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Abstract. In this work we continue with the ongoing search for what are often large al-
gebraic structures of mathematical objects (functions, sequences, etc.) which enjoy certain
special properties. This type of study belongs to the recent area of research known as lin-
eability. On this occasion, and among several other results, we shall show that there are
large algebraic structures within (i) the set of nets which are weakly convergent, but are
not bounded, (ii) nets that are weakly convergent, but are not convergent in norm, or (iii)
the set of nets of measurable functions which converge pointwise to a function that is not
measurable and that are bounded in [0, 1].

1. Introduction and preliminaries

Let X be any topological vector space and M any subset of X. We say that M is spaceable
if M ∪{0} contains a closed infinite dimensional subspace. The set M shall be called lineable
if M ∪ {0} contains an infinite dimensional linear (not necessarily closed) space. At times,
we shall be more specific, referring to the set M as κ-lineable if it contains a vector space of
dimension κ (finite or infinite cardinality).

These notions of lineability and spaceability were originally coined by V. I. Gurariy and
they first appeared in [4,17,21]. During the last decade, many authors have invested a lot of
effort in studying special cases of lineable sets and pathological real-valued functions.

On the next level, we also have the following notions closely linked to that of lineability.
If V is a topological vector space contained in a (not necessarily unital) algebra and if κ is
any (finite or infinite) cardinal number, then a set A is called κ-algebrable if there exists
an algebra M such that M \ {0} ⊆ A and M is a κ-dimensional vector space. Here, by
S = {sα : α ∈ I} is a minimal system of generators of M , we mean that M is the algebra
generated by S and for every α0 ∈ I, sα0 does not belong to the algebra generated by S\{sα0}.

Moreover, we shall also say that a set A is strongly κ-algebrable if there exists a κ-
generated free algebra M such that M \ {0} ⊆ A. Recall that an algebra M is called a
κ-generated free algebra if there exists a subset X = {xα < κ} of M such that any function
f from X to some algebra A can be uniquely extended to a homomorphism from M into
A. Then X is called a set of free generators of the algebra M . In a commutative algebra
we have a simple criterion; namely, a subset X = {xα < κ} in a commutative algebra B
generates a free subalgebra M if and only if for any polynomial P without free term and
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any xαi ∈ X, 1 ≤ i ≤ n, we have P (xα1 , . . . , xαn) = 0 if and only if P = 0. It should be
noted that X = {xα < κ} ⊂ B is a set of free generators of a free algebra M ⊂ B if and
only if the set of all elements of the form xk1α1

xk2α2
· · ·xknαn is linearly independent and all linear

combinations of these elements (called algebraic combination) are in B ∪ {0}. The notion of
strong algebrability is essentially stronger than the notion of algebrability.

We refer the interested reader to, e.g., [1–3, 5–7, 9, 10, 12, 14] and references therein, for a
complete account on recent results in the theory of lineability, spaceability and algebrability.
Let us recall a result from [13] that shall be very useful throughout this note.

Theorem 1.1. Let X be a set, K ⊂ RX and f ∈ RXsuch that

(a) f ∈ K is so that f [X] has, at least, one accumulation point.

(b) The vector space generated by the functions of the form f(u)neαf(u), where n is a
positive integer and α > 0, is contained in K ∪ {0}.

Then K is strongly c−algebrable.

Also, and for the sake of the completeness of this note, let us recall the following well known
results.

Theorem 1.2 (Dominated Convergence Theorem). Let {fn} be a sequence of integrable func-
tions on a measure space, (µ,A), such that it converges pointwise to a function f. If there
exists an integrable function g satisfying that ∀n, |fn| ≤ g; then f is an integrable function
with ∫

A
fdµ = lim

n→∞

∫
A
fndµ ∀A ∈ A.

Theorem 1.3 (Kronecker’s Theorem). If σ1, σ2, ..., σk, 1 are linearly independent over the
rational numbers, then the set of points

(nσ1, nσ2, ..., nσk) mod 1

is dense in the unit cube, i.e. for every (r1, . . . , rk) ∈ [0, 1]k and every ε > 0 there exist n ∈ N
and z1, . . . , zk ∈ Z such that |nσi − zi − ri| < ε, i = 1, . . . , k.

The proof of this last result is showed in [18]. The following one can be found in [22,
Theorem 3.25].

Theorem 1.4 (Heine-Cantor Theorem). If f : M → N is a continuous function between two
metric spaces, and M is compact, then f is uniformly continuous.

Theorem 1.5 (Banach-Zarecki Theorem). Let F be a real-valued function defined on a real
bounded closed interval [a, b]. A necessary and sufficient condition for F to be absolutely
continuous is that:

(1) F is continuous and of bounded variation on [a, b].
(2) F satisfies Lusin’s condition (it maps sets of Lebesgue measure zero into sets of

Lebesgue measure zero).

This last result can be found, for instance, in [20, Theorem 1.1].
For the sake of completeness of this work, let us briefly recall the notion of net. A net

(also know as Moore-Smith sequence) is a generalization of the classical notion of sequence in
Analysis. Recall that a directed set (or a directed preorder or a filtered set) is a non-empty
set A together with a reflexive and transitive binary relation � (that is, a preorder), with the
additional property that every pair of elements has an upper bound, that is, for any a, b ∈ A
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there exists c ∈ A with a � c and b � c. Any function whose domain is a directed set is
called a net. As it is done with the notion of subsequence, one could also define the notion
of subnet in the same fashion. We refer the interested reader to the seminal book [11] for a
complete account on nets and convergence theorems for nets.

The present work shall focus on studying the lineability within subsets of nets enjoying
certain “unexpected” properties, for instance, we shall prove that there are large algebraic
structures within (i) the set of nets which are weakly convergent, but are not bounded (The-
orem 2.1), (ii) nets that are weakly convergent, but are not convergent in norm (Theorem
2.3), or (iii) the set of nets of measurable functions which converge pointwise to a function
that is not measurable and that are bounded in [0, 1] (Theorem 2.13). The notation shall be
(in general) rather usual and, when needed, we shall recall the necessary concepts.

2. The main results

Let (X, ‖·‖) be a Banach space and X ′ its dual. For Y being any set, we define the index
set F(Y ) as the set whose elements are finite subsets of Y and F1(Y ) = F(Y )×]0,∞[

Next, let us consider F1(X ′) endowed with the following order:

({α1, . . . , αn} , ε) �
({
α′1, . . . , α

′
m

}
, ε′
)
←→ {α1, . . . , αn} ⊆

{
α′1, . . . , α

′
m

}
and ε′ ≤ ε.

Let (X, ‖·‖) be a Banach space, it is well known that weakly convergent sequences are
bounded sequences but this is not longer true for nets. We shall begin by proving that the
set of nets which are weakly convergent but are not bounded is c−lineable. More precisely we
define S1 as the set of nets (whose indexes belong to F1) which are weakly convergent, but
are not bounded.

Theorem 2.1. If (X, ‖·‖) is an infinite-dimensional Banach space then S1 is c−lineable.

Proof. Let us consider X ′ = {Tα : α ∈ J} (where J is an index set for the elements of X ′). We
have the following neighbourhood basis at 0 for the weak topology σ(X,X ′):

(2.1) Vα1...αn,ε := {x ∈ X : |Tαi (x)| < ε, i = 1, . . . , n} .

Indeed, since Uε := (−ε, ε) is an open set in R, then T−1
αi (Uε) is an open set in the weak

topology (weak open set) and consequently

Vα1···αn,ε =
n⋂

αi=1

T−1
αi (Uε)

is a weak open set. On the other hand, for every B neighbourhood of 0 in the weak topology
σ(X,X ′), there exists n ∈ N and α1, . . . , αn ∈ J such that

W =

n⋂
αi=1

T−1
αi (Uαi) ⊂ B,

with Uαi a neighbourhood of 0 in R. For some ε > 0 we have that (−ε, ε) ⊂ Uαi for all
i ∈ {1, . . . , n}, then 0 ∈ Vα1...αn,ε ⊂W ⊂ B.

Since X is infinite dimensional, for each n ∈ N and α1, . . . , αn ∈ J we may choose x ∈ X\{0}
with ‖x‖ = 1 such that Tαi (x) = 0 for every i = 1, . . . , n. We denote x as xα1...αn and for each

s ∈ [1, 2], we define the net xα1...αn,ε(s) = e
s
εxα1...αn . Observe that ‖xα1...αn,ε(s)‖ = e

s
ε → +∞

as ε→ 0 which implies that the net is unbounded.
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We claim that the net Xs = (xα1···αn,ε(s)) with ({α1, . . . , αn} , ε) ∈ F1, weakly con-
verges to zero. Indeed, since (2.1) is a neighbourhood basis of 0 for the weak topology,
given B a neighbourhood of 0 in σ(X,X ′) there exists ({α1, . . . , αn} , ε) ∈ F1 such that
Vα1...αn,ε ⊂ B. Moreover, whenever ({α1, . . . , αn} , ε) � ({α′1, . . . , α′m} , ε′) one easily have
that Vα′1···α′m,ε′ ⊂ Vα1···αn,ε ⊂ B. Therefore, xα′1···α′m,ε′(s) ∈ B (in fact this is true also for

ε′ > ε since {α1, . . . , αn} ⊆ {α′1, . . . , α′m} implies that xα′1...α′m,ε′(s) ∈ Vα1...αn,ε, because∣∣∣Tαi (xα′1...α′m,ε′(s))∣∣∣ = 0 < ε for every i = 1, . . . , n). Thus the claim is proved.

In order to finish the proof we will show that the nets of the formXs are linearly independent
and its linear span is contained in S1 ∪ {0}. Indeed, let us fix m ∈ N, β1, . . . , βm ∈ R \ {0},
s1, . . . , sm ∈ [1, 2] with si 6= sj if i 6= j, ({α1, . . . , αn}, ε) ∈ F1 and let us consider

gα1...αn,ε =

m∑
i=1

βiXsi .

We can write gα1...αn,ε as:

gα1...αn,ε = xα1...αne
sj
ε

m∑
i=1

βie
si−sj
ε ,

where sj = max{si, i = 1, . . . ,m}. It is clear that

lim
ε→0
‖gα1···αn,ε‖ = lim

ε→0
e
sj
ε |βj | = +∞,

which implies that Xs are linearly independent. Moreover, although the net gα1···αn,ε does
not converge to zero in norm, as we have shown before, the net Xs = (xα1···αn,ε(s)) weakly
converges to zero, then gα1···αn,ε weakly converges to zero thanks to the linearity of the ele-
ments in X ′ (let us recall that a net (xd) weakly converges to x0 in a normed space X, if for
each T ∈ X ′ it is satisfied that T (xd)→ T (x0)), i.e., gα1···αn,ε ∈ S1. �

Remark 2.2. Notice that, as a consequence of the above result, we infer that, in an infinite-
dimensional Banach space, the set of nets indexed in F1 which are weakly convergent to zero
but not convergent in norm is c−lineable.

Due to the isomorphism between two separable Hilbert spaces, we are going to prove this
result for l2. Let F(N) (which we will denote as F) be the subset of the power set of N formed
by finite non-empty subsets, which is ordered by the inclusion. S2 shall stand for the set of
nets which belong to l2 indexed in F, such that the net weakly converge, but does not converge
in norm. The following result establishes the lineability of this set.

Theorem 2.3. S2 is c−lineable.

Proof. Let us consider {xi : i ∈ N} an orthogonal Schauder basis for l2 and, for α =
{α1, . . . , αnα} ∈ F, let us denote xα =

{
xα1 , . . . , xαnα

}
. Let yα be a vector indexed in F

with norm nα, such that it is orthogonal to the elements of xα.
On the other hand, l2 is a reflexive space, l′2 = l2, and as we have done earlier, let us denote

l′2 = {Ti : i ∈ c}, with Ti(x) = 〈zi, x〉 for some zi ∈ l2. Then for ε > 0, and α ∈ F we can
consider the weak open set Vα1...αnα ,ε = {x ∈ l2 : ‖x‖ < 2nα, |Tαi(x)| < ε, i = 1, ..., nα} and
this family constitute a neighbourhood basis at 0 for the weak topology σ(l2, l

′
2). Indeed, for

every B neighbourhood of 0 in that weak topology, there exists n ∈ N and i1, . . . , in ∈ c such
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that

W =

n⋂
k=1

T−1
ik

(Uik) ⊂ B,

with Uik a neighbourhood of 0 in R. Moreover, using that {xi}i∈N is an orthogonal basis, for
every ε > 0 there exists α(ε) := α = {α1, . . . , αn} ∈ F such that

〈zik − xαk , zik − xαk〉 <
ε2

16n2
, k = 1, . . . , n.

If we assume that (−ε, ε) ⊂ Uik for all k ∈ {1, . . . , n}, then for every x ∈ Vα1...αn,
ε
2

|Tik(x)| = |〈zik , x〉| ≤ |〈zik − xαk , x〉|+ |〈xαk , x〉| <
ε

4n
2n+

ε

2
= ε.

Therefore 0 ∈ Vα1...αn,
ε
2
⊂W ⊂ B.

Arguing as in the proof of Theorem 2.1 we deduce that the net {yα}α∈F weakly converges
to 0 since yα is orthogonal to the elements of xα, i.e. , 〈yα, xαi〉 = 0, for every i = 1, ..., nα or
equivalently Tαi(yα) = 0, for every i ∈ {1, . . . , n}.

Moreover, {‖yα‖}α∈F = {nα}α∈F tends to infinity due to the fact that for l ∈ R we have

a set α = {α1, . . . , αnα} ∈ F with nα > l > 0. Thus, for each α′ =
{
α′1, . . . , α

′
nα′

}
∈ F such

that {α1, . . . , αnα} ⊆
{
α′1, . . . , α

′
nα′

}
, we have that nα′ > l.

Let us define, for every c ∈]0, 1[, the net y(c) ∈ S2, with y(c) ≡ yα(c) = ecnαyα. We will
finish the proof by showing that the nets of the form y(c) are linearly independent and its
linear span is contained in S2∪{0}. Indeed, let us consider k ∈ N and for every i ∈ {1, . . . , k},
ci ∈]0, 1[, ai ∈ R \ {0} and the net

∑k
i=1 aiy(ci) =

{∑k
i=1 aiyα(ci)

}
α∈F

. This net weakly

converges to zero, due to the linearity of the elements of l′2, in addition it diverges in norm:∥∥∥∥∥
k∑
i=1

aiyα(ci)

∥∥∥∥∥ =

∥∥∥∥∥
k∑
i=1

aie
cinαyα

∥∥∥∥∥ =

∣∣∣∣∣
k∑
i=1

aie
cinα

∣∣∣∣∣ ‖yα‖ =

∣∣∣∣∣
k∑
i=1

aie
(ci−cj)nα

∣∣∣∣∣ ecjnαnα,
where cj = max{ci : i = 1, . . . , k}. As we have seen before, ‖yα‖ diverges and, for nα big
enough, ∥∥∥∥∥

k∑
i=1

aiyα(ci)

∥∥∥∥∥ =

∣∣∣∣∣
k∑
i=1

aie
(ci−cj)nα

∣∣∣∣∣ ecjnαnα > |aj |2
ecjnαnα.

Therefore,
{∥∥∥∑k

i=1 aiyα(ci)
∥∥∥}

α∈F
diverges and, thus, we have that it belongs to S2. Even

more, we also have the linear independence of the nets y(c) (since {0}α∈F does not diverge).
This concludes the proof. �

Now we deal with the differences between the class sequentially continuous functions and
the class of continuous functions. Let us recall the following definition.

Definition 2.4. A function between two topological spaces f : X →Y is sequentially contin-
uous if {f(xn)}n∈N converges to f(x) in Y whenever {xn}n∈N converges to x in X.

In every normed space, the notion of continuity and sequential continuity are both the
same. This does not occur in non-metrizable topological spaces, in our case we are going to
study the case of Schur spaces.
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Definition 2.5. A Banach space is said to be a Schur space if it has the Schur property,
which means that the weak convergence of a sequence entails convergence in norm. Therefore,
for these spaces, sequences that converge in norm are the same sequences that are weakly
convergent.

In the following theorem we prove that, in a Schur space X endowed with the weak topology,
the set S3 formed by the sequentially continuous functions of RX that are not continuous is
algebraically generic.

Theorem 2.6. S3 is strongly c−algebrable.

Proof. Recall that a function is not weakly continuous if the image of some weakly convergent
net is not convergent. Since S1 is nonempty we have that the norm is not weakly continuous.
We are going to use Theorem 1.1 to show that S3 ⊂ RX is strongly c−algebrable. First of all,
we need to ensure that ‖·‖ satisfies the hypotheses of Theorem 1.1.

(1) Let us see that ‖·‖ ∈ S3. Since S1 is nonempty we have that the norm is not weakly
continuous. However ‖·‖ it is sequentially weakly continuous. Indeed, recall that X
is a Schur space and if a sequence {xn}n∈N is weakly convergent to x then it will
converge in norm, in particular {‖xn‖}n∈N converges to ‖x‖ .

(2) ‖X‖ := {‖x‖ : x ∈ X} has at least one accumulation point. Indeed, 0 is an accumu-
lation point of ‖X‖ since for every x ∈ X \ {0} we have that

{∥∥x
n

∥∥}
n∈N ⊂ ‖X‖ \ {0}

converges to zero.
(3) The vector space generated by ‖u‖ter‖u‖, where t is a positive integer and r > 0, is

contained in S3
⋃
{0}.

Let us consider the function

f(u) =
k∑
i=1

ai‖u‖tieri‖u‖,

for some k ∈ N, a1, . . . , ak ∈ R \ {0} and (t1, r1), . . . , (tk, rk) ∈ N×]0,+∞[ with
(ti, ri) 6= (tj , rj) for i 6= j. We shall see that f ∈ S3. We have that f is sequentially

continuous, because ‖·‖, e(·) and (·)n are too. In order to prove that the function is
not continuous, let us take the net {xα}α∈F1(X) ∈ S1 weakly convergent to zero. We

claim that the net {f(xα)}α∈F1(X) does not converge to zero. Indeed,

|f(xα)| =

∣∣∣∣∣
k∑
i=1

ai‖xα‖tieri‖xα‖
∣∣∣∣∣ = ‖xα‖tjerj‖xα‖

∣∣∣∣∣
k∑
i=1

ai‖xα‖ti−tje(ri−rj)‖xα‖

∣∣∣∣∣ ,
with j ∈ {1, . . . , k} such that rj = max{ri : i = 1, . . . , k} and tj = max{ti : i =
1, . . . , k with ri = rj}. Since {‖xα‖}α∈F1 diverges we have that for ‖xα‖ big enough

|f(xα)| > |ai|
2
‖xα‖tjerj‖xα‖.

Thus, |f(xα)| diverges and f is not continuous. Thus, f ∈ S3.

Therefore we can now apply Theorem 1.1 and S3 is strongly c−algebrable. �

Remark 2.7. Theorem 2.6 is not an exclusive result for spaces with the Schur property. We
can obtain the same result for other topological spaces, for example, the set βN (the Stone-Čech
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compactification of N, see [16]) with usual topology. We define the function f ∈ RβN:

f(x) :=

 x if x ∈ 2N,
1/x if x ∈ 2N + 1,
0 otherwise.

Due to the fact that the only convergent sequences in βN are the trivial ones, all functions
in RβN are sequentially continuous. Since βN is compact, if f is continuous, f [βN] must be
bounded, but this is certainly not possible. On the other hand, 0 is an accumulation point of

f [βN] . Finally,
∑k

i=1 f(u)nieαif(u) is not continuous since it is not bounded.

A canonical, and typical, example of a space with this property is l1. The rest of the classical
lp spaces with 1 < p < ∞ do not satisfy the Schur property. Let us see that we can find big
subsets of S4,p, a set formed by the sequences of elements which belong to lp, such that they
are weakly convergent but they do not converge in norm.

Theorem 2.8. For p ∈]1,+∞[, the set S4,p is c−lineable.

Proof. Let us consider a Hamel basis H of R over Q whose elements are positive and 1 ∈ H. If
h ∈ H\{1} we denote the sequence ρn,h ∈ RN, whose elements are 0 except the n−th element

which is sin(2πnh). Let ρh ∈ lNp be the sequence {ρn,h}n∈N.
We claim that the sequences ρh are weakly convergent to 0, but they do not converge in

norm. Indeed, we have that ‖ρn,h‖lp = | sin(2πnh)|. Kronecker’s Theorem in one dimension,
Theorem 1.3, says that {2πnh mod 2π : n ∈ N} is dense in [0, 2π] , so {sin(2πnh) : n ∈ N} is
dense in [−1, 1] . Then {ρn,h}n∈N does not converge in norm.

On the other hand, every T ∈ l′p has the form T (x) =
∑

i xiyi with y ∈ lq, such that
1
q + 1

p = 1. Particularly, T (ρn,h) = yn sin(2πnh) tends to 0 when n tends to ∞. Then,

{ρn,h}n∈N weakly converges to 0.
The sequences ρh are linearly independent. Let consider hi ∈ H\{1} pairwise different, for

i = 1, ..., N which are rationally independent, α1, ..., αN ∈ R\{0} and the sequence
∑N

i=1 αiρhi .

The weak convergence of {ρn,h}n∈N to 0 implies that
{∑N

i=1 αiρn,hi

}
n∈N

weakly converges

to 0.
On the other hand, we have that∥∥∥∥∥

N∑
i=1

αiρn,hi

∥∥∥∥∥ =

∣∣∣∣∣
N∑
i=1

αi sin(2πnhi)

∣∣∣∣∣ .
Then by using Kronecker’s Theorem, Theorem 1.3, (2πnh1 mod 2π, ..., 2πnhN mod 2π) is
dense in [0, 2π]N . Then we have that

{(sin(2πnh1), ..., sin(2πnhN )) : n ∈ N}
is dense in [−1, 1]N so we can find infinitely n ∈ N such that sin(2πnh1) > 1 − ε and
|sin(2πnhi)| < ε when i ∈ {2, . . . , N}, so∣∣∣∣∣

N∑
i=1

αi sin(2πnhi)

∣∣∣∣∣ ≥ (1− ε) |α1| − (N − 1) εmax{|ai| : i = 2, ..., N}.

Choosing

2ε <
|α1|

|α1|+ (N − 1) εmax{|ai| : i = 2, ..., N}
,
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we have that ∣∣∣∣∣
N∑
i=1

αi sin(2πnhi)

∣∣∣∣∣ ≥ |α1|
2
.

This implies that the sum can not be zero, so the ρh’s are linearly independent. Thus, we
have that S4,p is c−lineable. �

Next, we shall see that, in the set R[0,1] (with the product topology), the set S5 formed
by the convergent nets contained in a compact set and having no convergent subsequence is
“big” from the lineability viewpoint. In order to achieve this, we shall use the class T whose
elements have the form: T = {ti : 0 ≤ t1 < · · · < tn−1 < tn ≤ 1} . In T we define the inclusion
order; then for T1, T2 ∈ T , T1 ≤ T2 if T1 ⊆ T2.

Consider a function f ∈ R[0,1], then we define the following associated functions:

(2.2) fT (x) :=

{
0 if x ∈ T,

f(x) otherwise.

In the next lemma we prove the main properties of the net {fT }T∈T when f has an uncountable
set of non-zero values.

Lemma 2.9. Assume that f ∈ R[0,1] and the set {x : f(x) 6= 0} is not countable,
a) {fT }T∈T converges to 0 (with product topology).
b) There exists no sequence {fTn}n∈N that converges to 0 (with product topology).

Proof. a) We are going to show that the net {fT }T∈T converges to 0. Observe that for T ∈ T
and ε > 0, we have that the family:

VT,ε =
{
g ∈ R[0,1] : |g(t)| < ε , t ∈ T

}
,

is a neighbourhood basis at 0 for the product topology. Given B a neighborhood of zero in the
product topology there exists T ∈ T and ε > 0 such that VT,ε ⊂ B. Thus, for each partition
T ∗, such that T ∗ > T, then fT ∗(ti) = 0 for every ti ∈ T ∗, in particular fT ∗ ∈ VT ∗,ε ⊂ VT,ε ⊂ B.
Thus, {fT }T∈T converges to 0.

b) Let us suppose that there exists a sequence {fTn}n∈N such that it converges to 0. We
denote it as {fn}n∈N and we have that fn(x) → 0 for every x ∈ [0, 1]. On the other hand,
due to the fact that {x : f(x) 6= 0} is uncountable, there exists x0 ∈ [0, 1] \

⋃
n∈N Tn with

fn(x0) 6= 0. Then, 0 6= fn(x0) = f(x0) for every n ∈ N. Hence {fTn}n∈N does not converge to
0. �

Now we deal with the set S5 of every net that converges to 0 in R[0,1] (with product
topology), whose elements are contained in a compact set and without any convergent subnet
being a sequence.

Theorem 2.10. S5 is strongly c−algebrable.

Proof. As index set we choose the family T previously defined with the inclusion order.
Let α ∈ R we denote eα the function eα(x) = eαx. Let us consider a Hamel basis H
of R over Q with positive elements. First we see that the family of nets {eh,T }T∈T with
h ∈ H is algebraically independent. Suppose, on the contrary, that there exists a polyno-
mial P with n variables such that P (0, . . . , 0) = 0 and P

(
{eh1,T }T∈T , . . . , {ehn,T }T∈T

)
=

{0}T∈T for some h1, . . . , hn ∈ H. Equivalently, {P (eh1,T , . . . , ehn,T )}T∈T = {0}T∈T , i.e.,
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P (eh1,T , . . . , ehn,T ) (x) = 0 for every x ∈ [0, 1]. Using that H is a Hamel basis, we have that
there exist m ∈ N, a1, . . . , am ∈ R \ {0} and α1, . . . , αm with αi 6= αj when i 6= j such that

P (eh1,T , . . . , ehn,T ) (x) =

(
m∑
i=1

aie
αix

)
T

= 0.

Then have that
∑m

i=1 aie
αix0 = 0 for some x0 ∈]0, 1[ which is not possible because eα are

linearly independent in any interval. Thus P (eh1,T , . . . , ehn,T ) can not be 0 and we have the
nets {eh,T }T∈T are algebraically independent.

Note that, since eα(x) is bounded for x ∈ [0, 1] and fixed α ∈ R then P (eh1 , . . . , ehn) is also
bounded. Moreover, since P (0, . . . , 0) = 0 implies that P (eh1,T , . . . , ehn,T ) = P (eh1 , . . . , ehn)T ,
we have that P (eh1,T , . . . , ehn,T ) is contained in a compact set. If the image of [0, 1] through
P (eh1 , . . . , ehn) is contained in [−a, a], the same occurs for P (eh1,T , . . . , ehn,T ) . This means

that the net {P (eh1,T , . . . , ehn,T )}T∈T is contained in [−a, a][0,1] that is compact (by Ty-
chonoff’s Theorem).

Since P (eh1 , . . . , ehn) is continuous and different from 0 we can use Lemma 2.9-a) to de-
duce that P (eh1,T , . . . , ehn,T ) = P (eh1 , . . . , ehn)T converges to 0. On the other hand, thanks
to Lemma 2.9-b) there is no subnet being a sequence and convergent to 0. In particular
P (eh1,T , . . . , ehn,T ) belongs to S5. �

This results will help us to show another difference between sequences and nets. Particularly
every net contained in a compact set have a convergent subnet, but the set S6 ⊂ R[0,1], formed
by the sequences that are in a compact set and does not have any convergent subsequence is
“big”.

Corollary 2.11. S6 is strongly c−algebrable.

Proof. Let consider the sets T 3 Tn = {1, 1/2, . . . , 1/n} and the sequences {eh,Tn}n∈N with
h ∈ H. {eh,Tn}n∈N is a subnet of {eh,T }T∈T which is a sequence. Arguing as in the proof of
Theorem 2.10, we have that the sequences {eh,Tn}n∈N are algebraically independent. More-
over, if P is a polinomial of r variables such that P (0, . . . , 0) = 0, we have that

P
(
{eh1,Tn}n∈N , . . . , {ehr,Tn}n∈N

)
is a subnet of P

(
{eh1,T }T∈T , . . . , {ehn,T }T∈T

)
. Thus, P

(
{eh1,Tn}n∈N , . . . , {ehr,Tn}n∈N

)
is

contained in a compact set. Finally, we have that P
(
{eh1,Tn}n∈N , . . . , {ehr,Tn}n∈N

)
does not

have any convergent subsequence, otherwise, it will have a convergent subnet such that is a
subsequence. This is a contradiction with Lemma 2.9-b). �

Now, let us briefly revisit the Dominated Convergence Theorem. We shall see that, if we
use the pointwise convergence of nets instead of the pointwise convergence of sequences, then
the dominated convergence theorem does not hold. We shall need the following result, of easy
proof, for our purposes (see, also, [8, 15]).

Lemma 2.12. The set of the continuous functions defined in [0, 1] which only have a finite
number of zeros is strongly c−algebrable.

Proof. We can apply the Theorem 1.1 to the identity function in [0, 1], I : [0, 1] → [0, 1],
because:

(1) It is clear that I is a continuous function in [0, 1] with finite number of zeros.
(2) I([0, 1]) = [0, 1] and has, at least, one accumulation point.
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(3) The vector space generated by uneαu with n a positive integer and α > 0, is clearly
contained in the set of the continuous function defined in [0, 1] with a finite number
of zeros up to the zero function.

Then we have that the set is strongly c−algebrable. �

First of all we are going to see that the Dominated Convergence Theorem with nets might
fail because the limit of the function might not be measurable.
S7 is the set of nets of measurable functions which converge pointwise to a function that is

not measurable and that are bounded in [0, 1].

Theorem 2.13. S7 is strongly c−algebrable.

Proof. Let A ⊂ [0, 1] be a non-measurable set. We consider the following set of indexes
Λ = {β ⊂ A : β is finite} ordered by inclusion. Let us denote A the algebra we obtained
from the Lemma 2.12. Since A have an uncountable cardinal we can also consider a bijection
ϕ : A→ [0, 1] and define the set

Aϕ = {g : g = f ◦ ϕ with f ∈ A} .
There exists a bijection between Aϕ and A. Moreover, we may consider the class F of

functions in Aϕ extended by zero to [0, 1]. This set F is an algebra that contain c alge-
braically independent generators, due to the fact that ϕ is a bijection and that A is strongly
c−algebrable.

For β ∈ Λ and f ∈ F we define the measurable function fβ = f1β, where 1β denotes the
characteristic function of β. The nets {fβ}β∈Λ are a free algebra with c generators. Moreover,

for every f ∈ F the limit of the net {fβ}β∈Λ in the product topology (pointwise convergence)

is f which is not measurable because the set of values which make the function f be zero is
[0, 1]\A attached to a set at most countable. This set is not measurable due to the fact that
A is non-measurable and, thus, neither is f . �

Given the partition T = {ti : 0 ≤ t1 < · · · < tn−1 < tn ≤ 1}, we consider now another par-
tition of [0, 1] different from T , denoted by T ′, a partition of [0, 1] that is formed by means of

adding to T the elements of the form 3ti+ti+1

4 and ti+3ti+1

4 . For any continuous function g we
define the function

(2.3) gT (x) :=

{
g(x) if x ∈

[
3ti+ti+1

4 , ti+3ti+1

4

]
,

0 otherwise.

We will represent the Riemann sum of gT with the partition T ′ as S(gT , T
′), d(T ) = sup{ti+1−

ti}, and AT the set formed by the union of
(

3ti+ti+1

4 , ti+3ti+1

4

)
.

Lemma 2.14. If f is a continuous function in [0, 1], {Tm} a sequence of partitions of [0, 1]
such that {d(Tm)} converges to 0, then

∫
fTm → 1

2

∫
f .

Proof. Let us consider the following Riemann sums

S(f, T ) =
∑
i

f(αi)(ti+1 − ti),

S(fT , T
′) =

∑
i

f(βi)

(
ti+1 − ti

2

)
.
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If we fix ε > 0 and we use Theorem 1.4, we have that there exits δ > 0, such that d(T ) < δ
implies that |f(αi)−f(βi)| < ε

2 . Thus, for large m, we have that |2S(fTm , T
′
m)−S(f, Tm)| < ε,

i.e. this sequence converges to zero. Then, due to the fact that S(f, Tm) converges to
∫
f we

have that S(fTm , T
′
m)→ 1

2

∫
f . Now, if we consider the upper and lower Darboux sums, S, S,

we have that S(fTm , T
′
m) ≤ S(fTm , T

′
m) ≤ S(fTm , T

′
m) and S(fTm , T

′
m) ≤

∫
fTm ≤ S(fTm , T

′
m).

Now, thanks to Theorem 1.4, |S(fTm , T
′
m)−S(fTm , T

′
m)| < ε

2 . Therefore, for big enough values
of m, we have that∣∣∣∣∫ fTm −

1

2

∫
f

∣∣∣∣ ≤ ∣∣∣∣∫ fTm − S(fTm , T
′
m)

∣∣∣∣+

∣∣∣∣S(fTm , T
′
m)− 1

2

∫
f

∣∣∣∣
≤
∣∣S(fTm , T

′
m)− S(fTm , T

′
m)
∣∣+

∣∣∣∣S(fTm , T
′
m)− 1

2

∫
f

∣∣∣∣ < ε.

This concludes the proof. �

Now, we define the set S8 of functions g ∈ R[0,1] such that g is bounded and the net
{gT }T∈T , being gT is defined by equation (2.3), is pointwise convergent to 0 but the Dominated
Convergence Theorem fail (the limit of the integrals does not match the integral of the limit
in every measurable set J).

Theorem 2.15. S8 is strongly c−algebrable.

Proof. In order to show that S8 is strongly c−algebrable, we shall need to apply Theorem 1.1
to S8, X = [0, 1], and with the function

h(t) =

k∑
j=1

ρjt
njeαjt,

with k ∈ N, ρ1, . . . , ρk ∈ R \ {0}, (n1, α1), . . . , (nk, αk) ∈ N×]0,+∞[ pairwise different.

(1) h ∈ S8.
(a) {hT }T∈T is pointwise convergent to 0. It is enough to show that the net {fT }T∈T

converges to 0 with f(t) = t. Observe that the family

VT,ε =
{
g ∈ R[0,1] : |g(t)| < ε when t ∈ T

}
with T ∈ T and ε > 0 i a neighborhood basis at 0 for the product topology. In
addition, since fT (ti) = 0 for every ti ∈ T we have that fT ∈ VT,ε for every ε > 0
and using that VT ∗,ε ⊂ VT,ε for every ε > 0 whenever T ≤ T ∗ we conclude that
{fT }T∈T converges to 0.

(b) It is clear that h is bounded in [0, 1].
(c) Let us see that zero is not the limit of {

∫
J hT }T∈T for some measurable set J ,

i.e. the thesis of Theorem 1.2 is not satisfied for this net. Given T ∈ T we can
consider the partition Tn, obtained from the union of T with

{
i

2n : 0 ≤ i ≤ 2n
}

and denote ATn the set of the points in which hTn is different from 0. When n
tends to infinity, thanks to the Lemma 2.14, we have that∫

[0,1]

k∑
j=1

ρjt
njeαjt 1ATn (t)dt −→ 1

2

∫
[0,1]

k∑
j=1

ρjt
njeαjt dt.
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Since T ∈ T is arbitrary, this implies that the net {
∫

[0,1] hT }T∈T converges to
1
2

∫
[0,1] h(t)dt. We can argue similarly in any other interval J ⊂ [0, 1] and, due to

the fact that h(t) is not identically zero, we can choose the interval J such that∫
J h(t)dt 6= 0 and we have∫

J
hTn −→

1

2

∫
J
h(t)dt 6= 0.

Therefore Theorem 1.2 is not satisfied for the net {
∫
J hT }T∈T .

(2) Also, notice that h([0, 1]) has, at least, one accumulation point since it is a compact
non-trivial interval.

(3) The vector space generated by h(u)neαh(u), where n is an integer and α > 0, is
contained in S8

⋃
{0}. Let us consider

ϕ(u) =
m∑
i

aih(u)nieαih(u).

It is clear that ϕ(u) ∈ S8. Indeed,
(a) {ϕT }T∈T is pointwise convergent to 0 since {hT }T∈T is pointwise convergent to

0.
(b) ϕ is bounded, because h is bounded too.
(c) We can argue, as earlier, with the function f(t) = t replaced by h and, using that
{hT }T∈T does not satisfy Theorem 1.2, we obtain the same for {ϕT }T∈T .

�

Recall that, as it happens in every topological space, if we have in R (with the usual
topology) a sequence {xn} converging to some x ∈ R then we have that the set formed by the
union of the elements of this sequence and its limit is compact. However, if we consider a net
instead of a sequence, this is not necessarily true in general.

Let us consider the index set X = Q ∩ [0, 1[ with the usual order and the set S9 ⊂ RX of
each net {xβ}β∈X converging to x ∈ R in such a way that {xβ} ∪ {x} is not compact. We

have the following result.

Theorem 2.16. S9 is strongly c−algebrable.

Proof. We apply Theorem 1.1 to the setX = Q ∩ [0, 1[ and to g(β) = β for every β ∈ Q ∩ [0, 1[.
Observe that the net xβ = β converges to 1.

(1) {xβ} ∈ S9 since {xβ} ∪ {1} = Q ∩ [0, 1] and this is not a closed set.
(2) It is clear that g(Q ∩ [0, 1[) = Q ∩ [0, 1[ and it has accumulation points.
(3) The vector space generated by xnβe

αxβ , where n is an integer and α > 0, is contained in

S9
⋃
{0}. Let us consider the function

∑k
j=1 ρjx

nj
β e

αjxβ , now we show that it belongs
to S9.

We know that {xβ} converges to 1, then
∑k

j=1 ρjx
nj
β e

αjxβ converges to
∑k

j=1 ρje
αj .

Let us show that the set
k∑
j=1

ρjx
nj
β e

αjxβ

 ∪


k∑
j=1

ρje
αj


is not compact.
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Notice that the image of [0, 1] through the function f(x) =
∑k

j=1 ρjx
njeαjx, is an

interval [a, b] whose interior is not empty and f (Q ∩ [0, 1[) is dense in [a, b]. Thus,
k∑
j=1

ρjx
nj
β e

αjxβ

⋃


k∑
j=1

ρje
αj


would be closed if it is equal to [a, b]. This does not occur since f is absolutely con-
tinuous, which implies that f (Q ∩ [0, 1[) is a null set (by Theorem 1.5.)

�

We are going to see now the case of linear operators in a dual space such that are sequentially
continuous, but they are not continuous. In order to develop this part, we are going to follow
the ideas that appear in [19]. Let us recall these ideas briefly for the sake of completion.

Let B ⊂ R[0,1] be the set of bounded functions that are null except, possibly, in a countable
set points. This space, endowed with the supremum norm, is a Banach space. Moreover,

a) If T ∈ B′, we can find a countable set ΛT such that T (x) 6= 0 ⇒ x (ΛT ) 6= 0. We
denote by ST the class of sets Λ with this property.

b) If Λ1,Λ2 ∈ ST , we have that T (1Λ1) = T (1Λ2) . Therefore, we can define the linear
functional Φ : B′ → R as Φ(T ) = T (1Λ) with Λ ∈ ST .

c) Φ is weak-∗ sequentially continuous, but it is not continuous.
d) For s ∈ [0, 1], Ts : B → R defined as Ts(x) = x(s) belongs to B′ with Φ(Ts) = 1

If we denote by S10 to the set of nets that converges weakly-∗ to zero, such that its image
through the function Φ does not converge to zero, we have the following result:

Theorem 2.17. S10 is c−lineable.

Proof. Let us consider F1(B) as the index set, i.e., finite sets {x1, . . . , xj , ε}, with xi ∈ B,

ε > 0 with the order {x1, . . . , xj , ε} ≤
{
x′1, . . . , x

′
j′ , ε

′
}

whenever {x1, . . . , xj} ⊆
{
x′1, . . . , x

′
j′

}
and ε′ ≤ ε. For every α ∈]0, 1[, we define the net

Tα{x1,...,xj ,ε} = eαsTs,

where s ∈ [0, 1] is chosen in such a way that

x1(s) = . . . = xj(s) = 0.

In fact, since for every fixed x1, . . . , xj , we can choose s in [0, 1] except for a countable set
A{x1,...,xj}, we choose

s = s(x1, . . . , xj , ε) =: s(ε)

such that s((a, b)) = [0, 1] \A{x1,...,xj} for every 0 < a < b, i.e., s is everywhere surjective (see

[4, 7]) in [0, 1] \A{x1,...,xj}.
Let us prove that

{
Tα{x1,...,xj ,ε}

}
converges weakly-∗ to the functional 0. For the weak-∗

topology we can consider the following neighbourhood basis at the functional zero:

V{x1,...,xj ,ε} =
{
T ∈ B′ : |T (xi)| < ε, i = 1, . . . , j

}
.
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Observe that for {x1, . . . , xj , ε} ≤
{
x′1, . . . , x

′
j′ , ε

′
}

we have that V{
x′1,...,x

′
j′ ,ε
′
} ⊂ V{x1,...,xj ,ε}.

Moreover, Tα{x′1,...,x′j ,ε′} ∈ V
{
x′1,...,x

′
j′ ,ε
′
} since∣∣∣Tα{x′1,...,x′j ,ε′}(x′i)∣∣∣ =
∣∣eαsTs(x′i)∣∣ = eαs

∣∣x′i(s)∣∣ = 0 < ε′.

This implies that the net Tα{x1,...,xj ,ε} converges weakly-∗ to 0.

If we have a linear combination
{∑

aαTα{x1,...,xj ,ε}

}
with a finite number of non-trivial

coefficients aα, we have that:

Φ
(∑

aαTα{x1,...,xj ,ε}

)
= Φ

(∑
aαe

αs(x1,...,xj ,ε)Ts(x1,...,xj ,ε)

)
=
∑

aαe
αs(x1,...,xj ,ε).

Due to the fact that s(x1, . . . , xj , ε) is everywhere surjective in [0, 1] \A{x1,...,xj} we have that{∑
aαe

αs(x1,...,xj ,ε)
}

does not converge to zero. Thus
{∑

aαTα{x1,...,xj ,ε}

}
∈ S10. Moreover{∑

aαTα{x1,...,xj ,ε}

}
is not equal to zero, because its image does not tend to zero. In particular,{

Tα{x1,...,xj ,ε}

}
are linearly independent. �

To conclude this work, we would like to consider the space C([0, 1]) of real valued continuous
functions. For our purposes we shall use two different topologies, on one had the one inherited
from the product topology in R[0,1] (denoted by T ) and, on the other hand, the one induced
by the distance d,

d(f, g) =

∫ 1

0

|f(x)− g(x)|
1 + |f(x)− g(x)|

dx

which is a distance when restricted to the class of measurable functions.
Recall that the convergence of a sequence in this last metric is equivalent to the weak

convergence within the class of measurable functions (random variables within the probability
theory framework) on [0, 1] with the Borel σ−algebra. Since we are dealing with continuous
functions, we can dismiss the usage of equivalence classes. Within the set of operators from
(R[0,1], T ) to (R[0,1], d) we define the standard addition and multiplication by scalars. The
product of operators F and G, FG, is defined in a such a way that FG(f) is the function
that maps x to F (f)(x)G(f)(x). If we denote by S11 to the set of sequentially continuous

operators from (R[0,1], T ) to (R[0,1], d) that are not continuous, we have the following result:

Theorem 2.18. S11 is strongly c-algebrable

Proof. Let us define the operators Tα : (R[0,1], T )→ (R[0,1], d) as

Tα(f) = feαf .

Let us study the algebra generated by

{Th : h ∈ H}
with H being a Hamel basis of R as Q-vector space, whose elements are positive. First, let us
see that the Th’s are algebraically independent.

A polynomial P without constant term, P (Th1 , . . . , Thn), is a finite sum of the form∑
ρif

nieβif

with βi 6= βj if i 6= j.
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Let us suppose that this finite sum is such that
∑
ρif

nieβif = 0 for any f. If we take f as
the identity, we would have that

∑
ρix

nieβix = 0 ∀x ∈ [0, 1]. This cannot happen, since the
βi’s are all different (this follows from the Identity Principle).

Let us now see that

P (Th1 , . . . , Thn) : (R[0,1], T )→ (R[0,1], d)

is sequentially continuous. Take {fn} converging to a f , that is, {fn(x)} → f(x). The latter,
together with the Dominated Convergence Theorem, tells us that the distances

d(f, fn) =

∫ 1

0

|f(x)− fn(x)|
1 + |f(x)− fn(x)|

dx

tend to 0.
Next, we see that it is not continuous. In order to do this, we shall show that the preimage

of the open disk of center 0 and radius ε is not open for a certain value of ε, that shall be
decided later on. Let us denote by Aε to this preimage. Since P (Th1 , . . . , Thn)(0) = 0, we
have that 0 ∈ Aε always.

Let us check that Aε does not contain any basic open set containing 0. Assume that Aε
actually contains some

V (x0, . . . , xm, δ) := {f : |f (xi)| < δ with i = 0, . . . ,m} .
In particular, it would contain all functions vanishing at xi with i = 0, . . . ,m. Suppose that
0 = x0 ≤ . . . ≤ xm = 1 and let us define

fε,k(x) :=


k
εx−

k
εxi if x ∈ [xi, xi + ε]

k if x ∈ ]xi + ε, xi+1 − ε[
−k
εx+ k

εxi+1 if x ∈ [xi+1 − ε, xi+1]
0 otherwise.

We have that P (Th1 , . . . , Thn)(fε,k) ∈ V (x0, . . . , xm, δ) for every δ and

d (P (Th1 , . . . , Thn)(fε,k), 0) =

∫ 1

0

|P (Th1 , . . . , Thn)(fε,k)(x)|
1 + |P (Th1 , . . . , Thn)(fε,k)(x)|

dx

=

∫ 1

0

∣∣∣∑l
i=1 ρif

ni
ε,ke

βifε,k(x)
∣∣∣

1 +
∣∣∣∑l

i=1 ρif
ni
ε,ke

βifε,k(x)
∣∣∣dx

≥
m∑
s=1

∫ xi+1−ε

xi+ε

∣∣∣∑l
i=1 ρik

nieβik
∣∣∣

1 +
∣∣∣∑l

i=1 ρik
nieβik

∣∣∣dx.

Since
∣∣∣∑l

i=1 ρik
nieβik

∣∣∣ goes to infinity as k →∞, we have that, from some k0 on, it is∣∣∣∑l
i=1 ρik

nieβik
∣∣∣

1 +
∣∣∣∑l

i=1 ρik
nieβik

∣∣∣ > 1− ε.

Therefore, d (P (Th1 , . . . , Thn)(fε,k), 0) > (1− 2mε)(1− ε). That is, if ε < (1− 2mε)(1− ε)
then V (x0, . . . , xm, δ) cannot be contained in Aε.

Now, whenever V (x′0, . . . , x
′
m′ , δ) ⊆ Aε we may take {x0, . . . , xm} =

{
x′0, . . . , x

′
m′
}
∪ {0, 1}

and, since {x0, . . . , xm} ⊇
{
x′0, . . . , x

′
m′
}

we have V (x0, . . . , xm, δ) ⊆ V (x′0, . . . , x
′
m′ , δ) ⊂ Aε
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and this is not possible since P (Th1 , . . . , Thn)(fε,k) ∈ V (x0, . . . , xm, δ) \Aε for ε small enough
to assure

ε < (1− 2mε)(1− ε) = 1− (1 + 2m)ε+ 2mε2 (for example ε <
1− ε

1 + 2m
).

Thus, P (Th1 , . . . , Thn) is not a continuous operator (although it is sequentially continuous).
�
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Carretera de Sacramento s/n,
04120 Almeŕıa (Spain).
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