without a selection qubit. This circuit has a quantum cost of 15, a

delay of 104, 1 auxiliary input and no garbage outputs. If we only consider the

adder path of the circuit, the quantum cost is reduced to 10. Also in 2018, [54]425

proposed a fault tolerant full adder/subtractor using its half adder/subtractor

described in the previous section. The complete circuit requires 2 of those half

adder/subtractors (quantum cost of 14 each one) and 1 Feynman double gate.

Its final quantum cost is 30, with 5 auxiliary inputs and 3 garbage outputs.

In [49], a comparative analysis for performance evaluation of reversible full430

adders is carried out. As a part of the analysis, they considered several methods

to implement full adders using reversible gates:

• Full adder using PCTG gates: the PCTG gate consists of 1 Fredkin gate

and 1 Feynman double gate. The full adder is built using 2 of these gates

and 2 Feynman double gates. As it is shown in Fig. 16, it has a quantum435

cost of 18, the same delay, 5 auxiliary inputs and 6 garbage outputs.

• Full adder using BKG gates: this gate was defined in [78]. In that work,

it is said that the BKG has a quantum cost of 1 since it is only 1 gate.

However, according to the metrics of [30], a 4 × 4 gate cannot have a

quantum cost of 1. The internal design of this gate is not described.440

It is detailed that it has four inputs A,B,C and D, and four outputs

P = A,Q = AD⊕C,R = (AD⊕C)⊕B and S = (AD⊕C)B⊕AC⊕AD.

Setting D = 0, it acts as a full adder with 1 garbage output.

• Full adder using DKG gates: this circuit is defined in [79]. Similar to

BKG gate, the internal design of this gate is not described. It has four445

inputs A′, B′, C ′ and D′, and four outputs P = B′, Q = A′C ′+A′D′, R =

(A′ ⊕ B′)(C ′ ⊕ D′) ⊕ C ′D′ and S = B′ ⊕ C ′ ⊕ D′. If the inputs were

set to A′ = 0, B′ = A,C ′ = B and D′ = Cin, the outputs would be
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P = A,Q = B,R = A(B ⊕ C)⊕BC = Cout and S = A⊕B ⊕ C = Sum.

According to [30], it has no garbage outputs.450

• Full adder using Peres gates: this can be seen in Fig. 10.

• Full adder using Peres and CNOT gates: this idea was introduced in [80].

Its quantum cost is higher than the version of Fig. 10, and it has more

garbage outputs.

• Full adder using IG gates: the IG gate was presented in [81]. It has 4455

inputs A,B,C and D, and four outputs P = A,Q = A⊕B,R = AB⊕C,

and S = BD⊕B(A⊕D). Two IG gates connected in cascade can act as

a full adder, as shown in Fig. 17. It has 3 garbage outputs. Once again,

the internal design is not covered.

• Full Adder using Feynman and Fredkin gates: this full adder is the version460

proposed in [67], which has already been studied in this section.

A
B
0
0
0
C

0
FK

F2

PCTG gate F2 PCTG

g1

g2
g3 F2

0

g4

Cout

S
g6
g5

Figure 16: Full adder using PCTG gates. A PCTG gate consists of 1 Fredkin gate (FK) and

1 Feynman double gate (F2).

4.3. Carry Propagate Adder

4.3.1. Ripple-Carry Adder

Since a N -digit ripple-carry adder is composed of N full adders, its QC, D,

I and GO are given by the following equations:465
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Figure 17: Full adder using IG gates.

QCripple = N ·QCfulladder

Dripple = N ·Dfulladder

Iripple = N · Ifulladder

GOripple = N ·GOfulladder

If the ripple-carry adder did not have carry in (Cin = 0), the least significant

full adder could be replaced by a half adder. In this case, the equations are:

QCripple = (N − 1) ·QCfulladder + QChalfadder

Dripple = (N − 1) ·Dfulladder + Dhalfadder

Iripple = (N − 1) · Ifulladder + Ihalfadder

GOripple = (N − 1) ·GOfulladder + GOhalfadder

It is possible to use any of the full adders of subsection 4.2 to build a ripple-

carry adder. For the case Cin = 0, the least significant full adder can be replaced

by any of the half adders of subsection 4.1. Ripple-carry adders are the best470

of the carry propagate adders in terms of quantum cost. However, due to their

linear nature, they have a delay higher than others adders since the carry signals

must propagate though every pair of bits Ai and Bi [40]. In terms of quantum

computers, which currently have few resources, this kind of adders are the best

option as they minimize the quantum cost.475
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In addition to the ripple-carry adders that can be formed by combining the

described full (and half) adders, it is worth noting some special cases. For

instance, in [58] a ripple-carry adder is built using their full adder (Fig. 11).

Then, this ripple-carry adder is optimized swapping and avoiding unnecessary

gates. Assuming Cin = 0, the circuit can be even optimized further. For the480

general case, the circuit needs 2N − 1 Toffoli gates, 5N − 3 CNOT gates, and

2N−4 Pauli-X gates, with a total quantum cost of (2N−1)×5+(5N−3)×1+

(2N −4)×1 = 17N −12. The delay is 10N4 as it has 2N −1 Toffoli time-slices

and 5 CNOT time-slices ((2N − 1) × 5 + 5 × 1). It has 1 auxiliary input and

no garbage outputs. As an example, the optimized circuit for the case N = 6485

is shown in Fig. 18. Other proposals in the literature which presented a ripple-

carry adder without Cin are [59] (Quantum cost: 26N − 29, delay: 24N − 274,

number of auxiliary inputs: 0, number of garbage outputs: 0),[82] (QC: 15N−9,

D: 13N − 74, AI: 0, GO: 0), and [83] (QC: 13N − 8, D: 11N − 44, AI: 0, GO:

0). The circuit of [83] is shown in Fig. 19 for the case N = 4.490
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Figure 18: Ripple-carry adder for N = 6 (assuming Cin = 0) proposed in [58].

On the other hand, there are several proposals [58, 84, 85] which consider

the input Cin. [86] presented an adder which optimizes the reduction of the

computation in the ripple-carry process thanks to the use of a new gate called

TR. This gate was defined in [87], but in [86] is optimized, using only 1 CNOT
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Figure 19: Ripple-carry adder without carry in for N = 4 proposed in [83].

gate, 2 Controlled-V gates and 1 Controlled-V + gate. It has a quantum cost495

of 4 and a delay of 44. The resulting adder has a quantum cost of 15N − 6, a

delay of 9N + 54, and neither auxiliary inputs nor garbage outputs (Fig. 20).

The ripple-carry adder of [65] improves the quantum cost and delay of [86] (12N

and 10N4 respectively) at the cost of using 4N auxiliary inputs. The optical

reversible ripple-carry adder with Cin proposed in [88] is remarkable. It is not500

better than [86] in terms of the metrics of [30], but it improves it in terms of

optical cost. Optical cost is one of the most important metric parameters in

optical computing.
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Figure 20: Ripple-carry adder with carry in for N = 4 proposed in [86].

Moving away from the goal of reducing the quantum cost, Gidney presented

an alternative gate to the Toffoli gate focused on reducing the cost of T gates505

[29]. This new gate has a higher quantum cost than the Toffoli gate if we

consider the version proposed in [10]. However, it improves upon Toffoli gate
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implementations focused on fault-tolerance. As an example of the advantages

of this gate (called temporary logical-AND), the author proposes an implemen-

tation of a fault-tolerant adder. This circuit has a quantum cost of 18N − 2,510

a delay of 15N − 54, and requires N ancillary entries and 0 garbage outputs.

Although these numbers are worse than previous circuits, that is due to their

fault tolerance.

At the time of writing this article, the last adder in this category corresponds

to the one published by Li et al. [28]. This adder combines Peres and TR gates515

to achieve the addition with a quantum cost of 13N−10, a delay of 10N−4, only

1 ancilla input and no garbage outputs. An example of this adder is shown in

Fig. 21. The authors of this adder also describes its implementation in terms of

T gates, obtaining an equivalent but error-oriented circuit. This second version

has a quantum cost of 35N − 25, a delay of 16N − 3, and the same number of520

ancilla inputs and garbage outputs (1 and 0, respectively).

A3

B3

A2

B2

A1

B1

A0

B0

Steps: 1 2 3 4 5 6 7 8 9 10 11 12 13

A3

S3

A2

A1

S1

A0

S0

S2

0 S4

14 15

Figure 21: Ripple-carry adder with carry in for N = 4 proposed in [28].

4.3.2. Carry-Lookahead Adder

This kind of adders employs two special signals to compute the carry out:

generate signal (G) and propagate signal (P ) [40]:

• The carry out Cout of a pair of bits Ai and Bi is always 1 if both values525

are 1. This is called generation of a carry. Following this idea, Gi, the

generate signal for the i-th pair, can be computed as Gi = AiBi.
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• If a carry out Cout is produced when there is a carry in Cin, it is said

that the carry is propagated. Pi, the propagate signal, can be computed

as Pi = Ai + Bi.530

Considering both signals, the carry out can be computed as:

Ci = AiBi + (Ai + Bi)Ci−1 = Gi + PiCi−1

These adders are faster than the previous ones. However, they have a higher

quantum cost since they need more operations to anticipate the computation of

the Gi and Pi signals [40].
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Figure 22: Example of the carry-lookahead adder proposed in [89] for the case N = 8. It is

built using Toffoli, CNOT and Peres gates. Ai and Bi are the numbers to be added, Cout

are the carry out and Si are the digits of the sum. Zgi and Zpi are auxiliary inputs used to

compute Gi and Pi respectively.
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In 2004, Draper et al. proposed a logarithmic-depth reversible carry-lookahead

adder which improves the delay of the previous linear-depth adders [90]. It has535

a quantum cost of 28N − 15W (N)− 15log(N)− 6 (where W (N) represents the

number of ones in the binary expansion of N), a delay of logN + logN/3 + 7,

5N/4 auxiliary inputs and no garbage outputs. Thapliyal et al. optimized the

methodology to compute a carry-lookahead addition (without Cin), improving

the quantum cost and delay of the previous adder [89] . It has a quantum cost540

of 26N − 15W (N) − 15log(N − 4) and a delay of logN + logN/3 + 2. The

optimization is possible by computing Gi and Pi in parallel, and also replacing

several CNOT and Toffoli gates by Peres gates. The circuit involves the use

of several ancilla inputs, Zgi and Zpi, to compute Gi and Pi respectively. An

example of this circuit is shown in Fig. 22. It works as follows:545

• Step 1: This step computes Gi+1 and Pi+1, where 0 ≤ i ≤ N − 1. Zg0 is

transformed into Zg0⊕ = A0B0 with a Toffoli gate. For the case i > 0,

Bi⊕ = Ai and Zgi⊕ = AiBi using Peres gates.

• Step 2: This step computes Gi+2 and Pi+2, where 0 ≤ i ≤ N − 2 for G

and 2 ≤ i ≤ N − 2 for P . Using Toffoli gates, compute Zpi⊕ = BiBi+1550

for i = 2 to N − 2 and Zgi+1⊕ = ZgiBi+1 for i = 0 to N − 2.

• Step 3: This step computes Gi+3, Gi+4 and Pi+4, where i = N/2 and 0

for G and i = N/2 for P . For i = N/2 and i = 0, compute Zpi+3⊕ =

Zgi+1Zpi+1. When i = N/2, compute Zpi+1⊕ = ZpiZpi+2.

• Step 4: This step computes Gi+1 for i = N and i = N − 2. Compute555

Zgi−1⊕ = Zgi−3Zpi−2 for i = N/2 and Zgi−1⊕ = Zgi−5Zpi−3 for i = N .

Also, this step uncomputes the values of Zp computed in step 3.

• Step 5: For i = 2 to i = N − 2, transform Zgi into Zgi⊕ = Zgi−1Bi, and

Zpi+1 into Zpi+1⊕ = Zpi−1Zpi+1 for i = N/2.

• Step 6: Uncompute Zpi to avoid garbage outputs, and transform Zgi into560

Zgi⊕ = Bi+1 to compute Si+1.
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• Step 7: Compute S0 and uncompute Bi.

Two reversible carry-lookahead adders were presented in [91]. They are

shown (for the case N = 4) in Figs 23 and 24. The first one has a quantum

cost of (2 × N × 4) + (N × 1), better than the presented in [89]. However,565

this circuit presents 3 × N garbage outputs, whereas the circuit of [89] has no

garbage outputs. Following Bennett’s garbage removal scheme [3], it would

be necessary to add N + 1 extra qubits to save Si and Cout, four extra CNOT

gates to copy Si and Cout to those qubits, and to apply the reverse of the circuit.

Therefore, uncomputing the garbage outputs would mean a final quantum cost570

of 2× ((2×N ×4) + (N ×1)) +N + 1, which is higher than the quantum cost of

[89]. The second adder presented in [91] also presents garbage outputs, so the

same procedure can be applied to it. Its final quantum cost and delay do not

improve that of [89].
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Figure 23: Example of the first design of a carry-lookahead adder proposed in [91] for the case

N = 4. It is built using CNOT and Peres gates. Ai and Bi are the numbers to be added, Cin

and Cout are the carry in and the carry out respectively, Si are the digits of the sum, and gi

are garbage outputs.
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Figure 24: Example of the second design of a carry-lookahead adder proposed in [91] for the

case N = 4. It is built using CNOT and Peres gates. Ai and Bi are the numbers to be added,

Cin and Cout are the carry in and the carry out respectively, Si are the digits of the sum,

and gi are garbage outputs.

A reversible adder presented in [92] improves the quantum cost and delay of575

[89] using a novel technique for generating carry output. Nevertheless, it also

has garbage outputs (Fig. 25). This adder was built using a new 4×4 gate called

RPA (Reversible Partial Adder) gate, which has a quantum cost of 5 and delay

54. It also uses several 4×4 Fredkin gates (the 3×3 Fredkin gate has a quantum

cost of 5 and the same delay). The quantum cost is 11N , but uncomputing the580

garbage outputs with [3] would increase this number to 2 × 11N + (N + 1).

For instance, for the case N = 4, this circuit would have a quantum cost of 93,

whereas the adders of [91] and [89] have 61 and 55 respectively.

Focusing on fault-tolerance, Thapliyal et al. presented in [93] four adders

based on their own design of [89] but optimizing the number of T gates at the585

cost of increasing the rest of the metrics. To achieve this optimization they
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Figure 25: Carry-lookahead adder proposed in [92], for the case N = 4. It is built using 4× 4

RPA and Fredkin gates. Ai and Bi are the numbers to be added, Cin and Cout are the carry

in and the carry out respectively, Si is the sum, and gi are garbage outputs.

use the Gidney’s temporary logical-AND gate. Through the four circuits they

explore several combinations of temporary logical-AND and Toffoli gates to find

the best possibilities in terms of T-count and number of ancilla inputs. At best,

2N −W (N)− log(N) + 1 ancilla inputs are required (as opposed to 5N/5 of the590

original circuit). Their quantum cost and delay are much higher than the [89]

circuit. It is the cost to pay for fault tolerance.

5. Comparative analysis

In this section, the analyzed adders are compared. Since comparing adders

of different types makes no sense, the comparison is carried out between adders595

of the same kind. Therefore, four comparison are presented: half adders, full

adders, ripple-carry adders and carry-lookahead adders. Nevertheless, at the end

of the section an overview of all the results is made to consider the comparison

as a whole.

5.1. Half Adders600

Table 5 shows the quantum cost, delay, number of auxiliary inputs and

number of auxiliary outputs of the most representative half adders. The final
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column indicates if the adder can be used as a subtractor. In terms of quantum

cost, the Peres gate proposed in [31] (Fig. 4) achieves the best value. The

proposals of [53] and [50] have a quantum cost of 5, one more than [31], but [53]605

can also act as a subtractor, so the extra value is justified in this case. [10] has

a quantum cost of 6, and [51] has the highest quantum cost, 14. The quantum

cost of [51] is justified since this adder was the first reversible adder/subtractor.

None of the half adders can compute any operation in parallel, so their delay

is equal to their quantum cost. In terms of auxiliary inputs, all of them have 1610

input, except [51] which has 3. Only [51] presents garbage outputs.

Adder Quantum Delay Ancilla Garbage Adder/

cost 4 inputs outputs subtractor

Kaur et al. [51] 14 14 3 3 Yes

Nielsen et al. [10] 6 6 1 0

Yamashita et al. [50] 5 5 1 0

Sarma et al. [53] 5 5 1 0 Yes

Hung et al. [31] 4 4 1 0

Table 5: Comparative evaluation of half adders.

5.2. Full Adders

Table 6 focus the comparison on the most relevant full adders. A new

columns ha been added to this comparison in order to identify which adders

are fault tolerant. The most optimised adder in terms of quantum cost, delay615

and garbage output is [66][a], with 6, 44 and 0 respectively. The adder of [64]

also presents the same quantum cost, delay and number of auxiliary inputs,

but it has 1 garbage output. The only full adder which has no auxiliary in-

puts is [58], but it has a quantum cost and a delay higher than the average

(14 and 144 respectively). [55], [64], [67], [69], [74], [75], [76] and [77] present620

garbage outputs, so their quantum cost and delay would be higher if they were
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uncomputed [3]. The best adder/subtractor is the proposed in [66][b] as it has

no garbage outputs, and it has the best quantum cost and delay among the

adder/subtractors, 8 and 54 respectively. It is followed by [75] with a quantum

cost of 10 and delay 104, but with 3 garbage outputs. Therefore, the adder of625

[53], which has a quantum cost of 15, would be a better option than [75] as it

has no garbage outputs. Finally, focusing on the fault tolerant adders, [74] and

[69] are the most optimised options. [74] presents lower values of quantum cost

and delay, and both have the same number of auxiliary inputs. Moreover, [74]

has less garbage outputs.630

5.3. Ripple-carry Adders

The comparison between ripple-carry adders is shown in Table 7. A N -

bits ripple-carry adder could be built chaining N full adders of Table 6. The

better the selected full adder, the better the ripple-carry adder. However, even

choosing [66][a] (the best full adder) results in a ripple-carry adder which is635

worse than, for instance, the improved ripple-carry adder presented in [83]. For

that reason, the resulting ripple-carry adders are not included in Table 7. In

this table, the new column Cin indicates if the adder supports Cin or not.

In terms of auxiliary inputs, only [58] and [65] have them. The adder of [58]

has only 1, whereas the adder of [65] employs 4N . In terms of quantum cost,640

[65] achieves the best value -even considering that it supports Cin- thanks to

the use of the mentioned extra ancilla inputs. The non fault-tolerant adder of

[28] improves the quantum cost of [65], but only when N < 10. [83] is the third

best adder in these terms. However, both [28] and [83] do not support Cin. In

terms of delay, the circuit of [86] gets the best value, 9N + 54, followed by the645

non fault-tolerant adder of [28], which has 10N − 44. Finally, we can highlight

that no circuit has garbage outputs.

The adder presented by Gidney [29] is optimized for fault tolerance, and

that is why it has higher values of quantum cost and delay. It even sacrifices

multiple ancillary inputs to reduce the number of T gates. The fault-tolerant650

adder proposed in [28] does not improve the quantum cost nor the delay with
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Saligram et al. [76] 18 18 5 6 Yes

Yamashita et al. [50] 15 15 3 0

Sarma et al. [53] 15 10 1 0 Yes

Cuccaro et al. [58] 14 14 0 0

Hung et al. [31] 12 12 3 0

Nagamani et al. [65] 12 12 1 0

Mitra et al. [69] 11 11 2 3 Yes

Kumar et al. [77] 11 11 4 4 Yes

Wang et al. [63] 10 8 1 0

Rangaraju et al. [75] 10 10 1 3 Yes

Singh et al. [67] 8 8 1 1

Bhagyalakshmi et al. [55] 8 8 1 1

Thapliyal [66][b] 8 5 2 0 Yes

Zhou et al. [74] 8 7 2 2 Yes

Maslov et al. [64] 6 4 1 1

Thapliyal[66][a] 6 4 1 0

Table 6: Comparative evaluation of full adders.
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respect to the previous one, but it represents a substantial improvement in terms

of ancilla inputs.
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Li et al. (2) [28] 35N − 25 16N − 3 0 0 Yes

Takahashi et al. [59] 26N − 29 24N − 27 0 0

Gidney [29] 18N − 2 15N − 5 N 0 Yes

Cuccaro et al. [58] 17N − 12 10N 1 0

Takahashi et al. (2) [82] 15N − 9 13N − 7 0 0

Thapliyal et al. [86] 15N − 6 9N + 5 0 0 Yes

Thapliyal et al. (2) [83] 13N − 8 11N − 4 0 0

Li et al. (1) [28] 13N − 10 10N − 4 0 0

Nagamani et al. [65] 12N 10N 4N 0 Yes

Table 7: Comparative evaluation of ripple-carry adders.

5.4. Carry-lookahead Adders

Finally, the carry-lookahead adders are compared in Table 8. As it has been655

mentioned in the subsection of the carry-lookahead adders, there are several

adders whose garbage outputs have not been uncomputed. They are the two

adders of [91], and [92]. It is not useful to compare such circuits with those

which have uncomputed their garbage outputs since uncomputing these outputs

following [3] would increase the quantum cost, delay and auxiliary inputs [33].660

On the other hand, a 4×4 Fredkin gate is used in the case of [92]. The quantum

cost and delay of this gate is not addressed, so it is not possible to determine

the quantum cost and delay of this circuit with precision. Therefore, they have

not been included in the table (but they have been analyzed in the subsection of
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the carry-lookahead adders for the sake of clarity). Considering the remaining665

non fault-tolerant adders, [90] and [89], it can be concluded that [89] presents

the best quantum cost and delay. Both of them have 5N/4 auxiliary inputs

and 0 garbage outputs. Considering now the four adders presented in [93], they

do not improve any of the metrics from [30] to the previous adders. However,

they are optimized in terms of the T gate, being the only adders focused on670

fault-tolerance in this category. In Table 8, the quantum cost and delay of these

four adders are not shown accurately: this is because certain transformations

in the quantum state of their ancilla qubits need to be taken into account for

use with temporary logical-AND gates. The influence of these transformations

in the quantum cost and delay of the adders is not trivial, and their effect is not675

included in the analysis done in citethapliyal2020tcount as it is focused on the

optimization of T gates and necessary qubits.

5.5. General discussion

From the tables of the comparative evaluations, it can be concluded some-

thing that it is already known in classical circuits: ripple-carry adders have a680

lower cost, and carry-lookahead adders are the fastest. On the one hand, [28]

and [83] for the case without Cin and [65] and [86] for the case with Cin are the

most optimized ripple-carry adders nowadays in terms of quantum cost, delay,

auxiliary inputs and garbage outputs. On the other hand, [89] is the most opti-

mized carry-lookahead adder. On the other hand, in the most recent works there685

is a growing interest in the optimization of circuits in terms of T gates. [28],[29]

(ripple-carry adders), and the four adders of [93] (carry-lookahead adders), are

the best exponents in this new stage of optimization.

6. Conclusions

In this work, a revision on the state-of-the-art reversible adders has been car-690

ried out. First, appropriate metrics have been considered for the measurement

and comparison of quantum circuits. Second, the adders have been classified
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Thapliyal et al. [93][a] > 40N O(logN) 4N − 2W (N) Yes

−2log(N)

Thapliyal et al. [93][b] > 40N O(logN) 2N −W (N) Yes

−log(N) + 1

Thapliyal et al. [93][c] > 40N O(logN) 4N − 2W (N) Yes

−2log(N)

Thapliyal et al. [93][d] > 40N O(logN) 2N −W (N) Yes

−log(N) + 1

Draper et al. [90] 28N − 15W (N) logN + logN/3 5N/4

−15log(N)− 6 +7

Thapliyal et al. [89] 26N − 15W (N) logN + logN/3 5N/4

−15log(N − 4) +2

Table 8: Comparative evaluations of carry-lookahead adders. W (N) is the number of ones

in the binary expansion of N . The quantum cost and delay of the circuits of [93] cannot be

precisely indicated because certain transformations in the quantum state of the ancilla qubits

need to be taken into account for use with temporary logical-AND gates. The study of how

these transformations can influence the logarithmic propagation of the adders is not trivial.
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in one of the four possible types: half adders, full adders, ripple-carry adders,

and carry-lookahead adders, explaining their particular calculation methods and

structures. Third, a complete analysis of each existing reversible adder has been695

done in terms of those metrics. Finally, a comparison between the analyzed

adders has been done using the metrics and the category to determine which

adders are the most beneficial in terms of quantum cost, delay, number of aux-

iliary inputs and/ or number of garbage outputs, and taking into account the

peculiarities of the category in question (if any) and fault tolerance..700

The analysis has been carried out with two essential goals in mind: first, to

collect and compare, using a set of standard metrics, all the reversible adders

existing in the literature; second, to focus on the possibility of applying these

adders in quantum circuits. To this extent, our emphasis has been on analyzing

quantum costs and delays, as well as the presence of garbage outputs (which705

prevent useful interference from arising in quantum algorithms) and in present-

ing our findings in a clear and concise way, with tables that summarize the main

properties of all the most important adders and that can be used as a quick ref-

erence by the interested researchers. In addition, we also provide figures that

exemplify some of the most remarkable adders for some values on the number710

of inputs.
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