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Abstract
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conditions.
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1. Introduction

We study a nonlinear elliptic problem involving the fractional Laplace
operator and a concave-convex power term together with mixed Dirichlet-
Neumann boundary conditions. Namely,

(−∆)su = λuq + ur in Ω,
u > 0 in Ω,
u = 0 on ΣD,

∂u

∂ν
= 0 on ΣN ,

(Pλ)

where Ω ⊂ RN is a bounded domain with smooth boundary, N > 2s,
(−∆)s, with 1

2 < s < 1, denotes the spectral fractional Laplace operator,

λ > 0 is a real parameter and 0 < q ≤ 1 < r < N+2s
N−2s . In order to simplify

the notation we denote the mixed boundary conditions as

B(u) = uχΣD +
∂u

∂ν
χΣN , (1.1)

where χA stands for the characteristic function of a set A and we assume
that the boundary manifolds ΣD and ΣN are such that
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(B)



ΣD and ΣN are smooth (N − 1)-dimensional submanifolds of ∂Ω.

ΣD is a closed manifold of positive (N − 1)-dimensional Lebesgue

measure, |ΣD| = α ∈ (0, |∂Ω|).
ΣD ∩ ΣN = ∅ , ΣD ∪ ΣN = ∂Ω and ΣD ∩ ΣN = Γ, where Γ is a

smooth (N−2)-dimensional submanifold of ∂Ω.

Problems like (Pλ) have been studied in the last decades: with the
classical Laplace operator and Dirichlet boundary condition, c.f. [8] or [3]
for a deep study; with the Laplace operator and mixed Dirichlet-Neumann
boundary conditions, cf. [1, 2, 16]; with the p-Laplace operator, cf. [8, 20,
21]; with fully nonlinear operators, cf. [13]; and more recently with the
fractional Laplace operator and Dirichlet boundary conditions, cf. [6, 7,
9]. Up to our knowledge, this is the first work where the concave-convex
problem is analyzed with the spectral fractional Laplace operator associated
with mixed Dirichlet-Neumann boundary conditions.

The main result proven in this work is the following:

Theorem 1.1. Assume that 1
2 < s < 1, N > 2s and 0 < q ≤ 1 < r <

N+2s
N−2s . Then:

(1) If q = 1 there exists at least one solution to (Pλ) for every 0 < λ <
λs1, where λs1 denotes the first eigenvalue of the spectral fractional
Laplacian with the boundary conditions (1.1), while there is no
solution for λ ≥ λs1. Even more, there is a branch of solutions to
(Pλ) bifurcating from (λ, u) = (λs1, 0), which cuts the axis {λ = 0}.

(2) If 0 < q < 1 there exists 0 < Λ <∞ such that:
(a) For 0 < λ < Λ there is a minimal solution to (Pλ). Moreover,

the family of minimal solutions is increasing with respect to λ.
(b) For λ = Λ there is at least one solution to (Pλ).
(c) For λ > Λ there is no solution to (Pλ).
(d) Problem (Pλ) admits at least two solutions for every 0 < λ < Λ.

The following result deals with the sub-linear case 0 < q < 1 and it
provides a uniform L∞(Ω)-bound for all the solutions to problems (Pλ) for
any 0 < λ ≤ Λ.

Theorem 1.2. Assume that 1
2 < s < 1, N > 2s, 0 < q < 1 < r <

N+2s
N−2s . Then, there exists a constant C = C(N, s,Ω, r, q) > 0 such that

sup
x∈Ω

uλ(x) ≤ C,
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for any solution uλ to problems (Pλ) with λ ∈ [0,Λ], and Λ defined in
Theorem 1.1.

We also obtain uniform L∞-estimates, in the case in which we move the
boundary conditions. To be precise, we consider a family of sets {ΣD(α)},
with α ∈ (0, |∂Ω|] and |·| denoting the Lebesgue measure in the appropriate
dimension, such that:

(B1) ΣD(α) is connected or has a finite number of connected components.
(B2) ΣD(α1) ⊂ ΣD(α2) if α1 < α2.
(B3) |ΣD(α)| = α.

We call ΣN (α) = ∂Ω\ΣD(α) and we assume that ΣD(α) ∩ ΣN (α) = Γ(α)
is a (N − 2)-dimensional smooth submanifold. For a family of this type we
consider the corresponding family of mixed boundary value problems, (−∆)su = λuq + ur in Ω,

u > 0 in Ω,
Bα(u) = 0 on ∂Ω,

(Pα,λ)

where Bα(u) is defined as B(u) with ΣD, ΣN replaced by ΣD(α), ΣN (α)
satisfying the corresponding hypotheses (Bα) and (B1)-(B3). In this sce-
nario we prove the following result.

Theorem 1.3. Consider the family {ΣD(α)}α∈(0,|∂Ω|] satisfying the
hypotheses (Bα) and (B1)-(B3). For every 0 < ε < |∂Ω|, let us denote
Iε = [ε, |∂Ω|] and let

Sε = {u : Ω→ R| such that u is solution of (Pα,λ), with α ∈ Iε}.

Then, there exists a constant Mε > 0 such that

‖u‖L∞(Ω) ≤Mε, ∀u ∈ Sε.

In addition, we will also prove the following behavior for the minimal
solutions as we move the boundary conditions.

Theorem 1.4. Consider the family {ΣD(α)}α∈(0,|∂Ω|] satisfying the
hypotheses (Bα) and (B1)-(B3). Then

(1) the minimal solutions {u(α)} are uniformly bounded for any α ∈
[0, |∂Ω|]. Moreover,

‖u(α)‖Hs(Ω), ‖u(α)‖L∞(Ω) → 0 as α→ 0;

(2) the non minimal solutions (of mountain pass type) are bounded and
they converge to zero in Hs(Ω) as α→ 0.
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The paper is organized as follows: In Section 2, we introduce the ap-
propriate functional framework for the spectral fractional Laplace operator.
In that section we also recall the extension technique due to Caffarelli and
Silvestre, see [11], that provides an equivalent definition of the fractional
Laplace operator via an auxiliary problem. In Section 3 we study a half-
space problem that will be useful in the proof of the main theorem; we make
use of the moving planes method and we extend some results of [17] to the
fractional setting. Section 4 is devoted to the concave-convex problem by
means of certain limit problems, and we also prove Theorem 1.2 and Theo-
rem 1.3 which are based on the blow-up method of [23]. To accomplish this
step we need some compactness properties that requires to know precise
Hölder estimates for the solutions to mixed boundary problems. We use
the results of [12] where the Hölder regularity of such solutions is proven.
Section 5 is devoted to the proof of Theorem 1.1 and the behavior when we
move the boundary conditions of some class of solutions.

2. Functional setting and preliminaries

As far as the fractional Laplace operator is concerned, we recall its
definition given through the spectral decomposition. We closely follow the
notation and framework of [12]. Let (ϕi, λi), i ∈ N, be the eigenfunctions
(normalized with respect to the L2(Ω)-norm) and the eigenvalues of (−∆)
equipped with homogeneous mixed Dirichlet-Neumann boundary data, re-
spectively. Then the pairs (ϕi, λ

s
i ), i ∈ N, turn out to be the eigenfunctions

and eigenvalues of the fractional operator (−∆)s. Consequently, given two

smooth functions ui(x), i = 1, 2, we have that ui(x) =
∑
j≥1

〈ui, ϕj〉ϕj , and

thus
〈(−∆)su1, u2〉 =

∑
j≥1

λsj〈u1, ϕj〉〈u2, ϕj〉,

i.e., the action of the fractional operator on a function u1 is given by

(−∆)su1 =
∑
j≥1

λsj〈u1, ϕj〉ϕj .

Hence the operator (−∆)s is well defined for functions that belong to the
fractional Sobolev Space that vanish on ΣD. Indeed for any smooth function
we consider its spectral decomposition as

u =
∑
j≥1

ajϕj with aj = 〈u, ϕj〉 ∈ `2

that allows us to define the following norm

‖u‖2Hs(Ω) =
∑
j≥1

a2
jλ

s
j .

Thus we define the Sobolev space as
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Hs
ΣD(Ω) = C∞0 (Ω ∪ ΣN )

‖·‖Hs(Ω)
.

Observe that for any u ∈ Hs
ΣD

(Ω),

‖u‖Hs
ΣD

(Ω) =
∥∥∥(−∆)

s
2u
∥∥∥
L2(Ω)

.

As already stressed in [25, Theorem 11.1], if 0 < s ≤ 1
2 then Hs

0(Ω) = Hs(Ω)

and, therefore, also Hs
ΣD

(Ω) = Hs(Ω), while for 1
2 < s < 1, Hs

0(Ω) (
Hs(Ω). Hence, the range 1

2 < s < 1, for which we have Hs
ΣD

(Ω) ( Hs(Ω),
provides the correct functional space to study the mixed boundary problem
(Pλ).

This definition of the fractional powers of the Laplace operator allows us
to integrate by parts in the appropriate spaces, so that a natural definition
of weak solution to problem (Pλ) is the following.

Definition 2.1. We say that a positive function u ∈ Hs
ΣD

(Ω) is a

solution to (Pλ) if∫
Ω

(−∆)s/2u (−∆)s/2ψdx =

∫
Ω

(λuq + ur)ψdx, for all ψ ∈ Hs
ΣD(Ω).

Following the previous definition, we can associate to problem (Pλ) the
following energy functional,

Iλ(u) =
1

2

∫
Ω
|(−∆)s/2u|2dx− λ

q + 1

∫
Ω
|u|q+1dx− 1

r + 1

∫
Ω
|u|r+1dx, (2.1)

u ∈ Hs
ΣD

(Ω), whose positive critical points correspond to solutions of (Pλ).

Working with the fractional operator (−∆)s it is well known that some
difficulties arise when one tries to obtain explicit expressions of the action
of the fractional Laplacian on, for example, products of functions. In order
to overcome this difficulties, we use the ideas by Caffarelli and Silvestre,
see [11], together with those of [9, 10] to give an equivalent definition of the
operator (−∆)s by means of an auxiliary problem that we introduce next.

Given a domain Ω, we set the cylinder CΩ = Ω×(0,∞) ⊂ RN+1
+ . We denote

by (x, y) points that belong to CΩ and with ∂LCΩ = ∂Ω× [0,∞) the lateral
boundary of the cylinder.

Let us also denote by Σ∗D = ΣD× [0,∞) and Σ∗N = ΣN × [0,∞) as well
as Γ∗ = Γ× [0,∞).

It is clear that, by construction,

Σ∗D ∩ Σ∗N = ∅ , Σ∗D ∪ Σ∗N = ∂LCΩ and Σ∗D ∩ Σ∗N = Γ∗ .
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Given a function u ∈ Hs
ΣD

(Ω) we define its s-extension, denoted by U =

Es[u], as the solution to the problem −div(y1−2s∇U) = 0 in CΩ,
B(U) = 0 on ∂LCΩ,

U(x, 0) = u(x) on Ω× {y = 0},
where

B(U) = UχΣ∗D
+
∂U

∂ν
χΣ∗N

,

being ν, with an abuse of notation, the exterior normal to ∂LCΩ (in fact, if
ν denotes the outwards normal vector to ∂Ω and ν(x,y) the outwards normal
vector to CΩ then, by construction, ν(x,y) = (ν, y), y > 0). Following the
well known result by Caffarelli and Silvestre (see [11]), U is related to the
fractional Laplacian of the original function through the formula

∂U

∂νs
:= −κs lim

y→0+
y1−2s∂U

∂y
= (−∆)su(x),

where κs is a suitable positive constant (see [9] for its exact value). The
extension function belongs to the space

H1
Σ∗D

(CΩ, y
1−2sdxdy) := C∞0 ((Ω ∪ ΣN )× [0,∞))

‖·‖
H1

Σ∗D
(CΩ,y1−2sdxdy)

,

that is a Hilbert space equipped with the norm induced by the scalar pro-
duct

〈U, V 〉H1
Σ∗D

(CΩ,y1−2sdxdy) = κs

∫
CΩ
y1−2s〈∇U,∇V 〉dxdy.

Moreover, the following inclusions are satisfied, for 1
2 < s < 1,

H1
0 (CΩ, y

1−2sdxdy) ⊂ H1
Σ∗D

(CΩ, y
1−2sdxdy) ( H1(CΩ, y

1−2sdxdy), (2.2)

with H1
0 (CΩ, y

1−2sdxdy) the space of functions that belong to
H1(CΩ, y

1−2sdxdy) and vanish on the lateral boundary of CΩ.

Consequently, we can reformulate problem (Pλ) in terms of the exten-
sion problem as follows:

−div(y1−2s∇U) = 0 in CΩ,
B(U) = 0 on ∂LCΩ,

U > 0 on Ω× {y = 0},
∂U

∂νs
= λU q + U r on Ω× {y = 0}.

(P ∗λ )

Hence we give a definition of energy solution of (P ∗λ ) in the following
way.

Definition 2.2. An energy solution to problem (P ∗λ ) is a function U
belonging to H1

Σ∗D
(CΩ, y

1−2sdxdy), with U > 0 on Ω× {y = 0}, such that
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κs

∫
CΩ
y1−2s〈∇U,∇ϕ〉 dxdy =

∫
Ω

(λU q(x, 0) + U r(x, 0))ϕ(x, 0)dx,

for all ϕ ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy).

To any energy solution U ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy) to problem (P ∗λ ) we

can associate the function u(x) = Tr[U(x, y)] = U(x, 0), that belongs to
Hs

ΣD
(Ω), and solves problem (Pλ). Moreover, also the viceversa is true:

given a solution u ∈ Hs
ΣD

(Ω) we can define its s-extension U(x, y) as a

solution of (P ∗λ ) with U ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy). Thus, both formulations

are equivalent and the Extension operator

Es : Hs
ΣD(Ω)→ H1

Σ∗D
(CΩ, y

1−2sdxdy),

allows us to switch from (Pλ) to (P ∗λ ).
According with [11, 9], due to the choice of the constant κs, the exten-

sion operator Es is an isometry, i.e.,

‖Es[ϕ](x, y)‖H1
Σ∗D

(CΩ,y1−2sdxdy) = ‖ϕ(x)‖Hs
ΣD

(Ω), ∀ ϕ ∈ Hs
ΣD(Ω).

It has also been proved in [9] that there exists C0 = C0(N, s, r, |Ω|) such
that the trace inequality,∫

CΩ
y1−2s|∇z(x, y)|2dxdy ≥ C0

(∫
Ω
|z(x, 0)|rdx

) 2
r

,

for any z ∈ H1
0 (CΩ, y

1−2sdxdy), provided 1 ≤ r ≤ 2∗s, N > 2s, where

2∗s = 2N
N−2s is the critical fractional Sobolev exponent. Such inequality

turns out to be very useful and it is in fact equivalent to the fractional
Sobolev inequality,∫

Ω
|(−∆)

s
2 v|2dx ≥ C0

(∫
Ω
|v|rdx

) 2
r

, ∀v ∈ Hs
0(Ω), 1 ≤ r ≤ 2∗s, N > 2s.

When mixed boundary conditions are considered, the situation is quite
similar since the Dirichlet condition is imposed on a set ΣD ⊂ ∂Ω such
that |ΣD| = α > 0. Hence, thanks to (2.2), there exists a positive constant
S(ΣD) = S(N, s,ΣD,Ω) such that

0 < S(ΣD) := inf
u∈Hs

ΣD
(Ω)

u6≡0

‖u‖2Hs
ΣD

(Ω)

‖u‖2
L2∗s (Ω)

≤ inf
u∈Hs

0(Ω)
u6≡0

‖u‖2Hs
0(Ω)

‖u‖2
L2∗s (Ω)

.

Remark 2.1. Actually, S(ΣD) ≤ 2−
2s
N C0(N, s), see [15]. Moreover,

taking in mind the spectral definition of the fractional operator and making

use of the Hölder inequality, it follows that S(ΣD) ≤ |Ω|
2s
N λs1(α), with λ1(α)
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the first eigenvalue of the Laplace operator with mixed boundary conditions
on the sets ΣD = ΣD(α) and ΣN = ΣN (α). Under geometrical assumptions
(B1)-(B3) one has that, by [16, Lemma 4.3], λ1(α) → 0 as α ↘ 0 which
shows that S(ΣD)→ 0 as α↘ 0.

Then, in analogy with the Dirichlet boundary data case, the following
mixed trace inequality holds (see [12]).

Lemma 2.1. There exists a constant C = C(N, s, r,ΣD,Ω) > 0 such
that, ∫

CΩ
y1−2s|∇ϕ|2dxdy ≥ C

(∫
Ω
|ϕ(x, 0)|rdx

) 2
r

, (2.3)

for any ϕ ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy) and 1 ≤ r ≤ 2∗s, N > 2s, where 2∗s =

2N
N−2s .

As a consequence,∫
Ω
|(−∆)

s
2 v|2dx ≥ κsC

(∫
Ω
|v|rdx

) 2
r

, ∀v ∈ Hs
ΣD(Ω), 1 ≤ r ≤ 2∗s, N > 2s.

Note that in case r = 2∗s, then κsC = S(ΣD).

3. Moving planes and monotonicity

In this section we establish a monotonicity result for bounded solutions
to (−∆)su = ur in RN+ ≡ RN−1 × R+ satisfying the boundary conditions:

• u = 0 on ΣD(τ) = {(x1, · · · , xN ) ∈ RN : xN = 0, x1 ≤ τ}, for some
τ ∈ R.
• ∂u

∂xN
= 0 on ΣN (τ) = {(x1, · · · , xN ) ∈ RN : xN = 0, x1 > τ}, for

some τ ∈ R.

The principal result proven in this section is the following.

Theorem 3.1. Assume that 1 < r < N+2s
N−2s , N > 2s, and τ ∈ R. Let

u ∈ Hs
loc(RN+ ) ∩ C0(RN+ ) be a weak solution to

(−∆)su = ur, u > 0, in RN+ ,
u = 0 on ΣD(τ),

∂u
∂xN

= 0 on ΣN (τ).
(3.1)

Then, u is nondecreasing with respect to the x1-direction.

Remark 3.1. We make the proof assuming τ = 0. For τ 6= 0 the proof
is analogous through a translation with respect to the variable x1.
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The proof of Theorem 3.1 is based on the moving planes method, in-
troduced by Alexandrov and first exploited in the context of Partial Differ-
ential Equations by J. Serrin [27], see also [22] for more details.

Let us introduce some notations in order to apply the moving planes
method. We denote by RN+1

++ ≡ RN+ ×R+, i.e., the set of points X = (x, y)
with x = (x1, . . . , xN ) and xN , y > 0. For a fixed ρ ∈ R, we define the sets

Υρ = {x ∈ RN+ : x1 < ρ}, Υ∗ρ = Υρ × R+,

Tρ = {X ∈ RN+1
++ : x1 = ρ}.

For any X ∈ RN+1
++ the reflection with respect to the hyperplane Tρ is

denoted by

Xρ = (xρ, y) = X + 2(ρ− x1)e1 = (2ρ− x1, x2, . . . , xN , y).

Let us define the point Oρ = (2ρ, 0, . . . , 0, 0) ∈ RN+1, whose reflection is
the origin, and oρ = (2ρ, 0, . . . , 0) ∈ RN . We also recall that the Kelvin
transform of a nontrivial point x ∈ RN is given by K(x) = x

|x|2 . It is easy

to see that K(RN+ ) = RN+ and K
(
Υ∗ρ
)

= (RN+1
++ )∩B 1

−4ρ
(O 1

4ρ
) for any ρ < 0.

Fig. 1: The Kelvin Transform acting on the set Υ∗ρ, with ρ < 0.

Next, we follow an approach similar to the one in [9] based on the
fractional Kelvin transform, Ks(u), which acts on functions defined in a
subset of RN , in the following way:

Ks(u) =
1

|x|N−2s
u (K(x)) =

1

|x|N−2s
u

(
x

|x|2

)
.

As proven in [9], if (−∆)su = f(u), then the action of the fractional lapla-
cian on the fractional Kelvin transform of u is given by

(−∆)sKs(u) =
1

|x|N+2s
f (u(K(x))) .
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Let u(x) be a solution to problem (3.1) and define f(t) = tr and g(t) =
f(t)

t
N+2s
N−2s

. Then, the Kelvin transform v = Ks(u) satisfies the following mixed

BVP, 
(−∆)sv = g(|x|N−2sv)v

N+2s
N−2s , v > 0, in RN+ ,

v = 0 on ΣD(0),
∂v

∂xN
= 0 on ΣN (0),

since on {xN = 0}, we have

∂v

∂xN
(x) = (2s−N)

xN

|x|N+2(1−s)u (K(x)) +
1

|x|N−2s

∂u

∂xN
(K(x)) = 0.

Moreover, v is a continuous and positive function in RN\{0}, with a possible
singularity at the origin and it decays at infinity as 1

|x|N−2su(0), thus v ∈
L2∗s (RN+ )∩L∞(RN+\Br(0)) for any r > 0. Finally, we consider V = Es[v] the
extension function of the Kelvin transform v = Ks(u) and the corresponding
extension problem,
−div(y1−2s∇V ) = 0 in RN+1

++ ⊂ RN+1
+ ,

B(V ) = 0 on (ΣD(0) ∪ ΣN (0))× R+,
∂U

∂νs
= g(|x|N−2sv)v

N+2s
N−2s on Ω× {y = 0}.

(3.2)
Observe that, since v ∈ L2∗s (RN+\Br(0)) for any r > 0 and the extension op-

erator Es is an isometry, by [19], the extension function V ∈ L2
∗
(Υ∗ρ, y

1−2sdX)

for any ρ < 0, where 2
∗

= 2(N+1)
N−1 denotes to the Sobolev conjugate expo-

nent in dimension N + 1.
The following lemma, which extends to the fractional framework [17,

Lemma 2.1], provides us with a key-point inequality in order to obtain
monotonicity in the x1-direction for the function V defined in (3.2).

Here we use the notation Vρ(X) = V (Xρ) and vρ(x) = v(xρ) for the
reflected functions that are singular at the point Oρ and oρ respectively.
Moreover we denote by Aρ = {x ∈ Υρ\Oρ : v ≥ vρ}.

Lemma 3.1. Assume that u ∈ Hs
loc(RN+ )∩C0(RN+ ) is a weak solution of

(3.1) and let v = Ks(u). Then, for any ρ < 0, (v−vρ)+∈Hs
ΣD

(Υρ)∩L∞(Υρ).
Moreover, there exists Cρ > 0, increasing with respect to ρ, such that∫

Υ∗ρ

y1−2s|∇(V − Vρ)+|2dxdy

≤ Cρ

(∫
Aρ

1

|x|2N
dx

) 2s
N ∫

Υ∗ρ

y1−2s|∇(V − Vρ)+|2dxdy. (3.3)
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P r o o f. Since for a given ρ < 0 there exists r > 0 such that Υρ ⊂
RN+\Br(0), the functions v and (v− vρ)+ ≤ v belong to L2∗s (Υρ)∩L∞(Υρ)

and the function 1
|x|2N is integrable in Υρ. The assertion (v−vρ)+∈Hs

ΣD
(Υρ)

follows from (3.3) taking in mind that the extension operator Es is an
isometry.

In order to prove inequality (3.3) we test conveniently the equations

(−∆)sv = g(|x|N−2sv)v
N+2s
N−2s , (−∆)svρ = g(|xρ|N−2svρ)v

N+2s
N−2s
ρ ,

in the set Υρ\Oρ. At this point, we make full use of the extension technique,
so that we consider the extension functions V = Es[v] and Vρ = Es[vρ] =
V (Xρ) and we set the nonnegative function ϕ = ϕε = η2

ε(V −Vρ)+ as a test
function in the corresponding extended problem for a convenient function
ηε. More precisely, for ε > 0 small enough we take ηε ∈ C1

0(RN+1) with
0 ≤ ηε ≤ 1 and such that:

ηε ≡ 1 for 2ε ≤ |X −Oρ| ≤
1

ε

ηε ≡ 0 for |X −Oρ| ≤ ε or
2

ε
≤ |X −Oρ|,

|∇ηε| ≤
c

ε
for ε < |X −Oρ| < 2ε

|∇ηε| ≤ cε for
1

ε
< |X −Oρ| <

2

ε
.

Observe that in the set Υ∗ρ the function (V − Vρ)
+ vanishes where

the Dirichlet condition holds for V but also where the Dirichlet condition
holds for the reflected function and, therefore, it is allowed to take ϕ =
η2
ε(V − Vρ)+ as a test function in the corresponding extended problem.

Fig. 2: The Kelvin transform centered at 0 acting on ΣD(0) (doted line)
and ΣN (0) for the functions v and vρ.

Thus, using the definition of weak solution for the extended problem
satisfied by V and Vρ respectively and subtracting those expressions, we
obtain
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κs

∫
Υ∗ρ

y1−2s∇(V − Vρ)∇ϕdxdy

=

∫
Υρ

(
g(|x|N−2sv)v

N+2s
N−2s − g(|xρ|N−2svρ)v

N+2s
N−2s
ρ

)
ϕ(x, 0)dx.

On the other hand,

κs

∫
Υ∗ρ∩[2ε≤|X−Oρ|≤ 1

ε
]

y1−2s|∇(V −Vρ)+|2dxdy ≤ κs
∫

Υ∗ρ

y1−2s|∇(ηε(V −Vρ)+)|2dxdy

= κs

∫
Υ∗ρ

y1−2s∇(V − Vρ)∇ϕdxdy + κs

∫
Υ∗ρ

y1−2s[(V − Vρ)+]2|∇ηε|2dxdy

= κs

∫
Υ∗ρ

y1−2s∇(V − Vρ)∇ϕdxdy + Iε

=

∫
Υρ

(
g(|x|N−2sv)v

N+2s
N−2s − g(|xρ|N−2svρ)v

N+2s
N−2s
ρ

)
ϕ(x, 0)dx+ Iε.

Since g is a nonincreasing function, |x| ≥ |xρ| in Υρ and v ≥ vρ in the
set where ϕ(·, 0) 6= 0, it follows that −g(|xρ|N−2svρ) ≤ −g(|x|N−2sv) and
therefore,

κs

∫
Υ∗ρ∩[2ε≤|X−Oρ|≤ 1

ε
]

y1−2s|∇(V − Vρ)+|2dxdy

∫
Υρ

g(|x|N−2sv)

(
v
N+2s
N−2s − v

N+2s
N−2s
ρ

)
ϕ(x, 0)dx+ Iε

≤
∫
Aρ
g(|x|N−2sv)

(
v
N+2s
N−2s − v

N+2s
N−2s
ρ

)
ϕ(x, 0)dx+ Iε. (3.4)

Now, if 0 ≤ vρ ≤ v from the Mean Value Theorem, we find

v
N+2s
N−2s − v

N+2s
N−2s
ρ ≤ N + 2s

N − 2s
v

4s
N−2s (v − vρ).

Using that f(t) = tr with 1 < r < N+2s
N−2s , it follows that

g(t)t
4s

N−2s =
f(t)

t
N+2s
N−2s

t
4s

N−2s =
f(t)

t
= tr−1,

and g(t)t
4s

N−2s is bounded in any interval (0, t0). Moreover, since |x|N−2sv(x)

= u
(

x
|x|2

)
is bounded from above for x ∈ Υρ and ρ < 0, we conclude
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g(|x|N−2sv)

(
v
N+2s
N−2s − v

N+2s
N−2s
ρ

)
≤ N + 2s

N − 2s
g(|x|N−2sv)v

4s
N−2s (v − vρ)

≤ N + 2s

N − 2s

g(|x|N−2sv)(|x|N−2sv)
4s

N−2s

|x|4s
(v − vρ) ≤ C̃ρ

1

|x|4s
(v − vρ),

for a positive constant C̃ρ, increasing with respect to ρ. Then, inequality
(3.4) takes the form

κs

∫
Υ∗ρ∩[2ε≤|X−Oρ|≤ 1

ε
]

y1−2s|∇(V − Vρ)+|2dxdy

≤ C̃ρ
∫
Aρ

1

|x|4s
(v−vρ)ϕ(x, 0)dx+Iε ≤ C̃ρ

∫
Aρ

1

|x|4s
η2
ε(x, 0)[(v−vρ)+]2dx+Iε

≤ C̃ρ
∫
Aρ

1

|x|4s
[(v − vρ)+]2dx+ Iε.

Using Hölder’s inequality with p = N
2s and q = 2∗s

2 we conclude

κs

∫
Υ∗ρ∩[2ε≤|X−Oρ|≤ 1

ε
]

y1−2s|∇(V − Vρ)+|2dxdy

≤ C̃ρ

(∫
Aρ

1

|x|2N
dx

) 2s
N
(∫

Υρ

[(v − vρ)+]2
∗
sdx

) 2
2∗s

+ Iε.

Next, we focus on the term Iε =

∫
Υ∗ρ

y1−2s[(V − Vρ)+]2|∇ηε|2dxdy. Define

the set

Wε =

{
X ∈ Υ∗ρ : ε < |X −Oρ| < 2ε or

1

ε
< |X −Oρ| <

2

ε

}
,

so that supp(|∇ηε|2) ⊆ Wε. Since

∣∣∣∣|∇ηε|N+1χWε

∣∣∣∣ ≤ c( 1
εN+1 ε

N+1+εN+1 1
εN+1 )

= c′ and (V −Vρ)+ ∈ L2
∗
(Υ∗ρ, y

1−2sdxdy), applying Hölder’s inequality with

p = N+1
2 and q = 2

∗

2 , we find

Iε ≤
(∫
Wε

y1−2s[(V − Vρ)+]2
∗
dxdy

) 2
2∗
(∫
Wε

y1−2s|∇ηε|N+1dxdy

) 2
N+1

≤ C
(∫
Wε

y1−2s[(V − Vρ)+]2
∗
dxdy

) 2
2∗

→ 0 as ε→ 0.

Letting ε go to 0 and applying the trace inequality (2.3), we conclude∫
Υ∗ρ

y1−2s|∇(V − Vρ)+|2dxdy
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≤ κ−1
s C̃ρ

(∫
Aρ

1

|x|2N
dx

) 2s
N
(∫

Υρ

[(v − vρ)+]2
∗
sdx

) 2
2∗s

≤ Cρ

(∫
Aρ

1

|x|2N
dx

) 2s
N ∫

Υ∗ρ

y1−2s|∇(V − Vρ)+|2dxdy,

for a positive constant Cρ increasing with respect to ρ. 2

P r o o f o f T h e o r e m 3.1. The proof follows the lines of [17, Propo-
sition 2.1] adapted to our framework. First, we establish a starting plane
that delimits a hyperspace in which the monotonicity in the x1-direction
holds. Next we extend to such a region progressively until we reach the
half-space, and in a second step, to the whole space having a special care
to the singularity of the Kelvin transform at the origin. Since∫

Aρ

1

|x|2N
dx ≤

∫
Υρ

1

|x|2N
dx→ 0, as ρ→ −∞,

then there exists −∞ < ρ0 < 0 such that

Cρ

(∫
Aρ

1

|x|2N
dx

) 2s
N

< 1, for all ρ ∈ (−∞, ρ0).

From (3.3) we deduce that (V − Vρ)+ ≡ 0 in Υ∗ρ, and therefore V ≤ Vρ in
Υ∗ρ for all ρ ∈ (−∞, ρ0). Consequently v ≤ vρ in Υρ for any ρ ∈ (−∞, ρ0).

Assume now that ρ0 < 0 is maximal. By the Maximum Principle, v <
vρ0 in Υρ0 . Then χAρ · 1

|x|2N → 0 point-wisely as ρ→ ρ0 in RN+\{Tρ0 ∪Oρ0}.
Thus, if ρ < ρ0 + δ < 0 then χAρ · 1

|x|2N ≤ χΥρ0+δ
· 1
|x|2N ∈ L

1(RN+ ) so

that applying the Dominated Convergence Theorem∫
Aρ

1

|x|2N
dx→ 0, as ρ→ ρ0,

and we conclude

Cρ

(∫
Aρ

1

|x|2N
dx

) 2s
N

< 1, ∀ρ ∈ (ρ0, ρ0 + δ),

for some δ > 0 sufficiently small. Therefore (V − Vρ)
+ ≡ 0 in Υ∗ρ for

ρ ∈ (ρ0, ρ0+δ) in contradiction with the maximality of ρ0. As a consequence
V < Vρ in Υ∗ρ provided ρ < 0 and by continuity V ≤ V0 in Υ∗0, so that v ≤ v0

in Υ0. Noticing that |x| = |xρ| for ρ = 0 we conclude u ≤ u0 in Υ0.
The above argument works for the Kelvin transform centered at a point
P = Pµ = (µ, 0, . . . , 0) ∈ RN+ , namely, vµ(x) = 1

|x|N−2su(Pµ + x
|x|2 ) with

µ ≤ 0 (see Figure 3).
This fractional Kelvin transform vµ satisfies a Dirichlet condition in the

part of the boundary with xN = 0 and x1 < 0 so we can prove as before
that for any ρ < 0 the inequality vµ ≤ vµρ holds in Υρ. Since ρ < 0 is
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arbitrary, it follows that vµ ≤ vµ0 in Υ0. Thus u ≤ uµ in Υµ for µ ≤ 0, so
u is nondecreasing in the x1-direction provided x1 < 0.

Fig. 3: The Kelvin transform centered at Pµ, µ ≤ 0 acting on ΣD(0)
(doted line) and ΣN (0) for the functions vµ and vµρ . The set ΣN (0) is

transformed into those x ∈ RN+ such that 0 < x1 < − 1
µ , so vµρ satisfies a

Neumann condition on τ < x1 < 2ρ with τ = 2ρ+ 1
µ .

Now we extend progressively the region in which the monotonicity holds
reaching Υµ for µ > 0. First, observe that we cannot continue as before
due to the singularity of the Kelvin transform at the origin: we cannot
take a moving plane starting at ρ = −∞ since for ρ large there are points
where the Neumann boundary condition holds (and the solution is positive)
which are reflected to the Dirichlet part of the boundary. In terms of the
test functions, for ρ large enough the function (V − Vρ)+ is not allowed
to be chosen as test function for the problem satisfied by the reflected
function Vρ , since it does not vanish at those points of the boundary where
the Dirichlet condition for Vρ holds.

Nevertheless, an inequality similar to (3.3) holds for (vµ − vµρ )+ if ρ is
close to 0 so that we extend the inequality vµ(x) < vµρ (x) = vµ(xρ) for
every ρ < 0 fixed, moving µ from µ = 0 where the strict inequality is true
up to µ = −1

2ρ .

Fig. 4: The Kelvin transform centered at Pµ, µ ≥ 0 acting on ΣD(0)
(doted line) and ΣN (0) for the functions vµ and vµρ . The set ΣD(0) is

transformed into the x ∈ RN+ such that xN = 0 and − 1
µ < x1 < 0, so the

reflected function vµρ satisfies a Dirichlet condition on 2ρ < x1 < τ with
τ = 2ρ+ 1

µ . It follows that for x ∈ Υρ the function vµ vanish where the

Dirichlet condition holds for vµρ .
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If µ ≥ 0, the fractional Kelvin transform centered at the point Pµ
(denoted by vµ(x)) satisfies a Dirichlet boundary condition at points x ∈
RN+ with xN = 0 and −1

µ < x1 < 0 (x1 < 0 if µ = 0 as in the previous

step) and a Neumann condition on the remaining part of the boundary.
Then, if − 1

2µ < ρ < 0 it follows that V µ, and hence (V µ − V µ
ρ )+, vanishes

where the Dirichlet condition holds for V µ and also where the Dirichlet
condition holds for the reflected function V µ

ρ (therefore ϕε is an allowed
test function).

Thus, proceeding exactly as in the case µ = 0, we obtain∫
Υ∗ρ

y1−2s|∇(V µ − V µ
ρ )+|2dxdy

≤ Cρ

(∫
Aµρ

1

|x|2N
dx

) 2s
N ∫

Υ∗ρ

y1−2s|∇(V µ − V µ
ρ )+|2dxdy,

where Cρ is increasing with respect to ρ and Aµρ = {x ∈ Υρ\Oρ : vµ ≥ vµρ }.
If we now fix ρ < 0 the previous estimate holds for any µ ∈ (0,− 1

2ρ)

and, since 1
|x|2N ∈ L

1(Υρ), applying the Dominated Convergence Theorem

we conclude χAµρ ·
1
|x|2N → 0 as µ → 0 in RN\{Tρ ∪ Pρ}, we recall that

Pρ = (2ρ, 0, . . . , 0) is the reflected point of the origin, which is the singular
point of every transform V µ. As a consequence

Cρ

(∫
Aµρ

1

|x|2N
dx

) 2s
N

< 1,

for some ρ0 ∈ (−1
2µ , 0) and the monotonicity follows. Finally, suppose that

µ0 < − 1
2ρ0

is maximal such that vµ ≤ vµρ in Υρ for all 0 < µ < µ0. Then,

by the maximum principle, vµ < vµρ and hence Aµρ → ∅ as µ → µ0. Thus,
there exists ε > 0 such that

Cρ

(∫
Aµρ

1

|x|2N
dx

) 2s
N

< 1 for µ ∈ (µ0, µ0 + ε).

We conclude that vµ ≤ vµρ for µ > µ0 and close to µ0 in contradiction with
the maximality of µ0.

To summarize, for every ρ < 0 and µ ≤ − 1
2ρ we have vµ ≤ vµρ in Υρ

or, equivalently, fixed µ > 0 the inequality holds for every − 1
2µ < ρ < 0.

Letting ρ→ 0 we get vµ ≤ vµ0 in Υ0, i.e., vµ(x1, x
′) ≤ vµ(−x1, x

′) for all x
with x1 < 0, so that u ≤ uµ in Υµ with µ > 0. Since µ > 0 is arbitrary we
get that u is nondecreasing in the x1-direction in whole RN+ . �
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Remark 3.2. Let us observe that the method described in the above
theorem in the x1-direction may be applied to any other direction x2, . . . ,
xN−1, centered at any point P of the form P = (0, P2, . . . , PN−1, 0), with
a hyperplane orthogonal to both to the e1 and en directions. Thus, due to
the arbitrary of the point P , we can deduce that u does not depend to the
x2, . . . , xN−1 variables.

4. A priori bounds in L∞(Ω).

In this section we prove Theorem 1.2 exploiting the blow-up method
by Guidas-Spruck (see [23]). To this aim we will make use of the estimates
proved in [12, Theorem 1.2] that guarantee the compactness needed in order
to accomplish this limit step. Then, with the same ideas, we prove Theorem
1.3 using the uniform estimates proved in [12, Theorem 1.3] for the moving
boundary conditions (as in hypotheses (B1)-(B3)).

P r o o f o f T h e o r e m 1.2. We argue by contradiction: set Λ > 0 given
by Theorem 1.1 and assume that there exists sequences {λk} ⊂ [0,Λ], {uk}
of solutions to problems (Pλk) and {pk} ⊂ Ω of points verifying

Mk = sup
x∈Ω

uk(x) = uk(pk)→ +∞, as k →∞.

Let us set µk = M
− r−1

2s
k and define the functions vk(y) = 1

Mk
u(pk + µky).

Note that vk(y) is defined in Ωk = 1
µk

(Ω− pk) as well as vk(0) = 1 and

‖vk‖L∞(Ωk) ≤ 1 for all k ≥ 0. Moreover, the scaled function vk satisfies the
problem

(−∆)svk = λkM
q−r
k vqk + vrk vk > 0, in Ωk = 1

µk
(Ω− pk),

vk = 0 on Σk
D,

∂vk
∂ν

= 0 on Σk
N ,

where Σk
D and Σk

N are the transformed boundary manifolds.

Now we study the limit problem obtained as k →∞. To carry out this
step we need some compactness properties for the sequence {vk} in order
to guarantee the convergence in some sense. By [12, Theorem 1.2] the
sequence {vk} is uniformly bounded in Cγ(Ωk) for some γ ∈

(
0, 1

2

)
. Then,

by the Ascoli-Arzelá Theorem, there exists a subsequence {vk} uniformly

convergent over compact sets in RN+ to a function v ∈ Cη(RN+ ) for some

0 < η < γ < 1
2 . Moreover ‖v‖L∞(RN ) ≤ 1 and v(0) = 1.

On the other hand, the problem satisfied by the limit function v depends
on the position of the point p = lim

k→∞
pk. Let us set

dDk = dist(pk,Σ
k
D) and dNk = dist(pk,Σ

k
N ).
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and define dΩ
k = min{dDk , dNk }. We distinguish several cases according to

the behavior, up to subsequences, of the sequences
dik
µk

with i = Ω,D,N .

Fig. 5: The relevant geometry after dilation of variables lies in a
neighbourhood of pk such as the one of the picture.

1. Interior case:
{
dΩ
k
µk

}
→ +∞.

Since BdΩ
k /µk

(0) ⊂ Ωk (see Figure 5) we have that Ωk → RN and the limit

function v is a positive bounded solution to

(−∆)sv = vr in RN ,

Then, by [14, Theorem 1] (see also [9, Theorem 3.1])we conclude v ≡ 0, in
contradiction with v(0) = 1.

2. Boundary Cases:
{
dΩ
k
µk

}
→ dΩ ∈ R+.

In this situation we have several possibilities:

2.1 Dirichlet Case:
{
dDk
µk

}
→ dD ∈ R+ and

{
dNk
µk

}
→ +∞.

Now, as ΣD is a (N − 1)-dimensional smooth manifold, we have
that, up to a rotation

Ωk → ΩdD ≡ {x ∈ RN : xN > −dD},
and the limit function v is a positive solution to{

(−∆)sv = vr in ΩdD ,
v = 0 in {xN = −dD},

with ‖v‖L∞(Ω
dD ) ≤ 1 and v(0) = 1. Thus, if dD = 0 we have a

contradiction with the continuity since v(0) = 1 while if dD > 0 we
have a contradiction with [9, Theorem 3.4]
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2.2 Neumann case:
{
dDk
µk

}
→ +∞ and

{
dNk
µk

}
→ dN ∈ R+.

As before, since ΣN is a (N − 1)-dimensional smooth manifold, we
have that, up to rotation,

Ωk → ΩdN ≡ {x ∈ RN : xN > −dN },
and the limit function v is a positive solution to{

(−∆)sv = vr in ΩdN ,
∂v
∂xN

= 0 in {xN = −dN },

with ‖v‖L∞(Ω
dN ) ≤ 1 and v(0) = 1. Then, if we define the trans-

lated function w(x) = v(x1, x2, . . . , xN + dN ) it follows that{
(−∆)sw = wr in RN+ ,

∂w
∂xN

= 0 in {xN = 0},

with ‖w‖L∞(RN+ ) ≤ 1 and w(0, 0, . . . , dN ) = 1. Extending to the

whole space by reflection through the hyperplane {xN = 0}, thanks
to [9, Theorem 3.1], it follows that w ≡ 0 and we get a contradiction
with w(0, 0, . . . , dN ) = 1.

2.3 Interphase Case:
{
dDk
µk

}
→ dD ∈ R+ and

{
dNk
µk

}
→ dN ∈ R+.

Let us set dΩ = min{dD, dN } ≥ 0 and note that Σk
D, Σk

N and

Γk = Σk
D ∩ Σk

N are smooth manifolds by hypotheses (B). Hence,
we can assume that, up to a rotation,

Ωk → ΩdΩ ≡ {x ∈ RN : xN > −dΩ},
and the interphase Γk → {x1 = τ} for some finite τ ∈ R. Then the
limit function v is a positive solution to

(−∆)sv = vr in ΩdΩ ,
v = 0 in {xN = −dΩ} ∩ {x1 ≤ τ},

∂v
∂xN

= 0 in {xN = −dΩ} ∩ {x1 > τ},

with ‖v‖L∞(Ω
dΩ

) ≤ 1 and v(0) = 1.

1) If dΩ = 0 and τ ≥ 0 we get a contradiction with the continuity
of v, since the maximum is achieved at a point on the Dirichlet
boundary where v ≡ 0.

2) If dΩ > 0 and τ ≥ 0 we get a contradiction with the mono-
tonicity (Theorem 3.1) and the Hopf Lemma at the maximum
point. Indeed it is sufficient to have the monotonicity of the
solution v with respect to the x1-direction up to x1 = τ .

3) If τ < 0, we reach, once again, a contradiction with the mono-
tonicity and the Hopf Lemma at the point of maximum. In this
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step it is necessary to use the monotonicity of v with respect
to the x1-direction in the whole space.

�
With the same ideas, we can prove the next result concerning the mov-

ing boundary conditions.

P r o o f o f T h e o r e m 1.3. As we did in Theorem 1.2, we argue by
contradiction. Assume that there exists a sequence {uα}α∈Iε of solutions
to problems (Pα,λ), a sequence of points {pα} ⊂ Ω, α ∈ Iε and a sequence

of numbers µα = M
1−r
2s
α verifying

Mα = sup
x∈Ω

uα(x) = uα(pα)→ +∞, as α→ α .

We have to distinguish several cases. The interior, Dirichlet and Neu-
mann cases can be proved following the corresponding cases in Theorem
1.2.

As far as the interface case is concerned, we need some compactness for
the sequence {uα} as α→ α. Since we are considering sets ΣD(α) with α ∈
Iε = [ε, |∂Ω|] for some ε > 0 and satisfying hypotheses (Bα) and (B1)-(B3),
by [12, Theorem 1.3] the sequence {uα} is uniformly bounded in Cγ(Ω) for
some γ ∈

(
0, 1

2

)
and so the conclusion follows as in the corresponding case

in Theorem 1.2. �

5. Minimal and mountain-pass solutions

We devote this section to the proof of Theorem 1.1, exploiting the
extension technique. We recall that in terms of the s-extension, problem
(Pλ) can be reformulated as

−div(y1−2s∇U) = 0 in CΩ,
B(U) = 0 on ∂LCΩ,

U > 0 on Ω× {y = 0},
∂U

∂νs
= fλ(U) on Ω× {y = 0},

(P ∗λ )

where fλ(s) = λ|s|q−1s+ |s|r−1s. Associated to the problem (P ∗λ ) we con-
sider the Euler-Lagrange functional Jλ : H1

Σ∗D
(CΩ, y

1−2sdxdy) → R given

by

Jλ(U) =
κs
2

∫
CΩ
y1−2s|∇U |2dxdy −

∫
Ω
Fλ(U(x, 0))dx,

where Fλ(s) ≡
∫ s

0 fλ(τ)dτ . Since Jλ does not satisfies the Palais-Smale (PS
for short) condition, due to the unboundedness of the cylinder CΩ, we show
the PS condition for the functional Iλ.
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Lemma 5.1. Let {un} ⊂ Hs
ΣD

(Ω) be a PS sequence, i.e., Iλ(un) → c

and I ′λ(un) → 0. Then, there exist a subsequence (again denoted by) un
strongly convergent in Hs

ΣD
(Ω).

P r o o f. Since Iλ(un) → c we have that ‖un‖Hs
ΣD

(Ω) ≤ C uniformly

for some positive constant. By the Sobolev embeddings, there exists a
subsequence still denoted by {un} such that

un → u in Lr(Ω), for any 1 ≤ r < 2∗s, (5.1)

and

un ⇀ u in Hs
ΣD(Ω). (5.2)

Using that I ′λ(un) → 0 together with (5.1)-(5.2), we have the strong con-
vergence proving the PS condition. 2

P r o o f o f T h e o r e m 1.1-(1). Consider the eigenvalue problem as-
sociated to the first eigenvalue λs1, and let ϕ1 be the positive normalized
in L2(Ω) associated eigenfunction. Using ϕ1 as a test function in problem
(Pλ), we have

(λs1 − λ)

∫
Ω
uϕ1dx =

∫
Ω
urϕ1dx,

and hence necessarily λ < λs1. On the other hand, using the fractional
Sobolev inequality together with Poincaré inequality we find

Iλ(v) =
1

2

∫
Ω
|(−∆)s/2v|2dx− λ

2

∫
Ω
|v|2dx− 1

r + 1

∫
Ω
|v|r+1dx

≥ c1

(
1− λ

λs1

)∫
Ω
|(−∆)s/2v|2dx− c2

(∫
Ω
|(−∆)s/2v|2dx

)(r+1)/2

,

for positive constants c1, c2. Therefore, v = 0 is a local minimum for
Iλ and, since Iλ(tv) → −∞ as t → ∞, the functional Iλ satisfies the
hypotheses of the Mountain Pass Theorem by Ambrosetti-Rabinowitz [4].
Hence, by Lemma 5.1, we obtain the existence of at least one solution for
0 < λ < λs1. Even more, the bifurcation result is a consequence of the
classical Rabinowitz Theorem [26]. �

Next, in order to continue with the proof of Theorem 1.1, we establish
some preliminary results. Some of these results can be proved for more
general nonlinearities f(u), with f at least continuous, satisfying the growth
condition 0 ≤ f(s) ≤ c(1+|s|p) for some p > 0. In such cases we will denote
the associated extension problem as (P ∗f ).

The first result deals with the sub and supersolutions method, the proof
is rather standard and so we omit it.



22 J. Carmona, E. Colorado, T. Leonori, A. Ortega

Lemma 5.2. Suppose that there exist a subsolution U1 and a superso-
lution U2 to (P ∗f ), i.e., U1, U2 ∈ H1

Σ∗D
(CΩ, y

1−2sdxdy) such that B(U1) ≤ 0,

B(U2) ≥ 0 on ∂LCΩ and for every nonnegative φ ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy) the

following inequalities are satisfied:

κs

∫
CΩ
y1−2s∇U1∇φdxdy ≤

∫
Ω
f(U1(x, 0))φ(x, 0)dx ,

κs

∫
CΩ
y1−2s∇U2∇φdxdy ≥

∫
Ω
f(U2(x, 0))φ(x, 0)dx ,

respectively. Assume moreover that U1 ≤ U2 in CΩ. Then, there exists a
solution U verifying U1 ≤ U ≤ U2 in CΩ.

Next we deal with a comparison result.

Lemma 5.3. Let U1, U2 ∈ H1
Σ∗D

(CΩ, y
1−2sdxdy) be respectively a posi-

tive subsolution and a positive supersolution to (P ∗f ) and assume that f(t)/t
is decreasing for t > 0. Then U1 ≤ U2 in CΩ.

P r o o f. The proof is similar to the proof of [3, Lemma 3.3]. By defi-
nition we have, for any positive test functions φ1, φ2 ∈ H1

Σ∗D
(CΩ) that

κs

∫
CΩ
y1−2s∇U1∇φ1dxdy ≤

∫
Ω
f(u1)φ1(x, 0)dx,

κs

∫
CΩ
y1−2s∇U2∇φ2dxdy ≥

∫
Ω
f(u2)φ2(x, 0)dx,

where u1 = U1(x, 0) and u2 = U2(x, 0). Let θ(t) be a smooth non-decreasing
function such that θ(t) = 0 for t ≤ 0, θ(t) = 1 for t ≥ 1, set θε(t) = θ(t/ε),
and define the test functions ϕ1 and ϕ2 as

ϕ1 = U2θε (U1 − U2) , ϕ2 = U1θε (U1 − U2) .

From the above inequalities we obtain

jε : = κs

∫
CΩ
y1−2s 〈U1∇U2 − U2∇U1,∇(U1 − U2)〉 θ′ε (U1 − U2) dxdy

≥
∫

Ω
u1u2

(
f(u2)

u2
− f(u1)

u1

)
θε (u1 − u2) dx.

On the other hand,
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jε ≤ κs
∫
CΩ
y1−2s 〈∇U1, (U1 − U2)∇(U1 − U2)〉 θ′ε (U1 − U2) dxdy

= κs

∫
CΩ
y1−2s 〈∇U1,∇ηε(U1 − U2)〉 dxdy

=

∫
Ω
f(u1)ηε(u1 − u2)dx,

where η′ε(t) = tθ′ε(t). Since 0 ≤ ηε ≤ ε, we find jε ≤ cε. Then, letting
ε→ 0+ we conclude ∫

Ω∩{u1>u2}

u1u2

(
f(u2)

u2
− f(u1)

u1

)
dx ≤ 0.

Taking in mind the hypotheses on f , it follows u1 ≤ u2 in Ω. The result
for the whole cylinder CΩ follows by the maximum principle. 2

Next we focus on the remaining assertions in Theorem 1.1-(2). Thus,
from now on we assume that 0 < q < 1.

Lemma 5.4. Let Λ be defined by

Λ = sup{λ > 0 : (Pλ) has solution},
then, 0 < Λ <∞.

P r o o f. As for the linear case, consider the eigenvalue problem asso-
ciated to the first eigenvalue λs1, and let ϕ1 the associated eigenfunction.
Using ϕ1 as a test function in problem (Pλ), we have∫

Ω
(λuq + ur)ϕ1dx = λs1

∫
Ω
uϕ1dx. (5.3)

Since there exists a constant c = c(r, q) > 1 such that λtq + tr > cλδt with
δ = r

r−q , for any t > 0, from (5.3) we deduce cλδ < λs1 and hence Λ < ∞.

In particular, this also proves that there is no solution to (Pλ) for λ > Λ.
In order to prove that Λ > 0, we prove, by means of the sub and

supersolution technique, the existence of solution to (P ∗λ ) for any small
positive λ. Indeed, for ε > 0 small enough, U = εEs[ϕ1] is a subsolution to
(P ∗λ ). A supersolution can be constructed as an appropiate multiple of the
function G, the solution to

−div(y1−2s∇G) = 0 in CΩ,
B(G) = 0 on ∂LCΩ,
∂G

∂νs
= 1 on Ω× {y = 0}.
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Since the trace function g(x) = G(x, 0) is a solution to{
(−∆)sg = 1 in Ω,
B(g) = 0 on ∂Ω,

by [12, Theorem 3.7] we have ‖g‖L∞(Ω) < +∞. Next, since 0 < q < 1 < r
we can find λ0 > 0 such that for all 0 < λ ≤ λ0 there exists M = M(λ)
such that

M ≥ λM q‖g‖qL∞(Ω) +M r‖g‖rL∞(Ω). (5.4)

As a consequence, the function h = Mg satisfies M = (−∆)sh ≥ λhq + hr

and, by the maximum principle, the extension function U = Es[h] is a
supersolution and U ≤ U . Applying Lemma 5.2 we conclude the existence
of a solution U to problem (P ∗λ ). Therefore, its trace u(x) = U(x, 0) is a
solution to problem (Pλ), λ < λ0. 2

Remark 5.1. In the proof of Lemma 5.4, precisely in (5.4), we
can choose M = M(λ) verifying M(λ) → 0 as λ → 0, proving that
‖uλ‖L∞(Ω) → 0 as λ → 0. Indeed, it is enough to choose M(λ) = λη

with 0 < η < 1
1−q .

Remark 5.2. Although Lemma 5.4 provides the existence of a solution
for small λ > 0, we can also prove this result studying the associated
functional Iλ. Indeed,

Iλ(v) =
1

2

∫
Ω
|(−∆)s/2v|2dx− λ

q + 1

∫
Ω
|v|q+1dx− 1

r + 1

∫
Ω
|v|r+1dx

≥ 1

2

∫
Ω
|(−∆)s/2v|2dx− λc1

(∫
Ω
|(−∆)s/2v|2dx

)(q+1)/2

− c2

(∫
Ω
|(−∆)s/2v|2dx

)(r+1)/2

,

for some positive constants c1 and c2. Then, for sufficiently small λ, there
exist (at least) two solutions to problem (Pλ), one given by minimization
and another given by the Mountain-Pass Theorem. The proof is rather
common, based on the geometry of the function g(t) = 1

2 t
2−λc1t

q+1−c2t
r+1

(see for instance [4]).

Next we show that there exists a solution for every λ ∈ (0,Λ).

Lemma 5.5. Problem (Pλ) has at least a positive minimal solution
for every 0 < λ < Λ. Moreover, the family {uλ} of minimal solutions is
increasing with respect to λ.
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P r o o f. By definition of Λ, for any 0 < λ < Λ there exists µ ∈
(λ,Λ] such that (P ∗µ) admits a solution Uµ. It is easy to see that Uµ is a
supersolution for (P ∗λ ).

On the other hand, let Vλ be the unique solution to problem (P ∗f ) with

f(t) = λtq (the existence can be deduced by minimization, while uniqueness
follows from Lemma 5.3). It is clear that Vλ is a subsolution to problem
(P ∗λ ) and, by Lemma 5.3, we have Vλ ≤ Uµ. Therefore, thanks to Lemma
5.2, we conclude that there is a solution to (P ∗λ ) and, as a consequence, for
the whole open interval (0,Λ).

Finally, we prove the existence of a minimal solution for all 0 < λ < Λ.
Indeed, given a solution u to (Pλ) we take U = Es(u) and, by Lemma 5.3
being U solution to problem (P ∗λ ), it satisfies Vλ ≤ U with Vλ solution
to problem (P ∗f ) with f(t) = λtq. Then, the function vλ(x) = Vλ(x, 0)

is a subsolution of problem (Pλ) and the monotone iteration procedure
described by

(−∆)sun+1 = λuqn + urn, un ∈ Hs
ΣD

(Ω) with u0 = vλ,

verifies un ≤ U(x, 0) = u and un ↗ uλ with uλ solution to problem (Pλ).
In particular uλ ≤ u and we conclude that uλ is a minimal solution. The
monotonicity follows directly from the first part of the proof, taking Uµ =
Es(uµ) which leads to uλ ≤ uµ whenever 0 < λ < µ ≤ Λ. 2

Lemma 5.6. Problem (P ∗λ ) has at least one solution if λ = Λ.

To prove Lemma 5.6 we extend [3, Lemma 3.5] to the fractional frame-
work. This result guarantees that the linearized equation corresponding to
(Pλ) has non-negative eigenvalues at the minimal solution.

Proposition 5.1. Let uλ be the minimal solution to (Pλ) and define

aλ = aλ(x) = λquq−1
λ + rur−1

λ . Then, the operator [(−∆)s − aλ(x)] with
mixed boundary conditions has a first eigenvalue ν1 ≥ 0. In particular it
follows that∫

Ω

(
|(−∆)s/2v|2 − aλv2

)
dx ≥ 0, for any v ∈ Hs

ΣD(Ω). (5.5)

P r o o f. By contradiction, assume that ν1 < 0 and let φ1 > 0 be the
first eigenfunction. Let α > 0 and observe that since 0 < q < 1,
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(−∆)s(uλ − αφ1)−
(
λ(uλ − αφ1)q + (uλ − αφ1)r

)
=λuqλ + urλ − αν1φ1 − α

(
λquq−1

λ + rur−1
λ

)
φ1 − λ(uλ − αφ1)q − (uλ − αφ1)r

≥ urλ − αν1φ1 − αrur−1
λ φ1 − (uλ − αφ1)r

= −αν1φ1 + o(αφ1).

Using that ν1 < 0, φ1 > 0, for α > 0 sufficiently small we have that

(−∆)s(uλ − αφ1)−
(
λ(uλ − αφ1)q + (uλ − αφ1)r

)
≥ 0,

proving that uλ − αφ1 is a supersolution of (Pλ).

Now, let ψ = λ
1
q−1 v, with v a solution to{

(−∆)sv = vq in Ω,
B(v) = 0 on ∂Ω,

(5.6)

that turns out to be a subsolution of (Pλ).
Then ψ ≤ uλ − αφ1 and problem (Pλ) has a solution ũ such that

ψ ≤ ũ ≤ uλ − αφ1 in contradiction with the minimality of uλ. 2

P r o o f o f L e m m a 5.6. Let {λn} be a sequence such that λn ↗ Λ
and denote by un = uλn the minimal solution to problem (Pλn). Let
Un = Es[un], then

Iλn(un) =
1

2

∫
Ω
|(−∆)

s
2un|2dx−

λn
q + 1

∫
Ω
uq+1
n dx− 1

r + 1

∫
Ω
ur+1
n dx.

Moreover, since un is a solution to (Pλn), it also satisfies∫
Ω
|(−∆)

s
2un|2dx = λn

∫
Ω
uq+1
n dx+

∫
Ω
ur+1
n dx.

On the other hand, using (5.5) with v = un,∫
Ω
|(−∆)

s
2un|2dx− λnq

∫
Ω
uq+1
n dx− r

∫
Ω
ur+1
n dx ≥ 0.

As in [3, Lemma 3.5], we conclude Iλn(un) < 0. Since I ′λn(un) = 0,
we obtain that ‖un‖Hs

ΣD
(Ω) ≤ C. Hence, there exists a weakly convergent

subsequence un → u ∈ Hs
ΣD

(Ω) and, as a consequence, u is a weak solution

of (Pλ) for λ = Λ. �

Next we assure the existence of a second solution to (Pλ) for every
0 < λ < Λ following the ideas of [5], developed to concave-convex problems
in [2, 9] for the classical Laplacian and the fractional Laplacian respec-
tively. In order to find a second solution by means of variational methods
it is essential to have a first solution which is also a local minimum of the
associated functional Jλ.
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Lemma 5.7. Problem (Pλ) has at least two solutions for each λ ∈
(0,Λ).

P r o o f. The proof follows exactly as in [9, Lemma 5.11]. 2

Now we can conclude the proof of Theorem 1.1.

P r o o f o f T h e o r e m 1.1-(2). Part a) follows by Lemma 5.5. More-
over part b) is a consequence of Lemma 5.6, part c) of Lemma 5.4 while
part d) holds true thanks to Lemma 5.7. �

5.1. Moving the boundary conditions. Now we prove Theorem 1.4,
i.e., the assertions on the behavior of the minimal and mountain pass solu-
tions when we move the boundary conditions (see hypotheses (B1)-(B3)).
To this aim, we need the following result.

Lemma 5.8. Let v be the solution to problem (5.6). There exists a
constant β > 0 such that

‖φ‖2Hs
ΣD

(Ω) − q
∫

Ω
vq−1φ2dx ≥ β‖φ‖2L2(Ω), for all φ ∈ Hs

ΣD(Ω). (5.7)

P r o o f. Since we always consider boundary conditions such that |ΣD| =
α > 0, the function v can be obtained as

min

{
‖φ‖2Hs

ΣD
(Ω) −

1

q + 1
‖φ‖q+1

Lq+1(Ω)
: φ ∈ Hs

ΣD(Ω)

}
,

and thus, by (5.5)

‖φ‖2Hs
ΣD

(Ω) − q
∫

Ω
vq−1φ2dx ≥ 0, for all φ ∈ Hs

ΣD(Ω).

As a consequence, the linearized problem{
(−∆)sϕ− qvq−1ϕ = µϕ in Ω,

B(ϕ) = 0 on ∂Ω,
(5.8)

has a non-negative first eigenvalue µ1. Let ϕ1 be the first eigenfunction
and assume µ1 = 0. Since v is a solution to (5.6), then

q

∫
Ω
vqϕ1dx =

∫
Ω
vqϕ1dx.

which is a contradiction. Hence µ1 > 0. 2

Lemma 5.9. There exists A > 0 such that for all λ ∈ (0,Λ) the
problem (Pλ) has at most one solution satisfying ‖u‖L∞(Ω) < A.
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P r o o f. Let A > 0 such that rAr−1 < β, with β given by (5.7).
Assumme by contradiction that there exists a second solution u = uλ + w
of (Pλ) such that ‖u‖L∞(Ω) ≤ A. Since uλ is the minimal solution, w ≥ 0.

Let ζ(x) = λ
1

1−q v(x) with v the solution to (5.6), so that (−∆)sζ = λζq.
Moreover, uλ is also a supersolution of (5.6), and hence, by Lemma 5.3,

uλ ≥ λ
1

1−q v. On the other hand, since u = uλ + w is a solution to (Pλ) we
have

(−∆)s(uλ + w) = λ(uλ + w)q + (uλ + w)r.

By concavity, λ(uλ + w)q ≤ λuqλ + λquq−1
λ w and hence

(−∆)sw ≤ λquq−1
λ w + (uλ + w)r − urλ.

Furthermore, since uλ ≥ λ
1

1−q v, one also has uq−1
λ ≤ λ−1vq−1 and as we are

assuming ‖uλ‖L∞(Ω) ≤ A, we find

(−∆)sw ≤ qvq−1 + (uλ + w)r − urλ
≤ qvq−1 + rAr−1w.

Multiplying the above inequality by w and using (5.7) we conclude

β

∫
Ω
w2dx ≤ rAr−1

∫
Ω
w2dx.

Since β < rAr−1, it follows w = 0. 2

Now we can perform the proof of Theorem 1.4.

P r o o f o f T h e o r e m 1.4. First we claim that if A = A(α) is the
associated constant to (Pα,λ) obtained in Lemma 5.9, then A(α) → 0 as
α→ 0.

Indeed, it is enough to observe that

0 < µ1 ≤ λs1(α) = inf
u∈Hs

ΣD(α)
(Ω)

u6≡0

‖u‖2Hs
ΣD(α)

(Ω)

‖u‖2
L2(Ω)

,

where µ1 is the first eigenvalue of the linearized eigenvalue problem (5.8).
Since by Remark 2.1 λs1(α) as α↘ 0, the result follows.

In particular we deduce:

(1) From the proof of Lemma 5.4, we have cΛδ(α) < λs1(α) and arguing
as above Λ(α)→ 0 as α→ 0.

(2) There exist atmost one solution u to (Pλ) with (λ, ‖u‖∞) ∈ (0,Λ(α))
×(0, A(α)), that is the minimal solution and, since A(α) ↘ 0 as
α→ 0, the minimal solution converges to zero as α↘ 0.
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Now we prove that for 0 < λ < Λ(α) small enough, the solution to
problem (Pα,λ) obtained by the Mountain Pass Theorem, uα, satisfies

‖uα‖Hs(Ω) → 0, as α↘ 0.

The proof follows the lines of [16, Lemma 5.12]. Let us consider the fun-
cional at λ = 0

I0(uα) =
1

2

∫
Ω
|(−∆)

s
2uα|2dx−

1

r + 1

∫
Ω
ur+1
α dx

=
1

2
‖uα‖2Hs

ΣD(α)
(Ω) −

1

r + 1
‖uα‖r+1

Lr+1(Ω)

≥ 1

2
‖uα‖2Hs

ΣD(α)
(Ω) −

1

r + 1
|Ω|1−

r+1
2∗s

(
1 +

1

λs1(α)

) r+1
2

‖uα‖r+1
Hs

ΣD(α)
(Ω).

Let us define g(t) = 1
2 t

2 − c2(r, |Ω|)λs1(α)−s
r+1

2 tr+1. It is easy to see that if

tα is such that g′(tα) = 0 then tα ≤ c(r, |Ω|)λsµ1 (α) with µ = r+1
2(r−1) , so that

tα → 0 as α ↘ 0. Hence, the Mountain Pass solution converges to zero as
α↘ 0. �

Remark 5.3. As a conclusion of the above arguments:

(1) Both the minimal solution uλ and the mountain pass solution ump,
converge to zero as α↘ 0.

(2) If we set α ∈ Iε = [ε, |∂Ω|] with ε > 0, under hypotheses (Bα) and
(B1)-(B3), there exist Mε, Λε such that the family Sε ⊂ [0,Λε] ×
[0,Mε] (see Theorem 1.3 for the definition of Sε).

(3) To conclude, it is interesting to point out Theorem 8 by Denzler in
[18], where the author proved that

sup
0<α<|∂Ω|

{λ1(α) : α = |ΣD|} = λ1(|∂Ω|),

which in particular proves that there are configurations of the dis-
tribution of the manifolds ΣD and ΣN on ∂Ω such that [16, Lemma
4.1] does not apply and hence λs1(α) 6→ 0 as α ↘ 0. But this is
not our case under hypotheses (Bα) and (B1)-(B3), in which [16,
Lemma 4.1] applies proving that λs1(α)→ 0 as α↘ 0.
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