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1 Introduction

In this paper we study some regularity properties of the solutions to a fractional elliptic problem such as

{(—A)Su =f inQ,

1.1
B(u)=0 on 0Q, (1-1)

where % <s<1,fel”(Q),p> 2% and Q is a bounded domain of RN, N > 1. Here (—A)® denotes the spectral
fractional Laplacian defined through the spectral decomposition with mixed Dirichlet-Neumann boundary
condition B(u) (see Section 2 for further details) given by

ou

B(u) = uXZ,D + ()VXZN’

where v is the outwards normal to 0Q, y, stands for the characteristic function of the set A c 0Q and Q
satisfies the following.

Hypotheses 1.1. (1) Q c RY is a bounded Lipschitz domain,

(2) Zp and Iy are smooth (N - 1)-dimensional submanifolds of 0Q,

(3) Zop isaclosed manifold of positive (N — 1)-dimensional Lebesgue measure,
(4) 1Zp| =a < (0,0Q]), B

(5B) TpNEIN=0,ZpUZxy=0Qand Xp Ny =T,

(6) T is asmooth (N — 2)-dimensional submanifold of 0Q.
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The main result we prove here is the following.

Theorem 1.2. Assume Q satisfies Hypotheses 1.1 and let u be the solution to problem (1.1) with % <s<1,fe
LP(Q),p > zﬂs Thenu € Gy(ﬁ)forsomeo <y< %.Moreover, there exists a constant ¢ = # (N, s, f, p, |Zp|) > 0
such that

lu(x) —u@y)| < #\x -yl forallx,y e Q.

The fact that solutions of elliptic problems with mixed boundary conditions cannot be more regular than
Holder continuous has been observed even for the Laplace operator. Indeed, Shamir (see [14]) observed that
w(x,y) = Im(x + iy)!/? solves —Aw = 0 in R? and satisfies the mixed boundary conditions

lirr(l)w(x,y)zo, x> 0; lim—=0, x<O.
y—)

Hence, the Holder continuity of order 1/2 is the highest regularity one can expect.

This phenomenon also holds true for the spectral fractional Laplacian as we will show in the proof of
Theorem 1.2.

Our approach consists in adapting the classical techniques developed by Stampacchia (see [15]) to (1.1).
Due to the nonlocal nature of the problem, some difficulties naturally arise. In order to overcome them, we
exploit some ideas contained in [3-5], based on the equivalence between (1.1) and a local degenerate prob-
lem set in a cylinder of R¥*!, Thus, we use the results of [10] to adapt the procedures of [15] to the case of
degenerate elliptic equations with weights in the Muckenhoupt class A, (see [10] for the precise definition
as well as some useful properties of those weights).

In addition to Theorem 1.2, following some ideas in [8], in the last part of the work we study the behavior
of problem (1.1) when we move the boundary condition in a regular way as follows. Given I, = [g, |0Q|] for
some € > 0, let us consider the family of closed sets {Zp (a)}ac, satisfying
(B1) Zp(a) has a finite number of connected components,

(B2) Zp(a1) € Tp(az)ifay < a,

(B3) [Zp(a1)l = a; € I.. 3

We denote Zn(a) = 0Q \ Zp(a) and I'(a) = Zp(a) N Zx(a). For a family of this type we consider the corre-
sponding family of mixed boundary value problems

(1.2)

(-A)°u=f inQcR",
By(u)=0 onoQ,

where B,(u) is the boundary condition associated to the parameter a in the previous hypotheses and the
boundary manifolds £p (a) and Zy(a) satisfy the corresponding Hypotheses 1.1. In this scenario, we prove
the following result.

Theorem 1.3. Given Q and the family {Z ()} aer, Satisfying the corresponding Hypotheses 1.1, and (B1)—-(B3),
let uy be the solution to (1.2) with % <s<1,felP(Q)andp > 2—1\; Then there exist two constants 0 < y < %
and 7; > 0, both independent from a € [g, |0Q]], such that

"ua"@y(ﬁ) < He.

As we will see in the proof of Theorem 1.3, when one takes « — 0", the control of the Holder norm of such a
family is lost. Hence, it is necessary to bound from below the measure of the family {Z5 (@)} e, , in order to
guarantee the control on the Holder norm for the family {ug}qer,

Let us stress that problems related to the spectral fractional Laplacian with mixed boundary conditions
are new and, to our knowledge, have been treated only in [6, 7]. We refer to [13] for general properties and sev-
eral results concerning this spectral fractional Laplacian operator, as well as other different kind of fractional
Laplacian operators with Dirichlet boundary conditions.

Since we are considering the spectral fractional Laplacian, the mixed boundary conditions are intrinsic
in the functional space where we are working in (see Section 2). If one deals with the singular fractional
Laplacian, things change drastically; the Neumann boundary condition has to be prescribed in (a subset
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of) the complementary of Q, as it has been clearly explained in [9]. Let us recall, among others, the strong
maximum principle [2] and a concave convex type result [1], both for the singular fractional Laplacian with
mixed Dirichlet-Neumann boundary conditions.

2 Functional setting and preliminaries

As far as the fractional Laplace operator is concerned, we recall its definition given through the spec-
tral decomposition. Let (¢;, A;) be the eigenfunctions (normalized with respect to the L?(Q)-norm) and
the eigenvalues of (-A) equipped with homogeneous mixed Dirichlet-Neumann boundary data, respec-
tively. Then (¢;, Af) are the eigenfunctions and eigenvalues of the fractional operator (-A)%, where, given

ui(x) = Yoy (Ui, 995, 1= 1,2,
(D)ur, u) = ) A, 9wz, 9),

j=1

i.e., the action of the fractional operator on a smooth function u; is given by

(-D)*us = Y A (ui, 9)) ;.
j21
As a consequence, the fractional Laplace operator (-A)® is well defined through its spectral decomposition
in the following space of functions that vanish on Zp:

H3, (@) = fu= Y ajpy € L@ s lulfy, @ = Y @24 <oof.
j=1 j>1

Observe that since u € H;D (Q), it follows that
2
lulleg @ = 1-0)"2ullz2()-

As it is proved in [12, Theorem 11.1],if0 < s < %, then H}(Q) = H%(Q), and therefore also H;D (Q) = H5(Q),
while for 1 < s < 1, Hj(Q) ¢ H(Q). Hence, the range 3 < s < 1 guarantees that H; (Q) ¢ H5(Q) and it pro-
vides us the correct functional space to study the mixed boundary problem (1.1).

This definition of the fractional powers of the Laplace operator allows us to integrate by parts in the

appropriate spaces, so that a natural definition of weak solution to problem (1.1) is the following.

Definition 2.1. We say that u ¢ H;D (Q) is a solution to (1.1) if

J (D) u(-D)*4p dx = szp dx foranyy e H (Q).
Q Q

Due to the nonlocal nature of the fractional operator (—A)® some difficulties arise when one tries to obtain
an explicit expression of the action of the fractional Laplacian on a given function. In order to overcome this
difficulty, we use the ideas by Caffarelli and Silvestre (see [5]) together with those of 3, 4] to give an equivalent
definition of the operator (—A)® by means of an auxiliary problem that we introduce next.

Given any domain Q ¢ RV, we set the cylinder ¢ = Q x (0, co) ¢ RY*!. We denote by (x, y) those points
that belong to ¥o and by 0;.%q = 0Q x [0, co) the lateral boundary of the cylinder. Let us also denote
Z5 = Zp x [0, co) and X5, = Zyv x [0, 00), aswell as I'* =T x [0, o). It is clear that, by construction,

THNI =0, ZHUIi=01% and NI =T".

Given a function u ¢ H;D (Q), we define its s-harmonic extension function, denoted by U(x, y) = Es[u(x)], as
the solution to the problem
—div(y'"%VU(x,y)) = 0 in%q,

B(U(x,y)) =0 on or%aq,
U(x, 0) = u(x) on Q x {y =0},
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where oU
B(U) = Uxy; + LGS

being v, with an abuse of notation?, the outwards normal to 0;%q. Following the well known result by Caf-
farelli and Silvestre (see [5]), U is related to the fractional Laplacian of the original function through the

formula
oU

where k; is a suitable positive constant (see [3] for its exact value). The extension function belongs to the
space

oU
_ : 1-2s — (—A)S
Ks ylggy oy (=A)u(x),

|| ||x5 (€q)

X3, (¢0) = C°((Q U Zx) x [0, 00)) ,

where we define
1B =X [ YOO dxay.

Ga
Note that DC;D (%q) is a Hilbert space equipped with the norm | - || X3, (€a) which is induced by the scalar
product

(U, Vixs (%) = Ks J y1=2(VU, VV) dx dy.

a

Moreover, the following inclusions are satisfied:

Xo(%a) c X5, (6a) ¢ X¥(%a), (2.1)

with X§(%q) being the space of functions that belongs to X%(%,) = H'(4q, y!~° dx dy) and vanish on the
lateral boundary of 4.
Using the above arguments, we can reformulate problem (1.1) in terms of the extension problem as

follows:
—div(y}%VU) =0 in%a,

B(U)=0 on d.%q, (2.2)
oU
m=f on Q x {y = 0},

and we have that u(x) = U(x, 0).
Next, we specify the meaning of solution to problem (2.2) and its relationship with the solutions to
problem (1.1).

Definition 2.2. An energy solution to problem (2.2) is a function U ¢ DC;D (%) such that
Ks J y=2(VU, Vo) dxdy = Jf(x)<p(x, 0)dx forall ¢ € X3 (%a). (2.3)
“a Q

IfU e DCED (¢q) is the solution to problem (2.2), we can associate the function u(x) = Tr[U(x, y)] = U(x, 0),
that belongs to Hg@ (Q), and solves problem (1.1). Moreover, also the converse is true: given the solution
uce H;D(Q) to (1.1), its s-harmonic extension U = Es[u(x)] € X;D (%q) is the solution to (2.2). Thus, both
formulations are equivalent and the extension operator

Es: Hy (Q) - X3, (%0)

allows us to switch between each other.
According to [3, 5], due to the choice of the constant ks, the extension operator E; is an isometry, i.e.,

IEs (@106 s, o) = 9Ol ) forall @ € Hy (Q). (2.4)

1 Let v be the outwards normal to 0Q and v(y,y) the outwards normal to €; then, by construction, v(x,y) = (v, 0), y > 0.
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Let us also recall the trace inequality, that is a useful tool we exploit in many proofs in this paper (see [3]):
there exists C = C(N, s, 1, |Q|) such that for all z € X3(%q),

2/r
o j|z(x, o dx) < j Y25V, y) P dx dy,
Q Ca

with 1 <r<2§, N> 2s,and 2} = 4.

Observe that such inequality turns out to be, in fact, equivalent to the fractional Sobolev inequality:

2/r
C( jlvl’dx) < J|(—A)S/ZV|2 dx forallve Hj(Q), 1 <r<2% N>2s.
Q Q
When mixed boundary conditions are considered, the situation is quite similar, since the Dirichlet condition

is imposed on a set £Zp ¢ 0Q such that |5 | = @ > 0. Hence, thanks to (2.1), there exists a positive constant
Cp = Cp(N, s, |Zp]) such that

||u||§15 llull2
. 5 (@) . H(Q
0< inf — 2" . Cp< inf —a0@ (2.5)
ueH;, (@ Jull?,, ueHy (@) [lu?,,
oD 1% (Q) wso LB (@)

Remark 2.3. Itis worth to observe (see [7]) that C (N, s, |Zp|) < 272/NC(N, s, 2%). Moreover, having in mind
the spectral definition of the fractional operator, by the Holder inequality, it follows that Cp < |Q|?S/N A (),
where A1 (a) denotes the first eigenvalue of the Laplace operator with mixed boundary conditions on the sets
Yp = Zp(a) and Zn = Tn(a). Since A(a) — 0 as a — 0%, see [8, Lemma 4.3], we conclude that Cpp — O as
a — 0%,

Gathering together (2.4) and (2.5), we obtain

. 2/2¢
co [lo0 0R dx) " < 1o Ol ) = IEsLo0r OB (g, (2.6)
Q

With this Sobolev-type inequality in hand, we can prove a trace inequality adapted to the mixed boundary
data framework.

Lemma 2.4. There exists a constant Cp = Cp(N, s, |Zp|) > O such that

L
C@( JI(p(x, O)IZS)dx) < J y25|Ve? dxdy forall g € X5, (Ga). 2.7)
Q Ga

Proof. Thanks to (2.6), it is enough to prove that |[Es[¢(-, 0)] llocs o (Ga) < ||(p||x§:‘D (%o~ This inequality is satis-
fied, since, arguing as in [3], we find
1013 (1= %5 | V' IVl dxay
Zp
a
= Ks I Y12 V(Es[p(x, 0)] + 9(x, ¥) - Es[p(x, 0)])|* dx dy
Ga
= |Es[o(x, 0)]II§C;D @) Tk, y) - E(p(x, 0))|I§C§D (o)
v 25 [ Y1 (VEslp(x, 0L, Vip(x,y) - Eslp(x, 0))) dx dy
(gﬂ
= |Es[op(x, 0)]||§C§D @) T 1o, y) - Es[o(x, o)1l (%)

2 j(—A)S(qo(x, 0)(9(x, 0) - p(x, 0)) dx
Q

= IEslp(6 01, ) + 1006 Y) = Eslo 06, Oy - O
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3 Holder regularity

The principal result we prove in this section is Theorem 1.2, which deals with the Holder regularity of the
solution to problem (1.1). First we introduce the notation that we will follow along this section.

Notation. Given an open bounded set Q, x € Q ¢ R¥ and X € ¥ c RY*!, we define
.+ Q(x,p)=QnB,),

o %a(X,p) =%anByX).

Given u(x) € H;D (Q)and U(X) € C)C;D (%), let us also define

o A (k)={xeQ:uk) >k},

o Aik)={Xe%q:UX) >k},

o Ai(k,p)=A.(k)nQ(x,p),

o ALk, p) = AL(k) nCa(X, p),

«  {-}f=min(-, k),

o { -}k =max(-, k).

In a similar way, we may define the sets A_(k), AZ(k), A_(k, p) and A*(k, p), replacing “>” with “<” in the
latter definitions. We denote by

e |A|y the measure induced by a weight w of the set A,

e |A]y1-2s the measure induced by the weight y1=25 of the set A,

e |A| the usual Lebesgue measure of the set A.

On the regularity of Q

Let us recall that Q is assumed, in all the paper, to be Lipschitz and consequently also Cq turns out to have
the same regularity. In particular, among others, we use the following properties. There exists { € (0, 1) such
that for z € Q, some R > O and any p > 0,

[Caer)(Z, p)l 2 {|By(Z)| forall Z € Cqz,R). (3.1)

Moreover, also the weighted counterpart is true, i.e., there exists {5 € (0, 1) such that for any z € Q and any
p>0,
|%Q(Z’R)(Z,p)|y1—25 > (S|BP(Z)|y1—25 forall Z € %Q(Z,R). (3.2)

Consequently, given z € Q, R > 0and O < r < R, there exists A > 0 such that
|A7 (K, Ny < A|Gae,r)(Z, 1)ljr-2s forall Z € G, r). (3.3)

It is worth to observe that all the results we prove in this paper might be proved for a larger class of open
sets Q. Indeed, following [15], this kind of results is true for the so called %-admissible domains. Here we
decided to not deal with such domains for brevity and in order to not make the proofs much heavier.

Now we are ready to start with the statement and the proofs of several technical results.

Let z € Q and R > 0, and let u be a solution to problem (1.1): we write u(x) = v(x) + w(x) for every
x € Q(z, R), where the function v(x) satisfies

(-8)°v =f inQ(z,R),

v=0 onZp g = 0Q(z,R) \ I, (3.4)
o _
ov

and the function w(x) is such that

0 on I g := 0Q(z, R) N Iy,

(-A®*w=0 1inQ(z,R),
w=0 on Xp g := Zp N Br(2), (3.5)
ow

— =0 on Xy,R := Zx N Br(2).
ov
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Using the extension technique, we can write v(x) = V(x, 0), with V(x, y) solving the extended problem

—div(y* V) =0 in Ca(z,R)»

B(V)=0 on 01%6q(z,R) (3.6)
oV _s on Q(z, R) x {y = 0}
ovs ’ y="

where B(V) = VXE;)’R + %Xffm’ with ffb,R =3p g x [0, 00) and i;\I,R =Zn.r X [0, 00).
In the same way, we write w(x) = W(x, 0), with W(x, y) satisfying the extended problem

—div(y" VW) =0 in Caz,R)»

B(W)=0 onXy p UZY p, (3.7)
ow
m=0 on Q(z, R) x {y = 0},

where B(V) = Vs, .+ %XZ*D,R’ with 23, ¢ = Zp g x [0, 00) and 23 p = Z & X [0, 00).
Let us observe that we have the following situations:

(i) Ifz e Q, there exists R > 0 such that Zp g = 0Q(z,R) and Zp g = Zx.g = 0. Then v ¢ H3(Q(z, R)) and it
is solution to a Dirichlet problem. Moreover, w is an s-harmonic function, i.e., its extension W = E5[w] €
X5(6a(z,r)) satisfies

j Y2 (YW, VD) dxdy =0 forall ® € X(Cac.n)). (3.8)

R

(i) Ifz € Zp \ T, there exists R > 0 such that g = 0Q(z, R) and Zx g = 0. Then v € H{(Q(z,R))anditisa
solution to a Dirichlet problem while W ¢ X;D,R (€a(z,r)) and, also in this case, it satisfies (3.8).

(iii) If z € Zo, there exists R > 0 such that £ g = 0. Then the function v € H%D‘R(Q(z, R)) and it is a solution
to the mixed problem (3.4). Moreover, W belongs to X*(¢q(z,r)) and (3.8) holds for all ® € X5(%q(z,r))
vanishing on 01 %az,r) \ Z;\r, R

(iv) Finally, if z € T, the sets Zp g, Zx.r, Zp,z and Zp g are nonempty for all R > 0. Then the function
Ve H%@,R(Q(Z’R)) and it is a solution to the mixed problem (3.4); as far as w is concerned, W ¢

DC;'D,R (€a(z,r)) and fulfills (3.8) for any @ € X5(%q(;,r)) vanishing on 01 €qz,r) \ Z;V,R'

We also define the following sets that will be useful in the sequel:

* Coer = Caer \ (X, y) € Coer) @ X € 0BR(2)},

* 00%0(z,R) = OLC0(,R) \ T ps

«  08%0(R) =0LC0ER) \ (E) g UZY p)-

We continue by stating the definitions and results needed in what follows. The first definition is based

on [15, Definition 2.1].

Definition 3.1. Givenanyzo € Qand Z ¢ G (z0,R)» 161 K*(Z) (resp. K~ (Z)) be the set of values k € R such that
there exists a number 5(Z) > 0 satisfying {U}}n € xf,o(gﬂ(zom (Gaz.r) (resp. {Uln € 3630%(20'” (Gaz.r))) for
any U € X5 (€a(z,.r) and any function n € C°°(1Rf+1) such that supp(n) ¢ Bs(z)(2).

Ip R

Remark 3.2. It is worth to observe the following:

« IfZeX p, thenX*(Z) = [0, 00), K™(Z) = (-00, 0] and p(Z) = dist(Z, 05Ca(z,r))-

e IfZe CoeR L p» then K¥(2) = K™ (Z) = (—00, c0) and p(Z) = dist(Z, 00%a(z,R))-

« Thanks to the construction of the cylinder, it is immediate to notice that the number p(Z) > 0 does not
depend on the y variable.

The control of the oscillations of solutions of elliptic problems is usually carried out through integral esti-
mates that mainly rely on a Sobolev-type inequality. Since the extension function solves a degenerate elliptic
problem involving a weight (namely, y'~2°) that belongs to the Muckenhoupt class A, it is necessary to estab-
lish a Sobolev-type inequality dealing with such a type of singular weights. To this end, we recall the following
definition.
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Definition 3.3. Given an open subset D ¢ R and a function w: D — R*, we say that w belongs to the Muck-
enhoupt class A4, with p > 1, if there exists a constant C > 0 such that

1 >< 1 J _1/07_1))17*1
supl — |w )| = | w <C.
BCB(|B|1 IBi

B B

Now we can recall the following result.

Theorem 3.4 ([10, Theorem 1.3 and Theorem 1.6]). Let D be an open bounded Lipschitz set in RN and con-
sider 1 < p < co and a weight w € Ap. Then there exist a positive constant C(D) and & > O such that for all
ue Hy(D,w)and any 1 < 0 < % + 6, we have

lullzer(p,wax) < CD)IVullr(D,wdx)» (3.9)

where C(D) = ¢, diam(D)IDli,/ p(1/o-1) for a positive constant c,, depending on N, p and w.
Moreover, for any xo € 0D, there exist a positive constant C = C(B,(xo)) and 6 > O such that for any

1<o< % + 6 and any u € H*(D(xo, p), w) vanishing on 0D N By (x0), we have

lullzor (D(xo,p),wdx) < CBIIVUllLL (D(xo,p),wdx) >

where C(By) = cwpprlz,/p(l/g_l) for a positive constant c,, depending on w, N, p and &.

We want to apply such a theorem to domains D ¢ 4 ¢ RY*! so that the correspondent exponent o satisfies
1<o< M

As far as the weight is concerned, we set w = y1~25, that actually belongs to A,. Let us observe that,
according to [10], there exists £y > 0 such that (3.9) holds true with p > 2 — &.

As an immediate consequence of Theorem 3.4, we obtain the following result.

Lemma 3.5. LetZ € 2 andp > 2 - £ for some &9 > 0. Then there exists p > 0 such that for any p < p and any
Uce DC;D (%a), we have

1 1/0-1
NUllLor(gaz,p).y1-2 dxdy) < CsPIBol P T IV UllLo (ha(z.p),y1-2 dx dy)s (3.10)
y

withl <o < % + 6 for some 6 > 0 and cs depending on N, p and the weight y' =25,

Next we establish inequality (3.10) for functions in DC;D (%o(z,p)) and, given some point Z € €, py \ 7, ¢,
also for functions in H*(¢4(Z, p), y* ¢ dx dy) vanishing on suitable sets.

Definition 3.6. Given p > 2 — g( for some g € (0, 1) and an open bounded set A, we define F(fs, A) as the
family of sets B ¢ A such that for any U € H'(4, y'~2% dx dy) vanishing on B,

. 1/p(1/0-1
1Ullov 4,y dxayy < Bs diam(A)IAL P IVUIL 4,125 axay) (3.11)

for some s > 0 depending on N, p and the weight y1=2%,and 1 < 0 < % + 6 for some 6 > 0.

With this scheme in mind, we focus first on finding bounds for solutions to (3.4) in terms of the data of the
problem.

Theorem 3.7. Let u be a solution to (1.1), with f € LP(Q), p > % Then there exists a positive constant
C = C(N, s, |Zp|) such that
lullzo) < Clflle QNP

In the proof of Theorem 3.7, we make use of the following technical result.

Lemma 3.8 ([11, Lemma B.1]). Let ¢ (k) be a nonnegative and nonincreasing function, defined for k > ko, such
that

C
p(h) < @ _Ok)a (pb(k), k< h,

where Co, a, b are positive constants with b > 1. Then @(ko + d) = 0, with d* = 29P/(=D Cy | (ke)|P~.
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Proof of Theorem 3.7. Here we just prove the upper bound, being the lower one completely analogous. Let us
take k > 0, U(x, y) = Es[u(x)]and ¢ = (U - k), € DC;D (%6q) as a test function in (2.3). Using the trace inequal-
ity (2.7) together with the Holder inequality, we get

Xs J YISOV dx dy = ks J YUS|VUR dxdy = j (Ux, 0) - K)f(x) dx

Ca Al (k) A, (k)
1/2 1/2
<( [ weax) (iAo [ yIvuR dxay)
A (k) A% (k)
Thus,
IF 112, |Ax ()| 2=2/P+28IN
YIBIVUPR dxdy < C5l K2 AL (1Y J IF2 dx < 2@ g . , (3.12)
4300 A0 Dl

and applying the trace inequality (2.7) to the left-hand side of (3.12), we get, for any h > k,

2/2;

(h- kA, (W% < ( j [U(x, 0) - kI% dx)
A, (k)

Thus, we deduce

. I
(h - )24, (h)]P/% < f r(Q )2 |A (k)| -2/p+2sIN

and setting ¢(h) = |A.(h)|, it follows that

"f”LP(Q) (p (1-2/p+2s/N)23 /Z(k)
(Cpks)? (h - k)2

Applying now Lemma 3.8 with a = 2 and b = (1 - % WS)ZTS > 1, we find |@(ko + d)] = 0 with d =
C(N, s, IZ0DIIf I ()@ (ko) [P~1/%, and bal = p, ie.,

p(h) <

U(x, 0) < ko + C(N, s, [ZnD)If A+ (ko) >N 1P ae.in Q,

for any ko > 0, and we conclude u(x) < C(N, s, |Zp|)|Ifllr )| Q*/N-1/P ae.in Q. O

Let v(x) be the solution to (3.4) and V(x, y) = Es[v(x)] the solution to (3.6). Since (V - k), € DC*;D (%q) for any
k > 0, repeating the proof above we deduce that for all z € Q,

IVOOlzo(ez vy < CN, s, [E D If lLr) | Q(z, R)PN1P, (3.13)
Now we turn our attention to the study of the behavior of solutions to the homogeneous problem (3.7).

Lemma 3.9 (Caccioppoli inequality). Assume that zo € Q and R > 0, and suppose that the function W ¢
ZD R(CKQ(ZO Rr)) is a solution to problem (3.7). Then, for any Z € (55(z0,R) and 0 < p <r < p(Z), we have that
there exists C > O such that

C
yIB|\VW? dx dy < TR J y 25| W)? dx dy.
Ga(zo,R) (Z:P) P Cazo,R) (Z,T)
Proof. We use i = n?>W as a test function in (3.8), with € C(%q,,r)) vanishing on 0g%q(z,,r); Observe
that, in particular, ¥ = 0 on 00%q(z,,Rr), SO that we have
J 1=25n2|lyW)? dx dy = -2 j yi25(qVW, Wvn) dx dy
Gaz.R) Cazo.R)

e | ywmrwraxdys S [ yEvwRaxdy)  Gas)

bazg.R) Gag.R)



530 —— . Carmona et al., Regularity of solutions DE GRUYTER

for any 0 < & < 1. To complete the proof, given Z € ¢, ) and p <r < p(Z), itis enough to set n such that
n=1 inBy(Z, n7=0 inBZ and |Vyl<—
(r-p)°
and plug it into (3.14). O

Next we prove the following two lemmas.

Lemma 3.10. Letp > 2 — &g forsome 0 < g9 < 1 and U € X5(%q) such that {U = 0} € F(8, A) for A %q. Then
there exists Bs = Bs(N, p, y*%%) > 0 such that

[yi1p dxdy < Bldiam@ A Vo) e 4 U O [y EIUP dxdy,  (.15)
A A
with 2 + % =1, and
| yw- i axay < priB L AT RS [ yEIVOR dxay, (3.16)
A (k,r) Al (k,r)
with 1 < 0 < XL 4 § for some 6 > 0.
Proof. In fact, (3.15) is consequence of (3.11) and the Hélder inequality.
As far as (3.16) is concerned, we follow [15, Theorem 6.1]: given U € X5(%q(z,,r)), let us consider the

function ;(U) = (U - k), that belongs to X*(%q(,,r)) for any k € R. Moreover, if U ¢ DC;,D (Ca(zo,R)), then
t(U) € X5 (Ga,,r) for any k > 0. Then, applying (3.11) to (U - k), with p = 2, (3.16) follows. O

Zo R

Lemma 3.11. Given zg € QandR>0,letU e X5(6a(zo,R))- Then, for any Z € %Q(ZO,R) and 0 < r < p(Z), there
exist g9 € (0, 1) and Bs = Bs(N, p, y1—25) > 0 such that

(h = k2IA%(h, D31, < p2r?|B, | P Ak, ) - AT, N j y'"25|VUP dx dy, (3.17)
A (k,r)
withh > k, g = %1 (2 - go) and p = 2 - &o.

Proof. Given U € X5(6a(z,r) and h > k, let t; (U) = {U}h — {U}*. Note that th 1 (U) € X¥(Gaz,p) for any
k € R. Moreover, if U € DCZD R(%Q (z0,R))» then t (U) € DCZD R(%”Q(zo y) for any h > k > 0. Thus, using (3.11)
with 0 = L and p = 2 - &, so that, taking g = O'p = N¥1(2 - &5), we obtain

1/p
( j Y| (D)) dx dy) < Br|B, |1{‘1251/p( J Y3 UPP dx dy) . (3.18)
Gazg.R) (Z,1) A (k,r)-A%(h,r)

On the one hand, it is immediate that
2/q
-tz < ([ IO dxdy) (3.19)
Ca(zy.R) (Z,7)

On the other hand, thanks to the Hélder inequality,

( J yrEvup dxdy) <1410k, 1) - AR, DPE! j y'=**IVUI* dx dy. (3.20)
A% (k=A% (h,r) At (k,r)
Thus, (3.17) follows by gathering together (3.18), (3.19) and (3.20). O

Following [15, Theorem 8.1], we show the next result.

Theorem 3.12. Letzo € Q,R > 0,andlet W € DC;D R(%Q(ZO,R)) be a solution to the homogeneous problem (3.7).
Then, forany Z € ‘55(20’ rp0<€<1 and 0 < r < min{p(Z), p(Z)}, there exists a positive constant A = A(¢) such
that

|AX(k+¢ed,r—€r)| =0, withkeX"(2), and |A*(k —éd,r—-¢r)| =0, withke X (2),



DE GRUYTER J. Carmona et al., Regularity of solutions =— 531

where
1

>— 1225\ — k|2 dx dy. (3.21)
A(e)|Br|yusA*J yUIW kT dxdy

1k,

d2

In the proof of Theorem 3.12, we make use of the following technical result.

Lemma 3.13 ([11, Lemma C.7]). Assume that ¢(k, p) is a nonnegative function defined for k > ko and 0 < p <y,
which is nonincreasing with respect to k, nondecreasing with respect to p and such that

o(h,p) < o*(k,r), k<h,p<r<ro,

G
(h=Ik)(r - p)¥
where C, a, 3, y are positive constants with u > 1. Then there exist € € (0, 1) and d > O such that

2(a+y)u/(u—1)[(p(k0, ro)J#1
0 .

(ko +ed,r0(1-€)) =0, withd*=C v
ga+yr0

Proof of Theorem 3.12. Given zg € Q, ko € X*(Z) and k > ko, let us define
ik, p) = I YISIW k2 dxdy and  a(k, p) = |A%(k, p)lyis.
A (k,p)
Observe that for h > k, we have
(h— k2IA™ (h, p)lyooas < I YIS |W = k2 dx dy. (3.22)
Al(k,r)

Assume that Z ¢ Z(j’)’R N %a(z,r) and let 0 < ro < min{p(Z), p(Z)}. Then, due to Lemmas 3.9 and 3.10, for
anyro(1-¢€)<p <r<rpandh > k, we have

J Y25\ W - hP? dx dy < K%(p)< J y1=2|\vw|? dx dy)lAi(hyPNl/U

yl—Zs
A (h,p) Ai(h,p)
<Kep( | yEIVWE dxdy At )l
Ai(k,p)
1 ] , :
sl%(p)(m j yIW = kP2 dxdy YIS (e DI, (3.23)

Al(k,r)

where K,y = BngIB,I;{fZl, with Bs = Bs(N, y12%,0Q) > 0Oand 1 < 0 < %1 + § for some § > 0.
Assume, on the contrary, that Z € ‘55(20,R) \ Z;‘J’R. Recalling (3.2), let A = A(€) > 0, satisfying

A
W < (1 - A) for some A € (0, 1).
s(1 -

Therefore, given h > ko and (1 - £)rg < p < 1o, we find

|A%(h, p)lyi-2s < 1A% (Ko, ro)lyi-2s < |€a(zo,R) (Z, To)lyr-2s < By (2)]y1-2s

|Bp(Z)ly1-2s - A |Co(z0,R) (Z5 P)ly1-2s
- (1 _ g)N+2(1—s) - (5(1 _ g)N+2(1—s)

< (1 = MICaze,r)(Z, p)lyr-2s.
Using Lemma 3.9 and Lemma 3.10, we deduce that (3.23) holds true.
As a consequence, for any Z € CK&(ZO, Ry

Ko p)
(r-p)?

i(th,p) < itk, N[at, N1Y?,  ro(1-0) < p<r<rgand h> k> ko, (3.24)

with ko € K*(Z) satisfying (3.3). Moreover, since |Byly-2s = uN+2075)|B, | 125, we have Ke, (ur) = K (ro)s
where ¢ =2 + (£ - 1)(N + 2(1 - s)).
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Ifwelet1 <o <1+ 55 (sothat¢ > 0), then Ko, < Kegy(ro) for any 0 < r < ro. Hence, from (3.24), we

obtain

Ko o)

i(h, p) < mi(k, Nlatk, N1, p<r<ry, h>k>ko, (3.25)
with Ky (r) = gr%IBrOI;{f’;l. We set now & + 1 = 6¢ and % =0, sothat @ =  + /7 + & > 1 turns out to be
the unique positive solution to the equation 82 — 6 — % = 0. Assume, in addition, that the constant A satisfies

€{+1
A% < . (3.26)

~ Bi2¢rnene-1)

From (3.22) and (3.25), we obtain
£
)

mli(k, NI ak, n)e .

li(h, p)I*la(h, p)| <

Then, taking ¢(k, p) = |i(k, p)Ifla(k,p)l, it follows that ¢ satisfies
4

Kero) ok, 1)

r-pth-k2? h>k=>ko, p<r<ro.

@(h,p) <
Using Lemma 3.13 with a = 2, u = 0, y = 2¢, we deduce that exist dp > 0 and ¢ € (0, 1) such that
(ko +€do, r0(1 - ¢)) =0,

for any ko € X*(Z) satisfying (3.3), 0 < ro < min{p(Z), p(Z)} and d, such that

_1 152 (6-1)/2
I i K&, () [9 (Ko, 70)] B ( 1 J V25— kol dx dy)l/z
0 P&+l £ = \AIBy, |12 0 :
0 A (k,ro)

Since |A} (ko + €do, o(1 — €))|y1-2s = O implies |[A (ko + €do, ro(1 - £))| = 0, the proof is complete.
The proof on the lower bound follows using the same inequalities on (W + k)~ and getting the bounds
on |A*(ko — €d, ro(1 - f))|y1725. O

As a consequence of the above theorem, we get the L* bound on W.

Corollary 3.14. Letzp € Q,R>0,andlet W ¢ DC;_D . (Ga(zo,r)) be a solution to the homogeneous problem (3.7);
consider the set %&ZO,R/Z) = 60(z0,R/2) N1y < m} withm > 0. Then W € Lm(%&ZO’R/Z))for any m > 0. In partic-
ular, any solution w € H;D (Q(z0, R)) of problem (3.5) satisfies w € L*°(Q(zg, R/2)).

Proof. First, let us prove that w € L®(Q(zo, R/2)), with w satisfying problem (3.5). Let W ¢ DC%,D (Cazo,R)
be a solution to problem (3.7) and since Q(zg, R/2) is a bounded set, there exists Z; = (z;,0) € %5(20, Ry’
i=1,2,...,M,such that

M
Q(z0,R/2) = ( U %600 i rf/z)) n{y =0}, (3.27)
i=1
with 0 < r; < {p(Zy), p(Zi)}. Let k > 0 and k < O be such that
|A%(k, 1)l < M%aer(Zi, 1)l and A% (k, 1:)] < MGa,r)(Zi, 1)l

foranyi=1,2,...,M.Then, byapplying Theorem 3.12, we conclude that, given X € 6qz,,r)(Zi, r;) for some
i=1,2,...,M, wehave

Km = k—ed < W(x,y) <ky = k+ed, (3.28)
with 1
2> J 125\ W2 dx d
B y2 W% dx dy

Cazo.R)
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forany O < r < min;_1,. . m ri. In particular, by (3.27), the former inequality holds for any point X = (x, 0) with
x € Q(zo, R/2), and we are done.

Since €q(z,,r/2) is an unbounded domain, if we repeat the steps above in order to prove that W ¢
LOO(%Q(ZO’ r/2)) from (3.28), the numbers k, kdo diverge when considering a covering sequence {Z;}ien. Nev-
ertheless, it is clear that given any finite truncation of the extension cylinder, ‘K&ZO, R/2) = 6Q(z0,R/2) N1y < M},
there exists a finite covering sequence, and hence we conclude W € L“(%&ZO, R /2)) for all finite m > 0. O

We focus now on the oscillation of the solutions W ¢ DC*;D . (€a(z,r)) to problem (3.7). Let us set

m(p) = inf WX) and M(p)= sup wW(X),
XE%Q(ZO,R)(Z’p) XE?Q(ZQ,R)(Z)[))

and define the oscillation function as
w(p) := M(p) - m(p).
Our aim is to give some estimates on w(p) through the following result.
Theorem 3.15. Givenzo € QandR > 0,let Z ¢ Coa,r) ANd let W € X5 (Gaz,r)) be a solution to the homo-
geneous problem (3.7). Moreover, given O < 4p < min{p(Z), p(Z)}, let 0 < n < 1 be such that
(D) (M(4p) - nw(4p), +00) c K*(2),

(i) |A3(M(4p) ~ nw(4p), 2p)ly-2s < Alaz,r)(Z, 2p)lyr-2s,
where A is determined by (3.21) with € = % Then there exists O < 1 < 1 independent from Z and p such that

w(p) < Nw(4p). (3.29)

Proof. LetZ ¢ ‘55(20’ R and O < 4p < min{p(Z), p(Z)}; let us define the sequence

. 1 .
ki = M(4p) — njw(4p), withn;= ST’ jeN.

Assume first that Z € %5(20, R \ Z*D’ g» S0 that X*(Z) = (-00, 00), and observe that one of the following condi-
tions is satisfied:

i 1 . 1
|A% (Ko, 2p)|y1-2s < 5|%Q(ZO,R)(Z’ 2p)ly1-2s or  |AZ(ko, 2p)ly1-2s < §|%Q(ZO,R)(Z, 2p)|y1-2s.
Assume without loss of generality that |A} (ko, 2p)| < %I(fg(zo, r)(Z, 2p)|. As a consequence,

1 .
|A%(kj, 2p)] < 5l¢a@.p(Z; 20)| forj>1.

On the other hand, if Z € Z;“D’ r» We can assume that at least one between M(4p) and —m(4p) is greater
than 1w(4p); suppose that M(4p) > 1w(4p). Therefore, we have that k; > 0 for j > 0.
Then, using Lemma 3.11 with h = kj,; and k = k;j, we obtain

* 2 2 — _
(kjs1 = k2145 (i1, 2p)I0%e < B2(2p) Boplyi 107 P) j y' 2| VW2 dx dy,
A (kj,2p)

with p, g such that ¢ = %1 (2 - o) and p = 2 - & for a suitable &g > 0.
Moreover, applying Lemma 3.9 to the function t;;j(W) € X3 (¢aepr) j =0, we find

Zp R
259w dxdy < -C- 125\ I dx dy < - [M(4p) - K;121Bap(2)]
y X y—4p2 y jl™ax Y—4p2 P j171B4p(£)ly1-25.
A% (kj,2p) AL (kj,4p)
Gathering together the above inequalities, we have that

(o1 = k)2 IA3 (G, 2p)Iot %, < CBslBay o117 M(4p) - G114 (K5, 2p) - A% (e, 20) 010", (3.30)

yl—Zs =
where the constant C > 0 is the one appearing in the Caccioppoli inequality. Let us define

_ ALK, 2p)lys
[Cae,r)(Z, 2p)|yr-2s’

p(k)
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and note that, by (3.1) and (3.2), we have |By,lyi-2 < él‘fg(z,R)(Z, 2p)ly1-2s. Then, since 2(% - 117) +1>0,
taking into account that

ki1 —kj = njaw(4p) and M(4p) - kj = njw(4p),

from (3.30), we find

4CBs

. 2/ . . 2/p-1 i _
lp(kjs1)l 9< INekj) - p(kji1)] P=1) withd = W

Letusset u = %2/1,%1 >0anda = z’%p, so that the above inequality turns into
" (kn) < 9[@(kj) — p(kj1)],  j=O0.
Summing up the above inequality for j = 0, 1, . . ., n and noticing that ¢(k;) > ¢(k,), we get

net (k) < 9@(ko) — @(kns1)]
and, by (3.30), we conclude that

9% (ko) \ /¥
o(kn) < (#) . (3.31)
Let us set n > O such that
- [ (4CBs)* (ko) ]
nz =2 |
G
where A is determined by (3.3) with £ = %, {s depends on ¢ in (3.1) and the A,-constant (see (3.2)), the con-
stant s depends on N and the weight y1=25, and C > 0 is a universal constant coming from the Caccioppoli
inequality.
Consequently, 7 is independent of Z and p. Then, by inequality (3.31), we find
A% (K, 2p)ly1-2s
|%Q(Z,R)(Zs 2p)|st

Applying Theorem 3.12 with kz = M(4p) — nmw(4p), r =2p and € = %, so that

; 1-2s _ o 2 _ 2 2
AlByp(Z)l,as yUBIW — (M(4p) - nrw(4p))? dx dy < (n7w(4p))? = d?,

AL (M(4p)-nmw(4p),2p)

(3.32)

<A foralln>n.

we obtain
1 1 .
W(X) < k + ed < [M(4p) — nmw(4p)] + Enﬁw(ltp) < M(4p) - znﬁw(l;p) a.e. in 6o(z,R)(z,p)-

As a consequence,

1 1
w(p) = M(p) - m(p) < M(p) - m(4p) < [M(4p) - Snzw(4p)| - m(4p) < (1= S )w(lp),
and we deduce (3.29), by choosing 17 = (1 - nz41)- O
The next result gives an estimate on the growth of the oscillation.

Theorem 3.16. Given zo € Q and R >0, let W € DC;D’R (€a(zo,r)) be a solution to the homogeneous prob-
lem (3.7). Then there exist 0 < H <1 and 0 < T < % such that for any Z € C0z0.R)’ there exists 6(Z) > 0 such
that
w(p) = sup W(X)-  inf W(X) < Hp"
XeCaegn(Z.p) XeC a8 (Zp)

forany 0 < p < 6(2).

Proof. Let r(Z) = min{p(Z), p(Z)}, by Theorem 3.15, inequality (3.29) holds true for any p < r(Z)/4. Take T
and M positive such that 4™n = a < 1 and w(p) < Mp” for r(Z)/4 < p < r(Z). Then, again by (3.29), we have
that

w(p) < n4"Mp"
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for r(2)/4% < p < r(Z)/4. In general, if r(Z)/4* < p < r(Z)/4! for some i € N, we deduce that w(p) <
(1747)'MpT. Letting i be large enough such that H = Ma' < 1, we obtain w(p) < Hp” forany p < 8(Z) = r(Z)/4'.
On the other hand, since we have chosen 7 > O such that 4™n7 < 1 and, by Theorem 3.15,1 = 1 — 15,1 for some
n > 0 independent from Z and p, it follows that

T < llogz(—,zn+2 ) < 1 (3.33)
2 -1 2
O
Before proving Theorem 1.2, let us observe the following:
(i) Ifzo € Q,thenthereexist R > Osufficiently small such that Zp g = g = @ and p(2) =dist(Z, 01 €q(z,r))
for any z € 6q(z,,R)-
(ii) If zo € Zp \ T, then there exist R > 0 such that Xx r = 0. Hence, p(Z) = dist(Z, 0g€a(z,,r)) for any
Z € 1}, pand p(Z) = dist(Z, 00%Cq(zo,k)) forany Z € Cow.R Zh R
(iii) If zo € Zo, then thereexist R > O such that 2 g = 0. Hence, p(Z) = dist(Z, 06z, r)) forany Z € %&ZO’R).
(iv) If zo € T, then for all R > 0 both Zp g # 0 and Zx g # 0, and hence p(Z) = dist(Z, 0p€a(z,r)) for any
A Z*D,R and p(2) = dist(Z, 00%q(z,,r)) forany Z € %&ZO’R) \ Z*D’R.
Now, consider @ q,.r/2) € Cae.r) if z € Qand Co,.r/2) C Czp) i Z € Q.
Thus, we deduce:
(i) IfzeQ,thenp(Z) = dist(Z, 01 %a.r) = P > O for any Z € € q,r/2) and some positive p.
(i) Ifz E_ZrD \ T, then p(Z) = p > 0 for some positive p for any Z € Z*D,R/Z and p(Z) = dist(Z, Z*D,R/Z) for any
Z € Caer2) \ I gyo- B
(iii) If z € Zy, then p(Z) = dist(Z, 0g€a(z,r)) = p > 0 for any Z € € q(,r/2) and some positive p.
(iv) If ZEF, then p(Z) = p > 0 for some positive p for any Z € Z;‘)’R/z and p(Z) = dist(Z, Zp,g/2) for any
Z€Ca@zRri2) \ I g/a-
Observe that if either (i) or (iii) holds true, then the number O < §(Z) in Theorem 3.16 has an infimum value,
namely, 0 < § < §(Z) forany Z € ?Q(ZO, r/2) and we deduce that solutions W to problem (3.7) are Holder con-
tinuous up to the boundary of € z,,r/2). In fact, let us consider two points Z; and Z; in %&ZO, R with m > 0.
Then, by Corollary 3.14 and Theorem 3.16, we find:
o If|Zy - Z5| = 6, we have

(W(Z1) - W(Zy)| _ 2 2
Ll e W= — WL
AR 571 Wil

m
¢ %Q(ZO,R/Z))'
Q(z0,R/2)

« 1f|Zy - Z,| < 8, by Theorem 3.16, WZIHEN < 50,0 < 3¢ < 1.

We conclude the Holder regularity with a constant

2
T = max{H, - 1 Wilimay

Q(z,R/2)

)} (3.34)
Now we deal with the situation described in items (ii) and (iv).

Theorem 3.17. For any zo € Zp and R > 0, let W ¢ DC;D R(%Q(ZO,R)) be a solution to the homogeneous prob-
lem (3.7). Then W ¢ Gfoc(?g(zo,R/z))for some0 < T< %

Proof. Observe that the number 0 < §(Z) in Theorem 3.16 is bounded from below by some 0 < 6y for
Z € Z‘*D,R/Z’ and we can assume that §(Z) > min{éy, dist(Z, Z‘*D,R/Z)} for Z € Z;\f,R/Z' Moreover, by the con-
struction of the lateral boundary of the extension cylinder, the numbers §(Z) do not depend on the y variable.

Hence, such an infimum 6§ > 0 is attained at those points of the type Z = (z, 0) in 0Q x {0}. Consider the set
8 om . a .
Co(z.R/2) = {Z € %&Z’R/z) 2 dist(Z, 2%, ) 2 8y}

As above, we only need to study the case |Z; — Z;| < 6. Suppose that Z; € %g(
dist(Z4, Z,}B’R/z) = 6(Z1), and thus, by Theorem 3.16, we have

ZO’R/Z).Then |Z1 - Z5] < 64 <

[W(Z1) - W(Z>)I

< H.
|Z1 - Zo|"
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If neither Z; nor Z; belongs to %&ZO,R/Z) but one of them, say Z; € X7,  ,, wehave|Z; — Z,| < 6y = §(Z1), and
the results follows as before. If, instead, none of them belongs neither to %g( 29,R/2) OT to Z})’ R/2» We have two
cases:

e |Z1 - Z5| < max{dist(Z,, Z;),R/Z)’ dist(Z,, Z;D’R/Z)},

e |Zy - Z5| > max{dist(Z,, Z%,R/z)’ dist(Z,, Z;‘D,R/z)}.

In the first case, at least one of the two points, say Z1, satisfies the inequality |Z; —Z>| < 6y < dist(Z1, Zf‘D’ R /2) =
6(Z1), and we have the result as before. In the second case, there exists at least one Z ¢ Z;‘J’ R/2 such that
|Z - Z1| < |Z1 — Z>|, and using the triangle inequality, it follows that |Z — Z,| < 2|Z1 — Z,|. Since the result
has been proved for the case when at least one point belongs to £, /2 We find

(W(Z1) - W(Z2)| < IW(Z1) - W(Z)| + IW(Z) - W(Z,)| < 3H|Z1 - Z5]T, (3.35)

and we conclude the Holder regularity with constant T = max{37H, 26, [ Wiz (% z/2)}» With O < I < 1 given
by Theorem 3.16, see (3.34). O

Corollary 3.18. Assume Hypotheses 1.1 and let w be the solution to problem (3.5) with z € Q and R > 0. Then
the function w € C"(Q(z, R/2)) forsome 0 < T < %

Proof. Since Q satisfies Hypotheses 1.1, there exists 0 < 6y < 6§(Z) for Z € X, p », and we can assume that
6(Z) = min{éy, dist(Z, ZfD,R/z)} forZ e 2;\I’R/2, with §(Z) given in Theorem 3.16.

Suppose that z1, z, € (Q(z, R/2)).
e If|z1 — z| = 6y, then, due to Corollary 3.14, we have |[wl|r~(q(,r/2)) < 00, and therefore

w(z1) —w(zz)| _ 2
|z1 = 22" 7 8f Q@R/2)

e  Whilefor|z; — 25| < 84, letusset Z, = (z1,0)and Z, = (22,0),Z1,Z; € ?Q(Z,R/z),suchthatlZl — 75| < by.
Then, as in (3.35) in Theorem 3.17,
(w(z1) - w(z2)|  [W(Z1) - W(Z>)I

= <3H, O0<H<I1.
|z1 — z2I" |Z1 - Z>|"

Hence, we conclude
lw(z1) = w(22)| < Tlz1 — z>|" forall z1, 2 € Q(z, R/2),

with T = max{3%, 26, IWlL~(a(,r/2)} and 8y > O given as above. O
We prove now the main result of this work.

Proof of Theorem 1.2. Given z € Qand 0 < R < 1, let v be the solution to (3.4) and w = u — v a function satis-
fying (3.5). Thus, using (3.13) and Corollary 3.18, we conclude that, for any x, y € Q(z, R/2),

W, R/2) < w(w,R/2)+2 max  v(x)< TR™ + C(N, s, 2o DIf Ir e ryR* NP < CRY,
xeQ(z,

where y = min{r, 2s - %} < % and € = max{T, 2C(N, s, |[Zp )Iflzrez,Rr)} With
T = max{33{, 25;{1"W”L00(Q(2,R/2))} = max{BJ{, 28;1’"11 - Vlle(Q(Z’R/z))}.
Moreover, by Theorem 3.7,

lu = viro@ezr2) < lullzo@e,ry + Ve @e,r) < 2CWN, s, [Zo DIflzr @z, R))-

Hence, we obtain
T < max{3%, 46,7 C(N, s, = )Iflly}-

Therefore, € = max{37(, 46" C(N, s, |Zp DIflLr(az,Rr)}- Repeating the steps above in Theorem 3.17, we con-
clude
lu(x) —u(y)| < #|x-y|¥ foranyx,y e Q(z,R/2), (3.36)
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where v
- max{%{, (N, s, | D|)y||f"LP(Q(z,R)) },
)

and y = min{r, 25 - %} < % Since the constants #” and y do not depend neither on z nor on R, to complete
the proof, setz; € Q,i=1, 2, ..., mand R; > 0, small enough such that

_ m

Q=[]0 Ri/4).

i=1

Then (3.36) follows by using a suitable recovering argument. O

4 Moving the boundary conditions

In this last part, we study the behavior of the solutions to problem (1.1) when we move the boundary con-
ditions. First, let us describe this mixed moving boundary data framework. As introduced above, given
I, = [&,0Q]], let us consider the family of closed sets {Zp ()} qer, , satisfying (B1)—(B3). We define Zx(a) =
0Q\Zp(a)and I'(a) = Zp (a) N Zx(a). Observe that, under hypotheses (B1)—(B3), the limit sets £ (@), En(a)
as a — &' are not degenerated sets (for instance, a Cantor-like set).

For a family of this type, we consider the corresponding family of mixed boundary value problems

{(—A)Su =f inQ,

4.1
B,(u)=0 onoQ, (4-1)

where B, (u) means B(u) with 5, 2, and T replaced by Zp (a), Zn(a), and T'(a), respectively.

Our main aim here is to prove Theorem 1.3.

The key point in order to obtain it, is to prove that we can choose s > 0 in (3.11) independent of the
measure of the Dirichlet part. Nevertheless, as we will see below, when one takes a — 0%, the control of the
Hoélder norm of such a family is lost. Hence, it is necessary to fix a positive minimum € > 0 on the measure of
the family {Zp (@)} 4e1, in order to guarantee the control on the Holder norm for the family {ua}ger, .

Proof of Theorem 1.3. By the corresponding Hypotheses 1.1, there exists § > 0 such that p(Z) > 6 for all
Z € 01%q. Then the following hold:

(1) fZe%q\ X7, (a), inequality (3.11) holds true with s = cs/{A independent of a, forall 0 < p < 6.
(2) IfZ € %, (a) \ T* (), we can set 0 < p < min{§, dist(Z, I'*(a))} such that for all X € 6o (Z, p),
(X, % N By(2), a(Z,p)) = ¢ > O,
with ¢ independent from a, recalling that (according to [15, Section 4])
M(xo, E, A) = |Vx, (E) N Sy-1(x0)| = |,

with V defined as follows: Given xo € A and a closed set E c A, let us consider the cone Vy, (E) c A consisting
on all rays starting at xo and ending at some point P € E.
Hence, inequality (3.11) holds true with 8, < % also independent from a.

(3) If Z e T*(a), we can assume, without loss of generality, that for some neighborhood of radius 0 <
p < min{é, 6r} of the point Z = (Z1, ..., Zn+1), 01.%q coincides with the hyperplane RN*1 n {xy = 0} and
I'(a) c Rf*l N{xy = 0,xy-1 = 0}, in such a way that in X}, (a), we have xy_; > 0, and in X} (a), we
have xy_; < 0. Now, 4o (Z, p) is transformed by the bi-Lipschitz transform (that in fact keeps the extension
variable unchanged)

én iféy-1 <0,

Xizgi’ i:1’2,'~-,N_1’ XN = .
v —4n-1 iféy-1 >0,
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into a set 0,(2) = 05(Z) U 05(Z), with

N
OHD) = {en 20, fu-1 <0, Y (620 + (v - Zww)? <7},
i=1

N-1
02D = {Ev-120, Y (G- 202 + (v~ Zw.)? < 2,
i-1

N-1 12
N-1<év<éna (Pz - Y (E-Z) - (y - ZN+1)2) }
i=1

Moreover, X7, N B, (Z) is transformed into the set

N-1
Dp(2) = & = 61 v 20, Y, (G- 207 + (v - Znaa < 7},
i=1

Given Xy € O,(Z), we use again the representation (see [15, cfr. 13.1]):

(X0, Dp(2), 0p(2)) =

1
cos(y) do,
[Sn(Xo)l I |Xo - Y|V W)
D,(2)

where cos(y) = (%, ¥), with v the normal vector to {&y = &v_1} N RY*!. Since cos() vanish only when

Xo € Dy(Z), we conclude that II(Xo, D, (Z), IRQ’”) > ¢ > 0 for all Xo € Oy(Z) and some ¢ > 0 independent
of a. On the other hand, it is immediate that ¢ is independent of p. Hence, inequality (3.11) holds true with
Bs < ¢ also independent of a.
Let us define .
min{6, dist(Z, £3,)} ifZ e €q\ Z} (a),
py(Z) := § min{é, dist(Z,T*)} ifZ € Z},(a) \ T* (), (4.2)
min{6, 6r} ifZ e I'* ().

As a consequence of (1)-(3) above, we deduce the following:

(i) By (3.26), the constant A appearing in Theorem 3.12 and Theorem 3.15 is independent of a. Hence,
inequality (3.28) does not depends on a, and also the number O < H < 1 in Theorem 3.16 is independent
from a.

(ii) By (3.32), the constant 77 in Theorem 3.15 is independent from & and, by (3.33), also 0 < y < % is inde-
pendent from a.

Then, given u, a solution to problem (4.1) with a € I, by Theorem 1.2, we deduce

lualler) < a,

with y = min{r, 25 - %} < % independent of a and .77, = max{9H, C(N, s, a)||f||p/6;’a}, with the constants
0<T< % and 8y, given as in Corollary 3.18. Now, if we consider the family {u4}qer, , sSince P, (Z) <Py, (2), it
is clear that 0,4, < 6u,a, and, therefore, 77, > 74, forall a;, a; € [g,|0Ql], a1 < a,. Therefore, we can take
O<y< % and 7 = max{9H, C(N, s, £)||f||p/6§’£} independent from a such that

luallerq) < .

To conclude, we observe that the condition a € [g, |0Q|] is necessary in order to control the Hélder norm of
the family {ua}acr,. If we let a = |25 ()] — 0%, then it is clear that |} (a) N €a(Z, p)l — O for any Z € €
and p > 0. Thus, if & — 0*, we conclude from (4.2) thatp,(Z) — Oforany Z € Z7,, and hence 6y o — 0 while
Ty — +00. O

Remark 4.1. Given an interphase point Z € I'*, it is clear from (4.2) that we can choose a uniform p, > 0 in
the lines of [8, Corollary 6.1]. In fact, it is enough to choose 6t in (4.2) in such a way that X7, () n Ca(Z,p)
is contained in some hyperplane (see (3) in the proof of Theorem 1.3). Clearly, this Dirichlet boundary part,
say ({xy =0, xy-1 =0} N ]Rﬁ”l) N By, (Z), converges to an empty set as p. — O.
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