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Abstract. We study singular quasilinear elliptic equations whose
model is −∆u = λu+ µ(x)

|∇u|q

|u|q−1
+ f(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN (N ≥ 3), λ ∈ R,
1 < q < 2, 0 ≤ µ ∈ L∞(Ω) and the datum f ∈ Lp(Ω), for some
p > N

2 , may change sign. We prove existence of solution and
we deal with the homogenization problem posed in a sequence of
domains Ωε obtained by removing many small holes from a fixed
domain Ω.

1 Introduction

In this paper we consider the following boundary value problem

(Pλ)

{
−div(M(x)∇u) = λu+ g(x, u)|∇u|q + f(x) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded domain satisfying the boundary
condition (A) below. Here, f ∈ Lp(Ω) for some p > N

2
and no as-

sumption on its sign is imposed. Moreover M(x) is an N ×N matrix
satisfying

(M1)


M ∈ (L∞(Ω) ∩W 1,∞

loc (Ω))N×N and for some η > 0,

η|ξ|2 ≤M(x)ξ · ξ ∀ξ ∈ RN , a.e. x ∈ Ω.
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We consider 1 < q < 2, λ ∈ R and a wide class of Carathéodory
functions g : Ω× R \ {0} → [0,+∞) satisfying that,

(g1)


for a.e. x ∈ Ω, the function s 7→ g(x, s)|s|q−1 is bounded

and µ(x) ≡ sup
s∈R\{0}

g(x, s)|s|q−1 ∈ L∞(Ω).

Observe that hypothesis (g1) includes the case in which g, at s = 0,
admits a continuous extension but also the case in which the lower
order term may have a singularity.

Our first goal is to study the existence of solution to problem (Pλ)
under the previous hypotheses. Since the function g(x, s) may be
defined only for |s| > 0, having in mind the model problem where

g(x, s) = µ(x)
|s|q−1 , we have to clarify the meaning of solution. We say

that a solution to problem (Pλ) is a function u ∈ H1
0 (Ω)∩L∞(Ω) such

that g(x, u)|∇u|q ∈ L1({|u| > 0}) and∫
Ω

M(x)∇u · ∇φ = λ

∫
Ω

uφ+

∫
{|u|>0}

g(x, u)|∇u|qφ+

∫
Ω

f(x)φ,

for every φ ∈ H1
0 (Ω) ∩ L∞(Ω).

Let us note that, due to Stampacchia’s Theorem, ∇u ≡ 0 in the set
{|u| = 0}, so this concept of solution coincides with the usual one when
g(x, s) is continuous at s = 0 or just g is bounded at s = 0. In the case
g unbounded at s = 0 we remark that integrating in the set {|u| > 0}
does not avoid the singularity, to the contrary, the integrand is singular
on ∂{|u| > 0} and this set is nonempty if u is nontrivial.

Observe also that, if f 
 0, then the strong maximum principle
implies that u > 0 a.e. in Ω for every solution u to problem (Pλ) with

λ < λ1(M) ≡ infv∈H1
0 (Ω)\{0}

∫
Ω M(x)∇v·∇v∫

Ω v
2 , and therefore, {|u| > 0} = Ω.

This framework with nonnegative datum f and positive solutions is
usual for this kind of singular problems (see [1], [3], [5] and references
therein). In fact, it was adopted in [5], where the authors studied
problem (Pλ) in the model case where M is the identity matrix and

g(x, s) = µ(x)
|s|q−1 .

Up to our knowledge, the first time a sign changing datum was con-
sidered in a singular quasilinear equation was in [14] (see also [15] and
[16]). In [14] the authors studied a general problem whose simplest
model is −∆u =

|∇u|2

|u|θ
+ f(x) in Ω,

u = 0 on ∂Ω,
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where θ ∈ (0, 1) and f ∈ Lp(Ω), with p ≥ N
2

. With a concept of
solution very close to the one that we established above, they proved
the existence of at least a solution to the problem.

In the present work, we aim to improve the existence results con-
tained in [5] in several directions (in Section 2 we describe some con-
cepts and results). On the one hand, we generalize the principal opera-
tor of the equation and the nonlinear term by imposing conditions (M1)
and (g1) respectively. On the other hand, we will allow f to change
sign. Hence, the solutions may vanish in a set of positive measure, in
fact in Remark 3.2 we include two examples for which this actually
happens.

Concerning the techniques that we use, we approximate the singular
problem by a sequence of nonsingular ones. We prove that there exists
a solution un to the approximated problems using the sub-supersolution
method in [4, Théorème 3.1]. Then, we prove that, passing to a subse-
quence, un converges to u strongly in H1

0 (Ω) and also in Lr(Ω) for all
r ∈ [1,∞) in order to pass to the limit in the approximated problems
and to obtain a solution u to problem (Pλ).

The main interest of our proof by approximation lies on the way
that the a priori estimates, needed for the compactness of the sequence
{un}, are obtained. The greatest difficulty comes from the fact that
f changes sign because, in this case, such a sequence is not uniformly
bounded away from zero. This lower estimate represents a usual tool for
proving, for instance, that the lower order term is bounded in L1

loc(Ω).
However, we will be able to prove a global L1 estimate even if the lower
estimate does not hold true (see Lemma 3.5 and Remark 3.6 below).
It is also remarkable that an L∞ estimate for {un} can be obtained
by using carefully the Comparison Principle [5, Theorem 3.2] (see also
next section).

Another goal of the paper is the following homogenization problem

(1.1)

{
−div(M(x)∇uε) = λuε + g(x, uε)|∇uε|q + f(x) in Ωε,

uε = 0 on ∂Ωε,

where Ωε is a sequence of open sets which are included in a fixed
bounded open set Ω of RN , M(x) is an N ×N matrix satisfying (M1),
g satisfies (g1), 1 < q < 2, λ ∈ R and f ∈ Lp(Ω), p > N

2
.

More precisely, we study the asymptotic behaviour, as ε goes to
zero, of a sequence of solutions to this problems posed in domains
Ωε obtained by removing many small holes from a fixed domain Ω,
following the framework of [10]. In such a paper it has been considered
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the linear homogenization problem

(1.2)

{
−∆uε = f(x) in Ωε,

uε = 0 on ∂Ωε,

with f ∈ L2(Ω) (see also [11], where this homogenization problem is
studied in a more general framework). It is well known that problem
(1.2) has a unique solution uε ∈ H1

0 (Ω). In [10] the authors showed
that, if the holes satisfy certain hypotheses on their size and distribu-

tion, and if we denote as uε̃ the extension of uε by zero in Ω \Ωε, then

uε̃ ⇀ u in H1
0 (Ω), where u is the unique solution to

(1.3)

{
−∆u+ σu = f(x) in Ω,

u = 0 on ∂Ω,

with σ a positive constant. In fact, this case of σ constant is only a
model example, but the hypotheses on the holes imposed in [10] are
more general and σ can be proved to be, in the general framework, only
a nonnegative finite Radon measure. It is widely remarked the presence
of the “strange term” σu (which is the “asymptotic memory of the fact

that uε̃ was zero on the holes”) appearing in the limit equation (1.3).
In [10], the authors proved also a corrector result, that is to say, a

representation of ∇uε̃ in the strong topology of L2(Ω)N . They showed
that the corrector for the linear homogenization problem depends on
the holes, and also depends on the limit u in a linear way.

In [8] the author studied the quasilinear homogenization problem−∆uε + λuε = γ|∇uε|2 + f(x) in Ωε,

uε = 0 on ∂Ωε,

where γ is a real constant, λ > 0 and f ∈ L∞(Ω). He used a suitable
change of unknown function that turns the equation into a semilinear
one, a careful analysis of this semilinear homogenization problem al-
lowed the author to pass to the limit as in the linear case. Undoing the
change of variables, he proved that the limit u satisfies that−∆u+ λu+

σ(eγu − 1)

γeγu
= γ|∇u|2 + f(x) in Ω,

u = 0 on ∂Ω.

As in the linear case, a new term appears in the equation that satisfies
u, but in this case the new term is nonlinear (σ is the same constant that
appears in the linear problem). As the author remarked, this means
that the perturbation of the linear problem (1.2) by a nonlinear term,
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namely γ|∇uε|2, changes the structure of the new term in the limit
equation. This perturbation affects also the corrector corresponding to
this problem, since it turns out to be nonlinear in u as well. Similar
results were proved in [7] in which the nonlinear perturbation of (1.2)
is a general function of the form H(x, u,∇u), where H has (at most)
natural growth in the gradient.

We remark that in all the previous cases the lower order term is
locally bounded with respect to u. Up to our knowledge, the first time
it was considered a singular term was in [6]. The authors studied the
homogenization of the model problem

(1.4)

−∆uε +
|∇uε|2

|uε|θ
= f(x) in Ωε,

uε = 0 on ∂Ωε,

with θ ∈ (0, 1) and f a nonnegative datum (positive solutions) in a suit-
able space of Lebesgue. There, since the lower order term is positive,

following [18] and [20], it is easy to prove that uε̃ is bounded in H1
0 (Ω)

and in L∞(Ω) respectively, thus the main difficulty resides in avoiding
the singularity when passing to the limit. Their main result, written

here only in the case σ constant, is that for every f ∈ L
2N
N+2 (Ω), f 
 0,

the unique solution uε to problem (1.4) satisfies uε̃ ⇀ u in H1
0 (Ω),

where u is the unique solution to problem−∆u+ g(u)|∇u|2 + σΨ(u)eG(u) = f(x) in Ω,

u = 0 on ∂Ω,

and G(s) =
∫ s

1
g(t)dt, Ψ(s) =

∫ s
0
e−G(t)dt for every s > 0. Thus,

the strange term turns out to be again nonlinear in u, as well as the
corrector, as it is shown in [6].

The above results describe the general questions we are concerned
with. We will prove that, also for our problem (1.1) there is a limit
u which is a solution to a new problem. We will show that, unlike
in the cases mentioned above, the strange term is linear even if the
equation is not, and the Radon measure depends only on the holes.
Furthermore, the corrector is also linear. The reason for this unex-
pected phenomenon to occur is that the lower order term is bounded
in L1(Ω), so it represents a mild perturbation for the linear equation.
As for the existence result explained above, the proof of this estimate is

not trivial since the functions uε̃ vanish on the holes, so the usual local
lower estimate does not hold true neither in this case. The L1 estimate
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will allow us to prove that {uε̃} converges strongly in W 1,r
0 (Ω) for all

r ∈ [1, 2), which is essential for passing to the limit in the equation.
The plan of the paper is the following. We collect some preliminary

results in the second section. We prove that the problem (Pλ) has so-
lution in a suitable sense in Section 3. We dedicate Section 4 to the
homogenization of problem (1.1). In Subsection 4.1 we give the pre-
cise assumptions of the perforated domains, following the framework
of [10]. In Subsection 4.2 we prove the existence of solution to problem
(1.1). We enunciate our homogenization result in Subsection 4.3. In
Subsection 4.4 we prove the main tool in order to pass to the limit as
ε tends to zero, the Lr-strong convergence of the gradients for r < 2.
Our homogenization result for the singular quasilinear problem (1.1)
is studied in Subsection 4.5 and a corrector result is proved in Subsec-
tion 4.6.

2 Preliminary results

As we announced, in this paper we will improve some existence re-
sults contained in [5]. In order to make a simpler exposition, we will
include in this section some concepts and results from [5] that we will
need in our proofs.

Recall that in such a paper the authors studied the singular problem

(2.1)


−div(M(x)∇u) = λu+ µ(x)

|∇u|q

uq−1
+ f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

in the special case in which M(x) is the identity matrix and f 
 0.
They dealt with the problem by taking advantage of the homogeneous
structure of the equation. Thus, they studied first the eigenvalue prob-
lem

(Eλ)

−div(M(x)∇u) = λu+ µ(x)
|∇u|q

|u|q−1
in Ω,

u = 0 on ∂Ω,

again in the case M = I. The authors proved the existence and main
properties of the principal eigenvalue, that can be characterized by

(2.2) λ∗ = sup

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v ≥ c in Ω for some c > 0

}
.

If necessary, we will write λ∗(Ω) to make explicit the dependence on
the domain.
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Arguing as in [5] without relevant changes, it is possible to prove
that, assuming (M1), then λ∗ ∈ (0, λ1(M)] and, if ∂Ω is smooth enough,
problem (Eλ) admits a positive solution if and only if λ = λ∗.

Concerning the smoothness of the domain, we introduce the following
definition.

Definition 2.1. Let D ⊂ RN be an open set. We say that D satisfies
condition (A) if there exist r0, θ0 > 0 such that, if x ∈ ∂D and 0 < r <
r0, then

|Dr| ≤ (1− θ0)|Br(x)|
for every connected component Dr of D ∩Br(x), where Br(x) denotes
the ball centered at x with radius r.

We remark that a sufficient condition for Ω to satisfy condition (A)
is that ∂Ω is Lipschitz (see [2]).

The existence result from [5], adapted to our needs, reads as follows.

Theorem 2.2. Let 1 < q < 2, 0 ≤ µ ∈ L∞(Ω) and assume that M
and Ω satisfy conditions (M1) and (A) respectively. Then, there exists
at least a solution to (2.1) for every λ < λ∗, where λ∗ is given by (2.2).

We will also use the following comparison principle proved as in [5].

Theorem 2.3. Let 1 < q < 2, λ ∈ R, 0 ≤ µ ∈ L∞(Ω) and 0 ≤ h ∈
L1

loc(Ω). Assume that u, v ∈ C(Ω) ∩W 1,N
loc (Ω) are such that u, v > 0 in

Ω and satisfy

(2.3)

∫
Ω

M(x)∇u · ∇φ ≤ λ

∫
Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

h(x)φ,

and

(2.4)

∫
Ω

M(x)∇v · ∇φ ≥ λ

∫
Ω

vφ+

∫
Ω

µ(x)
|∇v|q

vq−1
φ+

∫
Ω

h(x)φ,

for all 0 ≤ φ ∈ H1
0 (Ω) ∩ L∞(Ω) with compact support. Suppose also

that, for every ε > 0, the following boundary condition holds

(2.5) lim sup
x→x0

(
u(x)

v(x) + ε

)
≤ 1 ∀x0 ∈ ∂Ω.

Furthermore, if λ > 0, assume also that infΩ(h) > 0. Then, u ≤ v in
Ω.

Some remarks are now in order.

Remark 2.4. Even though the principal operator considered in [5] is
the Laplacian, we observe here that a perturbation with a bounded
elliptic matrix M(x) satisfying (M1) does not involve any additional
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difficulty in the proofs of the previous results. We remark that the fact
that the coefficients of M(x) are locally Lipschitz is needed in order to
apply elliptic regularity (see [21, Theorem 3.8] and also problem 3.3,
p. 202, in that book).

Remark 2.5. Originally, in [5] condition (A) is replaced by a more
restrictive hypothesis, i.e., it is imposed that ∂Ω is of class C1,1. This
last smoothness condition is used only for proving a nonexistence result
for λ > λ∗. In our context, we do not expect that a similar nonexistence
result holds true because our solutions are not necessarily positive.
Hence, condition (A) is enough for our purposes since suffices to prove
that the solutions are Hölder continuous up the boundary.

3 Existence of solution for the quasilinear problem

In this section we will prove existence of solution to (Pλ) for every
λ < λ∗, generalizing thus Theorem 2.2 above. As was pointed out at
the Introduction our concept of solution is the following.

Definition 3.1. We say that u ∈ H1
0 (Ω) ∩ L∞(Ω) is a solution to

problem (Pλ) if g(x, u)|∇u|q ∈ L1({|u| > 0}) and∫
Ω

M(x)∇u · ∇φ = λ

∫
Ω

uφ+

∫
{|u|>0}

g(x, u)|∇u|qφ+

∫
Ω

f(x)φ,

for every φ ∈ H1
0 (Ω) ∩ L∞(Ω).

Remark 3.2. The following examples show that, when f changes sign,
a solution to (Pλ) may vanish in a set of positive measure either in a
neighbourhood of the boundary or even far away from the boundary.
Indeed, standard computations show that, for convenient data f1 and
f2, the functions

u1(x) =

{
e

1
|x|2−1 |x| ≤ 1,

0 1 < |x| ≤ 2,

and

u2(x) =

{
0 |x| < 1,

(|x| − 1)2(2− |x|)2 1 ≤ |x| < 2,

satisfy −∆ui = |∇ui|q
|ui|q−1 + fi(x) in B2(0).

The statement of the main result of this section is as follows.
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Theorem 3.3. Assume that Ω satisfies condition (A), 1 < q < 2,
f ∈ Lp(Ω) for some p > N

2
and conditions (M1) and (g1) are satisfied.

Then there exists at least a solution to problem (Pλ) for all λ < λ∗.

We will find the solution of Theorem 3.3 as the limit of a sequence
of solutions to nonsingular problems that approximate (Pλ). More
precisely, we consider, for every n ∈ N, the following problem

(Qn)

{
−div(M(x)∇un) = λun + gn(x, un)|∇un|q + fn(x) in Ω,

un = 0 on ∂Ω,

where

gn(x, s)
def
=


g(x, s) |s| ≥ 1

n
,

g(x, s)|s|qnq 0 < |s| ≤ 1

n
,

0 s = 0,

and fn(x) = max{−n,min{f(x), n}}. Observe that gn : Ω × R →
[0,+∞) is continuous in the second variable and

gn(x, s) ≤ g(x, s) a.e. x ∈ Ω, ∀s ∈ R \ {0}.
In the next lemma we prove the existence of solution to (Qn) by means
of the subsolution and supersolution method in [4].

Lemma 3.4. Let 1 < q < 2, λ < λ∗, f ∈ L1(Ω), and assume that
conditions (M1) and (g1) are satisfied. Then there exists a solution un
to problem (Qn) for all n.

Proof. Let λ ∈ (λ, λ∗), and let ϕ ∈ H1(Ω) ∩ L∞(Ω) be such that

ϕ ≥ c > 0 and − div(M(x)∇ϕ) ≥ λϕ+ µ(x)
|∇ϕ|q

ϕq−1
in Ω.

For some constant k > 0, let ψ = kϕ. Then,

div(M(x)∇ψ) + λψ + gn(x, ψ)|∇ψ|q + fn(x)

≤ k

(
div(M(x)∇ϕ) + λϕ+ µ(x)

|∇ϕ|q

ϕq−1

)
+ n− (λ− λ)kc ≤ 0,

if k is chosen large enough.
On the other hand, let ψ = −kϕ. Then,

div(M(x)∇ψ) + λψ + gn(x, ψ)|∇ψ|q + fn(x)

≥ div(M(x)∇ψ) + λψ − kµ(x)
|∇ϕ|q

ϕq−1
+ fn(x)

≥ −k
(

div(M(x)∇ϕ) + λϕ+ µ(x)
|∇ϕ|q

ϕq−1

)
+ (λ− λ)kc− n ≥ 0.
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Obviously, ψ ≤ 0 ≤ ψ in Ω. Therefore, by virtue of [4, Théorème 3.1],

there exists a solution un to problem (Qn) such that ψ ≤ un ≤ ψ. �

In the following lemma we prove the a priori estimates and the com-
pactness needed for passing to the limit.

Lemma 3.5. Let 1 < q < 2, λ ∈ R, f ∈ L1(Ω) and assume that
conditions (M1) and (g1) are satisfied. Assume also that {un} is a
sequence of solutions to problem (Qn) bounded in L∞(Ω). Then there
exists u ∈ H1

0 (Ω) ∩ L∞(Ω) such that

i) up to a subsequence, un → u strongly in Lr(Ω), r ∈ [1,∞),
ii) {|un|α} is bounded in H1

0 (Ω) for all α > 1
2
,

iii) up to a subsequence, un → u strongly in H1
0 (Ω).

Remark 3.6. Observe that, for any u ∈ W 1,1
loc (Ω) and any δ > 0, the

chain rule for weak derivatives implies that

|∇u|q

|u|q−1
= qq

∣∣∣∇|u| 1q ∣∣∣q
in the set {|u| > δ}. In particular, the equality holds in {|u| > 0} =⋂
δ>0{|u| > δ}. Thus, by (g1),

g(x, u)|∇u|q ≤ µ(x)qq
∣∣∣∇|u| 1q ∣∣∣q

in {|u| > 0}. Therefore, if |u|
1
q ∈ W 1,q(Ω) (which is precisely a conse-

quence of Lemma 3.5) one has that g(x, u)|∇u|q ∈ L1({|u| > 0}).

Proof of Lemma 3.5. Let us take un as test function in (Qn). Then,
using the L∞(Ω) bound we immediately obtain that {un} is bounded
in H1

0 (Ω). Hence, passing to a subsequence, there exists u ∈ H1
0 (Ω)

such that un ⇀ u weakly in H1
0 (Ω) and un → u a.e. in Ω. Furthermore,

again the L∞(Ω) estimate clearly implies that u ∈ L∞(Ω) and also that
un → u strongly in Lr(Ω) for all r ∈ [1,∞). This completes the proof
of item i).

Now we deal with the proof of item ii) which is straightforward,
using the L∞(Ω) estimate, in the case α ≥ 1. When 1

2
< α < 1 we take

β = 2α − 1 ∈ (0, 1) and we first prove a uniform bound in L1(Ω) for
|∇un|2

(|un|+δ)1−β with n ∈ N, δ ∈ (0, 1). Then, passing to the limit as δ → 0

we show that |un|
β+1

2 = |un|α is bounded in H1
0 (Ω).

It is clear that vn,δ = (−u−n + δ)β − δβ ∈ H1
0 (Ω) ∩ L∞(Ω), where

u−n = min{un, 0}. Therefore, it can be taken as test function in (Qn),
and using (M1), the L∞(Ω) bound and the fact that gn is nonnegative,
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we obtain that

−βη
∫
{un≤0}

|∇un|2

(−un + δ)1−β ≥
∫

Ω

M(x)∇un · ∇vn,δ

=λ

∫
Ω

unvn,δ +

∫
Ω

gn(x, un)|∇un|qvn,δ +

∫
Ω

fn(x)vn,δ(3.1)

≥λ
∫

Ω

unvn,δ +

∫
Ω

fn(x)vn,δ ≥ −C.

On the other hand, wn,δ = (u+
n + δ)β − δβ ∈ H1

0 (Ω) ∩ L∞(Ω), so we
can use it as test function in (Qn). Hence, using the L∞(Ω) bound and
Young inequality conveniently we deduce that

βη

∫
{un>0}

|∇un|2

(un + δ)1−β ≤
∫

Ω

M(x)∇un · ∇wn,δ

=λ

∫
Ω

unwn,δ +

∫
Ω

gn(x, un)|∇un|qwn,δ +

∫
Ω

fn(x)wn,δ

≤C +

∫
{un>0}

µ(x)
|∇un|q

uq−1
n

[(un + δ)β − δβ]

≤C +
βη

2

∫
{un>0}

|∇un|2

(un + δ)1−β

+ C

∫
Ω

[
(un + δ)β − δβ

uq−1
n

(un + δ)(1−β) q
2

] 2
2−q

.

It is straightforward to prove that the function

(s, t) 7→
[

(s+ t)β − tβ

sq−1
(s+ t)(1−β) q

2

] 2
2−q

, (0, t) 7→ 0

is continuous in [0, B] × [0, 1] for any B > 0. Thus, choosing B > 0
such that ‖un‖L∞(Ω) ≤ B for all n, we deduce that

(3.2)

∫
{un>0}

|∇un|2

(un + δ)1−β ≤ C,

where C > 0 is independent of n and δ.
From (3.1) and (3.2) we conclude that∫

Ω

|∇un|2

(|un|+ δ)1−β ≤ C.

In other words,
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(3.3)
4

(1 + β)2

∫
Ω

∣∣∣∇ [(|un|+ δ)
β+1

2 − δ
β+1

2

]∣∣∣2 ≤ C.

Denoting zn,δ = (|un|+δ)
β+1

2 −δ β+1
2 , we have proved that there exists

C > 0 such that ‖zn,δ‖H1
0 (Ω) ≤ C for all δ > 0. Hence, there exists

zn ∈ H1
0 (Ω) such that, passing to a subsequence, zn,δ ⇀ zn weakly in

H1
0 (Ω) as δ → 0. On the other hand, zn,δ → |un|

β+1
2 a.e. in Ω as δ → 0.

This implies that zn = |un|
β+1

2 , so |un|
β+1

2 ∈ H1
0 (Ω).

Since the H1
0 (Ω) norm is weakly lower semicontinuous, the inequality

(3.3) yields ∫
Ω

|∇|un|α|2 =

∫
Ω

∣∣∣∇|un| 1+β
2

∣∣∣2 ≤ C,

for C > 0 independent of n. This concludes the proof of item ii).
Regarding item iii) let us take un − u as test function in (Qn). We

obtain that∫
Ω

M(x)∇un · ∇(un − u) = λ

∫
Ω

un(un − u)

+

∫
Ω

gn(x, un)|∇un|q(un − u) +

∫
Ω

fn(x)(un − u).

It is clear that the first and the third terms on the right hand side of
the last equality converge to zero as n tends to infinity. Concerning the
nonlinear term, observe first that we can use item ii) with α = 1/q so

that {|un|
1
q } is bounded in H1

0 (Ω). Hence, using Remark 3.6 together
with the facts that gn(x, 0) = 0 and gn(x, s) ≤ g(x, s), we deduce that∣∣∣∣∫

Ω

gn(x, un)|∇un|q(un − u)

∣∣∣∣ ≤ C

∫
Ω

∣∣∣∇|un| 1q ∣∣∣q |un − u|
≤C

(∫
Ω

∣∣∣∇|un| 1q ∣∣∣2) q
2
(∫

Ω

|un − u|
2

2−q

)1− q
2

≤C
(∫

Ω

|un − u|
2

2−q

)1− q
2

.

This sequence converges to zero, using item i) with r = 2/(2− q). Thus
it is clear now that ∫

Ω

M(x)∇un · ∇(un − u)→ 0.

Therefore, the weak convergence in H1
0 (Ω) yields
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η

∫
Ω

|∇(un − u)|2 ≤
∫

Ω

M(x)∇(un − u) · ∇(un − u)

=

∫
Ω

M(x)∇un · ∇(un − u)−
∫

Ω

M(x)∇u · ∇(un − u)→ 0,

finishing the proof of item iii). �

Proof of Theorem 3.3. Let {un} be the sequence of solutions to prob-
lems (Qn) given by Lemma 3.4, i.e. given φ ∈ H1

0 (Ω) ∩ L∞(Ω),

(3.4)

∫
Ω

M(x)∇un ·∇φ = λ

∫
Ω

unφ+

∫
Ω

gn(x, un)|∇un|qφ+

∫
Ω

fn(x)φ.

We will obtain a solution to problem (Pλ) as a limit of this sequence.
We divide the proof into two steps, in the first one we prove a uniform
L∞(Ω) estimate which allows us to take limits easily in all the terms
of the previous equality, except the nonlinear one which will be treated
in the second step.

First of all observe that we can argue as in [17, Theorem 1.1] at
Section 4 (p. 249-251) to deduce, thanks to condition (A), that un ∈
C0,α(Ω) for some α ∈ (0, 1) (see also [5, Appendix]).

Step 1. {un} is bounded in L∞(Ω) and pass to the limit in some
terms of (3.4).

In order to find a uniform upper bound on un we observe that it is
immediately deduced if the open set

ωn = {x ∈ Ω : un(x) > 0}

is empty. Assuming that ωn is not empty, un satisfies that
−div(M(x)∇un) = λun + gn(x, un)|∇un|q + fn(x) in ωn,

un > 0 in ωn,

un = 0 on ∂ωn.

Now, since un ∈ C0,α(ωn), then we deduce that un ∈ W 1,N
loc (ωn) arguing

as in [5, Lemma 2.4] and using condition (M1) for the elliptic regularity
(see [21, Theorem 3.8] and also problem 3.3, p. 202, in that book).
Moreover, un is a subsolution to the following problem

(3.5)


−div(M(x)∇ζ) = λζ + µ(x)

|∇ζ|q

ζq−1
+ |f(x)|+ 1 in ωn,

ζ > 0 in ωn,

ζ = 0 on ∂ωn,
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in the sense that 0 < un ∈ C(ωn) ∩ W 1,N
loc (ωn) satisfies (2.3) with

h = |f |+ 1.
On the other hand, Theorem 2.2 implies that there exists a solution

v to
−div(M(x)∇v) = λv + µ(x)

|∇v|q

vq−1
+ |f(x)|+ 1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Moreover, v ∈ C(Ω) ∩ W 1,N
loc (Ω) reasoning as before. Then, v is a

supersolution to (3.5) in the sense it satisfies (2.4) with h = |f | + 1.
Furthermore, condition (2.5) is clearly satisfied in ∂ωn. Therefore,
applying Theorem 2.3 we deduce that

un ≤ v ≤ ‖v‖L∞(Ω) in ωn.

Thus, un ≤ ‖v‖L∞(Ω) in Ω, and this is a uniform upper bound on un.
A similar (actually simpler) argument by comparison provides us an

analogue lower bound. Indeed, as was pointed out in Section 2, we
know that λ < λ∗ ≤ λ1(M), and we have from the maximum principle
that un ≥ z with z ∈ H1

0 (Ω)∩L∞(Ω) and −div(M(x)∇z) = λz−|f(x)|
in Ω. In conclusion, {un} is bounded in L∞(Ω) and the proof of Step 1
is concluded.

Our aim now is to use this a priori estimate to pass to the limit in
(Qn). In order to do that, recall that Lemma 3.5 implies that there
exists u ∈ H1

0 (Ω) ∩ L∞(Ω) such that un → u strongly in H1
0 (Ω) and in

Lr(Ω) for all r ∈ [1,∞). Hence, given φ ∈ H1
0 (Ω) ∩ L∞(Ω),

lim
n→∞

∫
Ω

gn(x, un)|∇un|qφ = lim
n→∞

(∫
Ω

M(x)∇un · ∇φ− λ
∫

Ω

unφ

−
∫

Ω

fn(x)φ

)
=

∫
Ω

M(x)∇u · ∇φ− λ
∫

Ω

uφ−
∫

Ω

f(x)φ.

Step 2. lim
n→∞

∫
Ω

gn(x, un)|∇un|qφ =

∫
{|u|>0}

g(x, u)|∇u|qφ.

Let us fix a decreasing sequence (to be specified later) {δm} of posi-
tive real numbers such that δm → 0. We have that∫

Ω

gn(x, un)|∇un|qφ =

∫
{|un|>δm}

gn(x, un)|∇un|qφ(3.6)

+

∫
{|un|≤δm}

gn(x, un)|∇un|qφ.

We will pass to the limit in both terms, first with respect to n, and
after that with respect to m.
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Concerning the first term, we know that there exists h ∈ L1(Ω) such
that, passing to a subsequence, |∇un|q ≤ h in Ω, for all n. Then,

|gn(x, un)|∇un|qφχ{|un|>δm}| ≤
Ch

δq−1
m

∈ L1(Ω),

so we have domination.
In order to prove the almost everywhere convergence, consider the

set
N = {δ ≥ 0 : |{x ∈ Ω : |u(x)| = δ}| > 0}.

It is well known that N is countable, so the sequence {δm} can be
chosen in R \N . Thus, since un → u a.e. in Ω, it is straightforward to
check that also χ{|un|>δm} → χ{|u|>δm} a.e. in Ω as n→∞.

On the other hand, if |un| > δm, we can take n large enough such
that |un| ≥ 1

n
, so gn(x, un) = g(x, un). Hence, using the continuity of

g(x, ·) in the set (−∞,−δm]∪ [δm,∞) and the fact that un → u a.e. in
Ω, we deduce that

gn(x, un)→ g(x, u) a.e. in Ω as n→∞.
In sum, using also that ∇un → ∇u a.e. in Ω, we obtain that

gn(x, un)|∇un|qφχ{|un|>δm} → g(x, u)|∇u|qφχ{|u|>δm} a.e. in Ω as n→∞.
Therefore, the Dominated Convergence Theorem implies that∫
{|un|>δm}

gn(x, un)|∇un|qφ→
∫
{|u|>δm}

g(x, u)|∇u|qφ as n→∞.

In order to pass to the limit with respect to m we recall that Lem-

ma 3.5 gives also that {|un|
1
q } is bounded in H1

0 (Ω). This, in particular,

implies that |u|
1
q ∈ H1

0 (Ω). Now, taking into account Remark 3.6, we
have a uniform domination with respect to m:∣∣g(x, u)|∇u|qφχ{|u|>δm}

∣∣ ≤C |∇u|q
|u|q−1

χ{|u|>0}

=C|∇|u|
1
q |q ∈ L1({|u| > 0}),

and also almost everywhere convergence

g(x, u)|∇u|qφχ{|u|>δm} → g(x, u)|∇u|qφ a.e. in {|u| > 0}.
Therefore, the Dominated Convergence Theorem yields∫

{|u|>δm}
g(x, u)|∇u|qφ→

∫
{|u|>0}

g(x, u)|∇u|qφ.

To conclude the proof, we will show that the last term in (3.6) van-
ishes as n and m tend to infinity. Notice first that such a term has a
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limit with respect to n (because the remaining two terms do). Further-
more, by virtue of Lemma 3.5 we derive, taking ε > 0 with 1−ε

q
> 1

2
,

that∣∣∣∣∫
{|un|≤δm}

gn(x, un)|∇un|qφ
∣∣∣∣ ≤ C

∫
{0<|un|≤δm}

|∇un|q

|un|q−1

= C

∫
{0<|un|≤δm}

|∇un|q

|un|q+ε−1
|un|ε = C

∫
{0<|un|≤δm}

(
|∇un|
|un|1+ ε−1

q

)q

|un|ε

≤ Cδεm

∫
Ω

∣∣∣∇|un| 1−εq ∣∣∣q ≤ Cδεm

(∫
Ω

∣∣∣∇|un| 1−εq ∣∣∣2) q
2

≤ Cδεm.

In consequence,

lim
m→∞

(
lim
n→∞

∫
{|un|≤δm}

gn(x, un)|∇un|qφ
)

= 0.

In conclusion, we have proved that∫
Ω

gn(x, un)|∇un|qφ→
∫
{|u|>0}

g(x, u)|∇u|qφ.

That is to say, u is a solution to (Pλ). �

4 Homogenization of problem (1.1)

The existence result of the previous section allows us to consider the
homogenization problem associated to (1.1).

4.1 The perforated domains

In this subsection, following [10], we describe the geometry of the
domains Ωε in which we study our homogenization result.

Consider for every ε > 0 a finite number, n(ε) ∈ N, of closed subsets
T εi ⊂ RN , 1 ≤ i ≤ n(ε), which are the holes. Let us denote Dε =

RN \
⋃n(ε)
i=1 T

ε
i . The domain Ωε is defined by removing the holes T εi

from Ω, that is

Ωε = Ω−
n(ε)⋃
i=1

T εi = Ω ∩Dε.

Hypotheses on the holes. We suppose that the sequence of do-
mains Ωε is such that there exist a sequence of functions {wε} and
σ ∈ H−1(Ω) such that

(4.1) wε ∈ H1(Ω) ∩ L∞(Ω),

(4.2) 0 ≤ wε ≤ 1 a.e. x ∈ Ω,
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(4.3) wεφ ∈ H1
0 (Ωε) ∩ L∞(Ωε) ∀φ ∈ H1

0 (Ω) ∩ L∞(Ω),

(4.4) wε ⇀ 1 weakly in H1(Ω),

and given zε, φ, z ∈ H1(Ω) ∩ L∞(Ω) such that zεφ ∈ H1
0 (Ωε) ∩ L∞(Ωε)

and zε ⇀ z weakly in H1(Ω) it is satisfied that∫
Ω

M(x)T∇wε · ∇(zεφ)→ 〈σ, zφ〉H−1(Ω),H1
0 (Ω).(4.5)

The model example for Ωε

The prototype of the examples where assumptions (4.1), (4.2), (4.3),
(4.4) and (4.5) are satisfied is the case where the matrix M(x) is the
identity (and where therefore the operator is the Laplace’s operator
−div(M(x)D) = −∆), where Ω ⊂ RN , N ≥ 2, and where the holes T εi
are balls of radius rε with rε given by{

rε = C0ε
N/(N−2) if N ≥ 3,

ε2 log rε → −C0 if N = 2,

for some C0 > 0 (taking rε = exp(−C0/ε
2) is the model case for N = 2)

which are periodically distributed at the vertices of an N -dimensional
lattice of cubes of size 2ε; in this case the measure σ is given by

σ =
SN−1(N − 2)

2N
CN−2

0 if N ≥ 3,

σ =
2π

4

1

C0

if N = 2,

where SN−1 is the surface of the unit sphere in RN−1, see e.g. [10]
and [19] for more details, and for other examples, in particular for the
case where the holes have a different form and/or are distributed on a
manifold.

Remark 4.1. In dimension N = 1, there is no sequence wε which
satisfies (4.3) and (4.4) whenever for every ε there exists at least one
hole T εiε with T εiε ∩ Ω 6= Ø, see Remark 5.1 of [12] for more details. �

4.2 Existence of solution to problem (1.1)

We study in this subsection the existence of solution to problem (1.1)
in order to deal with the homogenization result.

Proposition 4.2. Let 1 < q < 2, λ < λ∗(Ω), f ∈ Lp(Ω) with p > N
2

and assume that conditions (M1) and (g1) are satisfied. Consider the

open set Dε = RN \
⋃n(ε)
i=1 T

ε
i for all ε > 0. If both Ω and Dε satisfy

condition (A) from Definition 2.1, then there exists a solution to (1.1)
for all ε > 0.
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Proof. Let us fix ε > 0. First of all notice that λ < λ∗(Ω) ≤ λ∗(Ωε).
Thus, if Ωε satisfies condition (A), then this result is a mere conse-
quence of Theorem 3.3. Let us show that, in fact, Ωε has the required
regularity. Let r0, θ0 > 0 be small enough so that they correspond to
condition (A) for both Ω and Dε. Fix x ∈ ∂Ωε, and assume first that
x ∈ ∂Ω ∩ ∂Ωε. For 0 < r < r0, let Ωε

r be any connected component of
Ωε∩Br(x), and let Ωr be the connected component of Ω∩Br(x) which
contains Ωε

r. Then,

|Ωε
r| ≤ |Ωr| ≤ (1− θ0)|Br|.

The same idea is valid if x ∈ ∂Dε ∩ ∂Ωε. Therefore, Ωε satisfies condi-
tion (A) with parameters r0, θ0, and the proof is concluded. �

4.3 The homogenization result

Now, we can state our homogenization result.

Theorem 4.3. Assume that the sequence of perforated domains Ωε sat-
isfies (4.1), (4.2), (4.3), (4.4) and (4.5). Suppose also that conditions
(M1) and (g1) are satisfied for 1 < q < 2, that f ∈ Lp(Ω) for some
p > N

2
, that λ < λ∗(Ω) and that both Ω and Dε satisfy condition (A),

where Dε = RN \
⋃n(ε)
i=1 T

ε
i . Then, there exists a sequence {uε} of solu-

tions to problem (1.1) such that {uε̃} is bounded in L∞(Ω) and uε̃ ⇀ u
weakly in H1

0 (Ω), being u a solution to

(4.6)

−div(M(x)∇u) + σu = λu+ g(x, u)|∇u|q + f(x) in Ω,

u = 0 on ∂Ω,

in the sense that u ∈ H1
0 (Ω) ∩ L∞(Ω), g(x, u)|∇u|q ∈ L1({|u| > 0})

and ∫
Ω

M(x)∇u · ∇φ+ 〈σ, uφ〉H−1(Ω),H1
0 (Ω) = λ

∫
Ω

uφ(4.7)

+

∫
{|u|>0}

g(x, u)|∇u|qφ+

∫
Ω

f(x)φ

for all φ ∈ H1
0 (Ω) ∩ L∞(Ω).

Remark 4.4. Under the hypotheses of Theorem 4.3, assume also that
f satisfies that

∀ω ⊂⊂ Ω, ∃cω > 0 : f ≥ cω in ω.

Then, it is easy to prove that every solution u to problem (4.6) satisfies
that u ≥ 0. If we further assume that the holes are “good enough” so
that σ ∈ Lr(Ω) for some r > N

2
, then the strong maximum principle
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holds (see [22, Corollary 5.1]), so that u > 0. With this hypothesis, it
can also be proved, following the arguments in [5], that u ∈ C0,α(Ω) ∩
W 1,N

loc (Ω). Having this regularity and the strict positivity, the proof
of the comparison principle [5, Theorem 3.2] can be reproduced with
no relevant changes. In conclusion, we have uniqueness of solution to
problem (4.6) for a right choice of the holes.

However, if σ is a general measure, the strong maximum principle
does not hold in general. In [13] the authors have given two counterex-
amples which prove it. Hence, the uniqueness of solution to problem
(4.6) is still open in the general case.

4.4 Strong convergence of the gradients

In the present subsection we prove some properties of the solutions
uε to the problems (1.1) which allow us to prove our homogenization
result Theorem 4.3 and a corrector result Theorem 4.6.

Lemma 4.5. Let 1 < q < 2, assume that conditions (M1) and (g1) are
satisfied, and that f ∈ L1(Ω). Let {Ωε} be any sequence of domains
such that Ωε ⊂ Ω for all ε > 0, and let {uε} be a sequence of solutions

to problem (1.1) with {uε̃} bounded in L∞(Ω). Then, {|uε̃|α} is bounded
in H1

0 (Ω) for all α > 1
2
. Moreover, there exists u ∈ H1

0 (Ω) ∩ L∞(Ω)

such that, passing to a subsequence, uε̃ ⇀ u weakly in H1
0 (Ω) and

uε̃ → u strongly in W 1,r
0 (Ω) ∩ Ls(Ω) for all r ∈ [1, 2) and s ∈ [1,∞).

Proof. The proof of this result is analogous to the one of Lemma 3.5,
except for the strong convergence in W 1,r

0 (Ω). In this case, it is not
possible to take uε−u as test function in (1.1) since in general uε−u 6∈
H1

0 (Ωε). Thus, the proof for the strong convergence in H1
0 (Ω) does not

work here. However, [9, Lemma 4.8] can be applied to obtain that

uε̃ → u strongly in W 1,r
0 (Ω) for all r ∈ [1, 2). Since the proof of this

fact is simple in our context, we include it here for completeness.
Indeed, for given δ > 0 observe that ∫

Ω

|∇(uε̃ − u)|r =

=

∫
{|uε̃−u|≥δ}

|∇(uε̃ − u)|r +

∫
{|uε̃−u|<δ}

|∇(uε̃ − u)|r ≤

≤ |{|uε̃ − u| ≥ δ}|1−
r
2

(∫
Ω

|∇(uε̃ − u)|2
) r

2

+(4.8)

+|Ω|1−
r
2

(∫
{|uε̃−u|<δ}

|∇(uε̃ − u)|2
) r

2

.
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Clearly, |{|uε̃−u| ≥ δ}| → 0 as ε→ 0, and
∫

Ω
|∇(uε̃−u)|2 is bounded

uniformly in ε. Hence, the first term of (4.8) vanishes as ε → 0. Let
us focus on the second term.

Let us define f ε : Ω → R by f ε(x) = λuε + g(x, uε)|∇uε|q + f(x)
when x ∈ {|uε| > 0} and f ε(x) = f(x) otherwise. Consider also
Tδ(t) = max{−δ,min{δ, t}} for t ∈ R, δ > 0.

Using the function Tδ(u
ε̃ − u) + Tδ(u) ∈ H1

0 (Ωε) ∩ L∞(Ωε) as test in
the weak formulation of (1.1), we obtain that∫

Ω

f ε(x)(Tδ(u
ε̃ − u) + Tδ(u)) =

=

∫
Ω

M(x)∇uε̃ · ∇(Tδ(u
ε̃ − u) + Tδ(u)) ≥

≥ η

∫
{|uε̃−u|<δ}

|∇(uε̃ − u)|2 +

∫
{|uε̃−u|<δ}

M(x)∇u · ∇(uε̃ − u)+

+

∫
{|u|<δ}

M(x)∇uε̃ · ∇u.

And this implies that

C

∫
{|uε̃−u|<δ}

|∇(uε̃ − u)|2 ≤

≤
∫

Ω

|f ε(x)||Tδ(uε̃ − u) + Tδ(u)|+
∫
{|u|<δ}

|∇uε̃||∇u|+(4.9)

+

∣∣∣∣∫
Ω

M(x)∇u · ∇(uε̃ − u)

∣∣∣∣
for some constant C > 0 dependent on η and M but independent of ε.

On the one hand, since {|uε̃|
1
q } is bounded in H1

0 (Ω) ∩ L∞(Ω), we
have that {f ε} is bounded in L1(Ω). Then, we deduce that∫

Ω

|f ε(x)||Tδ(uε̃ − u) + Tδ(u)| ≤ Cδ,

for another constant C > 0 independent of ε. Therefore,

(4.10) lim
δ→0

(
lim sup
ε→0

∫
Ω

|f ε(x)||Tδ(uε̃ − u) + Tδ(u)|
)

= 0.



EXISTENCE AND HOMOGENIZATION OF SINGULAR ELLIPTIC BVP 21

On the other hand, since {uε̃} is bounded in H1
0 (Ω), we have that∫

{|u|<δ}
|∇uε̃||∇u| ≤‖uε̃‖H1

0 (Ω)

(∫
{|u|<δ}

|∇u|2
) 1

2

≤C
(∫

Ω

|∇u|2χ{|u|<δ}
) 1

2

,

again for a constant C > 0 independent of ε. Thus,

(4.11) lim
δ→0

(
lim sup
ε→0

∫
{|u|<δ}

|∇uε̃||∇u|
)

= 0.

Finally, the weak convergence in H1
0 (Ω) yields to

(4.12)

∣∣∣∣∫
Ω

M(x)∇u · ∇(uε̃ − u)

∣∣∣∣→ 0 as ε→ 0.

In conclusion, from (4.9), (4.10), (4.11) and (4.12), we deduce that

lim
δ→0

(
lim sup
ε→0

∫
{|uε̃−u|<δ}

|∇(uε̃ − u)|2
)

= 0,

and the proof finishes by applying this last convergence to (4.8). �

4.5 Proof of Theorem 4.3

We dedicate this subsection in order to prove Theorem 4.3 in two
steps.

Step 1. uε̃ is bounded in L∞(Ω).
Let {uε} be the sequence of solutions to (1.1) given by Proposi-

tion 4.2. One can easily follow the arguments by comparison in the

proof of Theorem 3.3 to deduce that uε̃ is bounded in L∞(Ω). There-
fore, Lemma 4.5 implies that there exists u ∈ H1

0 (Ω)∩L∞(Ω) such that

uε̃ ⇀ u weakly in H1
0 (Ω) and uε̃ → u strongly in W 1,r

0 (Ω) ∩ Ls(Ω) for
all r ∈ [1, 2) and s ∈ [1,∞).

Step 2. u ∈ H1
0 (Ω) ∩ L∞(Ω) is solution of (4.6) and g(x, u)|∇u|q ∈

L1({|u| > 0}).
The idea is to take wεφ as test function in (1.1) for some φ ∈ H1

0 (Ω)∩
L∞(Ω), and then pass to the limit as ε → 0 (observe that, thanks to
(4.3) wεφ ∈ H1

0 (Ωε) ∩ L∞(Ωε) for every φ ∈ H1
0 (Ω) ∩ L∞(Ω)).
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Taking wεφ as test function in (1.1) we have, using (4.1),∫
Ωε

(M(x)∇uε · ∇φ)wε +

∫
Ωε

(M(x)∇uε · ∇wε)φ =

= λ

∫
Ωε
uεwεφ+

∫
{|uε|>0}

g(x, uε)|∇uε|qwεφ+

∫
Ωε
f(x)wεφ

or equivalently ∫
Ω

(M(x)∇uε̃ · ∇φ)wε +

∫
Ω

(M(x)∇uε̃ · ∇wε)φ =

= λ

∫
Ω

uε̃wεφ+

∫
{|uε̃|>0}

g(x, uε̃)|∇uε̃|qwεφ+

∫
Ω

f(x)wεφ.(4.13)

Now we pass to the limit as ε → 0 in each term of the previous
equality. For the first term of the left hand side we use (4.4) and that

uε̃ ⇀ u weakly in H1
0 (Ω) to obtain that∫

Ω

(M(x)∇uε̃ · ∇φ)wε →
∫

Ω

M(x)∇u · ∇φ.

In order to pass to the limit as ε → 0 in the second term of the left
hand side of (4.13) we use (4.3), (4.4) and (4.5) and we get∫

Ω

(M(x)∇uε̃ · ∇wε)φ =

∫
Ω

M(x)∇(uε̃φ) · ∇wε

−
∫

Ω

(M(x)∇φ · ∇wε)uε̃ =

∫
Ω

M(x)T∇wε · ∇(uε̃φ)

−
∫

Ω

(M(x)∇φ · ∇wε)uε̃ → 〈σ, uφ〉H−1(Ω),H1
0 (Ω).

With respect to the first and third terms of the right hand side of
(4.13), we use the estimate in the Sobolev space and (4.4). Passing to
the limit as ε→ 0 we get

λ

∫
Ω

uε̃wεφ→ λ

∫
Ω

uφ

and ∫
Ω

f(x)wεφ→
∫

Ω

f(x)φ.

The pass to the limit of the second term of the right hand side of
(4.13) is more delicated, but one can argue as in the proof of Theo-
rem 3.3 to prove that g(x, u)|∇u|q ∈ L1({|u| > 0}) and∫

{|uε̃|>0}
g(x, uε̃)|∇uε̃|qwεφ→

∫
{|u|>0}

g(x, u)|∇u|qφ.
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Therefore u satisfies (4.7) and we conclude the proof. �

4.6 The corrector result

Finally, in this subsection we prove a corrector result.

Theorem 4.6. Assume the hypotheses of Theorem 4.3, and suppose
also that the matrix M is symmetric. Let {uε} and u be the sequence
of solutions to (1.1) and its limit, respectively, given by Theorem 4.3.
Then,

uε̃ − uwε → 0 strongly in H1
0 (Ω).

Remark 4.7. In [7] it is proved that, for general problems with gra-
dient-dependent lower order terms, the simple representation given by
Theorem 4.6, does not hold in general. However, the nature of our
problem allows us to prove a corrector result analogous to the linear
case in spite of the presence of the gradient term.

Proof of Theorem 4.6. First of all observe that

η

∫
Ω

|∇(uε̃ − uwε)|2 ≤
∫

Ω

M(x)∇(uε̃ − uwε) · ∇(uε̃ − uwε)

=

∫
Ω

M(x)∇uε̃ · ∇(uε̃ − uwε)−
∫

Ω

M(x)∇(uwε) · ∇(uε̃ − uwε).

(4.14)

We will now pass to the limit in each term of the right hand side of the
equality (4.14).

Indeed, for the first one, we take uε̃ − uwε as test function in (1.1)
and obtain that∫

Ω

M(x)∇uε̃ · ∇(uε̃ − uwε) = λ

∫
Ω

uε̃(uε̃ − uwε)

+

∫
{|uε̃|>0}

g(x, uε̃)|∇uε̃|q(uε̃ − uwε) +

∫
Ω

f(x)(uε̃ − uwε).(4.15)

By Theorem 4.3, Lemma 4.5 and also by (4.2) and (4.4), we know that

uε̃ − uwε → 0 strongly in Ls(Ω) for all s ∈ [1,∞). Moreover, Lemma

4.5 also implies that {|uε|
1
q } is bounded in W 1,q

0 (Ω). Therefore, we
can pass to the limit in (4.15) arguing as in the proof of the strong
convergence in Lemma 3.5. In sum, we deduce that∫

Ω

M(x)∇uε̃ · ∇(uε̃ − uwε)→ 0.
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Concerning the second term of (4.14), we derive, using the symmetry
of M , that∫

Ω

M(x)∇(uwε) · ∇(uε̃ − uwε) =

∫
Ω

uM(x)∇wε · ∇(uε̃ − uwε)

+

∫
Ω

wεM(x)∇u · ∇(uε̃ − uwε) =

∫
Ω

M(x)T∇wε · ∇(u(uε̃ − uwε))

−
∫

Ω

(uε̃ − uwε)M(x)∇wε · ∇u+

∫
Ω

wεM(x)∇u · ∇(uε̃ − uwε)

Observe now that (4.5) implies that∫
Ω

M(x)T∇wε · ∇(u(uε̃ − uwε))→ 0.

Moreover, the remaining terms∫
Ω

(uε̃ − uwε)M(x)∇wε · ∇u,
∫

Ω

wεM(x)∇u · ∇(uε̃ − uwε)

are both products in L2(Ω)N of a strongly convergent sequence times a
weakly convergent one. Therefore both terms converge and the limits
are clearly zero.

In conclusion, we have proved that we can pass to the limit in (4.14),
and the limit is zero. The proof of the result is now finished. �

Acknowledgments. Research supported by Ministerio de Economı́a
y Competitividad (MINECO-FEDER), Spain under grant MTM2015-
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elliptiques quasi linéaires. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988),
749–752.



EXISTENCE AND HOMOGENIZATION OF SINGULAR ELLIPTIC BVP 25
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