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ABSTRACT. In this paper we are concerned with the zero Dirichlet boundary
value problem associated to the quasilinear elliptic equation

—div(a(u)M (z)Vu) + H(z,u,Vu) = f(z), =€ Q,

where Q is an open and bounded set in RN (N > 3), a is a continuously differ-
entiable real function in (0,4+00), M(z) is an elliptic, bounded and symmetric
matrix, H(z,-,&) is nonnegative and may be singular at zero and f € L1(Q).
We give sufficient conditions on H, M and a in order to have a comparison
principle and, as a consequence, uniqueness of positive solutions being contin-
uous up to the boundary.

1. INTRODUCTION

Let © be an open and bounded set in RY (N > 3) and f € L'(Q2). We consider
the following boundary value problem

—div(a(u)M(x)Vu) + H(z,u, Vu) = f(x) in Q
(1.1)
u =0 on 91,

where M (z) is a symmetric matrix satisfying, for some «, 8 > 0, that
(1.2) alg)? < M(x)¢ - & < BI¢?,VE e RY.

The function a : (0,4+00) — R is continuously differentiable and positive and H :
Q x (0,+00) x RY — R is a nonnegative Carathéodory function such that for a.e.
x €Q, H(x,-, ) is continuously differentiable and

(1.3) H(z,s,t&) = t*H(x,s,£), Vs >0,Vt€R,VE € R,
A comparison principle for general differential operators of the form
—div(a(z,u, Vu)) + H(z,u, Vu)

is established in [6, Theorem 1.2, Theorem 2.1 and Theorem 2.3 for the bounded
case|. In the case a(z, s, &) = &£, conditions imposed to H in [6] imply in particular
that 0;H > 0. Moreover, as it was observed in Remark 2.5 of that paper, the
maximum principle still holds in various situations even when 0;H < 0 and it
would be desirable to find convenient structure conditions on H including some
particular cases where 0, H < 0. A slightly improvement of these conditions can be
found in [5] for f small enough and, once again, it is required that 9sH > 0.
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A different kind of comparison principle is proved in [4] where M (z) = I, the

identity matrix, and H(z,u,Vu) = g(u)|Vu|? for some nonnegative continuous

function g in (0,+00). In this case, the authors imposed the integrability of z E;;

at zero. This result handles the case that g is singular at zero (which necessarily
implies that 9sH # 0). However, their techniques require strongly that the function
H and the differential operator do not depend on z.

Some further extension, dealing with uniqueness, was done in [2] in the case
a(s) = 1, M(z) = I and H(z,u,Vu) = —d(z)u — p(z)|Vul*> — h(z) for some
d,h € LP(Q),p > N/2,d <0 and p € L>(Q) (see [3] for an slightly improvement
with general M (z) and more general function H non decreasing on the variable s).
It is once again imposed that dsH > 0. Moreover, in some particular cases, with
0sH < 0 (d(z) > 0) they prove a multiplicity result (see Theorem 1.3 in [2]), that
is, no uniqueness result is expected imposing only that 0, H < 0.

More recently, in [1] it is proved a comparison principle for (1.1) in the case
a(s) = 1 and M(xz) = I for a particular class of functions H(x,u, Vu) which are
continuous at v = 0 and that may be decreasing on u.

The aim of this paper is to improve the above comparison principles in some
directions: general matices M (z), dependence on x and singularity at « = 0 on the
gradient quadratic part.

Let us illustrate our main result in the case H(z, s, &) = h(x, s)|£|?, although we
give a more general structure condition for H in section 2. More precisely, consider
the boundary value problem:

—div(a(u)M(z)Vu) + h(z,u)|Vu|* = f(x) in
(1.4)
u =0 on 012,

for a differentiable Carathéodory function h defined in Q x (0,+00) (i.e., a Ca-
rathéodory function such that h(z,-) is derivable for a.e. x € Q).

We say that u € HE(Q) with u > 0 is a subsolution (respectively, a supersolution)
of (1.4) if a(u)M (x)Vu € L2 )N, h(z,u)|Vu|? € L}(Q) and

/a(u)M(x)vuv¢+/h(x,u)\vu|2¢g/f¢, Vo € HL(Q) N Lo(Q)
Q Q Q

(respectively, if the reverse inequality holds). Thus, u is called a solution provided
that it is both a subsolution and a super solution. We prove the following theorem.

Theorem 1.1. Assume (1.2) and that for every v > 0 there exist ¢ > 0 and a

nonnegative function g € C((0,+00)) with a(s)ef-fls St LY(0,1) such that for

a.e. x € Q and for every 0 < s < v, the matriz

(15)  0la(s)0,(h(a, )T — g(s)M () + (9(s) — 20'(5)) (1 )T — g(s)M(2)]
M7 (@) (M(z, s)I — g(s)M (x))*

is positive semidefinite. If 0 < vi,ve € HE () N C(Q) are respectively a sub and
a supersolution for (1.4) then vi < ve. As a consequence, we have uniqueness of

C(Q) solutions of (1.4). O

Observe that if we assume that f € LI(Q) for some ¢ > N/2, infa > 0 and
0N is smooth enough, in the sense of condition (A) in [7, p. 6], we have (see [7,
Theorems 6.1 and 7.1 of Chapter 2|) that any solution of (1.1) belongs to C(Q).
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Hence with this assumption on the smoothness of the boundary we would obtain
from the above theorem uniqueness of solutions of (1.4).

We prove in Section 2 a more general result than the above theorem. In Section 3
some corollaries (see Corollary 3.1, 3.2 and 3.5) of Theorem 1.1 are obtained when
the term h(z, s) is not necessary increasing in s and either nonsingular or singular.
In particular, special emphasis will be put in the singular case. Indeed, we show
(Corollary 3.5), as an application of the theorem that if a(s) = 1, M(z) = I and
h(z,s) = p(z)/sY with 0 < p1 < p(x) < pe and 0 < v < 1, that the comparison
principle holds. This improves [4] since dependence on x is allowed in p(z). Even
more, if p(x) is a constant m < 1, we also improve [4] since we can also handle (see
Remark 3.4) the case h(x, s) = m/s which was uncovered by [4].

2. COMPARISON PRINCIPLE

In this section we prove our main result. For the statement of our main result let
us recall that u € Hg (2) with u > 0 is a subsolution (respectively, a supersolution)
of (1.1) if a(u)M (x)Vu € L*(Q)N, H(z,u, Vu) € L'(Q) and

/a(u)M(:c)VquSJr/H(:c,u,Vu)qSS/qu, Vo € Hy(Q) N L¥(Q)
Q Q Q

(respectively, if the reverse inequality holds). If u is a subsolution and a supersolu-
tion then it is called a solution.

Theorem 2.1. Assume (1.2), (1.3) and that for every v > 0 there exist 6 > 0 and

s g(t)
a nonnegative function g € C1((0,+00)), with a(s)e” It ¢ L'(0,1), such that
for almost everywhere x € Q and for every 0 < s < v and £ € RV

(21) a(s)(@:H(x,5,€) — g/ ()M (2)¢ -)

+(9(5) — 20/ () (H(w,5,6) — g() M(2)€ - €) — 50(r,5,8) 2 0
where
@(1’7 S, E) = iMﬁl(l‘)(agH(x, S, 5) - 2g(S)M(LL‘)£) : (aEH(:Cv 575) - QQ(S)M(.%)g)

If 0 < vi,ve € HY(Q) N C(Q) are respectively a sub and a supersolution for (1.1),
then v1 < vy. As a consequence, we have uniqueness of C(2)-solution v of (1.1).

Proof. For every s > 0, we use the following notation ~y(s) = fls %dt, P(s) =
Joa®)e™Wdt, and G.(s) = (s — &)t (¢ > 0). If vi,v5 € H}(Q) N C(Q) are
respectively a sub and a supersolution for (1.1), we define w = ¥ (v1) — ¥ (v2).

We observe that, since ¢ € C([0,+00)) and vy,vy are continuous up to the
boundary, the function G.(w) has compact support Q. := supp G.(w) in Q, for
every ¢ > 0. Moreover, e™7() +/(v;),9/(v;) € L®(Q) for i = 1,2 and, even
more, G.(w) € L>(Q). Fix v > max{||v1]l¢(q), [[v2llc(n)} and @ such that (2.1) is
satisfied for every 0 < s < v. Thus, if n is the integer part of § + 1, we can take
e YWIG_(w)™ as test function in the inequality satisfied by vy and e=7("2)G_(w)"
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in the inequality satisfied by vo. Substracting and taking into account (1.2) we have
!
0 2/ <7/(vl)w’(v1)M(x)Vv1 -Vuy + H(x,vl,Vvl)w (v1)> Ge(w)™
Q

a(v1)
—/ (‘7/(U2)¢/(U2) (x)Vvg - Vg + H(x,v2, Vug) (( ))
o a(v2

) Galw)"

+ n/ G (w)" M (x)() (v1)Vor — ' (v2)Vg) - V.
Q

By the homogeneity condition (1.3), if s = ¥~ (ty(v1) + (1 — t)p(ve)) and & =
tVi(v1) + (1 — t)Vip(ve), this means that

02/{%5}6’5(”)”/01;(&;? W€+ s )

+ n/ G.(w)" ' M(z)Vw - Vw.
{w>e}

After deriving we get

n [T =g (s)a(s) +2g(s)a’ (s) — g(s)*
0> /{ e /O M(z)e - £dt

a(s)?¢’(s)?
n ! asH(l',S,E)CL(S) 7H($, 536) (2@’(8)*9(5))
" /{w>€} wGe(w) /o a(s)?y’'(s)? o
o [ [—29(s)M (2)€ + 0cH (2, 5,€) Yw
#f o G | [ ()9 (s) J -

+ n/ Ge(w)" *M(z)Vw - Vw.
{w>e}

Multiplying by % and taking into account that, by Young’s inequality,

010 (oo [~20()M @)+ H (5. ] o
n‘Gs( ) [ ()0 (s) ] v ‘
92 Go(w)" ™ O(x,s,€)

< =G (w)" ' M(z)Vw - Vw +

n noa(s)*(s)?
it follows by (1.2) that

0 >af (1 - 9) / G- (w)" | Vw|?
w>a}

/ w}/ R (5) 0 (52 [‘9 H(x,s,€)a(s) — H(x, 5,€)(2d(s) - g(s))

F (g (9)als) + 20(2)a(5) — oM @)E - €~ F2 o, 5, 0)]ar
Since G.(w)/w < 1, the integrand in the second 1ntegra1 is greater than zero by
(2.1), and we deduce that the first integral is zero, which implies that G.(w) = 0
for every € > 0, i.e., w™ = 0, concluding the proof. O

Remark 2.2. Since we consider the case of functions H(x,-, ) and a(-) that may
be singular at zero, we have imposed the C()-regularity of the subsolution v;
and the supersolution vy in the previous theorem. This regularity is just used to
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guarantee that the function e=7("2)(G.((¢(v1) — ¥ (v2))T))"™ has compact support
(7, ¥ and n are introduced in the proof).

We observe that, when we only have that v; € HE(Q) N L>®(Q) and v € H}(Q),
the same proof works provided that the functions e~7(*) ((¢(v1) = (v2))T)™, 1 (v;) €
H}(Q), i = 1,2. This is true, for example, if in (1.1) does not appear any singu-

lar term. Moreover, if Z 23 and a(s) are integrable at zero, a slightly modification

can be performed in the proof by taking e=7(*i+&) ((¢)(vy) —(v2)) )™ € HE(Q) and
passing to the limit as € tends to zero to state the comparison principle for bounded
sub and supersolutions.

Remark 2.3. As it has been observed just after Theorem 1.1, if f € LI(Q) for
some g > N/2, infa > 0 and 99 is smooth then any solution of (1.1) belongs to
c(Q).

3. CONSEQUENCES

In this section we use Theorem 2.1 to prove a comparison principle for some
model problems in which H(x, s, &) = h(x, s)|£]?.

In this case, as it has been mentioned in the Introduction, Theorem 1.1 cor-
respond to rewrite Theorem 2.1 into this context. As a first particular case of
Theorem 1.1, we study the case in which h(z,s) does not depends on s, i.e.,
H(z,s,8) = p(x)|€* with 0 < p1 < p(x) < po (notice that dsH = 0 in this
case).

Corollary 3.1. Assume (1.2) and that 0 < p1 < p(z) < po, a.e. x € 2. Suppose
also that there exist positive real numbers ay,as,az such that

(3.1) 0<a; <a(s), —az<d(s)<ax< ;%7 Vs > 0.

If 0 < v1,v9 € HY(Q) N C(Q) are respectively a sub and a supersolution for
—div(a(u)M(z)Vu) + p(z)|Vu* = f(z) in Q
u=20 on 09,

then v1 < vs.

Proof. This is a direct consequence of Theorem 1.1 with g(s) = m > 0, for every

s > 0, where 2a; < m < f3. Indeed, observe that a(s)e” I e € L'(0,1) by

(3.1). In addition, from (1.2), there exists A > 0 such that,

M~ &) (u(@)] —mM (2))%€ - € <BIM ™ (a) (u(z)] — mM (z))E[?

SB(3IM (@) [P+ m® + 2mp| M ()€
<B(pzA* +m* + 2mpa N)[g].

Moreover, it follows that (ju(z)I —mM (x))¢- € > (u1 —mpB)|€2. We deduce that if

UEAZ + m? 4 2mps )

(m = 2az)(p1 — mp)’

0>p

then
0(m — 2a'(s))(p(z) I — mM (2))¢ - € > M~ (2)(u(x)] — mM(2))*¢ - €, V¢ € RY,

which means that the matrix given by (1.5) is positive semidefinite in this case. O
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Similarly, we consider the case in which h(zx, s) depends only in s, that is, when
H(x,s,&) = h(s)&E2.
Corollary 3.2. Let (1.2) be satisfied and assume that there exist positive functions
L ps h(t)
a,h € C*((0,+00)) and ¢ > 0 such that a(s)e_°f1 a®¥ ¢ L10,1) and for some
>0

(32) (rhats)+ o= 2 (1 - earone - = e

for every s > 0, ¢ € RY and a.e. € Q. If0 < vy,v0 € H(Q) N CQ) are
respectively a sub and a supersolution for

—div(a(u)M (z)Vu) + h(u)|Vul* = f(z) in Q

u=20 on 09,
then U1 S V2.

Proof. The result is a direct consequence of Theorem 1.1 with g(s) = ¢ h(s), observe

s h(t)
that a(s)e_cfl a®% ¢ [1(0,1). On the other hand, using (1.2), we deduce that
there exists A > 0 with

M~ (2)(I — eM(2))?¢ - & <BIM ™~ (2)(I — eM (z))¢]?
<B(IM (@) + ¢ + 2| M~ (2)])[¢]?
<BOAE+ 2 +2eN)|€%
Thus, if
B(AZ + ¢ + 2¢))

0 > ,
-

then by (3.2) we have

33 0 (ropa(e) + o 5 ) (- Mg €~ M @)1 - b€ 20

which implies that, in this case, the matrix given by (1.5) is positive semidefinite
and the proof is finished. O

Remark 3.3. Observe that if ¢ < 1/83, then (I —cM (z))¢-€ > (1 —¢B)[€]? > 0,
while if ¢ > 1 we have (I — cM(z))¢ € < (1 — ca)|¢|? < 0. Thus, condition (3.2)
is satisfied provided that there exists a positive constant 7 such that either

(h/(s)a(s) e 2a’(8)> _ (G(5)2>/1 +e>T1, ife< l,

h(s)? h(s) h(s) /) a(s) B
als)” /L —c>T, ifc 1
(3y) g ez mre o

In particular, in the case 0 < ¢ < 1/, hypothesis (3.2) is satisfied if the function

a(s)® is non increasin
h(s) 1S 1O creasing.

Remark 3.4. Although (3.2) is not satisfied, we observe that (3.3) in the proof
of Corollary 3.2 is clearly satisfied in the case a(s) = 1, M(x) = I with ¢ = 1. In
particular we can deduce that, if h € C*((0,+00)) is a positive function such that
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e~ Ji M0t ¢ 11(0,1) and 0 < vy, ve € HE(Q) N C(Q) are respectively a sub and a
supersolution for

—Au+ h(u)|Vul* = f(z) in Q
u=20 on 0F),

then v; < vy. For example, we deduce the same comparison principle obtained in
m

[4] for the case h(s) = & with 0 <~ < 1 and m > 0. Even more, we can also deal

5

with h(s) = 2 with 0 <m < 1.

The case in which the singularity is depending also on the x variable is par-
ticularly interesting. We obtain several improvements with respect to the singular
problem studied in [4] where the authors assume that the quadratic part in Vu does

2
not depend on s. Specifically, we take a(s) = 1, M(x) = I, H(z,s,§) = ,u(:z:)l%
with 0 < v < 1, in order to study the problem

[Vul® _
(3.4) Aut ple) == =

u=20 on 0f2.

f(x) in Q

Corollary 3.5. Assume that 0 < v <1, 0 < p(z) € L>®(Q) and 0 < f € L(Q).
If 0 < wy,ve € HY(Q) NC(Q) are respectively a sub and a supersolution for (3.4),
then v1 < .

Proof. Choose 0 <y <d < 1andC > 0 such that

d—~ 1=
(35) Jul < mindac.c ($=2)

Consider the function g given by

dc 1
—, s
s

9(s) = dy
1 )
s+ (E)T7 (1 -7)
for every s > 0. Notice that g € C*(0, +o0) with

ydC —
— s< (&)
/ — 2
g (S) = dy 7\ TS
- . , s> (3),
(vs+(2) 77 (1 =)
and e~ /i 9"t ¢ [1(0,1). Thus, in order to apply Theorem 1.1 with this choice
of function g, we just have to prove that for every v > 0 there exists 8 > 0 for

which the matrix given by (1.5) is positive semidefinite for every 0 < s < v and
a.e. T € {1, or equivalently, that

1

(3.6)  577g'(s) +577g(s)” = s7p(@)g(s) + 757 (@) + 5 (n(x) — $79(s))* <0,

for every 0 < s < v and a.e. x € ).
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To make it, we take for every fixed v > 0,

(3.7)
2(1—7)
1—
5o d A0 llloe 2 (lulZ0 ™) +47) 2kl (k2) " aee
_ ’ - 2 ; -

and we show that (3.6) is satisfied by dividing the verification in three cases for
s € (0,5):
1) If s < (%)ﬁ, then
i

_dC+ %(ﬂ(x) _dC) > C—dC + %(u(:p) —dc),

sl=v

By (3.7), 6 > dg:’;(g) and we deduce that

T o+ %(u(x) —dC) > 0.

s1—=7

and, since ||pt]|co < dC (by (3.5)), that

<u<x>—dc>( i —dc+;<u<x>—dc>) <0,

st=

which is (3.6) for s € (0, (2)™7 ).

i1) If (%)ﬁ <s< Cll:—:; (&)™, using that (1 —~) (%)ﬁ 571 is decreasing

-

1—y

Y

1=
in s and that ||plle < C (;7> , we have

Y

Thus, using (3.7), we also obtain, for (%) =7 <s< 1:—1 (%) 1=7 that
a2 4 1) o (YT (4 - ()T
(d-1)dy" +— (75‘*‘(1 7) (C> ) T—d+(1-7) (C) 5 )

1 { p(z) Y\ ’
- 1= (L) | —arp <0,
+0{8,Y [vs+( Vs ] 7}
1 -2
Hence, multiplying by s27 (’ys +(1=7) (%) ﬁ) , we get that (3.6) holds
true in this case.

iii) I 422 (2) ™ < s < v, thends > ys + (1—7) (3) ™7 and

drys?
(3.8) - 787 (@) — + s () <0.
ys+ (1 =) (&)
Furthermore, since (d — 1)dy? < 0 and

’u(z) {vs +(1=9) (%) 12}

s

< lplloedr'=7,
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1

for every s € ((11:—1 (F)— ,V), we also obtain by (3.7) that

@= v + 5 {4 s =) (g)””} - dv}g <o,

s

1

1N -2
and consequently, multiplying by 527 (’ys +(1=7) (%) 1‘”) , we get

d(d — 1) 1 ds?
@0 ) - ) <o
I 0
(8+(1—7)71*~01*v)

This and (3.8) imply that

s+ (1—9)y™=7CT=7

d(d —1)s* s pu(z)
ol - 2 =1
(s+@-mpyros)" s+ 1-ynTi0T
2
y—1 1 ds”
s+ (1 =)y CT

(1

(2]
(3l

[4]
[5]

[6]

(7]

for every s € (ﬁ (F)— ,1/), which means that (3.6) is satisfied in this
case.
U
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