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PAPER

A study of lactation curves in dairy cattle using the optimal design of
experiments methodology

Ignacio Mart�ınez L�opez , Isabel Mar�ıa Ortiz Rodr�ıguez and Carmelo Rodr�ıguez Torreblanca

Departamento de Matem�aticas, University of Almer�ıa, Almer�ıa, Spain

ABSTRACT
In this paper, we have worked with some of the most popular models to fit the lactation curve.
Lactation curves have received considerable attention in modelling dairy cattle milk production.
These curves express the evolution over time of a cattle head’s milk yield. Observations of milk
production over a cycle have usually been carried out periodically (i.e. daily, weekly or monthly).
Optimal experiment design allows one to know the times when a herd’s milk production must
be recorded. An experiment design is optimal when it achieves the best parameter estimates
for the curve model. This work aims to study optimal designs for certain models such as quad-
ratic polynomial, hyperbolic, exponentials and Wilmink models (WMs). Designs are observed to
depend on models and must be compared to get to know if a design for a specific model has a
good behaviour with another model. Design efficiency is the tool used for this comparison.
Efficiency is a value between 0 and 1 – a design is good if its efficiency is close to 1. The WM
designs perform well and are an improvement on those designs that are routinely used in daily
observations.

HIGHLIGHTS

� Optimal experiment design allows one to know the times when a herd‘s milk production
must be recorded.

� The use of optimal design methodology greatly reduces the number of instances when dairy
production has to be recorded.

� Optimal designs reduce the costs of experimentation by allowing parameters to be estimated
with fewer experimental runs.

ARTICLE HISTORY
Received 2 April 2018
Revised 24 September 2018
Accepted 25 October 2018

KEYWORDS
Lactation curves; regression
models; optimal designs

Introduction

A lactation curve represents the evolution over time of
a herd’s milk production during a specific lactation
cycle. This cycle is the period from lactation onset after
calving until the cow’s milk dries up. Lactation curves
generally reach their peak yield after calving and then
decrease steadily from then until drying up (Figure 1).

Lactation curves allow the evaluation of important
milk production characteristics such as maximum pro-
duction and times to maximum production (Gipson
and Grossman, 1990) or persistency (Gengler, 1996).
These curves can help in herd management, particu-
larly in assessing cattle heads’ nutritional and health
status (Dudouet, 1982). These curves are also useful in
predicting a cattle head’s total milk yield when only
early lactation cycle observations are known.

Multiple statistical models have been used to
describe lactation curves. Quintero et al. (2007),

Cankaya et al. (2011), Macciotta et al. (2011), Graesbøll
et al. (2016), Hossein-Zadeh (2016) and Melzer et al.
(2017) reported on different lactation curve models,
which are compared for dairy cattle. These papers
show some models that can generally be expressed as
Y ¼ g t; bð Þ; where Y stands for milk yield at week or
day t of lactation, and time t is on a time interval T .
Here b is a vector which contains the unknown model
parameters to be estimated from data. Function
gðt; bÞ can be either linear or nonlinear on b. Some of
the models used to fit lactation curve data are: linear
(LM) Y ¼ b0 þ b1t, quadratic (QM) Y ¼ b0 þ b1t þ b2t

2,
hyperbolic (HM) Y ¼ b0 þ b1t þ b2t

�1, inverse quad-
ratic (IM) Y ¼ t b0 þ b1t þ b2t

2
� ��1

, exponential (EM)
Y ¼ b1e

�b2t or exponential with constant term
(EMC) Y ¼ b0 þ b1e

�b2t .
This paper is focussed on the Wilmink model (WM),

which is one of the most popular models used for
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lactation curve description. It is expressed as Y ¼
b0 þ b1t þ b2e

�kt; where parameter b0 is associated
with the level of production, b1 with the production
decrease after peak yield, b2 with the production
increase prior to peak yield, and k is a parameter asso-
ciated with the time of peak yield. Cankaya et al.
(2011) characterised peak yield and the maximum pro-
duction time. In Wilmink (1987) and many subsequent
papers, parameter k is fixed at 0:05. Nevertheless,
Torshizi et al. (2011) used values of 0:05, 0:065; 0:1,
and 0:61 for k. The WM has three parameters when k
is fixed. Olori et al. (1999) concluded that the WM is
the best three-parameter model for predicting mean
herd yield. If k is an unknown parameter, the WM has
four parameters, k being a nonlinear parameter and is
called the Wilmink extended model (WEM).

Some papers dealing with lactation models
researched the use of several models to estimate the
data and compared them using the coefficient of deter-
mination. Different conclusions were drawn regarding
the best model for lactation period modelling. Figure 2
shows the plot of some of these functions.

The WM is a modification of the Cobby–Le Du model
(see Cobby and Le Du, 1978). This model includes par-
ticularity that post-peak milk yield is modelled as a linear
decline function and combines exponential and linear
models. Both models are related to a model proposed
by Wood (1967), which is expressed as Y ¼ b0t

b1e�b2t .
The Wood model is widely used for lactation curve
descriptions in dairy cattle and lactation predictions in
cows and goats. Nonetheless, the results from the Wood
model are improved by the WM.

Figure 1. Standard shape of the lactation curve for dairy cattle. The plot shows the milk production as function of the weeks after
the parturation.

Figure 2. Plot for some lactation models: QM (dashed line), HM (dotted line), IM (dot-dashed line) and WEM (solid line).
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To estimate these models’ parameters, the
researcher requires certain observations; namely, a
sample of t and Y values. The optimal design of
experiments methodology can be applied because it
aims to find the best t values where variable Y is to
be observed (i.e. the days or weeks when milk produc-
tion must be registered). In general, model estimation
includes several steps in which the researcher can
control the independent variable t. Firstly, given a the-
oretical model, one attempts to find ‘optimum’ values
for the design variable, t, in the range of experimental
interest, T . This search is carried out with respect to
an optimality criterion which is chosen according to
the final analysis goal – parameter estimation or
hypothesis testing. Secondly, variable Y is observed in
the optimum t allocations given by the optimum
design. Finally, the model is estimated using these
observations.

Optimal designs have been applied to a wide range
of fields such as biomedicine (Campos-Barreiro and
L�opez-Fidalgo, 2013), pharmacokinetics and pharmaco-
dynamics (Kitsos and Kolovos, 2013), and agricultural
studies (Mart�ınez-L�opez et al., 2009).

This paper researches optimal experimental designs
for lactation curves. However, these designs depend
on the particular model and the optimality criterion.
Therefore, several lactation models are considered in
the paper. With the objective of estimating the model
parameters, a commonly adopted criterion is D-opti-
mality, which obtains D-optimal designs. By using
such designs, the best estimates for a model’s
unknown coefficients (parameters) are achieved.

Material and methods

The statistical regression model is expressed as: Y ¼
g t; bð Þ þ e; t 2 T ; where Y is the response variable, t
is the independent variable, and b is a vector of p
unknown parameters that we have to estimate from
the observations. The e term stands for the random
errors with zero mean and constant variance.

Some definitions of optimal experimental
design theory

An experimental design n is a collection of t values
where Y is to be observed. The design is made-up of
n different support points t1, t2, . . ., tn, and their
respective weights w1, w2, . . ., wn (relative frequencies,
w1 þ w2 þ . . .þ wn ¼ 1). A weight, wi, is the propor-
tion of the total observations taken at time ti, and this
can be considered as a probability measure (Kiefer,

1974). If we want N observations to estimate the
model, then we round up the Nwi values to know the
number of observations at points ti.

An optimal design, n�, includes the best points and
weights with respect to an optimality criterion. Of the
different criteria in the literature, we are going to con-
sider the D-optimality criterion because it relates to
the estimation quality of the model parameters.

The advantage of using optimal designs is that we
control the times when the observations are taken,
leading to the best possible parameter estimation. The
accuracy of an estimator is measured by its variance,
and this is part of a matrix known as the information
matrix. This matrix is the main tool when looking for
optimal designs.

When the function g t; bð Þ is differentiable with a
continuous derivative for every parameter, bi, with
rgðt; bÞ as its gradient vector, the information
matrix is defined by M n; bð Þ ¼Pn

i¼1 wirgðti; bÞrgðti; bÞT : The inverse of the infor-
mation matrix is asymptotically proportional to the
covariance matrix of the parameter estimators. For
this reason, many optimality criteria are formulated
in terms of this matrix; for example, the D-optimal-
ity criterion is related to the determinant of the
information matrix. A D-optimal design maximises
this determinant, which is equivalent to minimising
that of the covariance matrix, so D-optimal designs
minimise the volume of the confidence region of
the regression parameter vector, b.

The General Equivalence Theorem is a useful tool
to check whether a design is optimal. This theorem
states that a design n� is D-optimal if and only if
d t; n�; bð Þ ¼ rg t; bð ÞTM�1 n�; bð Þrg t; bð Þ � p; for all
values of t in T , with p being the number of model
parameters. Furthermore, the maxima of dðt; n�; bÞ
occur at the n� support points. Function dðt; n�; bÞ is
called the variance function.

For non-linear models, the variance function and
the information matrix depend on unknown parame-
ters. The simplest way to deal with this problem is by
using a single prior guess for the unknown parame-
ters, obtaining locally optimal designs. Such know-
ledge is often available from preliminary studies.
Optimal designs will depend on this initial
information.

Results

The results of this study are the optimal experimental
designs for the Wilmink lactation curves. These
designs contain the times when observations must to
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be recorded. The D-optimality criterion is used. The
optimal designs are presented in several tables.

We will consider the general design space T ¼ ½a; b�,
0 < a < b < þ1, and two cases depending on param-
eter k. If k is a known value, we employ the usual WM,
which has three parameters b ¼ b0; b1; b2ð ÞT. If k is an
unknown parameter, we employ the WEM, which has
four parameters b ¼ b0; b1; b2; kð ÞT. Consequently, the
optimal designs differ in each case.

Wilmink model

The D-optimal design, n�, for WM in the interval
T ¼ ½a; b�, with 0 < a < b < þ1, is supported at
exactly three points: t1 ¼ a, t2 ¼ � 1

k log
e�ka�e�kb

kðb�aÞ
� �

and t3 ¼ b. The respective weights are
w1 ¼w2 ¼ w3 ¼ 1=3:

For the proof of the above results, we have taken
into account the gradient vector rg t; bð Þ ¼
ð1; t; e�ktÞT and the results in Karlin and Studden
(1966). In this case the information matrix and the
variance function do not depend on unknown param-
eters, so they can be denoted by dðt; nÞ and MðnÞ,
respectively. Studying the maxima and minima of
dðt; nÞ, and applying the General Equivalence
Theorem, we conclude that t1 ¼ a, t3 ¼ b and t2 is an
interior point in ½a; b�, which is the solution
of ojMðnÞj=ot2 ¼ 0.

We can observe that interior support point t2 tends
to the midpoint of the interval ðaþ bÞ=2; when k ! 0
and t2 tends to a; when k ! þ1.

According to Wilmink (1987), the lactation cycle
length was 305 days, making T ¼ ½1; 305�.
Consequently, the observations must to be recorded
at days t1 ¼ 1, t2 ¼ � 1

k log
e�k�e�305 k

304 k

� �
and t3 ¼ 305.

For k ¼ 0:05, considered in Wilmink (1987), the opti-
mal value of t2 is 55:426. Nevertheless, in the Wilmink
work milk production was observed on each of the
305 days; that is, a uniform design with 305 support
points t1 ¼ 1; t2 ¼ 2; . . . ; t305 ¼ 305 was considered;
this will be denoted by n305.

We can compare designs n305 and n� through the
determinant of the information matrix: jMðn305Þj ¼
138:18 and jMðn�Þj ¼ 1766:25; the second determinant
being greater than the first because it corresponds to
the D-optimal design. Applying the D-optimality criter-
ion, design n� is better than design n305 because its
determinant is greater as is the meaningful informa-
tion. Therefore, the estimated parameters will be more
precise if we use design n�.

A measurement of a given design’s behaviour, n,
relative to the D-optimal design, n�, is the D-efficiency,

which is calculated as:

EffD nð Þ ¼ jM nð Þj
jM n�ð Þj

� �1=p

;

where p is the number of unknown parameters. This
value is within ½0; 1� and EffD nð Þ ¼ 0:5 meaning that
design n needs to double the total number of obser-
vations to perform as well as optimal design n�. The
D-efficiency of n305 is only 0.43, which is a very
low value.

Torshizi et al. (2011) considered other values for k;
namely, 0:065, 0:1 and 0:61. For these values, the D-
optimal designs in T ¼ ½1; 305� are equally supported
at three points – these are the ends of this interval
and the points 46.9, 35.14, and 9.56, respectively.

Since D-optimal design depends on the value of k,
we need to analyse whether the D-optimal design for
a given k value behaves well for another value.
Table 1 reports the D-efficiencies of the optimal
design for k ¼ k2 when it is used to estimate another
model with a different value, k ¼ k1. For this, we con-
sidered the values of k in Torshizi et al. (2011). For
instance, the value 0:994 in Table 1 implies that the
D-optimal design for k2 ¼ 0:065 behaves very well in
estimating the WM with k1 ¼ 0:05. However, the D-
optimal design for k ¼ 0:61 does not behave well in
estimating the model with k1 ¼ 0:05, because its D-
efficiency is 0:544. Table 1 also includes the efficien-
cies of daily design n305. We can see that the efficien-
cies for the various D-optimal designs are higher than
for the daily design used in Wilmink (1987).

Wilmink extended model

Here, we consider that k is another unknown param-
eter. The WEM is nonlinear with four parameters b ¼
ðb0; b1; b2; kÞT . The information matrix depends on
parameter k and is denoted by M n; kð Þ. Locally D-
optimal designs will be obtained because there is a
need for prior information regarding k; for example,
from previous experiments, this will be denoted by k0.

TABLE 1. Efficiencies for WM D-optimal designs.
WM D-optimal design

WM design
True values k1

Miss values k2 0:050 0:065 0:100 0:610

0:050 1 0:995 0:970 0:897
0:065 0:994 1 0:988 0:917
0:100 0:956 0:984 1 0:945
0:610 0:544 0:629 0:743 1
n305 0:428 0:397 0:350 0:221

Efficiency is the behaviour of D-optimal designs for Wilmink models (WM)
with k2 when used to estimate WM with true value k1.
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The locally D-optimal design n� for WEM in
T ¼ ½a; b�, 0 < a < b < þ1, and k ¼ k0 is equally
supported at exactly four points. Two of the support
points are the boundary points of the interval (t1 ¼ a
and t4 ¼ b). For the other points, t2 and t3, we do
not have an explicit expression but they are the solu-
tions to the equations of oM n; k0ð Þ=ot2 ¼ 0 and
oM n; k0ð Þ=ot3 ¼ 0. Table 2 reports the support points
of locally D-optimal designs in ½1; 305� for WEM and
the values of k in Torshizi et al. (2011).

Table 3 compares the behaviour of the different
locally D-optimal designs in Table 2. Efficiencies for
daily design n305 are included. In this case, efficiencies
are strongly influenced by parameter k. Significantly
lower efficiency is obtained when k2 differs from the
true k1 value. As in WM, the daily design efficiencies
are very small.

In Table 4, we include the efficiencies of the locally
D-optimal designs for WEM when they are used to
estimate the WM. We can use a four-point optimal
design for WEM to estimate a three-parameter WM
but it is not possible to use an optimal design for a

WM (three points) to estimate a WEM
(four parameters).

Discussion

A variety of different mathematical models have
been used to research the lactation curve shape.
Working with these models, a particular problem is
collecting data to estimate the parameters as pre-
cisely as possible. To do this, it is necessary to
design the experiment. There is relevant literature
regarding D-optimal designs for regression models.
We then set the results for those models applied to
lactation – namely, the polynomial, hyperbolic,
inverse quadratic and exponential models. Firstly, we
offer the theoretical insight and, after that, the
numerical results will be included in Table 5.
Depending on the model, we will have to record
the observations at different times, so we compare
the behaviour of a model-specific D-optimal design
when used to estimate another model. Finally, a
web application is presented to obtain the optimal
designs for this research.

Polynomial model

According to Karlin and Studden (1966), the D-optimal
design for the polynomial model of degree r, on inter-
val ½�1; 1�, is equally supported at r þ 1 points, which
are the roots of the polynomial ð1� t2ÞL'rðtÞ, where
L'rðtÞ is the derivative of the Legendre polynomial of
degree r. If zi are the support points in ½�1; 1�, then
ti ¼ 1þ bþ ðb�1Þzið Þ=2 are the support points on
interval ½1; b�. Both ends of the design space are
always support points.

TABLE 4. Efficiencies of locally D-optimal designs for WEM
with respect to those for WM, for different k values.

WM D-optimal design

WEM design
Value k

Value k 0:050 0:065 0:100 0:610

0:050 0:860 0:861 0:874 0:864
0:065 0:865 0:861 0:868 0:880
0:100 0:871 0:867 0:863 0:902
0:610 0:616 0:673 0:762 0:865

WEM: Wilmink extended model; WM: Wilmink model.

TABLE 3. Efficiencies for WEM D-optimal designs.
WEM D-optimal design

WEM design
True value k1

Miss value k2 0:050 0:065 0:100 0:610

0:050 1 0:975 0:834 0:015
0:065 0:976 1 0:934 0:049
0:100 0:851 0:938 1 0:190
0:610 0:184 0:245 0:384 1
n305 0:333 0:291 0:221 0:092

Efficiency is the behaviour of the D-optimal designs for WEM with k2
when used to estimate WEM with true value k1. WEM: Wilmink
extended model.

TABLE 2. Support points of WEM locally D-optimal designs
in ½1; 305�.
k t1 t2 t3 t4
0:050 1 19:85 92:32 305
0:065 1 15:75 77:05 305
0:100 1 10:75 56:28 305
0:610 1 2:64 13:70 305

D-optimal designs are equally supported at t1, t2, t3, and t4. WEM:
Wilmink extended model.

TABLE 5. Support points for D-optimal designs for some lac-
tation models.
Model Support points

LM 1 14
EM(1) 1 14
HM 1 3:74 14
IM(2) 1 3:41 14
WDM(3) 1 4:56 14
EMC(1) 1 7:04 14
QM 1 7:50 14
WM 1 7:15 14
WEM(4) 1 4:32 10:12 14

Lactation models namely, linear (LM), exponential (EM), hyperbolic (HM),
inverse quadratic (IM), Wood (WDM), exponential with constant term
(EMC), quadratic (QM), Wilmink (WM), and Wilmink extended (WEM), in
½1; 14�. With best guesses from Landete-Castillejos and Gallego (2000):
(1)b02 ¼ 0:03307; (2) b00 ¼ 0:0002865; b01 ¼ 0:0002117; b02 ¼ 0:0000301;
(3)b01 ¼ 0:33269; b02 ¼ 0:09319; and (4)k0 ¼ 0:05.
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Hyperbolic model

The D-optimal design in ½a; b�, with 0 < a < b, is
equally supported at t1 ¼ a, t2 ¼

ffiffiffiffiffiffi
ab

p
and t3 ¼ b. In

particular, the D-optimal design is equally supported
at 1;

ffiffiffi
b

p
; b

	 

for the interval ½1; b�.

Inverse quadratic polynomial model

From Haines (1992), the locally D-optimal design is
equally supported at t1 ¼ s=q, t2 ¼ s and t3 ¼ sq,

with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
b00=b

0
2

q
, q ¼ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4

p� �
=2, d ¼

cþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 6cþ 33

p� �
=2 and c ¼ b01=

ffiffiffiffiffiffiffiffiffiffi
b00b

0
2

q
, for

initial values b0 ¼ b00, b1 ¼ b01 and b2 ¼ b02. If t1 or t3
are not included in the design interval, the support
point is then fixed at the end of the interval and the
other support points are calculated as shown in
Haines (1992).

Exponential model

Han and Chaloner (2003) obtained the locally D-opti-
mal design in interval ½1; b� is equally supported at
two points: t1 ¼ 1 and t2 ¼ min 1þ 1

b02
; b

n o
,

for b2 ¼ b02.

Exponential model with constant term

Han and Chaloner (2003) also calculated the locally D-
optimal design for the exponential model with a

constant term in ½1; b�. For b2 ¼ b02 it is equally sup-

ported at three points t1 ¼ 1, t2 ¼ eb
0
2 1þb02bð Þ�eb

0
2
b 1þb02ð Þ

b02 e
b0
2�e

b0
2
bð Þ

and t3 ¼ b.
Table 5 reports the optimal designs for the above

models in the interval T ¼ ½1; 14� considered by
Landete-Castillejos and Gallego (2000). This design
space corresponds to monthly observations of lacta-
tion yield throughout a cycle. All designs in Table 5
are equally supported. Some of the designs are locally
optimal designs so they are obtained for initial param-
eter values found in Landete-Castillejos and Gallego
(2000). For example, EM(1) is the locally D-optimal
design for the exponential model with b02 ¼ 0:03307.
IM(2) is the locally D-optimal design for the inverse
quadratic polynomial model with b00 ¼ 0:0002865,
b01 ¼ 0:0002117 and b02 ¼ 0:0000301. Table 5 also
includes the locally D-optimal design for WEM with
k ¼ 0:05 and the locally D-optimal design for
the Wood model (WDM) with b01 ¼ 0:33269
and b02 ¼ 0:09319.

Table 6 summarises the performances of the opti-
mal designs in Table 5 in terms of their efficiencies.
We must emphasise the good performance of some of
these designs for different lactation curves, with effi-
ciencies close to 1, and the low efficiency always
shown by the monthly design n14.

We have created a Web application with the R
Shiny software. This application allows one to obtain
the optimal design for any of the models discussed,
and for an interval T ¼ ½1; b�. We can estimate and
draw the models for our experimental data. The Web
application is available at https://imor.shinyapps.
io/lactancy/

Conclusions

Milk yield over the course of the lactation cycle fol-
lows a curvilinear pattern, so a suitable function is
required to model this curve. Eight functions (namely:
linear, exponential, hyperbolic, inverse quadratic, expo-
nential with constant term, quadratic, Wilmink and
Wilmink extended) are investigated to model the lac-
tation curve. The optimal designs for these models are
studied in this paper.

The use of optimal design methodology greatly
reduces the number of instances when dairy produc-
tion has to be recorded. Consequently, milk produc-
tion does not have to be observed every day or
weekly. To obtain the best parameter estimates, one
only has to study the days proposed by the optimal
design. Optimal designs reduce the costs of experi-
mentation by allowing parameters to be estimated
with fewer experimental runs.

Efficiency was used to compare optimal design per-
formance. This method allows one to compare models
under different conditions. Table 5 shows two groups
within the 3-support-point D-optimal designs. The
hyperbolic, the inverse quadratic polynomial and the

TABLE 6. Efficiency study for optimal design for lacta-
tion models.

D-optimal design for lactation models

LM EM HM IM WDM EMC QM WM

LM 1 1
EM 1 1
HM 0:861 0:845 1 0:994 0:980 0:803 0:762 0:794
IM 0:869 0:853 0:997 1 0:958 0:756 0:714 0:747
WDM 0:844 0:832 0:987 0:967 1 0:894 0:859 0:886
EMC 0:817 0:826 0:858 0:702 0:889 1 0:997 1
QM 0:817 0:829 0:825 0:653 0:851 0:997 1 0:998
WM 0:817 0:827 0:850 0:690 0:879 1 0:998 1
WEM 0:775 0:864 0:864 0:876 0:898 0:865 0:866 0:865
n14 0:620 0:629 0:676 0:676 0:681 0:671 0:671 0:671

LM: linear; EM: exponential; HM: hyperbolic; IM: inverse quadratic; WDM:
Wood; EMC: exponential with constant term; QM: quadratic; WM:
Wilmink; WEM: Wilmink extended; n14: monthly design on space ½1; 14�.
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Wood models show a similar behaviour and high effi-
ciency. Another group includes the exponential model
with constant term, the quadratic polynomial model,
and the WM, which likewise share similar
characteristics.

The results of this work support the idea that the
WM provides good performance. Its efficiencies are
high for the cases considered. It greatly improves the
design with routinely used with daily observations.
The main disadvantage of the WM is the importance
of having an accurate parameter value for the expo-
nent. Inappropriate specifications for this parameter
can lead to low efficiencies.
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