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1 Introduction

In this paper we study some regularity properties of the solutions to a fractional elliptic problem such as

{
(−∆)su = f in Ω,

B(u) = 0 on ∂Ω,
(1.1)

where

1

2

< s < 1, f ∈ Lp(Ω), p > N
2s and Ω is a bounded domain ofℝN , N ≥ 1. Here (−∆)s denotes the spectral

fractional Laplacian defined through the spectral decomposition with mixed Dirichlet–Neumann boundary

condition B(u) (see Section 2 for further details) given by

B(u) = uχ
Σ
D
+
∂u
∂ν χΣN ,

where ν is the outwards normal to ∂Ω, χA stands for the characteristic function of the set A ⊂ ∂Ω and Ω

satisfies the following.

Hypotheses 1.1. (1) Ω ⊂ ℝN is a bounded Lipschitz domain,

(2) ΣD and ΣN are smooth (N − 1)-dimensional submanifolds of ∂Ω,
(3) ΣD is a closed manifold of positive (N − 1)-dimensional Lebesgue measure,

(4) |ΣD| = α ∈ (0, |∂Ω|),
(5) ΣD ∩ ΣN = 0, ΣD ∪ ΣN = ∂Ω and ΣD ∩ ΣN = Γ,
(6) Γ is a smooth (N − 2)-dimensional submanifold of ∂Ω.
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The main result we prove here is the following.

Theorem 1.2. Assume Ω satisfies Hypotheses 1.1 and let u be the solution to problem (1.1) with 1

2

< s < 1, f ∈
Lp(Ω), p > N

2s . Then u ∈ C
γ(Ω) for some0< γ < 1

2

.Moreover, there exists a constantH =H (N, s, f, p, |ΣD|) > 0
such that

|u(x) − u(y)| ≤H |x − y|γ for all x, y ∈ Ω.

The fact that solutions of elliptic problems with mixed boundary conditions cannot be more regular than

Hölder continuous has been observed even for the Laplace operator. Indeed, Shamir (see [14]) observed that

ω(x, y) = Im(x + iy)1/2 solves −∆ω = 0 inℝ2+ and satisfies the mixed boundary conditions

lim

y→0
ω(x, y) = 0, x > 0; lim

y→0

∂ω
∂y = 0, x < 0.

Hence, the Hölder continuity of order 1/2 is the highest regularity one can expect.
This phenomenon also holds true for the spectral fractional Laplacian as we will show in the proof of

Theorem 1.2.

Our approach consists in adapting the classical techniques developed by Stampacchia (see [15]) to (1.1).

Due to the nonlocal nature of the problem, some difficulties naturally arise. In order to overcome them, we

exploit some ideas contained in [3–5], based on the equivalence between (1.1) and a local degenerate prob-

lem set in a cylinder of ℝN+1. Thus, we use the results of [10] to adapt the procedures of [15] to the case of
degenerate elliptic equations with weights in the Muckenhoupt class A

2
(see [10] for the precise definition

as well as some useful properties of those weights).

In addition to Theorem 1.2, following some ideas in [8], in the last part of the work we study the behavior

of problem (1.1) when we move the boundary condition in a regular way as follows. Given Iε = [ε, |∂Ω|] for
some ε > 0, let us consider the family of closed sets {ΣD(α)}α∈Iε satisfying
(B1) ΣD(α) has a finite number of connected components,

(B2) ΣD(α1) ⊂ ΣD(α2) if α1 < α2,
(B3) |ΣD(α1)| = α1 ∈ Iε.
We denote ΣN(α) = ∂Ω \ ΣD(α) and Γ(α) = ΣD(α) ∩ ΣN(α). For a family of this type we consider the corre-

sponding family of mixed boundary value problems

{
(−∆)su = f in Ω ⊂ ℝn ,

Bα(u) = 0 on ∂Ω,
(1.2)

where Bα(u) is the boundary condition associated to the parameter α in the previous hypotheses and the

boundary manifolds ΣD(α) and ΣN(α) satisfy the corresponding Hypotheses 1.1. In this scenario, we prove

the following result.

Theorem 1.3. Given Ω and the family {ΣD(α)}α∈Iε satisfying the corresponding Hypotheses 1.1, and (B1)–(B3),
let uα be the solution to (1.2) with 1

2

< s < 1, f ∈ Lp(Ω) and p > N
2s . Then there exist two constants 0 < γ <

1

2

and Hε > 0, both independent from α ∈ [ε, |∂Ω|], such that

‖uα‖Cγ(Ω) ≤Hε .

As we will see in the proof of Theorem 1.3, when one takes α → 0

+
, the control of the Hölder norm of such a

family is lost. Hence, it is necessary to bound from below the measure of the family {ΣD(α)}α∈Iε , in order to

guarantee the control on the Hölder norm for the family {uα}α∈Iε .
Let us stress that problems related to the spectral fractional Laplacian with mixed boundary conditions

are newand, to our knowledge, have been treated only in [6, 7].We refer to [13] for general properties and sev-

eral results concerning this spectral fractional Laplacian operator, as well as other different kind of fractional

Laplacian operators with Dirichlet boundary conditions.

Since we are considering the spectral fractional Laplacian, the mixed boundary conditions are intrinsic

in the functional space where we are working in (see Section 2). If one deals with the singular fractional

Laplacian, things change drastically; the Neumann boundary condition has to be prescribed in (a subset
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of) the complementary of Ω, as it has been clearly explained in [9]. Let us recall, among others, the strong

maximum principle [2] and a concave convex type result [1], both for the singular fractional Laplacian with

mixed Dirichlet–Neumann boundary conditions.

2 Functional setting and preliminaries

As far as the fractional Laplace operator is concerned, we recall its definition given through the spec-

tral decomposition. Let (φi , λi) be the eigenfunctions (normalized with respect to the L2(Ω)-norm) and

the eigenvalues of (−∆) equipped with homogeneous mixed Dirichlet–Neumann boundary data, respec-

tively. Then (φi , λsi ) are the eigenfunctions and eigenvalues of the fractional operator (−∆)s, where, given
ui(x) = ∑j≥1⟨ui , φj⟩φj, i = 1, 2,

⟨(−∆)su
1
, u

2
⟩ = ∑

j≥1
λsj ⟨u1, φj⟩⟨u2, φj⟩,

i.e., the action of the fractional operator on a smooth function u
1
is given by

(−∆)su
1
= ∑
j≥1
λsj ⟨u1, φj⟩φj .

As a consequence, the fractional Laplace operator (−∆)s is well defined through its spectral decomposition

in the following space of functions that vanish on ΣD:

Hs
ΣD
(Ω) = {u = ∑

j≥1
ajφj ∈ L2(Ω) : ‖u‖2H

Σ

s
D
(Ω) = ∑

j≥1
a2j λ

s
j < ∞}.

Observe that since u ∈ Hs
ΣD
(Ω), it follows that

‖u‖Hs
ΣD
(Ω) = ‖(−∆)s/2u‖L2(Ω).

As it is proved in [12, Theorem 11.1], if 0 < s ≤ 1

2

, then Hs
0

(Ω) = Hs(Ω), and therefore also Hs
ΣD
(Ω) = Hs(Ω),

while for

1

2

< s < 1, Hs
0

(Ω) ⊊ Hs(Ω). Hence, the range 1

2

< s < 1 guarantees that Hs
ΣD
(Ω) ⊊ Hs(Ω) and it pro-

vides us the correct functional space to study the mixed boundary problem (1.1).

This definition of the fractional powers of the Laplace operator allows us to integrate by parts in the

appropriate spaces, so that a natural definition of weak solution to problem (1.1) is the following.

Definition 2.1. We say that u ∈ Hs
ΣD
(Ω) is a solution to (1.1) if

∫
Ω

(−∆)s/2u(−∆)s/2ψ dx = ∫
Ω

fψ dx for any ψ ∈ Hs
ΣD
(Ω).

Due to the nonlocal nature of the fractional operator (−∆)s some difficulties arise when one tries to obtain

an explicit expression of the action of the fractional Laplacian on a given function. In order to overcome this

difficulty,weuse the ideas by Caffarelli and Silvestre (see [5]) togetherwith those of [3, 4] to give an equivalent

definition of the operator (−∆)s by means of an auxiliary problem that we introduce next.

Given any domain Ω ⊂ ℝN , we set the cylinder C
Ω
= Ω × (0,∞) ⊂ ℝN+1+ . We denote by (x, y) those points

that belong to C
Ω
and by ∂LCΩ

= ∂Ω × [0,∞) the lateral boundary of the cylinder. Let us also denote

Σ

∗
D = ΣD × [0,∞) and Σ

∗
N = ΣN × [0,∞), as well as Γ

∗ = Γ × [0,∞). It is clear that, by construction,

Σ

∗
D ∩ Σ

∗
N = 0 , Σ

∗
D ∪ Σ

∗
N = ∂LCΩ

and Σ

∗
D ∩ Σ

∗
N = Γ

∗
.

Given a function u ∈ Hs
ΣD
(Ω), we define its s-harmonic extension function, denoted by U(x, y) = Es[u(x)], as

the solution to the problem

{{{
{{{
{

−div(y1−2s∇U(x, y)) = 0 in C
Ω
,

B(U(x, y)) = 0 on ∂LCΩ
,

U(x, 0) = u(x) on Ω × {y = 0},
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where

B(U) = Uχ
Σ

∗
D
+
∂U
∂ν χΣ

∗
N
,

being ν, with an abuse of notation¹, the outwards normal to ∂LCΩ
. Following the well known result by Caf-

farelli and Silvestre (see [5]), U is related to the fractional Laplacian of the original function through the

formula

∂U
∂νs := −κs limy→0+ y1−2s ∂U∂y = (−∆)su(x),

where κs is a suitable positive constant (see [3] for its exact value). The extension function belongs to the

space

Xs
ΣD
(C

Ω
) := C∞

0

((Ω ∪ ΣN) × [0,∞))
‖ ⋅ ‖Xs

ΣD
(C

Ω
)
,

where we define

‖ ⋅ ‖2
Xs

ΣD
(C

Ω
) := κs ∫

C
Ω

y1−2s|∇( ⋅ )|2 dx dy.

Note that Xs
ΣD
(C

Ω
) is a Hilbert space equipped with the norm ‖ ⋅ ‖Xs

ΣD
(C

Ω
) which is induced by the scalar

product

⟨U, V⟩Xs
ΣD
(C

Ω
) = κs ∫

C
Ω

y1−2s⟨∇U, ∇V⟩ dx dy.

Moreover, the following inclusions are satisfied:

Xs
0

(C
Ω
) ⊂ Xs

ΣD
(C

Ω
) ⊊ Xs(C

Ω
), (2.1)

with Xs
0

(C
Ω
) being the space of functions that belongs to Xs(C

Ω
) ≡ H1(C

Ω
, y1−2s dx dy) and vanish on the

lateral boundary of C
Ω
.

Using the above arguments, we can reformulate problem (1.1) in terms of the extension problem as

follows:

{{{{
{{{{
{

−div(y1−2s∇U) = 0 in C
Ω
,

B(U) = 0 on ∂LCΩ
,

∂U
∂νs = f on Ω × {y = 0},

(2.2)

and we have that u(x) = U(x, 0).
Next, we specify the meaning of solution to problem (2.2) and its relationship with the solutions to

problem (1.1).

Definition 2.2. An energy solution to problem (2.2) is a function U ∈ Xs
ΣD
(C

Ω
) such that

κs ∫
C

Ω

y1−2s⟨∇U, ∇φ⟩ dx dy = ∫
Ω

f(x)φ(x, 0) dx for all φ ∈ Xs
ΣD
(C

Ω
). (2.3)

If U ∈ Xs
ΣD
(C

Ω
) is the solution to problem (2.2), we can associate the function u(x) = Tr[U(x, y)] = U(x, 0),

that belongs to Hs
ΣD
(Ω), and solves problem (1.1). Moreover, also the converse is true: given the solution

u ∈ Hs
ΣD
(Ω) to (1.1), its s-harmonic extension U = Es[u(x)] ∈ Xs

ΣD
(C

Ω
) is the solution to (2.2). Thus, both

formulations are equivalent and the extension operator

Es : Hs
ΣD
(Ω) → Xs

ΣD
(C

Ω
)

allows us to switch between each other.

According to [3, 5], due to the choice of the constant κs, the extension operator Es is an isometry, i.e.,

‖Es[φ](x, y)‖Xs
ΣD
(C

Ω
) = ‖φ(x)‖Hs

ΣD
(Ω) for all φ ∈ Hs

ΣD
(Ω). (2.4)

1 Let ν be the outwards normal to ∂Ω and ν(x,y) the outwards normal to C
Ω
; then, by construction, ν(x,y) = (ν, 0), y > 0.
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Let us also recall the trace inequality, that is a useful tool we exploit inmany proofs in this paper (see [3]):

there exists C = C(N, s, r, |Ω|) such that for all z ∈ Xs
0

(C
Ω
),

C(∫
Ω

|z(x, 0)|r dx)
2/r
≤ ∫

C
Ω

y1−2s|∇z(x, y)|2 dx dy,

with 1 ≤ r ≤ 2∗s , N > 2s, and 2∗s = 2N
N−2s .

Observe that such inequality turns out to be, in fact, equivalent to the fractional Sobolev inequality:

C(∫
Ω

|v|r dx)
2/r
≤ ∫

Ω

|(−∆)s/2v|2 dx for all v ∈ Hs
0

(Ω), 1 ≤ r ≤ 2∗s , N > 2s.

When mixed boundary conditions are considered, the situation is quite similar, since the Dirichlet condition

is imposed on a set ΣD ⊂ ∂Ω such that |ΣD| = α > 0. Hence, thanks to (2.1), there exists a positive constant
CD = CD(N, s, |ΣD|) such that

0 < inf

u∈Hs
ΣD
(Ω)

u ̸≡0

‖u‖2Hs
ΣD
(Ω)

‖u‖2
L2∗s (Ω) := CD < inf

u∈Hs
0

(Ω)
u ̸≡0

‖u‖2Hs
0

(Ω)

‖u‖2
L2∗s (Ω) . (2.5)

Remark 2.3. It is worth to observe (see [7]) that CD(N, s, |ΣD|) ≤ 2−2s/NC(N, s, 2∗s ). Moreover, having inmind

the spectral definition of the fractional operator, by the Hölder inequality, it follows that CD ≤ |Ω|2s/Nλs
1

(α),
where λ

1
(α) denotes the first eigenvalue of the Laplace operator with mixed boundary conditions on the sets

ΣD = ΣD(α) and ΣN = ΣN(α). Since λ1(α) → 0 as α → 0

+
, see [8, Lemma 4.3], we conclude that CD → 0 as

α → 0

+
.

Gathering together (2.4) and (2.5), we obtain

CD(∫
Ω

|φ(x, 0)|2∗s dx)2/2∗s ≤ ‖φ(x, 0)‖2Hs
ΣD
(Ω) = ‖Es[φ(x, 0)]‖

2

Xs
ΣD
(C

Ω
). (2.6)

With this Sobolev-type inequality in hand, we can prove a trace inequality adapted to the mixed boundary

data framework.

Lemma 2.4. There exists a constant CD = CD(N, s, |ΣD|) > 0 such that

CD(∫
Ω

|φ(x, 0)|2∗s ) dx)2/2∗s ≤ ∫
C

Ω

y1−2s|∇φ|2 dx dy for all φ ∈ Xs
ΣD
(C

Ω
). (2.7)

Proof. Thanks to (2.6), it is enough to prove that ‖Es[φ( ⋅ , 0)]‖Xs
ΣD
(C

Ω
) ≤ ‖φ‖Xs

ΣD
(C

Ω
). This inequality is satis-

fied, since, arguing as in [3], we find

‖φ‖2
Xs

ΣD
(C

Ω
) := κs ∫

C
Ω

y1−2s|∇φ|2 dx dy

= κs ∫
C

Ω

y1−2s󵄨󵄨󵄨󵄨∇(Es[φ(x, 0)] + φ(x, y) − Es[φ(x, 0)])
󵄨󵄨󵄨󵄨
2 dx dy

= ‖Es[φ(x, 0)]‖2Xs
ΣD
(C

Ω
) + ‖φ(x, y) − E(φ(x, 0))‖

2

Xs
ΣD
(C

Ω
)

+ 2κs ∫
C

Ω

y1−2s⟨∇Es[φ(x, 0)], ∇(φ(x, y) − Es[φ(x, 0)])⟩ dx dy

= ‖Es[φ(x, 0)]‖2Xs
ΣD
(C

Ω
) + ‖φ(x, y) − Es[φ(x, 0)]‖

2

Xs
ΣD
(C

Ω
)

+ 2∫
Ω

(−∆)s(φ(x, 0))(φ(x, 0) − φ(x, 0)) dx

= ‖Es[φ(x, 0)]‖2Xs
ΣD
(C

Ω
) + ‖φ(x, y) − Es[φ(x, 0)]‖

2

Xs
ΣD
(C

Ω
).
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3 Hölder regularity

The principal result we prove in this section is Theorem 1.2, which deals with the Hölder regularity of the

solution to problem (1.1). First we introduce the notation that we will follow along this section.

Notation. Given an open bounded set Ω, x ∈ Ω ⊂ ℝN and X ∈ C
Ω
⊂ ℝN+1+ , we define

∙ Ω(x, ρ) = Ω ∩ Bρ(x),
∙ C

Ω
(X, ρ) = C

Ω
∩ Bρ(X).

Given u(x) ∈ Hs
ΣD
(Ω) and U(X) ∈ Xs

ΣD
(C

Ω
), let us also define

∙ A+(k) = {x ∈ Ω : u(x) > k},
∙ A∗+(k) = {X ∈ C

Ω
: U(X) > k},

∙ A+(k, ρ) = A+(k) ∩ Ω(x, ρ),
∙ A∗+(k, ρ) = A∗+(k) ∩ CΩ

(X, ρ),
∙ { ⋅ }k = min( ⋅ , k),
∙ { ⋅ }k = max( ⋅ , k).
In a similar way, we may define the sets A−(k), A∗−(k), A−(k, ρ) and A∗−(k, ρ), replacing “>” with “<” in the

latter definitions. We denote by

∙ |A|ω the measure induced by a weight ω of the set A,
∙ |A|y1−2s the measure induced by the weight y1−2s of the set A,
∙ |A| the usual Lebesgue measure of the set A.

On the regularity of Ω

Let us recall that Ω is assumed, in all the paper, to be Lipschitz and consequently also C
Ω
turns out to have

the same regularity. In particular, among others, we use the following properties. There exists ζ ∈ (0, 1) such
that for z ∈ Ω, some R > 0 and any ρ > 0,

|C
Ω(z,R)(Z, ρ)| ≥ ζ |Bρ(Z)| for all Z ∈ C

Ω(z,R). (3.1)

Moreover, also the weighted counterpart is true, i.e., there exists ζs ∈ (0, 1) such that for any z ∈ Ω and any

ρ > 0,
|C

Ω(z,R)(Z, ρ)|y1−2s ≥ ζs|Bρ(Z)|y1−2s for all Z ∈ C
Ω(z,R). (3.2)

Consequently, given z ∈ Ω, R > 0 and 0 < r < R, there exists λ > 0 such that

|A∗+(k, r)|y1−2s ≤ λ|CΩ(z,R)(Z, r)|y1−2s for all Z ∈ C
Ω(z,R). (3.3)

It is worth to observe that all the results we prove in this paper might be proved for a larger class of open

sets Ω. Indeed, following [15], this kind of results is true for the so called

1

2

-admissible domains. Here we

decided to not deal with such domains for brevity and in order to not make the proofs much heavier.

Now we are ready to start with the statement and the proofs of several technical results.

Let z ∈ Ω and R > 0, and let u be a solution to problem (1.1): we write u(x) = v(x) + w(x) for every
x ∈ Ω(z, R), where the function v(x) satisfies

{{{{
{{{{
{

(−∆)sv = f in Ω(z, R),
v = 0 on Σ̃D,R := ∂Ω(z, R) \ ΣN ,
∂v
∂ν = 0 on Σ̃N,R := ∂Ω(z, R) ∩ ΣN ,

(3.4)

and the function w(x) is such that

{{{{
{{{{
{

(−∆)sw = 0 in Ω(z, R),
w = 0 on ΣD,R := ΣD ∩ BR(z),
∂w
∂ν = 0 on ΣN,R := ΣN ∩ BR(z).

(3.5)
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Using the extension technique, we can write v(x) = V(x, 0), with V(x, y) solving the extended problem

{{{{
{{{{
{

−div(y1−2s∇V) = 0 in C
Ω(z,R),

B(V) = 0 on ∂LCΩ(z,R),

∂V
∂νs = f on Ω(z, R) × {y = 0},

(3.6)

where B(V) = Vχ
Σ̃

∗
D,R
+ ∂V∂ν χΣ̃∗D,R

, with Σ̃

∗
D,R = Σ̃D,R × [0,∞) and Σ̃∗N,R = Σ̃N,R × [0,∞).

In the same way, we write w(x) = W(x, 0), withW(x, y) satisfying the extended problem

{{{{
{{{{
{

−div(y1−2s∇W) = 0 in C
Ω(z,R),

B(W) = 0 on Σ

∗
D,R ∪ Σ

∗
N,R ,

∂W
∂νs = 0 on Ω(z, R) × {y = 0},

(3.7)

where B(V) = Vχ
Σ

∗
D,R
+ ∂V∂ν χΣ∗D,R

, with Σ

∗
D,R = ΣD,R × [0,∞) and Σ∗N,R = ΣN,R × [0,∞).

Let us observe that we have the following situations:

(i) If z ∈ Ω, there exists R > 0 such that Σ̃D,R = ∂Ω(z, R) and ΣD,R = ΣN,R = 0. Then v ∈ Hs
0

(Ω(z, R)) and it
is solution to a Dirichlet problem. Moreover, w is an s-harmonic function, i.e., its extensionW = Es[w] ∈
Xs(C

Ω(z,R)) satisfies

∫
C

Ω(z,R) y
1−2s⟨∇W, ∇Φ⟩ dx dy = 0 for all Φ ∈ Xs

0

(C
Ω(z,R)). (3.8)

(ii) If z ∈ ΣD \ Γ, there exists R > 0 such that Σ̃D,R = ∂Ω(z, R) and ΣN,R = 0. Then v ∈ Hs
0

(Ω(z, R)) and it is a
solution to a Dirichlet problem whileW ∈ Xs

ΣD,R
(C

Ω(z,R)) and, also in this case, it satisfies (3.8).
(iii) If z ∈ ΣN, there exists R > 0 such that ΣD,R = 0. Then the function v ∈ Hs

Σ̃D,R
(Ω(z, R)) and it is a solution

to the mixed problem (3.4). Moreover, W belongs to Xs(C
Ω(z,R)) and (3.8) holds for all Φ ∈ Xs(C

Ω(z,R))
vanishing on ∂LCΩ(z,R) \ Σ∗N,R.

(iv) Finally, if z ∈ Γ, the sets Σ̃D,R, Σ̃N,R, ΣD,R and ΣD,R are nonempty for all R > 0. Then the function

v ∈ Hs
Σ̃D,R
(Ω(z, R)) and it is a solution to the mixed problem (3.4); as far as w is concerned, W ∈

Xs
ΣD,R
(C

Ω(z,R)) and fulfills (3.8) for any Φ ∈ Xs(CΩ(z,R)) vanishing on ∂LCΩ(z,R) \ Σ∗N,R.

We also define the following sets that will be useful in the sequel:

∙ C ∘
Ω(z,R) = C

Ω(z,R) \ {(x, y) ∈ C
Ω(z,R) : x ∈ ∂BR(z)},

∙ ∂
0
C
Ω(z,R) = ∂LCΩ(z,R) \ Σ∗N,R,

∙ ∂BCΩ(z,R) = ∂LCΩ(z,R) \ (Σ∗D,R ∪ Σ
∗
N,R).

We continue by stating the definitions and results needed in what follows. The first definition is based

on [15, Definition 2.1].

Definition 3.1. Given any z
0
∈ Ω and Z ∈ C ∘

Ω(z
0
,R), letK

+(Z) (resp.K−(Z)) be the set of values k ∈ ℝ such that
there exists a number ρ̃(Z) > 0 satisfying {U}kη ∈ Xs∂

0
C

Ω(z
0
,R) (CΩ(z

0
,R)) (resp. {U}k η ∈ Xs∂

0
C

Ω(z
0
,R) (CΩ(z

0
,R))) for

any U ∈ Xs
ΣD,R
(C

Ω(z
0
,R)) and any function η ∈ C∞(ℝN+1+ ) such that supp(η) ⊂ Bρ̃(Z)(Z).

Remark 3.2. It is worth to observe the following:
∙ If Z ∈ Σ∗D,R, thenK+(Z) = [0,∞),K−(Z) = (−∞, 0] and ρ̃(Z) = dist(Z, ∂BCΩ(z,R)).
∙ If Z ∈ C ∘

Ω(z,R) \ Σ
∗
D,R, thenK+(Z) = K−(Z) = (−∞,∞) and ρ̃(Z) = dist(Z, ∂

0
C
Ω(z,R)).

∙ Thanks to the construction of the cylinder, it is immediate to notice that the number ρ̃(Z) > 0 does not

depend on the y variable.

The control of the oscillations of solutions of elliptic problems is usually carried out through integral esti-

mates that mainly rely on a Sobolev-type inequality. Since the extension function solves a degenerate elliptic

problem involving aweight (namely, y1−2s) that belongs to theMuckenhoupt class A
2
, it is necessary to estab-

lish a Sobolev-type inequality dealingwith such a type of singularweights. To this end,we recall the following

definition.
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Definition 3.3. Given an open subset D ⊂ ℝN and a function ω : D → ℝ+, we say that ω belongs to the Muck-

enhoupt class Ap, with p > 1, if there exists a constant C > 0 such that

sup

B⊂D
(
1

|B| ∫
B

ω)( 1
|B| ∫

B

ω−1/(p−1))
p−1
≤ C.

Now we can recall the following result.

Theorem 3.4 ([10, Theorem 1.3 and Theorem 1.6]). Let D be an open bounded Lipschitz set in ℝN and con-
sider 1 < p < ∞ and a weight ω ∈ Ap. Then there exist a positive constant C(D) and δ > 0 such that for all
u ∈ H1

0

(D, ω) and any 1 ≤ σ ≤ N
N−1 + δ, we have

‖u‖Lσp(D,ωdx) ≤ C(D)‖∇u‖Lp(D,ωdx), (3.9)

where C(D) = cω diam(D)|D|1/p(1/σ−1)ω for a positive constant cω depending on N, p and ω.
Moreover, for any x

0
∈ ∂D, there exist a positive constant C = C(Bρ(x0)) and δ > 0 such that for any

1 ≤ σ ≤ N
N−1 + δ and any u ∈ H

1(D(x
0
, ρ), ω) vanishing on ∂D ∩ Bρ(x0), we have

‖u‖Lσp(D(x
0
,ρ),ωdx) ≤ C(Bρ)‖∇u‖Lp((D(x

0
,ρ),ωdx),

where C(Bρ) = cωρ|Bρ|1/p(1/σ−1)ω for a positive constant cω depending on ω, N, p and ξ.

We want to apply such a theorem to domains D ⊊ C
Ω
⊂ ℝN+1+ so that the correspondent exponent σ satisfies

1 ≤ σ ≤ N+1N .

As far as the weight is concerned, we set ω = y1−2s, that actually belongs to A
2
. Let us observe that,

according to [10], there exists ε
0
> 0 such that (3.9) holds true with p ≥ 2 − ε

0
.

As an immediate consequence of Theorem 3.4, we obtain the following result.

Lemma 3.5. Let Z ∈ Σ∗D and p ≥ 2 − ε
0
for some ε

0
> 0. Then there exists ρ > 0 such that for any ρ < ρ and any

U ∈ Xs
ΣD
(C

Ω
), we have

‖U‖Lσp(C
Ω
(Z,ρ),y1−2s dx dy) ≤ csρ|Bρ|1/p(1/σ−1)y1−2s ‖∇U‖Lp(C

Ω
(Z,ρ),y1−2s dx dy), (3.10)

with 1 ≤ σ ≤ N+1N + δ for some δ > 0 and cs depending on N, p and the weight y
1−2s.

Next we establish inequality (3.10) for functions in Xs
ΣD,R
(C

Ω(z,R)) and, given some point Z ∈ C ∘
Ω(z,R) \ Σ

∗
D,R,

also for functions in H1(C
Ω
(Z, ρ), y1−2s dx dy) vanishing on suitable sets.

Definition 3.6. Given p ≥ 2 − ε
0
for some ε

0
∈ (0, 1) and an open bounded set A, we define F(βs , A) as the

family of sets B ⊂ A such that for any U ∈ H1(A, y1−2s dx dy) vanishing on B,

‖U‖Lσp(A,y1−2s dx dy) ≤ βs diam(A)|A|1/p(1/σ−1)y1−2s ‖∇U‖Lp(A,y1−2s dx dy) (3.11)

for some βs > 0 depending on N, p and the weight y1−2s, and 1 ≤ σ ≤ N+1N + δ for some δ > 0.

With this scheme in mind, we focus first on finding bounds for solutions to (3.4) in terms of the data of the

problem.

Theorem 3.7. Let u be a solution to (1.1), with f ∈ Lp(Ω), p > N
2s . Then there exists a positive constant

C = C(N, s, |ΣD|) such that
‖u‖L∞(Ω) ≤ C‖f ‖Lp(Ω)|Ω|2s/N−1/p .

In the proof of Theorem 3.7, we make use of the following technical result.

Lemma 3.8 ([11, Lemma B.1]). Let φ(k) be a nonnegative and nonincreasing function, defined for k ≥ k
0
, such

that
φ(h) ≤ C

0

(h − k)a φ
b(k), k < h,

where C
0
, a, b are positive constants with b > 1. Then φ(k

0
+ d) = 0, with da = 2ab/(b−1)C

0
|φ(k

0
)|b−1.
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Proof of Theorem 3.7. Here we just prove the upper bound, being the lower one completely analogous. Let us

take k ≥ 0, U(x, y) = Es[u(x)] and ψ = (U − k)+ ∈ Xs
ΣD
(C

Ω
) as a test function in (2.3). Using the trace inequal-

ity (2.7) together with the Hölder inequality, we get

κs ∫
C

Ω

y1−2s∇U∇ψ dx dy = κs ∫
A∗+(k)

y1−2s|∇U|2 dx dy = ∫
A+(k)(U(x, 0) − k)f(x) dx

≤ ( ∫
A+(k) |f |

2 dx)
1/2
(C−1D |A+(k)|

2s/N ∫
A∗+(k)

y1−2s|∇U|2 dx dy)
1/2

.

Thus,

∫
A∗+(k)

y1−2s|∇U|2 dx dy ≤ C−1D κ
−2
s |A+(k)|2s/N ∫

A+(k) |f |
2 dx ≤
‖f ‖2Lp(Ω)|A+(k)|

1−2/p+2s/N

CDκ2s
, (3.12)

and applying the trace inequality (2.7) to the left-hand side of (3.12), we get, for any h > k,

(h − k)2|A+(h)|2/2
∗
s ≤ ( ∫

A+(k) |U(x, 0) − k|
2

∗
s dx)

2/2∗s
.

Thus, we deduce

(h − k)2|A+(h)|2/2
∗
s ≤
‖f ‖2Lp(Ω)
(CDκs)2

|A+(k)|1−2/p+2s/N ,

and setting φ(h) = |A+(h)|, it follows that

φ(h) ≤
‖f ‖2

∗
s
Lp(Ω)
(CDκs)2

φ(1−2/p+2s/N)2∗s /2(k)
(h − k)2∗s .

Applying now Lemma 3.8 with a = 2

∗
s and b = (1 − 2

p +
2s
N )

2

∗
s
2

> 1, we find |φ(k
0
+ d)| = 0 with d =

C(N, s, |ΣD|)‖f ‖Lp(Ω)|φ(k0)|b−1/a, and b−1
a =

2s
N −

1

p , i.e.,

U(x, 0) ≤ k
0
+ C(N, s, |ΣD|)‖f ‖Lp(Ω)|A+(k0)|2s/N−1/p a.e. in Ω,

for any k
0
≥ 0, and we conclude u(x) ≤ C(N, s, |ΣD|)‖f ‖Lp(Ω)|Ω|2s/N−1/p a.e. in Ω.

Let v(x) be the solution to (3.4) and V(x, y) = Es[v(x)] the solution to (3.6). Since (V − k)+ ∈ Xs
ΣD
(C

Ω
) for any

k ≥ 0, repeating the proof above we deduce that for all z ∈ Ω,

‖v(x)‖L∞(Ω(z,R)) ≤ C(N, s, |ΣD|)‖f ‖Lp(Ω)|Ω(z, R)|2s/N−1/p . (3.13)

Now we turn our attention to the study of the behavior of solutions to the homogeneous problem (3.7).

Lemma 3.9 (Caccioppoli inequality). Assume that z
0
∈ Ω and R > 0, and suppose that the function W ∈

Xs
ΣD,R
(C

Ω(z
0
,R)) is a solution to problem (3.7). Then, for any Z ∈ C ∘

Ω(z
0
,R) and 0 < ρ < r < ρ̃(Z), we have that

there exists C > 0 such that

∫
C

Ω(z
0
,R)(Z,ρ) y

1−2s|∇W|2 dx dy ≤ C
(r − ρ)2

∫
C

Ω(z
0
,R)(Z,r) y

1−2s|W|2 dx dy.

Proof. We use ψ = η2W as a test function in (3.8), with η ∈ C1(C
Ω(z

0
,R)) vanishing on ∂BCΩ(z

0
,R); observe

that, in particular, ψ ≡ 0 on ∂
0
C
Ω(z

0
,R), so that we have

∫
C

Ω(z
0
,R) y

1−2sη2|∇W|2 dx dy = −2 ∫
C

Ω(z
0
,R) y

1−2s⟨η∇W,W∇η⟩ dx dy

≤ 2(
1

2ε ∫
C

Ω(z
0
,R) y

1−2s|∇η|2W2 dx dy + ε
2

∫
C

Ω(z
0
,R) y

1−2sη2|∇W|2 dx dy) (3.14)
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for any 0 < ε < 1. To complete the proof, given Z ∈ C ∘
Ω(z

0
,R) and ρ < r < ρ̃(Z), it is enough to set η such that

η ≡ 1 in Bρ(Z), η ≡ 0 in Bcr (Z) and |∇η| ≤ c
(r − ρ) ,

and plug it into (3.14).

Next we prove the following two lemmas.

Lemma 3.10. Let p ≥ 2 − ε
0
for some 0 < ε

0
< 1 and U ∈ Xs(C

Ω
) such that {U = 0} ∈ F(β, A) for A ⊂ C

Ω
. Then

there exists βs = βs(N, p, y1−2s) > 0 such that

∫
A

y1−2s|U|p dx dy ≤ βps [diam(A)]p|A|
(1/σ−1)
y1−2s 󵄨󵄨󵄨󵄨{(x, y) ∈ A : U ̸= 0}󵄨󵄨󵄨󵄨

1/σ󸀠
y1−2s ∫

A

y1−2s|∇U|p dx dy, (3.15)

with 1

σ +
1

σ󸀠 = 1, and
∫

A∗+(k,r)
y1−2s|U − k|2 dx dy ≤ β2s r2|Br|

1/σ−1
y1−2s |A∗+(k, r)|1/σ󸀠y1−2s ∫

A∗+(k,r)
y1−2s|∇U|2 dx dy, (3.16)

with 1 ≤ σ ≤ N+1N + δ for some δ > 0.

Proof. In fact, (3.15) is consequence of (3.11) and the Hölder inequality.
As far as (3.16) is concerned, we follow [15, Theorem 6.1]: given U ∈ Xs(C

Ω(z
0
,R)), let us consider the

function t+k (U) = (U − k)+ that belongs to Xs(C
Ω(z

0
,R)) for any k ∈ ℝ. Moreover, if U ∈ Xs

ΣD,R
(C

Ω(z
0
,R)), then

t+k (U) ∈ X
s
ΣD,R
(C

Ω(z
0
,R)) for any k ≥ 0. Then, applying (3.11) to (U − k)+ with p = 2, (3.16) follows.

Lemma 3.11. Given z
0
∈ Ω and R > 0, let U ∈ Xs(C

Ω(z
0
,R)). Then, for any Z ∈ C ∘

Ω(z
0
,R) and 0 < r < ρ(Z), there

exist ε
0
∈ (0, 1) and βs = βs(N, p, y1−2s) > 0 such that

(h − k)2|A∗+(h, r)|
2/q
y1−2s ≤ β2s r2|Br|2( 1q −1/p)y1−2s |A∗+(k, r) − A∗+(h, r)|2/p−1y1−2s ∫

A∗+(k,r)
y1−2s|∇U|2 dx dy, (3.17)

with h > k, q = N+1N (2 − ε0) and p = 2 − ε0.

Proof. Given U ∈ Xs(C
Ω(z

0
,R)) and h > k, let t+h,k(U) = {U}

h − {U}k. Note that t+h,k(U) ∈ X
s(C

Ω(z
0
,R)) for any

k ∈ ℝ. Moreover, if U ∈ Xs
ΣD,R
(C

Ω(z
0
,R)), then t+h,k(U) ∈ X

s
ΣD,R
(C

Ω(z
0
,R)) for any h > k ≥ 0. Thus, using (3.11)

with σ = N+1N and p = 2 − ε
0
, so that, taking q = σp = N+1N (2 − ε0), we obtain

( ∫
C

Ω(z
0
,R)(Z,r) y

1−2s|t+h,k(U)|
q dx dy)

1/q
≤ βsr|Br|1/q−1/py1−2s ( ∫

A∗+(k,r)−A∗+(h,r)
y1−2s|∇U|p dx dy)

1/p
. (3.18)

On the one hand, it is immediate that

(h − k)2|A∗+(h, r)|
2/q
y1−2s ≤ ( ∫

C
Ω(z

0
,R)(Z,r) y

1−2s|t+h,k(U)|
q dx dy)

2/q
. (3.19)

On the other hand, thanks to the Hölder inequality,

( ∫
A∗+(k,r)−A∗+(h,r)

y1−2s|∇U|p dx dy)
2/p
≤ |A∗+(k, r) − A∗+(h, r)|

2/p−1
y1−2s ∫

A∗+(k,r)
y1−2s|∇U|2 dx dy. (3.20)

Thus, (3.17) follows by gathering together (3.18), (3.19) and (3.20).

Following [15, Theorem 8.1], we show the next result.

Theorem 3.12. Let z
0
∈ Ω, R > 0, and let W ∈ Xs

ΣD,R
(C

Ω(z
0
,R)) be a solution to the homogeneous problem (3.7).

Then, for any Z ∈ C ∘
Ω(z

0
,R), 0 < ℓ < 1 and 0 < r < min{ρ̃(Z), ρ(Z)}, there exists a positive constant Λ = Λ(ℓ) such

that

|A∗+(k + ℓd, r − ℓr)| = 0, with k ∈ K+(Z), and |A∗−(k − ℓd, r − ℓr)| = 0, with k ∈ K−(Z),
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where
d2 ≥ 1

Λ(ℓ) |Br|y1−2s ∫
A∗+(k,r)

y1−2s|W − k|2 dx dy. (3.21)

In the proof of Theorem 3.12, we make use of the following technical result.

Lemma 3.13 ([11, Lemma C.7]). Assume that φ(k, ρ) is a nonnegative function defined for k ≥ k
0
and0< ρ ≤ r

0
,

which is nonincreasing with respect to k, nondecreasing with respect to ρ and such that

φ(h, ρ) ≤ C
0

(h − k)α(r − ρ)γ φ
μ(k, r), k < h, ρ < r ≤ r

0
,

where C, α, β, γ are positive constants with μ > 1. Then there exist ℓ ∈ (0, 1) and d > 0 such that

φ(k
0
+ ℓd, r

0
(1 − ℓ)) = 0, with dα = C

0

2

(α+γ)μ/(μ−1)[φ(k
0
, r

0
)]μ−1

ℓα+γrγ
0

.

Proof of Theorem 3.12. Given z
0
∈ Ω, k

0
∈ K+(Z) and k ≥ k

0
, let us define

i(k, ρ) = ∫
A∗+(k,ρ)

y1−2s|W − k|2 dx dy and a(k, ρ) = |A∗+(k, ρ)|y1−2s .
Observe that for h > k, we have

(h − k)2|A∗+(h, ρ)|y1−2s ≤ ∫
A∗+(k,r)

y1−2s|W − k|2 dx dy. (3.22)

Assume that Z ∈ Σ∗D,R ∩ CΩ(z
0
,R) and let 0 < r0 < min{ρ̃(Z), ρ(Z)}. Then, due to Lemmas 3.9 and 3.10, for

any r
0
(1 − ℓ) ≤ ρ < r ≤ r

0
and h > k, we have

∫
A∗+(h,ρ)

y1−2s|W − h|2 dx dy ≤ KC
Ω
(ρ)( ∫

A∗+(h,ρ)
y1−2s|∇W|2 dx dy)|A∗+(h, ρ)|

1/σ󸀠
y1−2s

≤ KC
Ω
(ρ)( ∫

A∗+(k,ρ)
y1−2s|∇W|2 dx dy)|A∗+(k, ρ)|

1/σ󸀠
y1−2s

≤ KC
Ω
(ρ)(

1

(r − ρ)2
∫

A∗+(k,r)
y1−2s|W − k|2 dx dy)|A∗+(k, r)|

1/σ󸀠
y1−2s , (3.23)

where KC
Ω
(r) = β2s r2|Br|

1/σ−1
y1−2s , with βs = βs(N, y1−2s , ∂Ω) > 0 and 1 ≤ σ ≤ N+1N + δ for some δ > 0.

Assume, on the contrary, that Z
0
∈ C ∘

Ω(z
0
,R) \ Σ

∗
D,R. Recalling (3.2), let Λ = Λ(ℓ) > 0, satisfying

Λ

ζs(1 − ℓ)N+2(1−s)
≤ (1 − λ) for some λ ∈ (0, 1).

Therefore, given h ≥ k
0
and (1 − ℓ)r

0
≤ ρ ≤ r

0
, we find

|A∗+(h, ρ)|y1−2s ≤ |A∗+(k0, r0)|y1−2s ≤ |CΩ(z
0
,R)(Z, r0)|y1−2s ≤ |Br

0

(Z)|y1−2s
≤
|Bρ(Z)|y1−2s
(1 − ℓ)N+2(1−s)

≤
Λ |C

Ω(z
0
,R)(Z, ρ)|y1−2s

ζs(1 − ℓ)N+2(1−s)
≤ (1 − λ)|C

Ω(z
0
,R)(Z, ρ)|y1−2s .

Using Lemma 3.9 and Lemma 3.10, we deduce that (3.23) holds true.

As a consequence, for any Z ∈ C ∘
Ω(z

0
,R),

i(h, ρ) ≤
KC

Ω
(ρ)

(r − ρ)2
i(k, r)[a(k, r)]1/σ󸀠 , r

0
(1 − ℓ) ≤ ρ < r ≤ r

0
and h > k ≥ k

0
, (3.24)

with k
0
∈ K+(Z) satisfying (3.3). Moreover, since |Bμr|y1−2s = μN+2(1−s)|Br|y1−2s , we have KC

Ω
(μr) = μςKC

Ω
(r
0
),

where ς = 2 + ( 1σ − 1)(N + 2(1 − s)).
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If we let 1 < σ ≤ 1 + 2

N−2s (so that ς > 0), then KC
Ω
(r) ≤ KC

Ω
(r
0
) for any 0 < r < r0. Hence, from (3.24), we

obtain

i(h, ρ) ≤
KC

Ω
(r
0
)

(r − ρ)2
i(k, r)[a(k, r)]1/σ󸀠 , ρ < r ≤ r

0
, h > k ≥ k

0
, (3.25)

with KC
Ω
(r
0
) = β2s r20|Br0 |

1/σ−1
y1−2s . We set now ξ + 1 = θξ and ξ

σ󸀠 = θ, so that θ = 1

2

+ √ 1

4

+ 1

σ󸀠 > 1 turns out to be

the unique positive solution to the equation θ2 − θ − 1

σ󸀠 = 0. Assume, in addition, that the constant Λ satisfies

Λ

θ/2 ≤
ℓξ+1

βξs2(ξ+1)θ/(θ−1)
. (3.26)

From (3.22) and (3.25), we obtain

|i(h, ρ)|ξ |a(h, ρ)| ≤
KξC

Ω
(r
0
)

(r − ρ)2ξ (h − k)2
|i(k, r)|ξ+1|a(k, r)|ξ/σ󸀠 .

Then, taking φ(k, ρ) = |i(k, ρ)|ξ |a(k, ρ)|, it follows that φ satisfies

φ(h, ρ) ≤
KξC

Ω
(r
0
)

(r − ρ)2ξ (h − k)2
φθ(k, r), h > k ≥ k

0
, ρ < r ≤ r

0
.

Using Lemma 3.13 with α = 2, μ = θ, γ = 2ξ , we deduce that exist d
0
> 0 and ℓ ∈ (0, 1) such that

φ(k
0
+ ℓd

0
, r

0
(1 − ℓ)) = 0,

for any k
0
∈ K+(Z) satisfying (3.3), 0 < r

0
< min{ρ̃(Z), ρ(Z)} and d

0
such that

d
0
=
2

(ξ+1)θ/θ−1

ℓξ+1
Kξ/2C

Ω
(r
0
)[φ(k0, r0)]

(θ−1)/2

rξ
0

≤ (
1

Λ|Br
0

|y1−2s ∫
A∗+(k,r0)

y1−2s|W − k
0
|2 dx dy)

1/2
.

Since |A∗+(k0 + ℓd0, r0(1 − ℓ))|y1−2s = 0 implies |A∗+(k0 + ℓd0, r0(1 − ℓ))| = 0, the proof is complete.

The proof on the lower bound follows using the same inequalities on (W + k)− and getting the bounds

on |A∗−(k0 − ℓd, r0(1 − ℓ))|y1−2s .
As a consequence of the above theorem, we get the L∞ bound onW.

Corollary 3.14. Let z
0
∈ Ω, R > 0, and let W ∈ Xs

ΣD,R
(C

Ω(z
0
,R)) be a solution to the homogeneous problem (3.7);

consider the set C m
Ω(z

0
,R/2) = C

Ω(z
0
,R/2) ∩ {y < m} with m > 0. Then W ∈ L∞(C m

Ω(z
0
,R/2)) for any m > 0. In partic-

ular, any solution w ∈ Hs
ΣD,R
(Ω(z

0
, R)) of problem (3.5) satisfies w ∈ L∞(Ω(z

0
, R/2)).

Proof. First, let us prove that w ∈ L∞(Ω(z
0
, R/2)), with w satisfying problem (3.5). Let W ∈ Xs

ΣD,R
(C

Ω(z
0
,R))

be a solution to problem (3.7) and since Ω(z
0
, R/2) is a bounded set, there exists Zi = (zi , 0) ∈ C ∘

Ω(z
0
,R),

i = 1, 2, . . . ,M, such that

Ω(z
0
, R/2) = (

M
⋃
i=1

C ∘
Ω(z

0
,R)(Zi , ri/2)) ∩ {y = 0}, (3.27)

with 0 < ri < {ρ̃(Zi), ρ(Zi)}. Let k > 0 and k̂ < 0 be such that

|A∗+(k, ri)| ≤ Λ|CΩ(z
0
,R)(Zi , ri)| and |A∗−(k̂, ri)| ≤ Λ|CΩ(z

0
,R)(Zi , ri)|

for any i = 1, 2, . . . ,M. Then, by applying Theorem3.12,we conclude that, given X ∈ C
Ω(z

0
,R)(Zi , ri) for some

i = 1, 2, . . . ,M, we have

κm := k̂ − ℓd ≤ W(x, y) ≤ κM := k + ℓd, (3.28)

with

d2 ≥ 1

Λ|Br|y1−2s ∫
C

Ω(z
0
,R) y

1−2s|W|2 dx dy
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for any 0 < r < mini=1,...,M ri. In particular, by (3.27), the former inequality holds for any point X = (x, 0)with
x ∈ Ω(z

0
, R/2), and we are done.

Since C
Ω(z

0
,R/2) is an unbounded domain, if we repeat the steps above in order to prove that W ∈

L∞(C
Ω(z

0
,R/2)) from (3.28), the numbers k̂, k do diverge when considering a covering sequence {Zi}i∈ℕ. Nev-

ertheless, it is clear that given any finite truncation of the extension cylinder,C
m
Ω(z

0
,R/2) = C

Ω(z
0
,R/2) ∩ {y < m},

there exists a finite covering sequence, and hence we concludeW ∈ L∞(C m
Ω(z

0
,R/2)) for all finite m > 0.

We focus now on the oscillation of the solutionsW ∈ Xs
ΣD,R
(C

Ω(z
0
,R)) to problem (3.7). Let us set

m(ρ) = inf

X∈C
Ω(z

0
,R)(Z,ρ)W(X) and M(ρ) = sup

X∈C
Ω(z

0
,R)(Z,ρ)W(X),

and define the oscillation function as

ω(ρ) := M(ρ) − m(ρ).

Our aim is to give some estimates on ω(ρ) through the following result.

Theorem 3.15. Given z
0
∈ Ω and R > 0, let Z ∈ C ∘

Ω(z
0
,R) and let W ∈ X

s
ΣD,R
(C

Ω(z
0
,R)) be a solution to the homo-

geneous problem (3.7). Moreover, given 0 < 4ρ < min{ρ̃(Z), ρ(Z)}, let 0 < η < 1 be such that
(i) (M(4ρ) − ηω(4ρ), +∞) ⊂ K+(Z),
(ii) |A∗+(M(4ρ) − ηω(4ρ), 2ρ)|y1−2s ≤ Λ|CΩ(z

0
,R)(Z, 2ρ)|y1−2s ,

where Λ is determined by (3.21) with ℓ = 1

2

. Then there exists 0 < η < 1 independent from Z and ρ such that

ω(ρ) ≤ ηω(4ρ). (3.29)

Proof. Let Z ∈ C ∘
Ω(z

0
,R) and 0 < 4ρ < min{ρ̃(Z), ρ(Z)}; let us define the sequence

kj = M(4ρ) − ηjω(4ρ), with ηj =
1

2
j+1 , j ∈ ℕ.

Assume first that Z ∈ C ∘
Ω(z

0
,R) \ Σ

∗
D,R, so thatK

+(Z) = (−∞,∞), and observe that one of the following condi-
tions is satisfied:

|A∗+(k0, 2ρ)|y1−2s ≤ 1
2

|C
Ω(z

0
,R)(Z, 2ρ)|y1−2s or |A∗−(k0, 2ρ)|y1−2s ≤ 1

2

|C
Ω(z

0
,R)(Z, 2ρ)|y1−2s .

Assume without loss of generality that |A∗+(k0, 2ρ)| ≤ 1

2

|C
Ω(z

0
,R)(Z, 2ρ)|. As a consequence,

|A∗+(kj , 2ρ)| ≤
1

2

|C
Ω(z

0
,R)(Z, 2ρ)| for j ≥ 1.

On the other hand, if Z ∈ Σ∗D,R, we can assume that at least one between M(4ρ) and −m(4ρ) is greater
than

1

2

ω(4ρ); suppose that M(4ρ) > 1

2

ω(4ρ). Therefore, we have that kj > 0 for j ≥ 0.
Then, using Lemma 3.11 with h = kj+1 and k = kj, we obtain

(kj+1 − kj)2|A∗+(kj+1, 2ρ)|
2/q
y1−2s ≤ β2s (2ρ)2|B2ρ|2(1/q−1/p)y1−2s ∫

A∗+(kj ,2ρ)
y1−2s|∇W|2 dx dy,

with p, q such that q = N+1N (2 − ε0) and p = 2 − ε0 for a suitable ε0 > 0.
Moreover, applying Lemma 3.9 to the function t+kj (W) ∈ X

s
ΣD,R
(C

Ω(z,R)), j ≥ 0, we find

∫
A∗+(kj ,2ρ)

y1−2s|∇W|2 dx dy ≤ C
4ρ2
∫

A∗+(kj ,4ρ)
y1−2s|W − kj|2 dx dy ≤

C
4ρ2
[M(4ρ) − kj]2|B4ρ(Z)|y1−2s .

Gathering together the above inequalities, we have that

(kj+1 − kj)2|A∗+(kj+1, 2ρ)|
2/q
y1−2s ≤ Cβs|B2ρ|2(1/q−1/p)+1y1−2s [M(4ρ) − kj]2|A∗+(kj , 2ρ) − A∗+(kj+1, 2ρ)|

2/p−1
y1−2s , (3.30)

where the constant C > 0 is the one appearing in the Caccioppoli inequality. Let us define

φ(k) =
|A∗+(k, 2ρ)|y1−2s
|C

Ω(z,R)(Z, 2ρ)|y1−2s ,
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and note that, by (3.1) and (3.2), we have |B
2ρ|y1−2s ≤ 1

ζs |CΩ(z,R)(Z, 2ρ)|y1−2s . Then, since 2( 1q − 1

p ) + 1 > 0,
taking into account that

kj+1 − kj = ηj+1ω(4ρ) and M(4ρ) − kj = ηjω(4ρ),

from (3.30), we find

|φ(kj+1)|2/q ≤ ϑ[φ(kj) − φ(kj+1)]2/p−1, with ϑ = 4Cβs
ζ 2(1/q−1/p)+1s

.

Let us set μ = 2

q
1

2/p−1 > 0 and a =
p

2−p , so that the above inequality turns into

φμ(kn) ≤ ϑa[φ(kj) − φ(kj+1)], j ≥ 0.

Summing up the above inequality for j = 0, 1, . . . , n and noticing that φ(kj) ≥ φ(kn), we get

nφμ(kn) ≤ ϑa[φ(k0) − φ(kn+1)]

and, by (3.30), we conclude that

φ(kn) ≤ (
ϑaφ(k

0
)

n )
1/μ

. (3.31)

Let us set n > 0 such that
n ≥ ⌈(4Cβs)

aφ(k
0
)

ζ μ−1s Λ
μ
⌉, (3.32)

where Λ is determined by (3.3) with ℓ = 1

2

, ζs depends on ζ in (3.1) and the A2-constant (see (3.2)), the con-
stant βs depends on N and the weight y1−2s, and C > 0 is a universal constant coming from the Caccioppoli

inequality.

Consequently, n is independent of Z and ρ. Then, by inequality (3.31), we find

|A∗+(kn , 2ρ)|y1−2s
|C

Ω(z,R)(Z, 2ρ)|y1−2s ≤ Λ for all n ≥ n.

Applying Theorem 3.12 with kn = M(4ρ) − ηnω(4ρ), r = 2ρ and ℓ = 1

2

, so that

1

Λ|B
2ρ(Z)|y1−2s ∫

A∗+(M(4ρ)−ηnω(4ρ),2ρ)
y1−2s|W − (M(4ρ) − ηnω(4ρ))|2 dx dy ≤ (ηnω(4ρ))2 = d2,

we obtain

W(X) ≤ k + ℓd ≤ [M(4ρ) − ηnω(4ρ)] +
1

2

ηnω(4ρ) ≤ M(4ρ) −
1

2

ηnω(4ρ) a.e. in C
Ω(z,R)(Z,ρ).

As a consequence,

ω(ρ) = M(ρ) − m(ρ) ≤ M(ρ) − m(4ρ) ≤ [M(4ρ) − 1
2

ηnω(4ρ)] − m(4ρ) ≤ (1 −
1

2

ηn)ω(4ρ),

and we deduce (3.29), by choosing η = (1 − ηn+1).

The next result gives an estimate on the growth of the oscillation.

Theorem 3.16. Given z
0
∈ Ω and R > 0, let W ∈ Xs

ΣD,R
(C

Ω(z
0
,R)) be a solution to the homogeneous prob-

lem (3.7). Then there exist 0 < H < 1 and 0 < τ < 1

2

such that for any Z ∈ C ∘
Ω(z

0
,R), there exists δ(Z) > 0 such

that
ω(ρ) = sup

X∈C
Ω(z

0
,R)(Z,ρ)W(X) − inf

X∈C
Ω(z

0
,R)(Z,ρ)W(X) ≤ Hρτ

for any 0 < ρ < δ(Z).

Proof. Let r(Z) = min{ρ̃(Z), ρ(Z)}, by Theorem 3.15, inequality (3.29) holds true for any ρ < r(Z)/4. Take τ
and M positive such that 4

τη = a < 1 and ω(ρ) ≤ Mρτ for r(Z)/4 ≤ ρ < r(Z). Then, again by (3.29), we have

that

ω(ρ) ≤ η4τMρτ
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for r(Z)/42 ≤ ρ < r(Z)/4. In general, if r(Z)/4i+1 ≤ ρ < r(Z)/4i for some i ∈ ℕ, we deduce that ω(ρ) ≤
(η4τ)iMρτ. Letting i be large enough such thatH = Mai < 1,we obtainω(ρ) ≤ Hρτ for any ρ < δ(Z) = r(Z)/4i.
On the other hand, sincewehave chosen τ > 0 such that 4τη < 1 and, by Theorem3.15, η = 1 − ηn+1 for some

n ≥ 0 independent from Z and ρ, it follows that

τ < 1
2

log
2
(

2

n+2

2
n+2 − 1
) <

1

2

. (3.33)

Before proving Theorem 1.2, let us observe the following:

(i) If z
0
∈ Ω, then there exist R > 0 sufficiently small such that ΣD,R = ΣN,R = 0 and ρ̃(Z) = dist(Z, ∂LCΩ(z

0
,R))

for any z ∈ C
Ω(z

0
,R).

(ii) If z
0
∈ ΣD \ Γ, then there exist R > 0 such that ΣN,R = 0. Hence, ρ̃(Z) = dist(Z, ∂BCΩ(z

0
,R)) for any

Z ∈ Σ∗D,R and ρ̃(Z) = dist(Z, ∂0CΩ(z
0
,R)) for any Z ∈ C ∘

Ω(z
0
,R) \ Σ

∗
D,R.

(iii) If z
0
∈ ΣN, then there exist R > 0 such that ΣD,R = 0. Hence, ρ̃(Z) = dist(Z, ∂BCΩ(z

0
,R)) for any Z ∈C ∘

Ω(z
0
,R).

(iv) If z
0
∈ Γ, then for all R > 0 both ΣD,R ̸= 0 and ΣN,R ̸= 0, and hence ρ̃(Z) = dist(Z, ∂BCΩ(z

0
,R)) for any

Z ∈ Σ∗D,R and ρ̃(Z) = dist(Z, ∂0CΩ(z
0
,R)) for any Z ∈ C ∘

Ω(z
0
,R) \ Σ

∗
D,R.

Now, consider C
Ω(z

0
,R/2) ⊂ C

Ω(z,R) if z ∈ Ω and C
Ω(z

0
,R/2) ⊂ C ∘

Ω(z,R) if z ∈ ∂Ω.
Thus, we deduce:

(i) If z ∈ Ω, then ρ̃(Z) = dist(Z, ∂LCΩ(z,R)) ≥ ρ̃ > 0 for any Z ∈ C
Ω(z,R/2) and some positive ρ̃.

(ii) If z ∈ ΣD \ Γ, then ρ̃(Z) = ρ̃ > 0 for some positive ρ̃ for any Z ∈ Σ∗D,R/2 and ρ̃(Z) = dist(Z, Σ
∗
D,R/2) for any

Z ∈ C
Ω(z,R/2) \ Σ∗D,R/2.

(iii) If z ∈ ΣN, then ρ̃(Z) = dist(Z, ∂BCΩ(z,R)) ≥ ρ̃ > 0 for any Z ∈ C
Ω(z,R/2) and some positive ρ̃.

(iv) If z ∈ Γ, then ρ̃(Z) = ρ̃ > 0 for some positive ρ̃ for any Z ∈ Σ∗D,R/2 and ρ̃(Z) = dist(Z, ΣD,R/2) for any
Z ∈ C

Ω(z,R/2) \ Σ∗D,R/2.

Observe that if either (i) or (iii) holds true, then the number 0 < δ(Z) in Theorem 3.16 has an infimum value,

namely, 0 < δ < δ(Z) for any Z ∈ C
Ω(z

0
,R/2) and we deduce that solutionsW to problem (3.7) are Hölder con-

tinuous up to the boundary of C
Ω(z

0
,R/2). In fact, let us consider two points Z1 and Z2 in C m

Ω(z
0
,R) with m > 0.

Then, by Corollary 3.14 and Theorem 3.16, we find:

∙ If |Z
1
− Z

2
| ≥ δ, we have

|W(Z
1
) −W(Z

2
)|

|Z
1
− Z

2
|τ
≤

2

δτ max

C m
Ω(z

0
,R/2) W =

2

δτ ‖W‖L
∞(C m

Ω(z
0
,R/2)).

∙ If |Z
1
− Z

2
| < δ, by Theorem 3.16,

|W(Z
1
)−W(Z

2
)|

|Z
1
−Z

2
|τ ≤ H, 0 < H < 1.

We conclude the Hölder regularity with a constant

T = max{H,

2

δτ ‖W‖L
∞(C m

Ω(z,R/2))}. (3.34)

Now we deal with the situation described in items (ii) and (iv).

Theorem 3.17. For any z
0
∈ ΣD and R > 0, let W ∈ Xs

ΣD,R
(C

Ω(z
0
,R)) be a solution to the homogeneous prob-

lem (3.7). Then W ∈ Cτ
loc

(C
Ω(z

0
,R/2)) for some 0 < τ < 1

2

.

Proof. Observe that the number 0 < δ(Z) in Theorem 3.16 is bounded from below by some 0 < δH for

Z ∈ Σ∗D,R/2, and we can assume that δ(Z) ≥ min{δH, dist(Z, Σ∗D,R/2)} for Z ∈ Σ
∗
N,R/2. Moreover, by the con-

struction of the lateral boundary of the extension cylinder, the numbers δ(Z) do not depend on the y variable.
Hence, such an infimum δH > 0 is attained at those points of the type Z = (z, 0) in ∂Ω × {0}. Consider the set

C δ
Ω(z

0
,R/2) = {Z ∈ C m

Ω(z,R/2) : dist(Z, Σ
∗
D,R/2) ≥ δH}.

As above, we only need to study the case |Z
1
− Z

2
| < δH. Suppose that Z1 ∈ C δ

Ω(z
0
,R/2). Then |Z1 − Z2| ≤ δH <

dist(Z
1
, Σ

∗
D,R/2) = δ(Z1), and thus, by Theorem 3.16, we have

|W(Z
1
) −W(Z

2
)|

|Z
1
− Z

2
|τ
≤ H.
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If neither Z
1
nor Z

2
belongs toC δ

Ω(z
0
,R/2) but one of them, say Z

1
∈ Σ∗D,R/2, we have |Z1 − Z2| ≤ δH = δ(Z1), and

the results follows as before. If, instead, none of them belongs neither toC δ
Ω(z

0
,R/2) nor to Σ

∗
D,R/2, we have two

cases:

∙ |Z
1
− Z

2
| ≤ max{dist(Z

1
, Σ

∗
D,R/2), dist(Z2, Σ

∗
D,R/2)},

∙ |Z
1
− Z

2
| > max{dist(Z

1
, Σ

∗
D,R/2), dist(Z2, Σ

∗
D,R/2)}.

In thefirst case, at least one of the twopoints, say Z
1
, satisfies the inequality |Z

1
−Z

2
| ≤ δH < dist(Z1, Σ∗D,R/2) =

δ(Z
1
), and we have the result as before. In the second case, there exists at least one Z ∈ Σ∗D,R/2 such that

|Z − Z
1
| ≤ |Z

1
− Z

2
|, and using the triangle inequality, it follows that |Z − Z

2
| ≤ 2|Z

1
− Z

2
|. Since the result

has been proved for the case when at least one point belongs to Σ

∗
D,R/2, we find

|W(Z
1
) −W(Z

2
)| ≤ |W(Z

1
) −W(Z)| + |W(Z) −W(Z

2
)| ≤ 3H|Z

1
− Z

2
|τ , (3.35)

andwe conclude theHölder regularitywith constantT = max{3H, 2δ−τH ‖W‖L∞(CΩ(z,R/2))}, with 0 < H < 1 given
by Theorem 3.16, see (3.34).

Corollary 3.18. Assume Hypotheses 1.1 and let w be the solution to problem (3.5) with z ∈ Ω and R > 0. Then
the function w ∈ Cτ(Ω(z, R/2)) for some 0 < τ < 1

2

.

Proof. Since Ω satisfies Hypotheses 1.1, there exists 0 < δH < δ(Z) for Z ∈ Σ∗D,R/2, and we can assume that

δ(Z) ≥ min{δH, dist(Z, Σ∗D,R/2)} for Z ∈ Σ
∗
N,R/2, with δ(Z) given in Theorem 3.16.

Suppose that z
1
, z

2
∈ (Ω(z, R/2)).

∙ If |z
1
− z

2
| ≥ δH, then, due to Corollary 3.14, we have ‖w‖L∞(Ω(z,R/2)) < ∞, and therefore

|w(z
1
) − w(z

2
)|

|z
1
− z

2
|τ
≤

2

δτH
max

Ω(z,R/2)
w.

∙ While for |z
1
− z

2
| < δH, let us set Z1 = (z1, 0) and Z2 = (z2, 0), Z1, Z2 ∈ C

Ω(z,R/2), such that |Z1 − Z2| < δH.
Then, as in (3.35) in Theorem 3.17,

|w(z
1
) − w(z

2
)|

|z
1
− z

2
|τ
=
|W(Z

1
) −W(Z

2
)|

|Z
1
− Z

2
|τ
≤ 3H, 0 < H < 1.

Hence, we conclude

|w(z
1
) − w(z

2
)| ≤ T|z

1
− z

2
|τ for all z

1
, z

2
∈ Ω(z, R/2),

with T = max{3H, 2δ−τH ‖w‖L∞(Ω(z,R/2))} and δH > 0 given as above.
We prove now the main result of this work.

Proof of Theorem 1.2. Given z ∈ Ω and 0 < R < 1, let v be the solution to (3.4) and w = u − v a function satis-
fying (3.5). Thus, using (3.13) and Corollary 3.18, we conclude that, for any x, y ∈ Ω(z, R/2),

ω(u, R/2) ≤ ω(w, R/2) + 2 max

x∈Ω(z,R/2)
v(x) ≤ TRτ + C(N, s, |ΣD|)‖f ‖Lp(Ω(z,R))R2s−N/p ≤ CRγ ,

where γ = min{τ, 2s − Np } <
1

2

and C = max{T, 2C(N, s, |ΣD|)‖f ‖Lp(Ω(z,R))}, with

T = max{3H, 2δ−τH ‖w‖L∞(Ω(z,R/2))} = max{3H, 2δ−τH ‖u − v‖L∞(Ω(z,R/2))}.
Moreover, by Theorem 3.7,

‖u − v‖L∞(Ω(z,R/2)) ≤ ‖u‖L∞(Ω(z,R)) + ‖v‖L∞(Ω(z,R)) ≤ 2C(N, s, |ΣD|)‖f ‖Lp(Ω(z,R)).
Hence, we obtain

T ≤ max{3H, 4δ−τH C(N, s, |ΣD|)‖f ‖p}.

Therefore, C = max{3H, 4δ−τH C(N, s, |ΣD|)‖f ‖Lp(Ω(z,R))}. Repeating the steps above in Theorem 3.17, we con-

clude

|u(x) − u(y)| ≤H |x − y|γ for any x, y ∈ Ω(z, R/2), (3.36)
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where

H = max{9H,

C(N, s, |ΣD|)‖f ‖Lp(Ω(z,R))
δγH

},

and γ = min{τ, 2s − Np } <
1

2

. Since the constants H and γ do not depend neither on z nor on R, to complete

the proof, set zi ∈ Ω, i = 1, 2, . . . ,m and Ri > 0, small enough such that

Ω =
m
⋃
i=1

Ω(zi , Ri/4).

Then (3.36) follows by using a suitable recovering argument.

4 Moving the boundary conditions

In this last part, we study the behavior of the solutions to problem (1.1) when we move the boundary con-

ditions. First, let us describe this mixed moving boundary data framework. As introduced above, given

Iε = [ε, |∂Ω|], let us consider the family of closed sets {ΣD(α)}α∈Iε , satisfying (B1)–(B3). We define ΣN(α) =
∂Ω\ΣD(α) and Γ(α) = ΣD(α) ∩ ΣN(α). Observe that, under hypotheses (B1)–(B3), the limit sets ΣD(α), ΣN(α)
as α → ε+ are not degenerated sets (for instance, a Cantor-like set).

For a family of this type, we consider the corresponding family of mixed boundary value problems

{
(−∆)su = f in Ω,

Bα(u) = 0 on ∂Ω,
(4.1)

where Bα(u)means B(u) with ΣD, ΣN, and Γ replaced by ΣD(α), ΣN(α), and Γ(α), respectively.
Our main aim here is to prove Theorem 1.3.

The key point in order to obtain it, is to prove that we can choose βs > 0 in (3.11) independent of the

measure of the Dirichlet part. Nevertheless, as we will see below, when one takes α → 0

+
, the control of the

Hölder norm of such a family is lost. Hence, it is necessary to fix a positive minimum ε > 0 on the measure of

the family {ΣD(α)}α∈Iε in order to guarantee the control on the Hölder norm for the family {uα}α∈Iε .

Proof of Theorem 1.3. By the corresponding Hypotheses 1.1, there exists δ > 0 such that ρ(Z) ≥ δ for all

Z ∈ ∂LCΩ
. Then the following hold:

(1) If Z ∈ C
Ω
\ Σ∗D(α), inequality (3.11) holds true with βs = cs/ζλ independent of α, for all 0 < ρ < δ.

(2) If Z ∈ Σ∗D(α) \ Γ
∗(α), we can set 0 < ρ < min{δ, dist(Z, Γ∗(α))} such that for all X ∈ C

Ω
(Z, ρ),

Π(X, Σ∗D ∩ Bρ(Z),CΩ
(Z, ρ)) ≥ φ > 0,

with φ independent from α, recalling that (according to [15, Section 4])

Π(x
0
, E, A) = |Vx

0

(E) ∩ 𝕊N−1(x0)| = |Sx
0

|,

withV defined as follows: Given x
0
∈ A and a closed set E ⊂ A, let us consider the coneVx

0

(E) ⊂ A consisting

on all rays starting at x
0
and ending at some point P ∈ E.

Hence, inequality (3.11) holds true with βs ≤ csφ also independent from α.

(3) If Z ∈ Γ∗(α), we can assume, without loss of generality, that for some neighborhood of radius 0 <
ρ < min{δ, δ

Γ
} of the point Z = (Z

1
, . . . , ZN+1), ∂LCΩ

coincides with the hyperplane ℝN+1 ∩ {xN = 0} and
Γ

∗(α) ⊂ ℝN+1+ ∩ {xN = 0, xN−1 = 0}, in such a way that in Σ

∗
D(α), we have xN−1 ≥ 0, and in Σ

∗
N(α), we

have xN−1 < 0. Now, C
Ω
(Z, ρ) is transformed by the bi-Lipschitz transform (that in fact keeps the extension

variable unchanged)

xi = ξi , i = 1, 2, . . . , N − 1, xN =
{
{
{

ξN if ξN−1 < 0,
ξN − ξN−1 if ξN−1 ≥ 0,
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into a set Oρ(Z) = O1

ρ(Z) ∪ O2

ρ(Z), with

O1

ρ(Z) = {ξN ≥ 0, ξN−1 < 0,
N
∑
i=1
(ξi − Zi)2 + (y − ZN+1)2 ≤ ρ2},

O2

ρ(Z) = {ξN−1 ≥ 0,
N−1
∑
i=1
(ξi − Zi)2 + (y − ZN+1)2 ≤ ρ2,

ξN−1 ≤ ξN ≤ ξN−1 + (ρ2 −
N−1
∑
i=1
(ξi − Zi)2 − (y − ZN+1)2)

1/2
}.

Moreover, Σ

∗
D ∩ Bρ(Z) is transformed into the set

Dρ(Z) = {ξN = ξN−1, ξN−1 ≥ 0,
N−1
∑
i=1
(ξi − Zi)2 + (y − ZN+1)2 ≤ ρ2}.

Given X
0
∈ Oρ(Z), we use again the representation (see [15, cfr. 13.1]):

Π(X
0
,Dρ(Z),Oρ(Z)) =

1

|𝕊N(X0)|
∫

Dρ(Z)

1

|X
0
− Y|N

cos(ψ) dσ,

where cos(ψ) = ⟨ X0−Y|X
0
−Y| , v⃗⟩, with v⃗ the normal vector to {ξN = ξN−1} ∩ ℝN+1+ . Since cos(ψ) vanish only when

X
0
∈ Dρ(Z), we conclude that Π(X0,Dρ(Z),ℝN+1+ ) ≥ φ > 0 for all X

0
∈ Oρ(Z) and some φ > 0 independent

of α. On the other hand, it is immediate that φ is independent of ρ. Hence, inequality (3.11) holds true with
βs ≤ csφ also independent of α.

Let us define

ρα(Z) :=
{{{
{{{
{

min{δ, dist(Z, Σ∗D)} if Z ∈ C
Ω
\ Σ∗D(α),

min{δ, dist(Z, Γ∗)} if Z ∈ Σ∗D(α) \ Γ
∗(α),

min{δ, δ
Γ
} if Z ∈ Γ∗(α).

(4.2)

As a consequence of (1)–(3) above, we deduce the following:
(i) By (3.26), the constant Λ appearing in Theorem 3.12 and Theorem 3.15 is independent of α. Hence,

inequality (3.28) does not depends on α, and also the number 0 < H < 1 in Theorem3.16 is independent

from α.
(ii) By (3.32), the constant η in Theorem 3.15 is independent from α and, by (3.33), also 0 < γ < 1

2

is inde-

pendent from α.
Then, given uα a solution to problem (4.1) with α ∈ Iε, by Theorem 1.2, we deduce

‖uα‖Cγ(Ω) ≤Hα ,

with γ = min{τ, 2s − Np } <
1

2

independent of α and Hα = max{9H, C(N, s, α)‖f ‖p/δτH,α}, with the constants

0 < τ < 1

2

and δH,α given as in Corollary 3.18. Now, if we consider the family {uα}α∈Iε , since ρα
1

(Z) ≤ ρα
2

(Z), it
is clear that δH,α

1

≤ δH,α
2

and, therefore,Hα
1

≥Hα
2

for all α
1
, α

2
∈ [ε, |∂Ω|], α

1
≤ α

2
. Therefore, we can take

0 < γ < 1

2

and Hε = max{9H, C(N, s, ε)‖f ‖p/δτH,ε} independent from α such that

‖uα‖Cγ(Ω) ≤Hε .

To conclude, we observe that the condition α ∈ [ε, |∂Ω|] is necessary in order to control the Hölder norm of

the family {uα}α∈Iε . If we let α = |ΣD(α)| → 0

+
, then it is clear that |Σ∗D(α) ∩ C Ω

(Z, ρ)| → 0 for any Z ∈ C
Ω

and ρ > 0. Thus, if α → 0

+
, we conclude from (4.2) that ρα(Z) → 0 for any Z ∈ Σ∗D, and hence δH,α → 0 while

Hα → +∞.

Remark 4.1. Given an interphase point Z ∈ Γ∗, it is clear from (4.2) that we can choose a uniform ρε > 0 in
the lines of [8, Corollary 6.1]. In fact, it is enough to choose δ

Γ
in (4.2) in such a way that Σ

∗
D(ε) ∩ C Ω

(Z, ρ)
is contained in some hyperplane (see (3) in the proof of Theorem 1.3). Clearly, this Dirichlet boundary part,

say ({xN = 0, xN−1 ≥ 0} ∩ ℝN+1+ ) ∩ Bρε (Z), converges to an empty set as ρε → 0.
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