
Aggregation Operators in Geospatial Queries
for Open Street Map?

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón and Manuel Torres

Information Systems Group. University of Almeŕıa
04120-Spain. {jalmen,abecerra,mtorres}@ual.es

Abstract. One of the most stablished Volunteered Geographic Informa-
tion (VGI) systems is Open Street Map (OSM) offering data from the
earth of urban and rural maps. Recently [1], we have presented a library
for querying OSM data with the XML query language XQuery. This li-
brary is based on the well-known spatial operators defined by Clementini
and Egenhofer, providing a repertoire of XQuery functions which encap-
sulates the search on the XML document representing a layer of OSM,
and makes the definition and composition of queries on top of OSM
layers easier. This paper goes towards the incorporation in the library
of aggregation operators in order to be able to express queries involv-
ing data summarization and ranking. A rich repertoire of aggregation
operators has been defined which, in combination with the previously
proposed library, makes possible to easily formulate aggregation-based
queries. Also we present a Web-based tool, called XOSM (XQuery for
Open Street Map), developed in our group, that uses the proposed library
to query and visualize OSM data.

1 Introduction

Volunteered Geographic Information (VGI) is a term introduced by Goodchild
[12] to describe geographic information systems based on crowdsourcing, in which
users collaborate to a collection of spatial data of urban and rural areas of the
earth. VGI makes available a very large resource of geographic data. The ex-
ploitation of data coming from such resources requires an additional effort in
the form of tools and effective processing techniques. Open Street Map (OSM)
[5] is one of the most relevant VGI systems, with almost two millions of regis-
tered users. OSM data can be visualized from the OSM web site1, and many
applications2 have also built for the handling of maps.

In spite of the growing interest in OSM and the fact many tools have been
developed, the main tasks tools are able to carry out are edition, export, ren-
dering, conversion, analysis, routing and navigation, but less attention has been

? This work was funded by the EU ERDF and the Spanish Ministry of Economy
and Competitiveness (MINECO) under Project TIN2013-44742-C4-4-R, and by the
Andalusian Regional Government (Spain) under Project P10-TIC-6114.

1 http://www.openstreetmap.org
2 http://wiki.openstreetmap.org/wiki/Software

2 J. Almendros, A. Becerra and M. Torres

paid for querying. Urban areas are considerably more contributed by users, ex-
isting a wide coverage of towns and cities in OSM. Querying urban maps can be
seen from many points of view. One of the most popular querying mechanism
is the so-called routing or navigation, which gives the most suitable route to go
from one point to another of the city. In this case, the input of the query are two
points (or streets) and the output is a sequence of instructions to be followed
in order to reach the destination. Nevertheless, querying an urban map can also
be interesting for city sightseeing. In fact, the places of interests around a given
geo-localized point are the major goal. In this case, the input of the query is
a point and a city area, close to the point, and the output is a set of points.
The tourist would also like to query streets and buildings close to a given street
when he/she is looking for a hotel, or to query parking areas, restaurants, high
ways, etc. In such queries, the input is a given point (or street) and the output
is a number of streets, parking areas, restaurants, high ways, etc. Additionally,
in a city sightseeing, keyword based searching is useful. Let us suppose that the
tourist is looking for leisure and shopping places, restaurants areas, as well as a
pharmacy. In this case, the input of the query is a keyword, and the output is a
set of points, streets, areas, etc.

XQuery [20, 2] is a programming language proposed by the W3C as stan-
dard for the handing of XML documents. It is a functional language in which
for-let-orderby-where-return (FLOWR) expressions are able to traverse XML
documents. It can express Boolean conditions and provides format to output
documents. XQuery has a sublanguage, called XPath [6], whose role is to ad-
dress nodes on the XML tree. XPath is properly a query language equipped with
Boolean conditions and many path-based operators. XQuery adds expressivity
to XPath by providing mechanisms to join several XML documents.

Recently [1], we have presented a library for querying OSM with the XML
query language XQuery. This library is based on the well-known spatial operators
defined by Clementini and Egenhofer [7, 9], providing a repertoire of XQuery
functions which encapsulates the search on the XML document representing a
layer of OSM. In essence, the library provides a repertoire of OSM operators, for
nodes and ways which, in combination with higher order facilities of XQuery,
makes easy the definition and composition of spatial and keyword search based
queries. OSM data are indexed by (1) an R-tree structure [15] for spatial data,
where nodes and ways are enclosed by Minimum Bounding Rectangles (MBRs),
as well as by (2) an XML indexing structure for textual data. Indexing enables
shorter answer time.

In this paper we extend the library with aggregation operators. We have
incorporated a rich repertoire of aggregation operators which, in combination
with the previously proposed library, makes possible to formulate aggregation
based queries easily. Data summarization and ranking is crucial in database
systems and query languages have to be equipped with aggregation operators.
In the special case of spatial databases, aggregation is required to summarize
both spatial and non-spatial data. Several proposals of aggregation operators
for spatial data have been proposed in the literature (see [21, 8] among others).

Aggregation Operators in Geospatial Queries for Open Street Map 3

They have been studied in the context of Spatial Data Warehouses and the
OLAP model. The term SOLAP was coined in this framework, and extensions
to the well-known OLAP model have been proposed. Additionally, R-tree based
structures have been proposed to deal with spatial indexing and aggregation (see
[19] for an example). Our proposal, even when cannot be properly considered a
SOLAP approach, is inspired by this framework.

Basically, the library makes possible to compute the maximum and minimum,
the mode, etc., of non-spatial data associated to OSM elements occurring in
an OSM layer, and also, to retrieve the OSM elements to which these values
correspond to. The library enables the retrieval of objects of a given OSM layer
according to a certain ranking. The ranking can be defined for measures like
distance, area, perimeter, etc., but other measures can also be used. The ranking
operators have a parameter indicating the measure to be ranked. For instance, we
can get the hotels with the maximum number of stars, the restaurants with the
most typical cuisine, etc. Additionally, the library provides functions like sum,
count, average, etc., enabling data summarization. Moreover, XQuery makes
possible the composition of queries, that is, the result of a query can be the input
of another one, and thus several rankings can be combined. Thus, the library
permits to count hotels with the highest number of stars, compute distance
averages of monuments to a certain city point, etc.

We have developed a Web-based tool3, called XOSM, for querying and vi-
sualization of OSM maps. In XOSM the user can select an area of the OSM
map, and after an indexing process, to query the area using the XQuery library.
Results are highlighted in the map. The XOSM tool is based on a client-server
architecture, in which the Web page sends requests to the API Rest server of Ba-
seX XQuery interpreter [14]. The XOSM is equipped with three main modules.
(1) Indexing: an XML-based R-tree is generated from the select area of the map;
(2) Query Engine: Parsing and execution of queries making use of the XQuery
library; (3) Result Layout: Visualization of results with LeafLet and jQuery.

The rest of this article is organized as follows. Section 2 will present the basic
elements of OSM, it will summarize the OSM indexing process and describe the
main OSM operators. Section 3 will define the OSM aggregation operators and
Section 4 will present the XOSM tool, showing examples and benchmarks for
several datasets. Section 5 will compare with related work and finally, Section 6
will conclude and present future work.

2 Open Street Map Querying

2.1 Open Street Map Basic Elements

OpenStreetMap uses a topological data structure which includes the following
core elements: (1) Nodes which are points with a geographic position, stored as
coordinates (pairs of a latitude and a longitude) according to WGS84. They are
used in ways, and allow to describe map features without a size, like points of

3 http://indalog.ual.es/XOSM

4 J. Almendros, A. Becerra and M. Torres

interest and mountain peaks. (2) Ways are ordered lists of nodes, representing
a poly-line, or possibly a polygon if they form a closed loop. They are used to
represent streets, rivers, among others, as well as areas; for instance, forests,
parks, parkings and lakes. (3) Relations are ordered lists nodes, ways and rela-
tions. Relations are used for representing the relationship of existing nodes and
ways. (4) Tags are key-value pairs (both arbitrary strings). They are used to
store metadata about the map objects (such as their type, name and physical
features). Tags are attached to a node, a way, a relation, or to a member of a
relation. For instance, the street “Calzada de Castro” of the Almeŕıa city (Spain)
is represented by a way as follows:

<way id=’-3731’>
<nd ref=’-3625’ />
<nd ref=’-3623’ />
<nd ref=’-3621’ />
<tag k=’highway ’ v=’residential ’ />
<tag k=’name ’ v=’Calle Calzada de Castro ’ />
<tag k=’oneway ’ v=’yes ’ />

</way >

wherein the representation includes the set of node identifiers as well as the
tags for expressing that “Calzada de Castro” is a residential oneway. In spite
of the simplicity of the XML representation of OSM, many features4 in a OSM
layer can be described.

2.2 Open Street Map Indexing Process and Functions

In order to handle large city maps, in which the layer can include many objects,
an R-tree structure to index spatial objects has been implemented. The R-tree
structure is based as usual on MBRs to hierarchically organize the content of
an OSM map, and they are also used to enclose OSM nodes and ways in leaves.
The R-tree structure has been implemented as an XML document as follows:

<node x=" -2.4574724" y="36.8305714" z=" -2.4473768" t="36.849285" >
<node x=" -2.4565026" y="36.8319462" z=" -2.4476476" t="36.849285" >
<node x=" -2.4557511" y="36.8319462" z=" -2.4491401" t="36.8414807" >
<leaf x=" -2.4557511" y="36.8347249" z=" -2.4522051" t="36.8396123" >
<mbr x=" -2.4533564" y="36.8383646" z=" -2.452359" t="36.8384662" >
<way id=" -11215" visible ="true">
....
</way >
<node id=" -10263" visible ="true" lat ="36.8384662" lon =" -2.452359"/ >
<node id=" -10833" visible ="true" lat ="36.8383646" lon =" -2.4533564"/ >
</mbr >
...
</node >

The tag based structure of XML is used to represent the R-tree with two
main tags called node and leaf. A tag node represents an inner node, while a
tag leaf represents the leaves. Leaves store OSM ways and nodes. In addition,
the tag mbr is used in order to represent MBRs. The root element of the XML
document is the root node of the R-tree, and the children can be (inner) nodes or
leaves. x, y, z and t attributes of nodes are the left (x, y) and right (z, t) corners

4 http://wiki.openstreetmap.org/wiki/Map Features

Aggregation Operators in Geospatial Queries for Open Street Map 5

Table 1. Index-based Functions

Name Definition

getLayerByName(rt,n,d) Nodes and ways of rt at distance d to an
OSM element with name n

getLayerByElement(rt,e,d) Nodes and ways of rt at distance d to an
OSM element e

getElementByName(rt,n) OSM representation in rt
of an OSM element with name n

getElementsByKeyword(rt,k) Nodes and ways of rt
annotated with the keyword k

of the MBRs. MBRs are also represented by left and right corners. A function
of the our library called load file is used to transform a given OSM layer to an
R-tree. OSM to R-tree transformation is called indexing process. The functions
of the library to query OSM layers work with R-trees instead of OSM layers. In
the XOSM tool, the first step consists in the selection of an OSM map area and
the indexing of the area.

We have implemented in XQuery a set of index-based functions, shown in
Table 1, to handle the R-tree of an OSM layer. From them, the function get-
LayerByName obtains, given the name of an OSM element (node or way), the
nodes or ways of the OSM layer close to the given element. With this aim, a
distance value has to be provided. Closeness means that the shortest distance
between the MBRs associated to the returned elements (i.e., nodes and ways)
and the MBR of the given element is smaller than the given distance value.
getLayerByElement is similar to getLayerByName, but the OSM representation
of a node or way is given as input instead of the name. Additionally, we pro-
vide two functions: getElementByName to retrieve the OSM representation of a
given name, and getElementsByKeyword to retrieve the set of nodes and ways
annotated with a keyword. The query language under the proposed library al-
lows (1) geo-localized queries, using getLayerByName or getLayerByElement as
basis, in the sense that, queries are focused on a certain area of interest; and (2)
keyword-based queries, using getElementsByKeyword as basis, for the retrieval
of a set of nodes/ways annotated with a given keyword. A particular element
can be retrieved by getElementByName.

2.3 Open Street Map Operators

Additionally, a repertoire of OSM operators has been designed in order to express
(a) spatial and (b) keyword queries over OSM layers. With respect to (a), two
kinds of operators are considered: Coordinate based OSM operators, shown in
Table 2 and Clementini based OSM operators, shown in Table 3. With respect
to (b), the Keyword based OSM operators shown in Table 4 are considered.

On the other hand, XQuery 3.0 is equipped with higher order facilities. It
makes possible to define functions in which arguments can also be functions. In

6 J. Almendros, A. Becerra and M. Torres

Table 2. (Spatial) Coordinate Based OSM Operators

Name Definition Spatial Operation
isIn(s1,s2), isNext(s1,s2)
and isAway(s1,s2)

true whenever the shortest distance be-
tween s1 and s2 is smaller (in central an-
gel degrees) than 0.0001, 0.001 and 0.01,
respectively

Distance

furtherNorthNodes(p1,p2)
and
furtherNorthWays(s1,s2)

true whenever p1 (resp. s1) is further
north than p2 (resp. s2)

Using latitudes of in
north and south hemi-
spheres

furtherSouthNodes(p1,p2)
and
furtherSouthWays(s1,s2)

true whenever p1 (resp. s1) is further
south than p2 (resp. s2)

furtherNorthNodes and
furtherNorthWays nega-
tion

furtherEastNodes(p1,p2)
and
furtherEastWays(s1,s2)

true whenever p1 (resp. s1) is further east
than p2 (resp. s2)

Using latitudes of in
west and east hemi-
spheres

furtherWestNodes(p1,p2)
and
furtherWestWays(s1,s2)

true whenever p1 (resp. s1) is further
west than p2 (resp. s2)

furtherEastNodes and
furtherEastWays nega-
tion

Table 3. (Spatial) Clementini Based OSM Operators

Name Definition Clementini’s Operator [7]

inWay(p,s) true whenever p (point) is in s (street) Contains
inSameWay(p1,p2,m) true whenever p1 (point) and p2 (point)

are in the same street of the OSM map
m

inWay and Equals

intersectionPoint(s1,s2) the intersection point of s1 (street) and
s2 (street)

Intersection

isCrossing(s1,s2) true whenever s1 (street) crosses s2
(street)

Crosses

isNotCrossing(s1,s2) true whenever s1 is not crossing s2 Negation of isCrossing
isEndingTo(s1,s2) true whenever s1 ends to s2 Intersection and Equals
isContinuationOf(s1,s2) true whenever s2 is a continuation of s1 Equals

Table 4. Keyword Based OSM Operators

Name Definition
searchKeyword(e,kv) true whenever the OSM element e has some k or v

equal to kv
searchKeywordSet(e,(kv1, . . . , kvn)) true whenever the OSM element e has some k or v

equal to some kvi of (kv1, . . . , kvn)
searchTag(e,k0,v0) true whenever the OSM element e has some k and v

equal to k0 and v0, respectively
getTagValue(e,k0) the value v of k equal to k0 in the OSM element e

Table 5. Higher order functions of XQuery

Name Definition
fn:for-each(s,f) Applies the function f to every element of the sequence s

fn:filter(s,p) Selects the elements of the sequence s for which p is true
fn:sort(s,f) Sort the elements of the sequence s with respect to the value of the function f

fact, XQuery provides a library of built-in higher order functions (see Table 5).
Making use of this capability, our library makes possible to combine higher order

Aggregation Operators in Geospatial Queries for Open Street Map 7

functions with Coordinate and Clementini Based OSM Operators, and Keyword
Based OSM Operators in order to express (a) Spatial and (b) Keyword Based
Queries, respectively.

For instance, with respect to (a), the higher order function filter combined
with the spatial OSM operator isCrossing can be used to retrieve all the streets
that cross a given street (for instance, the street “Calzada de Castro” in Almeŕıa
city, Spain) as follows:

let $layer := rt:getLayerByName (.,"Calle Calzada de Castro " ,0.001),
$street := rt:getElementByName (.," Calle Calzada de Castro ")

return
fn:filter($layer ,xosm_sp:isCrossing (?, $street))

Here getLayerByName obtains, from the indexed OSM layer (represented by
‘.’), all the elements close, i.e. with MBRs at distance 110 meters (0.001 in cen-
tral angel degrees), to the street “Calzada de Castro”5, and getElementByName
retrieves the OSM way representing the street “Calzada de Castro”. The symbol
‘?’ indicates the isCrossing argument to be filtered.

With respect to (b) (i.e., Keyword Based Queries), the keyword operator
searchKeyword (i.e. true whenever an OMS element has the given keyword) in
combination with the higher order function filter can be used to retrieve, from
the indexed OSM layer, all the schools close to the street “Calzada de Castro”.
In this case, the search is restricted to vicinity of the street “Calzada de Castro”.

let $layer := rt:getLayerByName (.,"Calle Calzada de Castro " ,0.001)
return

fn:filter($layer ,xosm_kw:searchKeyword (?," school "))

Let us remark that we have required a distance of 0.001 (i.e., 110 meters) to
“Calzada de Castro”, which means MBRs of schools are at distance 0.001 from
the MBR of “Calzada de Castro”. Increasing distance, farther away schools are
retrieved.

3 Aggregation Operators

Now, we show the proposed operators for expressing aggregation queries (see
Table 6). The aggregation operators are inspired by SOLAP operators. In [21],
a taxonomy of operators has been stablished of the so-called numeric operators
whose result is numeric6. They consider two levels of operators. The first level in-
cludes numeric-spatial and numeric-multidimensional operators. Numeric-spatial
operators can be topological (Boolean (i.e., one-zero) Clementini’s operators),
and metric (area, length, perimeter and distance), while numeric-multidimensional
operators are max, min, sum, count and distinct count, among others. A second
level is defined as combinations of operators of the first level.

5 “Calle” means street in spanish.
6 In [21] they also consider spatial operators whose result is spatial (ConvexHull, En-

velope, Centroid, Boundary, Intersection, Union, Difference and Buffer). They also
consider navigation and temporal operators.

8 J. Almendros, A. Becerra and M. Torres

Table 6. Aggregation Based OMS Operators

Type Name

Distributive
topologicalCount(sq,e,b), metricMin(sq,m), metricMax(sq,m), metric-
Sum(sq,m), minDistance(sq,e) and maxDistance(sq,e)

Algebraic
metricAvg(sq,m), metricStdev(sq,m), avgDistance(sq), metricTop-
Count(sq,k,m), metricBottomCount(sq,k,m), topCountDistance(sq,k) and
bottomCountDistance(sq,k)

Holistic metricMedian(sq,m), metricMode(sq,m) and metricRank(sq,m,k)

Numeric-multidimensional operators can be classified by distributive, alge-
braic or holistic [13]. An aggregate function is distributive if it can be computed
in a distributed manner, that is, the result derived by applying the function to
the n aggregate values is the same as that derived by applying the function to the
entire data set (without partitioning). An aggregate function is algebraic if it can
be computed by an algebraic function with m arguments (where m is a bounded
positive integer), each of which is obtained by applying a distributive aggregate
function. Finally, an aggregate function is holistic when there does not exist an
algebraic function with m arguments that characterizes the computation.

Let us now introduce the proposed aggregation operators. With respect to
the first level, numeric spatial operators (both topological and metric), they are
derived from the Boolean spatial operators defined in Section 2.3, and from the
JTS library in the case of metric operators (i.e., area, length, perimeter and
distance). Numeric multidimensional operators of the first level are taken from
the built-in XQuery functions.

With respect to the second level, they are summarized in Table 6. Distributive
operators are defined as follows: (1) topologicalCount(sq,e,b) returns the number
of objects of a sequence of objects sq that meet a given Boolean spatial relation
b with the OSM element e (i.e., isIn, isNext, furtherNorthNodes, isCrossing, and
so on); (2) metricMin(sq,m), resp. (3) metrixMax(sq,m), returns the objects of
sq having the minimum, resp. maximum, value of a given metric operator m; (4)
metricSum(sq,m) returns the result of adding the values of sq of a given metric
operator m; and, finally, (5) minDistance(sq,e), resp. (6) maxDistance(sq,e), re-
turns the object of sq with the minimum, resp. maximum, distance with respect
to the OSM element e.

In the case of algebraic operators, we have defined the following operators:
(1) metricAvg(sq,m) returns the average value of a given metric operator m in
sq; (2) avgDistance(sq), the same as metricAvg but for distance; (3) metricSt-
dev(sq,m) returns the standard deviation of a given metric operator m in sq;
(4) metricTopCount(sq,k,m) (resp. (5) metricBottomCount(sq,k,m)) returns the
k elements with the highest (resp. the lowest) values of a given metric operator
m; and, finally, (6) topCountDistance(sq,k) and (7) bottomCountDistance(sq,k)
are similar to the last ones but for distance.

Finally, with regard to holistic operators, we have considered the follow-
ing ones: (1) metricMedian(sq,m) and (2) metricMode(sq,m) returning the me-
dian and mode value of a given metric operator m, respectively, and (3) metri-

Aggregation Operators in Geospatial Queries for Open Street Map 9

cRank(sq,m,e) which returns the position of an element e in the ranking of the
metric operator m.

We would like to remark that our proposal of aggregation operators is richer
than the proposed in [21]. In all the cases of metric operators, functions passed
as arguments can be one of area, perimeter, length and distance, as well as any
function which computes numeric values from OSM elements. This is the case
of metricMin, metricMax, metricSum, metricAvg, metricStdev, metricTopCount,
metricBottomCount, metricMedian, metricMode and metricRank. Additionally,
operators metricMin and metricMax which return an unique value in [21], can
here return more than one value. There metricMin and metricMax are used for
area, perimeter and length which rarely are equal for more than one value. Here,
metricMin and metricMax can be applied to any operator returning a numeric
value, for instance, number of stars of hotels, which can be the same for several
hotels. Finally, metricMode can be applied to any operator, not only numeric.

Now, let us see the implementation of the operators in our framework. Let
us start with the distributive operators. For instance, topologicalCount is defined
as follows:

declare function xosm_ag:topologicalCount($sq as node()*,$e as node(),$b as
xs:string)

{
count(fn:filter($sq ,function($o){xosm_sp:booleanQuery($o, $e, $b)}))

};

Due to the XQuery higher order facilities, topologicalCount, in our approach,
has an input parameter (i.e., $b) representing the name of the spatial operator.
topologicalCount is defined in terms of count (built-in XQuery function), filter
(higher-order function) and booleanQuery. booleanQuery is a function of our
library for checking a given boolean relation (for instance, topological) between
two OSM elements. metricMax is also defined using the higher order facility as
follows:

declare function xosm_ag:metricMax($sq as node()*, $m as xs:string)
{
let $l := xosm_ag:metricList($sq ,$m),

$max := fn:max(data($l/tag[@k=$m]/@v))
return

fn:filter($l, function($o){xosm_kw:searchTag($o,$m ,$max)})
};

metricMax uses the built-in XQuery function max, filter, the keyword oper-
ator searchTag (i.e. true whenever the OSM element has a tag with the given
values), and an auxiliary function metricList of our library. metricList anno-
tates the computed values from the metric operator (represented by the input
parameter $m, i.e. area, perimeter, etc) in each OSM element. These values are
added as a tag in each element.

With regard to algebraic operators, metricBottomCount is defined as follows:

declare function xosm_ag:metricBottomCount($sq as node()*,$m as xs:string ,$k
as xs:integer)

{
let $l := xosm_ag:metricList($sq ,$m)
return
fn:subsequence(fn:sort($l ,function($o){xosm_kw:getTagValue($o ,$m)}) ,1,$k)

};

10 J. Almendros, A. Becerra and M. Torres

which is defined in terms of metricList, the higher order function sort, the
built-in XQuery function subsequence and the keyword operator getTagValue.
topCountDistance is similarly defined as follows:

declare function xosm_ag:topCountDistance($sq as node()*, $k as xs:integer)
{
fn:subsequence(fn:sort($sq ,

function($o){-(xosm_kw:getTagValue($o ," distance "))}) ,1,$k)
};

topCountDistance can be easily implemented because distances have been
annotated in the R-tree to each OSM element. Finally, we have also implemented
the holistic ones; for instance metricMedian is defined as follows:

declare function xosm_ag:metricMedian($sq as node()*, $m as xs:string)
{

let $l := xosm_ag:metricList($sq ,$m),
$ol := fn:sort($l/*,function($o){xosm_kw:getTagValue($o,$m)}),
$c := count($ol)

return
if ($c mod 2 != 0) then $ol[xs:integer($c div 2)+1]
else
($ol[$c div 2]/tag[@k=$m]/@v + $ol[($c div 2) + 1]/tag[@k=$m]/@v) div 2

};

metricMedian is defined in terms of metricList, sort and count. Finally, met-
ricRank is defined in terms if metricList, sort and the keyword operator getTag-
Value, as follows:

declare function xosm_ag:metricRank($sq as node()*,$m as xs:string , $k as xs:
integer)

{
let $l := xosm_ag:metricList($sq ,$m)
return fn:sort($l,function($o){xosm_kw:getTagValue($o,$m)})[$k]

};

4 XOSM Tool

In this section, we will show the XOSM (XQuery for Open Street Map) tool,
developed by our group. The Web-based tool facilitates map querying, enabling
the selection of an area of the OSM map and the creation of an index (see
Figure 1). Once the index has been created, queries can be executed from the
XQuery shell (see Figure 2). Additionally, the tool is equipped with a batch of
pre-defined spatial, keyword and aggregation queries (among them, the included
in this paper). XOSM visualizes the answer highlighting ways in a different color
and with an icon in the case of nodes (see Figure 2). In case the result is a value
(integer, real, etc.,) XOSM visualizes the result in a pop-up window.

4.1 Examples of Queries

Now, we show some examples of queries. Figures 3 and 4 show the results of the
queries in the XOSM tool.

Example 1. The first query requests the size of park areas close to the “Paseo
de Almeŕıa” street. The query is expressed as follows:

Aggregation Operators in Geospatial Queries for Open Street Map 11

Fig. 1. Select Area, Index Name and Create Index

Fig. 2. Execution of Queries

let $layer := rt:getLayerByName (.,"Paseo de Almeria " ,0.003),
$parkAreas := fn:filter($layer ,xosm_kw:searchKeyword (?,"park"))

return
xosm_ag:metricSum($parkAreas ,"area")

Here, getLayerByName allows us to retrieve all the OSM elements at a dis-
tance of 330 meters from “Paseo de Almeŕıa”. Next, filter and searchKeyword
select those OSM elements labeled with the tag “park”, and finally, metricSum

12 J. Almendros, A. Becerra and M. Torres

Fig. 3. Results of Examples 1 and 2 in XOSM

Example 1

Example 2

is used to sum sizes of park areas.

Example 2. The second example requests the hotels with most frequent star
rating close to “Paseo de Almeŕıa”. The query is expressed as follows:

let $layer := rt:getLayerByName (.,"Paseo de Almeria " ,0.003),
$hotels := fn:filter($layer ,xosm_kw:searchKeyword (?," hotel"))

return
xosm_ag:metricMode($hotels ," stars")

In this query the searched tag with the functions filter and searchKeyword is
“hotel”, and the holistic operator metricMode is used.

Example 3. The third example requests the biggest hotels of top star ratings
close to “Paseo de Almeŕıa”. The query is expressed as follows:

let $layer := rt:getLayerByName (.,"Paseo de Almeria " ,0.003),
$hotels := fn:filter($layer ,xosm_kw:searchKeyword (?," hotel"))

return
xosm_ag:metricMax(xosm_ag:metricMax($hotels ,"stars "), "area")

In this case the functions filter and searchKeyword are used to search the tag
“hotel”, and after the distributive function metricMax is used twice. Thus this

Aggregation Operators in Geospatial Queries for Open Street Map 13

Fig. 4. Results of Examples 3 and 4 in XOSM

Example 3

Example 4

example shows how to compose queries. The first result (i.e., the hotels with
the maximum number of stars) is used to compute the second result (i.e., the
maximum of sizes).

Example 4. The last example requests the closest restaurant to “Paseo de
Almeŕıa” having the most typical food. The query can be expressed as follows:

let $layer := rt:getLayerByName (.,"Paseo de Almeria " ,0.003),
$restaurants := fn:filter($layer ,xosm_kw:searchKeyword (?," restaurant "))

return
xosm_ag:metricMin(xosm_ag:metricMode($restaurants ," cuisine ") ,"distance ")

Again, filter is combined with searchKeyword for the keyword “restaurant”.
Now, the distributive operator metricMin is composed with the holistic one met-
ricMode. metricMin is used for the retrieval of the closest restaurant to “Paseo
de Almeŕıa”, while metricMode is used for the retrieval of the most typical food.

14 J. Almendros, A. Becerra and M. Torres

Fig. 5. Time for Query Execution

00:00:01	
 00:00:02	
 00:00:01	
 00:00:02	
 00:00:02	
 00:00:03	
 00:00:02	
 00:00:03	
 00:00:04	

00:00:07	

00:00:05	

00:00:08	

00:00:06	

00:00:09	
 00:00:08	

00:00:10	
 00:00:09	

00:00:37	

00:00:35	

00:00:42	

00:00:55	

00:01:44	
 00:01:43	

00:01:52	

Example	
 1	
 Example	
 2	
 Example	
 3	
 Example	
 4	

Example	
 Response	
 Time	
 w.r.t.	
 Layers	
 of	
 Different	
 Size	
 	

LayerAlmeria	
 1353	
 Objects	
 -­‐	
 Distance	
 300	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	
 LayerAlmeria	
 1353	
 Objects	
 -­‐	
 Distance	
 1000	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	

LayerAlmeria	
 4247	
 Objects	
 -­‐	
 Distance	
 300	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	
 LayerAlmeria	
 4247	
 Objects	
 -­‐	
 Distance	
 1000	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	

LayerAlmeria	
 19929	
 Objects	
 -­‐	
 Distance	
 300	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	
 LayerAlmeria	
 19929	
 Objects	
 -­‐	
 Distance	
 1000	
 meters	
 -­‐	
 Reponse	
 Time	
 (h:m:s)	

4.2 Benchmarks

Now, we show the benchmarks with aggregation queries. We have taken response
times for the previous examples, varying size of layers. Layers range from 1353 to
19929 objects (i.e., from 5km to 10km). We have used the BaseX Query processor
in a HP Proliant (two processors and 16 MB RAM Memory) with Windows
Server 2008 R2. The results are shown in Figure 5. We can see that costly
queries are those involving composition, but all of them exhibit a good behavior
(from several seconds to two minutes). The layers used can be considered of
medium-size. For getting reasonable times in big cities, is crucial to be focused
on a medium-size city area. Even when the whole layer of big cities can be
handled in our approach, the XOSM queries are focused on an smaller sublayer
(of a certain area of the city). For this reason, we have tested the examples with
the Almeŕıa layers, which have a size similar to big areas of big cities. XOSM
limits the size of OSM layers to be indexed and queried.

5 Related Work

Most tools are able to query OSM with very simple commands: searching by
tag and relation names. This is the case of JOSM 7 and Xapiviewer8. The OSM
Extended API (or XAPI)9 is an extended API that offers search queries in OSM
with a XPath flavoring. The Overpass API (or OSM3S)10 is an extension to se-

7 https://josm.openstreetmap.de/
8 http://osm.dumoulin63.net/xapiviewer/
9 http://wiki.openstreetmap.org/wiki/Xapi

10 http://overpass-api.de/

Aggregation Operators in Geospatial Queries for Open Street Map 15

lect parts of the OSM layer. Both XAPI and OSM3S act as a database over the
web: the client sends a query to the API and gets back the dataset that corre-
sponds to the query. OSM3S has a proper query language which can be encoded
by an XML template. OSM3S offers more sophisticated queries than XAPI,
but it is equipped with a rather limited query language. OSM3S is specifically
designed for search criteria like location, types of objects, tag values, proxim-
ity or combinations of them. OSM3S has the query languages Overpass XML
and Overpass QL. Both languages are equivalent. They handle OSM objects
((a) standalone queries) and set of OSM objects ((b) query composition and
filtering). With respect to (a), the query language permits to express queries
for searching a particular object, and it is equipped with forward or backward
recursion to retrieve links from an object (for instance, it enables to retrieve
the nodes of a way). With respect to (b), the query language permits to ex-
press queries using several search criteria. Among others, it can express: to find
all data in a bounding box (i.e., positioning), to find all data near something
else (i.e., proximity), to find all data by tag value (exact value, non-exact value
and regular expressions), negation, union, difference, intersection, and filtering,
with a rich set of selectors, and by polygon, by area pivot, and so on. However,
OSM3S facilities (i.e., query composition and filtering) cannot be combined with
spatial operators such as Clementini’s crosses or touches. In OSM3S, only one
type of spatial intersection is considered (proximity 0 by using across selector).
For instance, the query (allowed in our library) “Retrieve the streets crossing
Calzada de Castro street and ending to Avenida de Montserrat street” is not
allowed in OSM3S. On the other hand, OSM3S has a rich query language for
keyword search based queries. Aggregation operators are not covered by OSM3S,
and thus our proposal can be considered richer than the existent OSM specific
query languages.

PostGreSQL is a well-known RDBMS with a spatial extension called Post-
GIS. PostGIS adds datatypes and spatial operators to PostGreSQL. Indexing of
spatial data is carried out by the R-Tree-over-GiST scheme. Open Street Map
can be handled by PostGIS with the following tools: (1) osmosis11: a Java-based
library for OSM loading, writing and ordering; (2) Osm2pgsql12 on top of os-
mosis, to transform OSM; (3) Imposm13 a Python-based tool to import OSM
in XML and PBF (“Protocolbuffer Binary Format”) formats. We have imple-
mented our own R-tree structure to store XML-based OSM data. However, we
plan to adopt PostGIS indexing in the future versions of the XOSM tool.

In the context of RDF and SPARQL, there are several proposals of lan-
guages and tools for working with spatial data. GeoSPARQL[3] (standard of the
Open Geospatial Consortium) and stSPARQL[17] are the most relevant contri-
butions to this area. Both are very similar. GeoSPARQL provides a vocabulary
to express spatial data in RDF, and defines an extension of SPARQL for query-
ing. The vocabulary includes a set of topological operations based on Egenhofer

11 https://github.com/openstreetmap/osmosis
12 https://github.com/openstreetmap/osm2pgsql
13 http://www.imposm.org/

16 J. Almendros, A. Becerra and M. Torres

and Region Connection Calculus (RCC8). Parliament[4] is an implementation
of the GeoSPARQL using Jena as RDF system. uSeekM also uses the Sesame
RDF store as well as PostGIS, and implements GeoSPARQL features. Omit-
ting aggregate functions and updates from stSPARQL, stSPARQL is a subset of
GeoSPARQL. stSPARQL is supported by Strabon[18], which extends the RDF
store Sesame with spatial data stored in PostGIS. stSPARQL uses SELECT,
FILTER and HAVING clauses of SPARQL in combination with spatial predi-
cates to query RDF spatial data. The “OpenGIS Simple Feature Access” stan-
dard (OGC-SFA)14, Egenhofer and RCC-8, are used as languages for topological
spatial relations. FILTER can be combined with them to define spatial selections
and joins. These can be also used in the SELECT and HAVING clauses. Ag-
gregation is present in stSPARQL in the form of union, intersection and extent
(i.e., minimum bounding box of a set of geometries). stSPARQL uses a B-tree
to index non spatial data, while R-Tree-over-GiST is used is used for spatial
indexing (provided by PostGIS). stSPARQL is mapped to SQL queries executed
under PostGreSQL. Virtuoso, OWLIM and AllegroGraph are RDF-based engine
supporting geometries of points. Open Street Map has been integrated in the
RDF area thanks to the OSM Semantic Network, in which OSM data resources
are available in RDF format.

While the context is different (RDF/SPARQL versus XML/XQuery) we
found analogies with the existent approaches. With regard to topological opera-
tors, our library is built on top of JTS, and thus providing similar expressivity.
Indexing is based in all the cases on R-tree like structures. With regard to expres-
sivity of the query language, RDF/SPARQL based languages can be considered
similar to our proposal, except for aggregation operators. The only case of lan-
guage equipped with aggregation is stSPARQL, including union, intersection
and extent. Thus our library provides a richer set of aggregation operators.

Unfortunately, we cannot compare our benchmarks with existent implemen-
tations of similar tools due to the following reasons. Even when OSM has been
used for providing benchmarks in a recent work [10], they use OSM as dataset
for Description Logic based reasoners rather than to evaluate spatial queries.
There are some proposals [16, 11] for Spatial RDF benchmarking, but none of
the queries involve the same kind of aggregation we propose. Benchmarks of
RDF/SPARQL tools are generally concerned with execution times of large RDF
resources, that most of cases are built from several RDF namespaces.

Our goal is less ambitious, focused on the development of a tool (XOSM) for
map querying and visualization. XOSM limits the size of maps to be indexed
and queried. This is also the case of other OSM APIs. In any case, XOSM has
to answer in short time, and the efficiency of XOSM has been one of our main
concerns during the development of our work.

14 http://www.opengeospatial.org/standards/sfs

Aggregation Operators in Geospatial Queries for Open Street Map 17

6 Conclusion and Future Work

In this paper, we have presented an extension of a previously defined library
for querying Open Street Map, and a Web-based tool for the visualization and
querying of OSM maps. The extension incorporates aggregation operators which
makes possible to rank and summarize data from OSM maps. We have shown
how to work with this kind of queries using the developed XOSM tool. As future
work, we would like to extend our work as follows. Firstly, we would like to
use an R-tree based structure to improve performance of aggregation operators.
The idea would be to annotate each MBR of the R-tree with a pre-defined
set of aggregation values (maximum, minimum, mode, etc.,) of each area. It
would make possible to implement more efficient algorithms which discard those
MBRs of upper (or lower) values. Secondly, and related to the first goal, top-k
algorithms will be implemented making use of the new R-tree structure.

References

1. Jesús M. Almendros-Jiménez and Antonio Becerra-Terón. Querying Open Street
Map with XQuery. In Proceedings of the 1st International Conference on Geo-
graphical Information Systems Theory, Applications and Management, pages 61–
71, 2015.

2. Roger Bamford, Vinayak Borkar, Matthias Brantner, Peter M Fischer, Daniela
Florescu, David Graf, Donald Kossmann, Tim Kraska, Dan Muresan, Sorin Nasoi,
et al. XQuery reloaded. Proceedings of the VLDB Endowment, 2(2):1342–1353,
2009.

3. Robert Battle and Dave Kolas. Geosparql: enabling a geospatial semantic web.
Semantic Web Journal, 3(4):355–370, 2011.

4. Robert Battle and Dave Kolas. Enabling the geospatial semantic web with Parlia-
ment and GeoSPARQL. Semantic Web, 3(4):355–370, 2012.

5. Jonathan Bennett. OpenStreetMap – Be your own cartographer. Packt Publishing
Ltd, 2010.

6. Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay,
Jonathan Robie, and Jérome Siméon. XML Path Language (XPath) 2.0. Technical
report, 2010.

7. Eliseo Clementini and Paolino Di Felice. Spatial operators. ACM SIGMOD Record,
29(3):31–38, 2000.

8. Joel da Silva, Anjolina G de Oliveira, Robson N Fidalgo, Ana Carolina Salgado,
and Valéria C Times. Modelling and querying geographical data warehouses. In-
formation Systems, 35(5):592–614, 2010.

9. Max J. Egenhofer. Spatial SQL: A Query and Presentation Language. IEEE Trans.
Knowl. Data Eng., 6(1):86–95, 1994.

10. Thomas Eiter, Patrik Schneider, Mantas Šimkus, and Guohui Xiao. Using Open-
StreetMap Data to Create Benchmarks for Description Logic Reasoners. In Pro-
ceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE
2014), pages 51–57. CEUR Workshop Proceedings, Vol-1207, 2014.

11. George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A Bench-
mark for Geospatial RDF Stores. In The Semantic Web–ISWC 2013, pages 343–
359. Springer, 2013.

18 J. Almendros, A. Becerra and M. Torres

12. Michael F Goodchild. Citizens as sensors: the world of volunteered geography.
GeoJournal, 69(4):211–221, 2007.

13. Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1):29–53, 1997.

14. Christian Grun. BaseX. The XML Database, 2014. http://basex.org.
15. Marios Hadjieleftheriou, Yannis Manolopoulos, Yannis Theodoridis, and Vassilis J

Tsotras. R-Trees–A Dynamic Index Structure for Spatial Searching. In Encyclo-
pedia of GIS, pages 993–1002. Springer, 2008.

16. Dave Kolas. A Benchmark for Spatial Semantic Web Systems. In International
Workshop on Scalable Semantic Web Knowledge Base Systems, 2008.

17. Manolis Koubarakis and Kostis Kyzirakos. Modeling and querying metadata in
the semantic sensor web: The model stRDF and the query language stSPARQL.
In The semantic web: research and applications, pages 425–439. Springer, 2010.

18. Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: a
semantic geospatial DBMS. In The Semantic Web–ISWC 2012, pages 295–311.
Springer, 2012.

19. Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient OLAP oper-
ations in spatial data warehouses. In Advances in spatial and temporal databases,
pages 443–459. Springer, 2001.

20. Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson. XQuery 3.0:
An XML query language. W3C Proposed Recommendation, 2014.

21. Carla V Ruiz and Valéria Cesário Times. A Taxonomy of SOLAP Operators. In
SBBD, pages 151–165, 2009.

