
COMPARISON PRINCIPLE FOR ELLIPTIC EQUATIONS IN
DIVERGENCE WITH SINGULAR LOWER ORDER TERMS

HAVING NATURAL GROWTH

DAVID ARCOYA, JOSÉ CARMONA, AND PEDRO J. MARTÍNEZ-APARICIO

Abstract. In this paper we are concerned with the zero Dirichlet boundary
value problem associated to the quasilinear elliptic equation

−div(a(u)M(x)∇u) +H(x, u,∇u) = f(x), x ∈ Ω,

where Ω is an open and bounded set in RN (N ≥ 3), a is a continuously differ-
entiable real function in (0,+∞), M(x) is an elliptic, bounded and symmetric
matrix, H(x, ·, ξ) is nonnegative and may be singular at zero and f ∈ L1(Ω).
We give sufficient conditions on H, M and a in order to have a comparison
principle and, as a consequence, uniqueness of positive solutions being contin-
uous up to the boundary.

1. Introduction

Let Ω be an open and bounded set in RN (N ≥ 3) and f ∈ L1(Ω). We consider
the following boundary value problem

(1.1)

−div(a(u)M(x)∇u) +H(x, u,∇u) = f(x) in Ω

u = 0 on ∂Ω,

where M(x) is a symmetric matrix satisfying, for some α, β > 0, that

(1.2) α|ξ|2 ≤M(x)ξ · ξ ≤ β|ξ|2,∀ξ ∈ RN .

The function a : (0,+∞) → R is continuously differentiable and positive and H :
Ω× (0,+∞)× RN → R is a nonnegative Carathéodory function such that for a.e.
x ∈ Ω, H(x, ·, ·) is continuously differentiable and

(1.3) H(x, s, tξ) = t2H(x, s, ξ), ∀s > 0,∀t ∈ R,∀ξ ∈ R+.

A comparison principle for general differential operators of the form

−div(a(x, u,∇u)) +H(x, u,∇u)

is established in [6, Theorem 1.2, Theorem 2.1 and Theorem 2.3 for the bounded
case]. In the case a(x, s, ξ) = ξ, conditions imposed to H in [6] imply in particular
that ∂sH ≥ 0. Moreover, as it was observed in Remark 2.5 of that paper, the
maximum principle still holds in various situations even when ∂sH < 0 and it
would be desirable to find convenient structure conditions on H including some
particular cases where ∂sH < 0. A slightly improvement of these conditions can be
found in [5] for f small enough and, once again, it is required that ∂sH ≥ 0.
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A different kind of comparison principle is proved in [4] where M(x) = I, the
identity matrix, and H(x, u,∇u) = g(u)|∇u|2 for some nonnegative continuous
function g in (0,+∞). In this case, the authors imposed the integrability of g(s)

a(s)

at zero. This result handles the case that g is singular at zero (which necessarily
implies that ∂sH 6≥ 0). However, their techniques require strongly that the function
H and the differential operator do not depend on x.

Some further extension, dealing with uniqueness, was done in [2] in the case
a(s) = 1, M(x) = I and H(x, u,∇u) = −d(x)u − µ(x)|∇u|2 − h(x) for some
d, h ∈ Lp(Ω), p > N/2, d ≤ 0 and µ ∈ L∞(Ω) (see [3] for an slightly improvement
with general M(x) and more general function H non decreasing on the variable s).
It is once again imposed that ∂sH ≥ 0. Moreover, in some particular cases, with
∂sH < 0 (d(x) > 0) they prove a multiplicity result (see Theorem 1.3 in [2]), that
is, no uniqueness result is expected imposing only that ∂sH < 0.

More recently, in [1] it is proved a comparison principle for (1.1) in the case
a(s) = 1 and M(x) = I for a particular class of functions H(x, u,∇u) which are
continuous at u = 0 and that may be decreasing on u.

The aim of this paper is to improve the above comparison principles in some
directions: general matices M(x), dependence on x and singularity at u = 0 on the
gradient quadratic part.

Let us illustrate our main result in the case H(x, s, ξ) = h(x, s)|ξ|2, although we
give a more general structure condition for H in section 2. More precisely, consider
the boundary value problem:

(1.4)

−div(a(u)M(x)∇u) + h(x, u)|∇u|2 = f(x) in Ω

u = 0 on ∂Ω,

for a differentiable Carathéodory function h defined in Ω × (0,+∞) (i.e., a Ca-
rathéodory function such that h(x, ·) is derivable for a.e. x ∈ Ω).

We say that u ∈ H1
0 (Ω) with u > 0 is a subsolution (respectively, a supersolution)

of (1.4) if a(u)M(x)∇u ∈ L2(Ω)N , h(x, u)|∇u|2 ∈ L1(Ω) and∫
Ω

a(u)M(x)∇u∇φ+

∫
Ω

h(x, u)|∇u|2φ ≤
∫

Ω

fφ , ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω)

(respectively, if the reverse inequality holds). Thus, u is called a solution provided
that it is both a subsolution and a super solution. We prove the following theorem.

Theorem 1.1. Assume (1.2) and that for every ν > 0 there exist θ ≥ 0 and a
nonnegative function g ∈ C1((0,+∞)) with a(s)e−

∫ s
1
g(t)
a(t)

dt ∈ L1(0, 1) such that for
a.e. x ∈ Ω and for every 0 < s < ν, the matrix

θ[a(s)∂s(h(x, s)I − g(s)M(x)) + (g(s)− 2a′(s))(h(x, s)I − g(s)M(x))](1.5)

−M−1(x))(h(x, s)I − g(s)M(x))2

is positive semidefinite. If 0 < v1, v2 ∈ H1
0 (Ω) ∩ C(Ω) are respectively a sub and

a supersolution for (1.4) then v1 ≤ v2. As a consequence, we have uniqueness of
C(Ω) solutions of (1.4). �

Observe that if we assume that f ∈ Lq(Ω) for some q > N/2, inf a > 0 and
∂Ω is smooth enough, in the sense of condition (A) in [7, p. 6], we have (see [7,
Theorems 6.1 and 7.1 of Chapter 2]) that any solution of (1.1) belongs to C(Ω).
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Hence with this assumption on the smoothness of the boundary we would obtain
from the above theorem uniqueness of solutions of (1.4).

We prove in Section 2 a more general result than the above theorem. In Section 3
some corollaries (see Corollary 3.1, 3.2 and 3.5) of Theorem 1.1 are obtained when
the term h(x, s) is not necessary increasing in s and either nonsingular or singular.
In particular, special emphasis will be put in the singular case. Indeed, we show
(Corollary 3.5), as an application of the theorem that if a(s) = 1, M(x) = I and
h(x, s) = µ(x)/sγ with 0 < µ1 ≤ µ(x) ≤ µ2 and 0 < γ < 1, that the comparison
principle holds. This improves [4] since dependence on x is allowed in µ(x). Even
more, if µ(x) is a constant m < 1, we also improve [4] since we can also handle (see
Remark 3.4) the case h(x, s) = m/s which was uncovered by [4].

2. Comparison principle

In this section we prove our main result. For the statement of our main result let
us recall that u ∈ H1

0 (Ω) with u > 0 is a subsolution (respectively, a supersolution)
of (1.1) if a(u)M(x)∇u ∈ L2(Ω)N , H(x, u,∇u) ∈ L1(Ω) and∫

Ω

a(u)M(x)∇u∇φ+

∫
Ω

H(x, u,∇u)φ ≤
∫

Ω

fφ , ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω)

(respectively, if the reverse inequality holds). If u is a subsolution and a supersolu-
tion then it is called a solution.

Theorem 2.1. Assume (1.2), (1.3) and that for every ν > 0 there exist θ ≥ 0 and
a nonnegative function g ∈ C1((0,+∞)), with a(s)e−

∫ s
1
g(t)
a(t)

dt ∈ L1(0, 1), such that
for almost everywhere x ∈ Ω and for every 0 < s < ν and ξ ∈ RN

(2.1) a(s)(∂sH(x, s, ξ)− g′(s)M(x)ξ · ξ)

+ (g(s)− 2a′(s))(H(x, s, ξ)− g(s)M(x)ξ · ξ)− 1

θ
Θ(x, s, ξ) ≥ 0

where

Θ(x, s, ξ) :=
1

4
M−1(x)(∂ξH(x, s, ξ)− 2g(s)M(x)ξ) · (∂ξH(x, s, ξ)− 2g(s)M(x)ξ).

If 0 < v1, v2 ∈ H1
0 (Ω) ∩ C(Ω) are respectively a sub and a supersolution for (1.1),

then v1 ≤ v2. As a consequence, we have uniqueness of C(Ω)-solution v of (1.1).

Proof. For every s ≥ 0, we use the following notation γ(s) =
∫ s

1
g(t)
a(t)dt, ψ(s) =∫ s

0
a(t)e−γ(t)dt, and Gε(s) = (s − ε)+ (ε > 0). If v1, v2 ∈ H1

0 (Ω) ∩ C(Ω) are
respectively a sub and a supersolution for (1.1), we define w = ψ(v1)− ψ(v2).

We observe that, since ψ ∈ C([0,+∞)) and v1, v2 are continuous up to the
boundary, the function Gε(w) has compact support Ωε := suppGε(w) in Ω, for
every ε > 0. Moreover, e−γ(vi), γ′(vi), ψ

′(vi) ∈ L∞(Ωε) for i = 1, 2 and, even
more, Gε(w) ∈ L∞(Ω). Fix ν > max{‖v1‖C(Ω), ‖v2‖C(Ω)} and θ such that (2.1) is
satisfied for every 0 < s < ν. Thus, if n is the integer part of θ + 1, we can take
e−γ(v1)Gε(w)n as test function in the inequality satisfied by v1 and e−γ(v2)Gε(w)n
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in the inequality satisfied by v2. Substracting and taking into account (1.2) we have

0 ≥
∫

Ω

(
−γ′(v1)ψ′(v1)M(x)∇v1 · ∇v1 +H(x, v1,∇v1)

ψ′(v1)

a(v1)

)
Gε(w)n

−
∫

Ω

(
−γ′(v2)ψ′(v2)M(x)∇v2 · ∇v2 +H(x, v2,∇v2)

ψ′(v2)

a(v2)

)
Gε(w)n

+ n

∫
Ω

Gε(w)n−1M(x)(ψ′(v1)∇v1 − ψ′(v2)∇v2) · ∇w.

By the homogeneity condition (1.3), if s = ψ−1(tψ(v1) + (1 − t)ψ(v2)) and ξ =
t∇ψ(v1) + (1− t)∇ψ(v2), this means that

0 ≥
∫
{w>ε}

Gε(w)n
∫ 1

0

d

dt

(
−γ′(s)
ψ′(s)

M(x)ξ · ξ +
H(x, s, ξ)

a(s)ψ′(s)

)
dt

+ n

∫
{w>ε}

Gε(w)n−1M(x)∇w · ∇w.

After deriving we get

0 ≥
∫
{w>ε}

wGε(w)n
∫ 1

0

−g′(s)a(s) + 2g(s)a′(s)− g(s)2

a(s)2ψ′(s)2
M(x)ξ · ξ dt

+

∫
{w>ε}

wGε(w)n
∫ 1

0

∂sH(x, s, ξ)a(s)−H(x, s, ξ) (2a′(s)− g(s))

a(s)2ψ′(s)2
dt

+

∫
{w>ε}

Gε(w)n
∫ 1

0

[
−2g(s)M(x)ξ + ∂ξH(x, s, ξ)

a(s)ψ′(s)

]
· ∇wdt

+ n

∫
{w>ε}

Gε(w)n−1M(x)∇w · ∇w.

Multiplying by θ
n and taking into account that, by Young’s inequality,

θ

n

∣∣∣∣Gε(w)n
[
−2g(s)M(x)ξ + ∂ξH(x, s, ξ)

a(s)ψ′(s)

]
· ∇w

∣∣∣∣
≤ θ2

n
Gε(w)n−1M(x)∇w · ∇w +

Gε(w)
n+1

n

Θ(x, s, ξ)

a(s)2ψ′(s)2
,

it follows by (1.2) that

0 ≥αθ
(

1− θ

n

)∫
{w>ε}

Gε(w)n−1|∇w|2

+

∫
{w>ε}

∫ 1

0

wGε(w)nθ

na2(s)ψ′(s)2

[
∂sH(x, s, ξ)a(s)−H(x, s, ξ)(2a′(s)− g(s))

+ (−g′(s)a(s) + 2g(s)a′(s)− g(s)2)M(x)ξ · ξ − Gε(w)

θw
Θ(x, s, ξ)

]
dt.

Since Gε(w)/w ≤ 1, the integrand in the second integral is greater than zero by
(2.1), and we deduce that the first integral is zero, which implies that Gε(w) = 0
for every ε > 0, i.e., w+ = 0, concluding the proof. �

Remark 2.2. Since we consider the case of functions H(x, ·, ξ) and a(·) that may
be singular at zero, we have imposed the C(Ω)-regularity of the subsolution v1

and the supersolution v2 in the previous theorem. This regularity is just used to
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guarantee that the function e−γ(v2)(Gε((ψ(v1) − ψ(v2))+))n has compact support
(γ, ψ and n are introduced in the proof).

We observe that, when we only have that v1 ∈ H1
0 (Ω)∩L∞(Ω) and v2 ∈ H1

0 (Ω),
the same proof works provided that the functions e−γ(vi)((ψ(v1)−ψ(v2))+)n, ψ(vi) ∈
H1

0 (Ω), i = 1, 2. This is true, for example, if in (1.1) does not appear any singu-
lar term. Moreover, if g(s)

a(s) and a(s) are integrable at zero, a slightly modification
can be performed in the proof by taking e−γ(vi+ε)((ψ(v1)−ψ(v2))+)n ∈ H1

0 (Ω) and
passing to the limit as ε tends to zero to state the comparison principle for bounded
sub and supersolutions.

Remark 2.3. As it has been observed just after Theorem 1.1, if f ∈ Lq(Ω) for
some q > N/2, inf a > 0 and ∂Ω is smooth then any solution of (1.1) belongs to
C(Ω).

3. Consequences

In this section we use Theorem 2.1 to prove a comparison principle for some
model problems in which H(x, s, ξ) = h(x, s)|ξ|2.

In this case, as it has been mentioned in the Introduction, Theorem 1.1 cor-
respond to rewrite Theorem 2.1 into this context. As a first particular case of
Theorem 1.1, we study the case in which h(x, s) does not depends on s, i.e.,
H(x, s, ξ) = µ(x)|ξ|2 with 0 < µ1 ≤ µ(x) ≤ µ2 (notice that ∂sH = 0 in this
case).

Corollary 3.1. Assume (1.2) and that 0 < µ1 ≤ µ(x) ≤ µ2, a.e. x ∈ Ω. Suppose
also that there exist positive real numbers a1, a2, a3 such that

(3.1) 0 < a1 ≤ a(s), −a3 ≤ a′(s) ≤ a2 <
µ1

2β
, ∀s > 0.

If 0 < v1, v2 ∈ H1
0 (Ω) ∩ C(Ω) are respectively a sub and a supersolution for−div(a(u)M(x)∇u) + µ(x)|∇u|2 = f(x) in Ω

u = 0 on ∂Ω,

then v1 ≤ v2.

Proof. This is a direct consequence of Theorem 1.1 with g(s) = m > 0, for every
s > 0, where 2a2 < m < µ1

β . Indeed, observe that a(s)e−
∫ s
1
g(t)
a(t)

dt ∈ L1(0, 1) by
(3.1). In addition, from (1.2), there exists λ > 0 such that,

M−1(x)(µ(x)I −mM(x))2ξ · ξ ≤β|M−1(x)(µ(x)I −mM(x))ξ|2

≤β(µ2
2|M−1(x)|2 +m2 + 2mµ2|M−1(x)|)|ξ|2

≤β(µ2
2λ

2 +m2 + 2mµ2λ)|ξ|2.

Moreover, it follows that (µ(x)I −mM(x))ξ · ξ ≥ (µ1−mβ)|ξ|2. We deduce that if

θ > β
µ2

2λ
2 +m2 + 2mµ2λ

(m− 2a2)(µ1 −mβ)
,

then

θ(m− 2a′(s))(µ(x)I −mM(x))ξ · ξ ≥M−1(x)(µ(x)I −mM(x))2ξ · ξ, ∀ξ ∈ RN ,
which means that the matrix given by (1.5) is positive semidefinite in this case. �
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Similarly, we consider the case in which h(x, s) depends only in s, that is, when
H(x, s, ξ) = h(s)ξ2.

Corollary 3.2. Let (1.2) be satisfied and assume that there exist positive functions
a, h ∈ C1((0,+∞)) and c > 0 such that a(s)e−c

∫ s
1
h(t)
a(t)

dt ∈ L1(0, 1) and for some
τ > 0

(3.2)
(
h′(s)

h(s)2
a(s) + c− 2a′(s)

h(s)

)
(I − cM(x))ξ · ξ ≥ τ |ξ|2,

for every s > 0, ξ ∈ RN and a.e. x ∈ Ω. If 0 < v1, v2 ∈ H1
0 (Ω) ∩ C(Ω) are

respectively a sub and a supersolution for−div(a(u)M(x)∇u) + h(u)|∇u|2 = f(x) in Ω

u = 0 on ∂Ω,

then v1 ≤ v2.

Proof. The result is a direct consequence of Theorem 1.1 with g(s) = c h(s), observe
that a(s)e−c

∫ s
1
h(t)
a(t)

dt ∈ L1(0, 1). On the other hand, using (1.2), we deduce that
there exists λ > 0 with

M−1(x)(I − cM(x))2ξ · ξ ≤β|M−1(x)(I − cM(x))ξ|2

≤β(|M−1(x)|2 + c2 + 2c|M−1(x)|)|ξ|2

≤β(λ2 + c2 + 2cλ)|ξ|2.

Thus, if

θ >
β(λ2 + c2 + 2cλ)

τ
,

then by (3.2) we have

(3.3) θ
(
h′(s)

h(s)2
a(s) + c− 2a′(s)

h(s)

)
(I− cM(x))ξ · ξ−M−1(x)(I− cM(x))2ξ · ξ ≥ 0,

which implies that, in this case, the matrix given by (1.5) is positive semidefinite
and the proof is finished. �

Remark 3.3. Observe that if c < 1/β, then (I − cM(x))ξ · ξ ≥ (1 − cβ)|ξ|2 ≥ 0,
while if c > 1

α we have (I − cM(x))ξ · ξ ≤ (1 − cα)|ξ|2 ≤ 0. Thus, condition (3.2)
is satisfied provided that there exists a positive constant τ such that either(

h′(s)

h(s)2
a(s) + c− 2a′(s)

h(s)

)
= −

(
a(s)2

h(s)

)′
1

a(s)
+ c ≥ τ, if c < 1

β
,

or (
a(s)2

h(s)

)′
1

a(s)
− c ≥ τ, if c > 1

α
.

In particular, in the case 0 < c < 1/β, hypothesis (3.2) is satisfied if the function
a(s)2

h(s) is non increasing.

Remark 3.4. Although (3.2) is not satisfied, we observe that (3.3) in the proof
of Corollary 3.2 is clearly satisfied in the case a(s) = 1, M(x) = I with c = 1. In
particular we can deduce that, if h ∈ C1((0,+∞)) is a positive function such that
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e−
∫ s
1
h(t)dt ∈ L1(0, 1) and 0 < v1, v2 ∈ H1

0 (Ω) ∩ C(Ω) are respectively a sub and a
supersolution for −∆u+ h(u)|∇u|2 = f(x) in Ω

u = 0 on ∂Ω,

then v1 ≤ v2. For example, we deduce the same comparison principle obtained in
[4] for the case h(s) = m

sγ with 0 < γ < 1 and m > 0. Even more, we can also deal
with h(s) = m

s with 0 < m < 1.

The case in which the singularity is depending also on the x variable is par-
ticularly interesting. We obtain several improvements with respect to the singular
problem studied in [4] where the authors assume that the quadratic part in ∇u does
not depend on s. Specifically, we take a(s) = 1, M(x) = I, H(x, s, ξ) = µ(x) |ξ|

2

sγ

with 0 < γ < 1, in order to study the problem

(3.4)

−∆u+ µ(x)
|∇u|2

uγ
= f(x) in Ω

u = 0 on ∂Ω.

Corollary 3.5. Assume that 0 < γ < 1, 0 < µ(x) ∈ L∞(Ω) and 0 ≤ f ∈ L1(Ω).
If 0 ≤ v1, v2 ∈ H1

0 (Ω) ∩ C(Ω) are respectively a sub and a supersolution for (3.4),
then v1 ≤ v2.

Proof. Choose 0 < γ < d < 1 and C > 0 such that

(3.5) ‖µ‖∞ ≤ min

{
dC,C

(
d− γ
1− γ

)1−γ
}
.

Consider the function g given by

g(s) =


dC

sγ
, s <

(
γ
C

) 1
1−γ

dγ

γs+
(
γ
C

) 1
1−γ (1− γ)

, s ≥
(
γ
C

) 1
1−γ ,

for every s > 0. Notice that g ∈ C1(0,+∞) with

g′(s) =


− γdC
sγ+1

, s <
(
γ
C

) 1
1−γ

− dγ2

(γs+
(
γ
C

) 1
1−γ (1− γ))2

, s ≥
(
γ
C

) 1
1−γ ,

and e−
∫ s
1
g(t)dt ∈ L1(0, 1). Thus, in order to apply Theorem 1.1 with this choice

of function g, we just have to prove that for every ν > 0 there exists θ > 0 for
which the matrix given by (1.5) is positive semidefinite for every 0 < s < ν and
a.e. x ∈ Ω, or equivalently, that

(3.6) s2γg′(s) + s2γg(s)2 − sγµ(x)g(s) + γsγ−1µ(x) +
1

θ
(µ(x)− sγg(s))2 ≤ 0,

for every 0 < s < ν and a.e. x ∈ Ω.
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To make it, we take for every fixed ν > 0,
(3.7)

θ > max


dC + ‖µ‖∞
C(1− d)

,
2d
(
‖µ‖2∞ν2(1−γ) + γ2

)
(1− d)γ2

,
2‖µ‖2∞

(
1−γ
d−γ

)2(1−γ)

+ 2d2C2

d(1− d)C2

(
1− ‖µ‖∞C

(
1−γ
d−γ

)1−γ
)


and we show that (3.6) is satisfied by dividing the verification in three cases for
s ∈ (0, β):

i) If s <
(
γ
C

) 1
1−γ , then

γ

s1−γ − dC +
1

θ
(µ(x)− dC) ≥ C − dC +

1

θ
(µ(x)− dC).

By (3.7), θ > dC−µ(x)
C−dC and we deduce that

γ

s1−γ − dC +
1

θ
(µ(x)− dC) > 0.

and, since ‖µ‖∞ ≤ dC (by (3.5)), that

(µ(x)− dC)

(
γ

s1−γ − dC +
1

θ
(µ(x)− dC)

)
≤ 0,

which is (3.6) for s ∈
(

0,
(
γ
C

) 1
1−γ
)
.

ii) If
(
γ
C

) 1
1−γ ≤ s ≤ 1−γ

d−γ
(
γ
C

) 1
1−γ , using that (1− γ)

(
γ
C

) 1
1−γ s−1 is decreasing

in s and that ‖µ‖∞ < C
(
d−γ
1−γ

)1−γ
, we have

(d− 1)dγ2 +
γµ(x)

sγ

(
γs+ (1− γ)

( γ
C

) 1
1−γ
)(

γ − d+ (1− γ)
( γ
C

) 1
1−γ

s−1

)
≤ (d− 1)dγ2

(
1− µ(x)

C

(
1− γ
d− γ

)1−γ
)
< 0.

Thus, using (3.7), we also obtain, for
(
γ
C

) 1
1−γ ≤ s ≤ 1−γ

d−γ
(
γ
C

) 1
1−γ that

(d− 1)dγ2 +
γµ(x)

sγ

(
γs+ (1− γ)

( γ
C

) 1
1−γ
)(

γ − d+ (1− γ)
( γ
C

) 1
1−γ

s−1

)
+

1

θ

{
µ(x)

sγ

[
γs+ (1− γ)

( γ
C

) 1
1−γ
]
− dγ

}2

≤ 0.

Hence, multiplying by s2γ
(
γs+ (1− γ)

(
γ
C

) 1
1−γ
)−2

, we get that (3.6) holds
true in this case.

iii) If 1−γ
d−γ

(
γ
C

) 1
1−γ < s < ν, then ds ≥ γs+ (1− γ)

(
γ
C

) 1
1−γ and

(3.8) − dγsγµ(x)

γs+ (1− γ)
(
γ
C

) 1
1−γ

+ γsγ−1µ(x) ≤ 0.

Furthermore, since (d− 1)dγ2 < 0 and∣∣∣∣µ(x)

sγ

[
γs+ (1− γ)

( γ
C

) 1
1−γ
]∣∣∣∣ ≤ ‖µ‖∞dν1−γ ,
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for every s ∈
(

1−γ
d−γ

(
γ
C

) 1
1−γ , ν

)
, we also obtain by (3.7) that

(d− 1)dγ2 +
1

θ

{
µ(x)

sγ

[
γs+ (1− γ)

( γ
C

) 1
1−γ
]
− dγ

}2

≤ 0,

and consequently, multiplying by s2γ
(
γs+ (1− γ)

(
γ
C

) 1
1−γ
)−2

, we get

d(d− 1)s2γ(
s+ (1− γ)γ

γ
1−γC

−1
1−γ

)2 +
1

θ

(
µ(x)− dsγ

s+ (1− γ)γ
γ

1−γC
−1
1−γ

)2

≤ 0.

This and (3.8) imply that

d(d− 1)s2γ(
s+ (1− γ)γ

γ
1−γC

−1
1−γ

)2 −
dsγµ(x)

s+ (1− γ)γ
γ

1−γC
−1
1−γ

+ γsγ−1µ(x) +
1

θ

(
µ(x)− dsγ

s+ (1− γ)γ
γ

1−γC
−1
1−γ

)2

≤ 0,

for every s ∈
(

1−γ
d−γ

(
γ
C

) 1
1−γ , ν

)
, which means that (3.6) is satisfied in this

case.
�
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