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Abstract

The notion of p-summing Bloch mapping from the complex unit open disc D into
a complex Banach space X is introduced for any 1 < p < oo. It is shown that the
linear space of such mappings, equipped with a natural seminorm 72, is Mobius-
invariant. Moreover, its subspace consisting of all those mappings which preserve the
zero is an injective Banach ideal of normalized Bloch mappings. Bloch versions of the
Pietsch’s domination/factorization Theorem and the Maurey’s extrapolation Theorem
are presented. We also introduce the spaces of X-valued Bloch molecules on D and
identify the spaces of normalized p-summing Bloch mappings from D into X™* under
the norm nf with the duals of such spaces of molecules under the Bloch version of
the p*-Chevet—Saphar tensor norms d+.

Keywords Vector-valued Bloch mapping - Compact Bloch mapping - Banach-valued
Bloch molecule - Bloch-free Banach space

Mathematics Subject Classification 30H30 - 46E15 - 46E40 - 47B38

Introduction

The known concept of absolutely p-summing operator between Banach spaces, intro-
duced by Grothendieck [10] for p = 1 and by Pietsch [18] for any p > 0, can be

Communicated by Ngai-Ching Wong.

B A. Jiménez-Vargas
ajimenez@ual.es

M. G. Cabrera-Padilla
m_gador@hotmail.com

D. Ruiz-Casternado
drc446@ual.es

Departamento de Matematicas, Universidad de Almeria, Ctra. de Sacramento s/n, La Cafnada de San
Urbano, 04120 Almeria, Spain

Published online: 22 January 2024 ¥ Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s43037-023-00318-6&domain=pdf
http://orcid.org/0000-0002-0572-1697

9 Page2of31 M. G. Cabrera-Padilla et al.

adapted to address the property of summability in the setting of Bloch mappings from
the complex unit open disc D into a complex Banach space X as follows.

The study of summability has been addressed for different classes of mappings by
some authors. For example, for multilinear operators by Achour and Mezrag [1] and
Dimant [8], for Lipschitz mappings by Farmer and Johnson [9] and Saadi [20], and for
holomorphic mappings by Matos [12] and Pellegrino [15], among other settings. See
also the survey by Pellegrino et al. [16] for the summability on multilinear operators
and homogeneous polynomials.

If H(D, X) denotes the space of all holomorphic mappings from D into X, let us
recall that a mapping f € H (D, X) is called Bloch if there exists a constant ¢ > 0
such that (1 — |z|?) || f(2) H < cforall z € D.

The Bloch space B(D, X) is the linear space of all those mappings f € H(D, X)
such that

ps(f)i=swp |1 =P | f'@] : 2 € D < o0,

equipped with the Bloch seminorm pg. The normalized Bloch space @(]D), X) is the
Banach space of all Bloch mappings from D into X such that f(0) = 0, equipped with
the Bloch norm pg. In particular, we will write 8(D) instead of B(D, C). We refer
the reader to [2, 21] for the scalar-valued theory, and to [4, 5] for the vector-valued
theory on these spaces.

For any 1 < p < oo, we say that a mapping f € H(D, X) is p-summing Bloch if
there is a constant ¢ > 0 such that foranyn € N, Ay,..., A, € Candzy,...,z, € D,
we have

1
(Dw ||f’<zl-)||”) e s (ZM |P|g<z)|”> if 1<p<oo,
i=1

B3y

1max [Xil Hf (z,)|| <c sup <1max [Ail |g (z,)|) if p=o0.

geBg(D)

The infimum of all the constants ¢ for which such an inequality holds, denoted f f,

defines a seminorm on the linear space, denoted Hf(ID), X), of all p-summing Bloch
mappings f: ) — X. Furthermore, this seminorm becomes a norm on the subspace
Hf(]D), X)) consisting of all those mappings f € Hf(]D), X) so that f(0) = 0.

These spaces enjoy nice properties in both complex and functional analytical frame-
works. In the former setting, we show that the space (Hff(]D), X), nf) is invariant by
Mobius transformations of ID. In the latter context and in a clear parallelism with the
theory of absolutely p-summing linear operators (see [7, Chapter 2]), we prove that
[1'[3 5 » | is an injective Banach ideal of normalized Bloch mappings whose elements
can be characterlzed by means of Pietsch domination/factorization. Applying this
Pietsch domination, we present a Bloch version of Maurey’s extrapolation Theorem
[13].
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On the other hand, the known duality of the Bloch spaces (see [2, 4, 21]) is extended
to the spaces (Hf D, X*), nf) by identifying them with the duals of the spaces of
the so-called X-valued Bloch molecules on D, equipped with the Bloch versions of
the p*-Chevet—Saphar tensor norms d,+. We conclude the paper with some open
problems.

The proofs of some of our results are similar to those of their corresponding linear
versions, but a detailed reading of them shows that the adaptation of the linear tech-
niques to the Bloch setting is far from being simple. Our approach depends mainly
on the application of some concepts and results concerning the theory on a strongly
unique predual of the space B(ID), called Bloch-free Banach space over D that was
introduced in [11].

Notation. For two normed spaces X and Y, £(X, Y) denotes the normed space of
all bounded linear operators from X to Y, equipped with the operator canonical norm.
In particular, the topological dual space £(X, C) is denoted by X*. For x € X and
x* € X*, we will sometimes write (x*, x) = x*(x). As usual, By and Sx stand for
the closed unit ball of X and the unit sphere of X, respectively. Let T and D denote
the unit sphere and the unit open disc of C, respectively.

Given 1 < p < o0, let p* denote the conjugate index of p defined by

00 if p=1,
pr=1p/(p—1) ifl <p <oo,
1 if p = oco.

1 p-Summing Bloch mappings on the unit disc

This section gathers the most important properties of p-summing Bloch mappings on
D. From now on, unless otherwise stated, X will denote a complex Banach space.

1.1 Inclusions

We will first establish some useful inclusion relations. See first [18, Satz 5].
The following class of Bloch functions will be used throughout the paper. For each
z € D, the function f,: D — C defined by

)
folw) = (11|—z_|)w (w € D),
— W

belongs to @(]D)) with pg(f;) =1= (1 — |z|2)fz/(z) (see [11, Proposition 2.2]).

Proposition 1.1 Let 1 < p < g < co. Then TIF(D, X) € NFD, X) with 7} (f) <
Jflz,;(f) forall f € Hf(]D), X). Moreover, I3 (D, X) = B(D, X) with 72 (f)
ps(f) forall f € MZ (D, X).

) Birkhauser



9 Page4of31 M. G. Cabrera-Padilla et al.

Proof Letn € N, Ay,..., A, € Cand zy, ..., z, € D. We will first prove the second
assertion. Let [ € Hfo(ID, X). For all z € D, we have

A=1zD[F @ =72 sup (1-1z2)|g'@| =72 (f),

geBg(D)

hence f € B(D, X) with pg(f) < rrﬁ(f). Conversely, let f € B(D, X). Fori =
1,...,n, we have

)"i / ’
il | £/ @) < %pgm = Ml | £ @) ps(f) < ps(f) sup |l [¢'(zi)
— lzil 8€B3 ()

s

this implies that

max 4| | f'z)| < ps(f) sup (max |A,-||g’(z,->|>,
1<i<n 1<i<n

geB@(D) Sz

and thus f € 12 (D, X) with 72 (f) < ps(f).
To prove the first assertion, let f € H*(lf (D, X). Assume g < oo. Taking B; =

|Ail97P ||f/(z,')||(q/p)71 fori =1,...,n, we have

(Z |21 Hf’(zi)w) (Z 1Bil” Hf’(mu”)
i=1 i=1

1

w(f) sup ( |ﬂ,-|”|g’<zi)|”> :
1

ge B@(D)

IA

i=
Since g/p > 1l and (¢/p)* = q/(q — p), Holder Inequality yields
1

1
n 7 n 7
sup ( |ﬁ,-|"|g/(z,-)|”> = sup <Z(|A,-|||f/(z,~>}|)"”(|A,-||g/<zl-)|)1’)
8€B3p) \i=1 8€B3p)

i=1

1_1

1
<Z |31 ||f/(z,«>||"> sup < |21 |g/<z,»><") :
i=1 1

8€b3m) \i=

I\

and thus we obtain

1

1 1
(Zw ||f’(z,->||q> < (f) sup ( |21 !g’(zi>|"> :
i=1 1

8€Bzm) \i=

W Birkhauser
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This shows that f € Hf(D, X) withan(f) < nf(f) if g < o0o. Forthe case g = oo,
note that

A=1zD ] @] =7 ) sup =1z ]g'@] =77 (f)

geBg(D)

forall z € D, and thus f € B(D, X) = NZ (D, X) with 72 (f) = pg(f) <75 (f).
[}

1.2 Injective Banach ideal property

Let us recall (see [11, Definition 5.11]) that a ng\rmalized Bloch ideal is a subclass 1~ Z
of the class of all normalized Bloch mappings 8 such that for every complex Banach
space X, the components

M, X) = 7N BMD, X),

satisfy the following properties:

11 I@(]D), X) is a linear subspace of @(]D), X),

(I2) For every g € @(]D)) and x € X, the mapping g - x: z — g(z)x from D to X is
in 78D, X), R

(I3) Theideal property:if f € I 8 (D, X), h: D — Disaholomorphic function with
h(0) =0and T € L(X, Y) where Y is a complex Banach space, then T o f o h
belongs to 78D, Y).

A normalized Bloch ideal I 5 is said to be normed (Banach) if there is a function
I-l3:7 B ]R(J)r such that for every complex Banach space X, the following three
conditions are satisfied:

(N1) (J@(]D, X)), | - ;) is a normed (Banach) space with pg(f) < ||f||I@ for all
feI?D, X)), R
(N2) llg-xll;32 = ps(g) llx| forall g € B(D) and x € X,

(N3) If ~: D — D is a holomorphic function with 2(0) =0, f € Ig(ID), X)and T €
L(X,Y) where Y is a complex Banach space, then | T o fohll ;3 < IT | | Il ;3

A normed normalized Bloch ideal [ 1 3 I+ I ;2] s said to be:

(I) Injective if for any mapping f € @(]D), X), any complex Banach space ¥ and
any isometric linear embedding ¢: X —>AY , we have that f € I B (D, X) with
I£1l;3=llco fl ;3 whenever Lo f € T5(D, Y).

We are now ready to establish the following result which can be compared to [18,
Satzs 1-4].

B

» 1 is an injective Banach normalized Bloch ideal for any 1 <

Proposition 1.2 [H%,n
p < oo.

) Birkhauser
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Proof Note that IT5(ID, X) < B(D, X) with ps(f) < aB(f) forall f € E(D, X)
by Proposition 1.1.

We will only prove the case 1 < p < oo. The cases p = 1 and p = oo follow
similarly. Let n EN, M,...,Ap€Candz,...,z, € D.

(N If f € IZ(D, X) and 77 (f) = 0, then pg(f) = 0, and so f = 0. Given

f, e H?(D, X), we have

P

(Dw I +f2)/(Zi)||p) < (Z ail? (LA @ ||" + !Ifé@nH”))
i=1 i=1

1
P

< (Z 217 Hf{(z,»)uf’) + (Zw Hfz/(z,»)H”)
i=1 i=1

1
§<nf(.f1)+ﬂf(fz)) sup ( |2i17 \g/<z,«>y”) ,
1

8€B3m) \i=

and therefore f1 + f» € H%(]D), X) with rr,?(fl + fo) < nf(fl) + nf(fz).
Let e Cand f € Hf(ID), X). We have

(Z a1 | (Af)%zl-)n”) = |Al (Z Al | f’(z,->||”)

i=1 i=1

1

n »

< M7 (f) sup ( [A: 7 ’g/(Zi)|p) ,
8€Bp) \i=1

andthus A f € H%(D, X)withw 2 (0. f) < [A| 2 (f). This implies that w7 (A f) = 0 =
A 72(f) if A = 0. For & # 0, we have 72 (f) = 72 (A~ () < A7 220 f).
hence |1| nlzf(f) < rr[ff()»f), and so nf(kf) 3 n[?(f). Thus we have proved that
(H%(D, X), nf) is a normed space.

To show that it is a Banach space, it is enough to see that every absolutely convergent
series is convergent. So let (f;,),>1 be a sequence in Hf (D, X) such that nlgf (fi)
converges. Since pg(f,) < nf(fn) for all n € N and (@(]D), X), pg) is a Banach
space, then ) f, converges in (@(D, X), pgg) to a function f € @(]D), X). Given
meN, zi,....,zn €Dand A, ..., A, € C, we have

P % n m 1%
) =7y (Zﬁ) sup (Zlkklfﬂg’(zw\”)
i=1 8€Bgm) \k=1

1

<3t s (Sl
i=1

8€Bgm) \k=1

m
(Z |1k 1?
k=1

B HED)
i=1

W Birkhauser
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for all n € N, and by taking limits with n — oo yields

1

7 [ele] m )
) Z B(f) sup (Z [Axl? |g/(Zk)|p) .
= 8€B3m) \k=1

o8]

Z ! (z)

(i Jl?

k=1

Hence f € H%(]D), X) with n[?(f) < fo;l nf(fn). Moreover, we have
n o0 o
nf(f—Zﬁ-) :n,?< > ﬁ) < Y )
i=1 i=n+1 i=n+1

for all n € N, and thus f is the 713 limit of the series > fn

(N2) Let g € B(]D) and x € X Note that g - x € B(D X) with pg(g - x) =
ps(g) |lx] by [11, Proposition 5.13]. If g = 0, there is nothing to prove. Assume
1

g # 0. We have
1 P\ p
8 :
<ps(g)> w0 )

1
< llxll ps(g) sup (Z|xi|f’|h’<zl~)}"> ,

heBgm) \i=1

<Z M x>/<zl->||”> = llxIl ps(e) (Z A7

i=1 i=1

andthus g - x € H?(D, X) with nf(g -x) < ps(g) ||x]| . Conversely, we have
p5(@) lIxll = ps(g-x) <7 (g - x).

(N3)Leth: D — D be a holomorphic function with 2(0) =0, f € H%(D, X) and

T € L(X,Y) where Y is a complex Banach space. Note that T o f o h € @(D, Y) by
[11, Proposition 5.13]. We have

(Z Mil? (T o f o h)’(zl-)H”)

i=1

= (Z A |7 ||T(f/(h(z,-))h/(zz'))||”>
i=1
1

<7 (Z 117 |1 (z)]” ||f/<h(z,-)>\}f’)

i=1

1
<ITlxy (f) sup (Z %17 B 2] |g’(h<zi>>|”)

8€Bam) \i=1

) Birkhauser
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1
=TIz (f) sup (Zlkilpl(goh)/(a)l”)

8€Bgm) \i=1

<|ITlx (f) sup (ZM 7 K (zl>|”>

keBgp,

where we have used that pg(g o h) < pg(g) by [11, Proposition 3.6]. Therefore
Tofohe nB(D Y) with (T o foh) < [T xp(f).

(D Let f € B(]D) X) and let t: X — Y be a linear (not necessarily surjective)
isometry. Assume thatto f € Hf(]D), Y). We have

(Z |7 l? Hf’(a)””) = (Z ke Hz(f’(zi»U”)
i=1 i=1

= (Z nil? o f)’(zl-)>||”>

i=1

<7p(o f) sup (ZM |”|g(z,>|‘”)

gEBB(]D)

and thus f € H% (D, X) with n[ff (f) < n[(‘f (t o f). The reverse inequality follows
from (N3). O

1.3 Mobius invariance

The Mobius group of D, denoted Aut(DD), is formed by all biholomorphic bijections
¢: D — D. Each ¢ € Aut(D) has the form ¢ = L, with A € T and a € D, where

Z

$a(2) = 1"__ (z € D).
—

Given a complex Banach space X, let us recall (see [3]) that a linear space A(D, X)
of holomorphic mappings from D into X, endowed with a seminorm p#, is Mobius-
invariant if it holds:

1) AD, X) € B, X) and there exists ¢ > 0 such that pg(f) < cpa(f) for all
feAD, X),
(i) fo¢p € A, X) with pa(fod) = pa(f)forallg € Aut(D)and f € AD, X).

By Proposition 1.1, each p-summing Bloch mapping f: D — X is Bloch with
pa(f) < nf( f). Moreover, following the argument of the proof of (N3) in Proposi-
tion 1.2, it is easy to prove thatif f: D — X is p-summing Bloch and ¢ € Aut(D),
then f o ¢ is p-summing with nff(f o¢) < Jrff(f), and using this fact we also

W Birkhauser
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deduce that nf(f) = nf((f op)op~) < nf(f o ¢). In this way we have proved
the following.

Proposition 1.3 (Hf(ID), X), rrl?) is a Mobius-invariant space for 1 < p < oo. O

1.4 Pietsch domination

We establish a version for p-summing Bloch mappings on D of the known Pietsch
domination Theorem for p-summing linear operators between Banach spaces [18,
Theorem 2].

Let us recall that @(ID)) is a dual Banach space (see [2]) and therefore we can
consider this space equipped with its weak™ topology. Let (Bg ) denote the set of
all Borel regular probability measures u on (Bgp,, w™).

Theorem1.4 Let 1 < p < coand f € @(D, X). The following statements are
equivalent:

(i) f is p-summing Bloch.
(ii) (Pietsch domination). There is a constant ¢ > 0 and a Borel regular probability
measure [ on (Bgp), w*) such that

£ @] <c (/
B
forall z € D.

In this case, nf (f) is the infimum of all constants ¢ > 0 satisfying the preceding
inequality, and this infimum is attained.

1
lg'@]" du(g))

B(D)

Proof (i) = (ii): We will apply an unified abstract version of Piestch domination
Theorem (see [6, 17]). For it, consider the functions

S:BM, X) x D x C— [0,00[, S(f,z,4) =Ir]f @]
and
R: Bypy xDx C—[0,00[, R(g,z,1) =|r]¢'(2)].

Note first that for any z € D and A € C, the function R, ; : B@(]D)) — [0, oo, given
by

RZ,)»(g) = R(gv Z, )\')7

is continuous. Foreveryn € N, A1, ..., 4, € Cand zy, ..., 2z, € D, we have

(Z S(ﬁZMi)”) = (ZMilp ”f/(Zi)”p)
i=1

i=1

) Birkhauser
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1

" »
<7 (f) sup (walg/(z,-n”)

8€Bam) \i=1

1
:n;zz;(f) sup ( R(g,zi,)»i)p) ,
1

geBg(D)

i=

and therefore f is R — S-abstract p-summing. Hence, by applying [17, Theorem 3.1],
there is a constant ¢ > 0 and a measure j € 70(3@(11)))) such that

S(f,z,/\)gc(/
B

forall z € D and A € C, and therefore

ol =e(f

for all z € D. Furthermore, we have

R(g,z, M) du(g))

(D)

1

&' @)]" du(g))

B(D)

1
lg'@)]” du(z;))

If'@] = (Zw’ Hf’(z»H”) <7r(f) (fB
i=1

B(D)
for every z € D by taking, for example,n € N, Ay = 1, Ay = --- = %, = 0 and
=-"=Zp=2.
(ii)) = (1): Givenn € N, Aj,..., A, € Cand 71, ..., 2z, € D, we have

1 1

1il? | @)|” du(g))

(ijw’ Hf’(m)ll”)p < cgl (/B

i=1 BD)

n »
<c sup ( |xi|1’|g’(z,»)|”> :
1

8€Bzm) \i=

Hence f € M3(D, X) with 75(f) < c. 0

1.5 Pietsch factorization

We now present the analogue for p-summing Bloch mappings of Pietsch factorization

theorem for p-summing operators (see [18, Theorem 3], also [7, Theorem 2.13]).
Given p € P(B@D)) and 1 < p < 00, Iop: Loo(t) — Lp(u) and

Joo: C (B@(D)) — Leoo(p) denote the formal inclusion operators. We will also use

W Birkhauser
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the mapping ip: D — C(Bgp,) defined by

tmw@)=é@)<zem’863®m)

and for a complex Banach space X, the isometric linear embedding tx: X —
Loo(Bx+) given by

(tx (), x*) =x*(x) (x* € Bx+, x € X).
The following easy fact will be applied below.

Lemma 1.5 Let u € P(B@(D)). Then there exists a mapping h € @(D, Loo()) with

ps(h) = 1 such that h' = joo o tp. In fact, h € H%(]D), Loo (1)) with nlzf(h) =1 for
any 1 < p < oo.

Proof Note that js o tp € H(D, Loo(i)) With (oo 0 tp) = joo © (tp)’, where
(tp) (z)(g) = g’ (z) forallz € Dand g € Bg(p)- By [11, Lemma 2.9], there exists
a mapping h € H(D, Loo(n)) with 2(0) = 0 such that h = js op. In fact,
h € B(D, Loo()) with pg(h) = 1 since

A= 1zP) [F @], = A =12 ljss @) Ly = A = 127 @l = 1

for all z € D. For the second assertion, given 1 < p < oo, it suffices to note that

1 1
(ZM 7 W @} (M)> (ZM 1 oo (@D (m)

i=1
1

= <§:|AHPHWﬂZOH&>

i=1
N a—=pr] = AP F @
,-zzlﬂ—iznz)p ;l TarAen]
1
= s (Zm |p|g(z)|p>
geBB(D)
foranyn € N, A1,..., 4, € Cand zy, ..., 2, € D. ]

Theorem1.6 Let 1 < p < oo and f € @(ID), X). The following assertions are
equivalent:

(1) f is p-summing Bloch.

) Birkhauser
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(ii) (Pietsch factorization). There exist a regular Borel probability measure | on
(B@(D),w*), an operator T € L(L,(1), loo(Bx+)) and a mapping h €
@(]D), Loo (1)) such that the following diagram commutes:

Ioc.p

Loo(pt) ————Lp(w)

4 I

D X —% 0o (Bx+)

In this case, n[?(f) =inf {||T|| pg(h)}, where the infimum is taken over all such
factorizations of tx o f' as above, and this infimum is attained.

Proof (i) = (ii): If f € H% (D, X), then Theorem 1.4 gives a measure & € P(Bg(D))

such that
If'@] <=7 ( fB

B(D)

lg'@)]" du(g)>

for all z € D. By Lemma 1.5, there is a mapping / € @(]D), Loo(p)) with pg(h) =1
suchthatn’ = jyotp. Consider the linear subspace Sp = E(Ioo’p(h/(ﬂ)))) C Ly(w)
and the operator Ty € L(S, £oo(Bx+)) defined by To (I, (h'(2))) = tx(f'(2)) for
all z € D. Note that || To|| < 77 (f) since

Y aix (f' @)

i=1

Z o TO(Ioo,p(h/(Zi)))

i=1

i=1

Ty (Z ailoo,pm’(m))

oo oo

<Y il Jex (f'@) | o = D Lol | £/

i=1 i=1

§nf(f)2|ail</

< x3(f) Z =

o0

lg'z)]" du(g))

B(D)

and

i | o
1 "z |2 Z f (zi)

Za’g (zi)

i=1

i=

= sup
g EBB(]D)

Za, 1 (zi)(g)

i=1

= sup
8€B3p)

W Birkhauser



p-Summing Bloch mappings on the complex unit disc Page 13 of 31 9

Yol @)

i=1

D ijoo (tn(20))

i=1

n
> i (i)
i=1 o0

Ioo,p <Z aih/(Zi)>
i=1

Leo (1)

> iloo p (' (z)

i=1

Loo (1)

Lp (D] Lp (n)

forany n € N, af,...,a, € C* and zy,...,z, € D. By the injectivity of the
Banach space £ (Byx+) (see [7, p. 45]), there exists T € L(L (1), £oo(Bx+)) such
that Tlsp = Ty with || T|| = || To|| . This tells us that tx o f/ = T o Ioo,p o h' with

1T ps(h) < 73(f).
(i) = (i): By (ii), we have txy o f' =T o I poh’. Givenn € N, A, ..., 4, € C
and z1, ..., 2, €D, it holds

1
<Z 717 !If/(zi>||”> = <Z 717 ||tx(f/(zi>)||§o>
i=1 i=1

1

n P
= <Z AP ||T<Ioo,,,(h’<z,~)>)||g’o>

i=1

1
n P
<|IT]l (Z il | loo,p(h/(zl-))||€p(m)
i=1
1

0 »
=7l (Z il Hh’@i)U’me)
i=1

n

1
rilP P
< Il ps(h) (Z ﬁ)

i=l1
1

n P
=TI pg(h) (Z |Ail? \f;,.(z,~>|">

i=1

1
n »
< |IT|| pg(h) sup ( |Ai|f’|g’<Zi)|”> :
1

8€Bgm) \i=

Hence f € 3D, X) with 75(f) < T ps(h). 0

The concept of holomorphic mapping with a relatively (weakly) compact Bloch
range was introduced in [11]. The Bloch range of a function f € H (D, X) is the set

rangg(f) := {(1 — 1z f @)z € ID)} C X.

A mapping f € H(D, X) is said to be (weakly) compact Bloch if rangg(f) is a
relatively (weakly) compact subset of X.

) Birkhauser
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Corollary 1.7 Let 1 < p < oo.

(1) Every p-summing Bloch mapping from D to X is weakly compact Bloch.
(i) If X is reflexive, then every p-summing Bloch mapping from D to X is compact
Bloch.

Proof (i) Assume first p > 1. If f € H%(D, X), then Theorem 1.6 gives

a regular Borel probability measure w on (Bgp,, w*), an operator T €
L(Lp(n), Loo(Bx+))andamaph € B(D, Loo(n)) suchthatiyo f = Toly, poh’,
that is, (1x o f) =T o(Ix,poh). Since L,(n) is reflexive, it follows that
tx o f € B(D, £ (Bx*)) is weakly compact Bloch by [11, Theorem 5.6]. Since
rangg(tx o f) = tx(rangg(f)), we conclude that f is weakly compact Bloch. For
p = 1, the result follows from Proposition 1.1 and from what was proved above.

(ii) It follows from (i) that if f € H?(D, X) and X is reflexive, then rangg(f) is
relatively compact in X, hence f is compact Bloch. O

1.6 Maurey extrapolation

We now use Pietsch domination of p-summing Bloch mappings to give a Bloch version
of Maurey’s extrapolation Theorem [13].
Theorem 1.8 Let 1 < p < g < o0 and assume that I'Iq‘@(]]]), Ly) = H%(]D), Ly). Then
I'IB(]D), X) = HB(]D), X) for every complex Banach space X.
Proof Lemma 1.5 and Proposition 1.2 assures that for each u € P(BB(D)) there is a
mappmg hy € B(]D) Lo ()) such that h’ = joootpand Ig g0 hy € HB(D Ly(u))
with T, (Ioo’q ohy) <1.

We now follow the proof of [7, Theorem 3.17]. Since N2, £) = NED, £,)
and an < nf on 1'[? (D, £4) by Proposition 1.1, the Closed Graph Theorem yields a

constant ¢ > 0 such that nf(f) < cnf(f) forall f € H?(]D), Ly). Since L, (p) is an
Ly »-space for each A > 1, we can assure that givenn € Nand z1,...,z, € D, the
subspace

E =lin ({Ioo,q(hu(zl))v cee Ioo,q(hu(zn))}) C Ly(w)

embeds A-isomorphically into £,, that is, E is contained in a subspace F C L, (u)
for which there exists an isomorphism T': F' — £, with ||T'|| 177 < A.

Since Toloo gohy € D, £y) = NHMD, £4) and (Toleo gohy) = Tolx goh,,
we have

1

(le s qohu><zl>|\“m> < |7 H( i I”HT(IOOq(h’(zl)))||p>
i=1

i=1

< |77 endT oty ohn) suwp (Z"\ e )|”)

gEBB(]D))

W Birkhauser
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1

n P
<c| T ITNAf e 0 1) sup (Dw |g’<zl~>|”) :

8€Bam) \i=1

therefore nf(loo,q ohy) < ciforall A > 1, and thus nf(loo,q ohy) < c. Now, by
Theorem 1.4, there exists a measure [ € P(Bg(D)) such that

1
H (Ioo,q o hu)/(z) HLq(l/«) E c (,/;} ’g/(z)‘p dﬁ(g)) =c ”(IOO,(] © hﬁ)/(Z) ”Lp(ﬁ)

B(D)

for all z € . In the last equality, we have used that

(Iso,q © ) (2)(8) = Ioo,q (W(2))(8) = h3(2)(8) = Joo 1(2))(g) = tn(2)(8) = &' (2)

forall z € D and g € Bgp,-
Take a complex Banach space X and let f € H? (D, X). In view of Proposition 1.1,

we only must show that f € HLIB (D, X). Theorem 1.4 provides again a measure
o € P(B@GD)) such that

| £ @] =77 [Usoig 0 hu) @ 1, 0

for all z € ID. We claim that there is a constant C > 0 and a measure A € P(Bg(m)
such that

”(Ioo,q 0 hyuy)'(2) ”Lq(y,o) =C ”(IOQq 0 h3)'(2) ”Ll(x)

for all z € . Indeed, define . = Y_520(1/2" ), € P(Bgp)), where (1un)n=1 is
the sequence in P(Bg ) given by pp1 = i, for all n € Ny, where the measure
Ity is defined using Theorem 1.4. Since 1 < p < g, there exists & € (0, 1) such
that p = 6 - 1 + (1 — 0)q, and applying Holder’s Inequality with 1/6 (note that
(1/6)* =1/(1 — 6)), we have

?
(Lo © b)) (@) (g) |74 dun(g))

H (Ioo,q Ohﬂn)/(z) HLP(Mn) = (/l;

-(/

= | Useg © 1Y @7, 1o © ) @ 1 )

B(D)
1-6

q

]
’ / q
»q n s n
(7o ohu><z>(g)|dun<g)> ( / (Lo © 1)) ()(8)] dun(g)>
Bam)

B(D)

for each n € Np and all z € . Using Holder’s Inequality and the inequality

o8]

1
ZW ” (Io,q © hﬂn+l)/(Z) ||Lq(un+1)
n=0

) Birkhauser
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o
1
= § :W ” (Iso,g © Pyt (2) ”Lq(unm + ” (Iss,q © hyy)'(2) ”Lq(uo)
n=0

=1
= Z ont1 | (Toosq © hpus)'(2) ”Lq(“n“)

n=—1

21
= Z o ” (Ioo,q © hyi,) (2) ||Lq(,l,L,l)
n=0

o0
1
=2 2:0 on+l H (Isc,q © hyu,)' (2) ” Lq(un)®
n—

we now obtain

o0

1

ZW | (oo.q © 1) () ”Lq(u,,)
n=0

o0
1
<cy, 571 | o © i)' @ 1)
n=0

I ,
g1 | Useig @ Y7 [ oo © By ) @)

1-6
Lg(pn1)

¢

<c

Il
o

n

~ V. 1-0
=c (Z a7t U 0 h#n+1),(Z)|L1(unm) (Z 37t oo © hy)' @) Lé,(unm)
n=0

n=0
~ I 1-6
<o g 1o O] (225 Nt b Ol )
for all z € D, and thus
G|
> ot g o bY@
n=0
e (1
=ci2 T (Z on+1 H (Ioo’q °© h/‘”“)/(Z) |‘L1(Hn+l))
n=0
1 _1-6 1
<2772 (Z 57 | Uoeng 0 hu,) @) ||L1(,m>
n=0

= Q)" | oeq © 1)@ 1,

for all z € ID. From above, we deduce that

1 / = /
0o 0110 @, ) = QO [ 0 1) @),

W Birkhauser
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for all z € D, and this proves our claim taking C = 2(20)%. Therefore we can write

| F' @] = Cxf ()| Toog 0 1) @, 5y = Cg () /B @] drcg)

B(D)

for all z € D. Hence f € HIAB(D, X) with nfB(f) < Cnf(f) by Theorem 1.4. O

2 Banach-valued Bloch molecules on the unit disc

Our aim in this section is to study the duality of the spaces of p-summing Bloch
mappings from D into X*. We begin by recalling some concepts and results stated in
[11] on the Bloch-free Banach space over D.

For each z € D, a Bloch atom of D is the bounded linear functional y, : @(D) — C
given by

v(f) = @) (f € BD)).

The elements of lin({y,;: z € D}) in @(D)* are called Bloch molecules of . The
Bloch-free Banach space over D), denoted G(D), is the norm-closed linear hull of
{y;: z€ D} in @(]D))*. The mapping I': D — G(D), defined by I'(z) = y, for all
z € D, is holomorphic with ||y, = 1/(1 — 1z|%) for all z € D (see [11, Proposition
2.7D.

Let X be a complex Banach space. Given z € D and x € X, it is immediate that
the functional y, ® x: B(D, X*) — C defined by

V. ®x) () =(f'@.x) (f € BD, X)),

is linear and continuous with |y, ® x| < [lx|l /(1 — |z|?). In fact, it is immediate that
ly: ®xll = llxll /(1 - z|?). Indeed, take any x* € Sy« such that x*(x) = ||x|| and
consider f, - x* € B(D, X*). Since pg(f; - x*) = 1, it follows that

ly: ® x|l = ’(Vz ®x)(fz - x*)’ = ’((fz 'X*)/(Z),XH

llxll

= et = o] e] = 2L

We now present a tensor product space whose elements, according to [ 11, Definition
2.6], could be referred to as X-valued Bloch molecules on ID.

Definition 2.1 Let X be a complex Banach space. Define the linear space
linMM) @ X :=lin{y. ®x: z e D, x € X} € BD, X*)*.

) Birkhauser
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Note that each element y € lin(I"(D)) ® X is of the form

n n n
y =Y My ®x) =) MV ®xi =Yy, ®kixi
i=1

i=1 i=1

wheren e N, A; € C, z; e Dand x; € X fori = 1, ..., n, but such a representation
of y is not unique.

The action of the functional y = )7, A;¥;; ® x; € lin(I'(D)) ® X on a mapping
f e @(ID), X*) can be described as

y(f) = Z)»i (f' i), xi).
i=1

2.1 Pairing

The space lin(I'(D)) ® X is a linear subspace of @(D, X*)* and, in fact, we have:

Proposition 2.2 (lin(F D) ® X, @(]D), X*)) is a dual pair, via the bilinear form given
by

v f) =Y i(f @) x)
i=1

fory =Y hivs, ® xi € lin(M(D)) ® X and f € B(D, X*).

Proof Note that (-, -) is a well-defined bilinear map on (lin('(D)) ® X) x @(D, X*)
since (¥, f) = y(f). On one hand, if y € lin(I'(D)) ® X and (y, f) = 0 for all
f e @(D, X*), then y = 0, and thus @(D, X*) separates points of lin(I'(D)) ® X.
On the other hand, if f € B, X*) and (y, f) = 0 for all y € lin(I'(D)) ® X,
then (f’(Z),x> ={(y,®x, f) =0forallz € Dand x € X, hence f/(z) = 0 for all
z € D, therefore f is a constant function on D, then f = 0 since f(0) = 0 and thus
lin(I'(D)) ® X separates points of @(D, X*). O

Since (lin(I" (D)) ® X, B(D, X*)) is a dual pair, we can identify B(D, X*) with a
linear subspace of (lin(I'(D)) ® X)' (the algebraic dual of 1in(I' (D)) ® X) by means
of the following easy result.

Corollary 2.3 For each f € @(D, X*), the functional Ao(f): lin((D)) ® X — C,
given by

Ao(NH(y) = ZA £, xi)

fory = Z?:l Ay ®x; € in(I'(D))®X, is linear. We will say that Ao( f) is the linear
functional on lin(I'(M)) ® X c}:vsocialed to f. Furthermore, the map f +— Ao(f) is
a linear monomorphism from B(D, X*) into (lin(T' (D)) ® X)'. O

W Birkhauser
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2.2 Projective norm

As usual (see [19]), given two linear spaces E and F, the tensor product space £ @ F
equipped with a norm « will be denoted by E ®,, F', and the completion of E ®, F by
E®¢ F. An important example of tensor norm is the projective normz onu € E® F
defined by

n n
w) =inf 3> lxill llyill:n €N, xi,..., %, € E, yi,..., 3 € F, u=2xi®yl~},
i=1 i=1

where the infimum is taken over all the representations of u as above.
It is useful to know that the projective norm and the operator canonical norm
coincide on the space lin(I'(D)) ® X.

Proposition 2.4 Given y € lin(I'(D)) ® X, we have ||y || = 7 (y), where

Iyl =sup {ly ()l : f e BM, X*), pg(f) <1}

and

n
|2 ]

. i .
n(y)=mf<2—|2|| il y —ZA% ®xi}.
=1

i=1 l2i

Proof Lety € lin(I'(D)) ® X and let ) 7_, Ay, ® x; be a representation of y. Since
y is linear and

llxi |
1— |zl

D hi{f @) x| <

i=1

ly ()l = < ZM £ Gl el < pg(f)Zl/\ | ——

i=l

forall f € @(D, X*), we deduce that ||y || < Y7 [Ailllxll/(1 — 1zi|?). Since this
holds for each representation of y, it follows that ||y || < w(y) and thus ||-|| < 7 on
lin(FM)) ® X.

To prove the reverse inequality, suppose by contradiction that ||| < 1 < 7 (w) for
some u € lin(I'(D)) ® X. Denote B = {y € lin(I'(D)) ® X: n(y) < 1}. Clearly, B
is a closed convex subset of lin(I" (D)) ®,; X. Applying the Hahn—Banach Separation
Theorem to B and {u}, we obtain a functional n € (lin(I'(D)) ®, X)* such that

L =|[nll = sup{Re(n(y)): v € B} < Re(n(w)).
Define F,;: D — X* by
<F77(Z)s x)=n(,®x) (xeX, zeh).
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We now show that F;, is holomorphic. By [14, Exercise 8.D], it suffices to prove that
for each x € X, the function F, ,: D — C defined by

Fpx(@) =n(y;®x) (zeD)

is holomorphic. Let a € . Since I': D — lin(I"(ID)) is holomorphic, there exists
DT (a) € L(C, lin(I"'(ID))) such that

lim V2" Ye — DT'(a)(z — a)
1m =
z—a |z — al

0.

Consider the function 7'(a): C — C given by
T@)(z) =n(DT'(@)(z) ®x) (ze€C).
Clearly, T (a) € L(C, C) and since

Fyx(z)— Fyx(a) —T@(Gz—a) =n(y; ®x) —n(ya ® x) —n(Dl'(a)(z — a) ® x)
=0y —va— DI'(@)(z —a)) ®x),

it follows that

lim Fyx(2) — Fyx(a) — T(a)(z — a) — lim 5

7—a |z — al z—a

(yz ~%a— DT @ — @) ®x> L

|z — al

Hence F; , is holomorphic at a with DF), x(a) = T (a), as desired.
By [11, Lemma 2.9], there exists a mapping f,; € H (D, X*) with f,(0) = 0 such
that f, = F;. Given z € D, we have

(1= 1zP) (7@, x)| = A =12P In @ @ 01 = (1 = 12P) Il 2z @ 2) = x|

forall x € X, and thus (1 — |z]2) H £ H < 1. Hence f, € B(D, X*) with pg(f;) <

1. Moreover, y (f;) = n(y) for all y € lin(I'(D)) ® X. Therefore ||l > [(fy)] =
Re(u(fy)) = Re(n(w)), so |||l > 1, and this is a contradiction. O

2.3 p-Chevet-Saphar Bloch norms

The p-Chevet—Saphar norms d,, on the tensor product of two Banach spaces E ® F
are well known (see, for example, [19, SectiAon 6.2]).

Our study of the duality of the spaces Hf(]D), X*) requires the introduction of the
following Bloch versions of such norms defined now on lin(I'(D)) ® X.

W Birkhauser
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The p-Chevet—Saphar Bloch norms d;"; for 1 < p < oo are defined on a X-valued
Bloch molecule y € lin(I'(D)) ® X as

d?(V) = inf ( sup <maX Al |8 (Zz)|>> (Z ||xi||>},
geBgp) \I= i=1

1 1
a2y =inf [ sup (Z Ail7" [g' (z,>|”) (Z ||x;||1’> (1< p <o),
i=1

geBB(D)

d?;(y) = inf ( sup (le g’ (ZJ\)) <max ||xz||)}
8€Bam) \i=1

where the infimum is taken over all such representations of y as Y /', A ¥z, ® x;.
Motivated by the analogue concept on the tensor product space (see [19, p. 127]),
we introduce the following.

Definition 2.5 Let X be a complex Banach space. A norm « on lin(I'(D)) ® X is said
to be a Bloch reasonable crossnorm if it has the following properties:

1) a(y; ®x) < |lyzll x| forallz e Dand x € X,

(ii) Forevery g € @(D) and x™ € X*, the linear functional g ® x*: lin(I'(D)) ® X —
C defined by (g ® x*)(y, ® x) = g’(z)x*(x) is bounded on lin(I' (D)) ®, X with
lg @ x*Il < ps(g) lIx*|.

Theorem 2.6 d? is a Bloch reasonable crossnorm onlin(I'(D)) ® X forany 1 < p <
0.

Proof We will only prove it for 1 < p < co. The other cases follow similarly.
Let y € lin(I'(D)) ® X and let Zf': 1 Aivz; ® x; be arepresentation of y. Clearly,
df(y) > 0.Given 1 € C, since )_;_,(*A;)yz; ®x; is arepresentation of 1y, we have

l
dgy) < | sup (Zm I |g(z,>y”) <Z||xl||")
8€Bzp) \;=1
1 1
* n p
= Al sup (ZM 7 |g<z)|”> (anin”)
8€B3p) i=1

If » = 0, we obtain dﬁ(ky) =0= |A|d§(y) For A # 0, since the preceding
inequality holds for every representation of y, we deduce that dB(Ay) < |A| d‘g(y)
For the converse inequality, notethatdB(y) dB(A Lay)) < A~ l|d'8()\.)/) by using
the proved inequality, thus || dB(y) < dB(Ay) and hence dB(Ay) [X] df?(y).

We now prove the triangular inequality of df .Let y1, 2 € lin(I'(D)) ® X and let
e > 0.If y; = 0 or y» = 0, there is nothing to prove. Assume y; # 0 # y». We can
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choose representations

n m
Y= Z)\l,i)’zu R x1,i, V2= Z)\Z,iyzz,i ® x2,i,

i=1 i=1

so that
1 1
n . AN WA P
sup (Z|)»1,i|p |g/(Zl,i)|p> <Z||xl,i||p> Sdf()/l)-i-é?
8€Bam) \i=1 i=1
and
1 1
m . L\ PF m ? ~
sup <Z|xz,i|” |g’(zz,,-)|”> (anz,in”) <dj(y) +e.
8€Bgm) \ ;=1 i=1

Fix arbitrary r, s € R and define
1 o
rTALi Ve ifi=1,...,n,
A3,i P = ’ ! epos
3 Vs {S_l)»z,i—nyzli" ifi=n+1,...,n+m,

{rxl,,- ifi=1,...,n,

X3 = e
3. sx0i—p fi=n+1,....,n+m.

s

It is clear that | + 12 = > 771" A3,i¥z;, ® x3,; and thus we have

. n—+m . N 71* n—+m %
d?()’l +y2) < | sup (Z 234]” &' @3.0)]" ) (Z HX3,1'||p> .

8€Bam) \ i=1 i=1

An easy verification gives

1\ P
n+m . . p*
p p
sup Z|?»3,i| |8 (z3.0)]
8€Bamy \ i=1
1\ P
1 . p* p* ,,*
— /
<|r~ sup Z|M,i| 8" (z1.0)]
8€Bgm) \ ;=1
1y P

m . L\ P
+ 57! sup <Z|K2,i|p |g/(22,i)|p>

8€Bgmy \i=1
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and

n+m

ZHxs ||"—r”Z||xw||” s”Zsz "

Using Young’s Inequality, it follows that

*

N 1 n—+m L* P n+m
d,zf()/l +y) = = sup (Z ’/\31 ) + = Z |x3.4 ()"
gGBB(D)
1\ P
r . \” r’ < p
< — sup Z|Mz| |g (z1.0)] +—Z||x1,i||
p 8€Bgm) \i=1 P
1N D"
s v sP & p
+— sup <Z|Azl|p |g'(z2.0)]" ) + =[xl "
p gEBB(]D)) )4 i—1

Since r, s were arbitrary in R™, taking above

1
r= (d,?(yl) +8)_”L* sup <Z |x1il? |g (z1.0)|” ) ,

8€Bam) \i=1

1
1 " " P\ 7
s =@ +o 7 | sup <Z|xz,,-|" |g’<zz,i>|”> :

8€Bgm) \i=1

we obtain that dB(J/1 + ) < dB()/l) + dB(yz) + 2¢, and thus dB(yl + ) <

dB (y1) + dB (y2) by the arbitrariness of ¢. Hence dB is a seminorm. To prove that it
1s anorm, note first that

< D Inl | @) Il

i=1

< (Z 217" |h/<zl->|"*> (Z ||x,~||P>

i=1

D hil @)X (xi)

i=1

< sup (ZM I |g<z,>!”) (aninf’) ,
i=1

gEBB(D)
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forany h € By, and x* € Bx+, by applying Holder’s Inequality. Since the quantity
|37, Aih(zi)x*(x;)| does not depend on the representation of y because

D hib @x* (i) = (Z hiVe ®xl~) (h-x*)=y(h-x"),

i=1 i=l1

taking the infimum over all representations of y we deduce that

3 il (zx ()| < d2 ()

i=1

forany h € Bz, and x* € Bx+. Now, if d? (y) = 0, the preceding inequality yields

(Z A,-x*(xoyz,) (h) =Y hix*(x)h'(zi) = 0
i=1 i=1

for all h € Bam) and x* € Byx. For each x* € By+, this implies that
Yo Aix*(xi)yz; = 0, and since I'(D) is alinearly independent subset of G(D) by [11,
Remark 2.8], it follows that x*(x;)A; = O foralli € {1, ..., n}, hence A; = 0 for all
i €{l,...,n}since Bx+ separates the points of X, and thus y = Y 7_, A;y, ®x; = 0.

Finally, we will show that df is a Bloch reasonable crossnorm on lin(I'(D)) ® X.
Firstly, given z € D and x € X, we have

1
B “\ 7 x|l
dyy-@x) < sup |g@|" ) Ixl = —— = lly:ll lIx]l.
$<B3m, 1— |z
Secondly, given g € @(D) and x* € X™*, we have

=Yg (@)t ()

i=1

Z/\i(g R x*) (yz; ® xi)
i=1

(g ®x") ()| =

<Z|x 8" @] |x* @) < ps(e) ||x* HZ “ " o il

i=1

= ps(g) |x*| Z %l [ L G il

i=1

< ps(@) |<*| (ZM 7\ £, (z,)}”>

i=1

*‘_‘

n 1
( ||xi||f’)
i=1
1
)" ) (Z ||x,-||">
i=1

*"“

< ps(@ ||x*| sup (

gGBB(]D))
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Taking infimum over all the representations of y, we deduce that |(g ® x*)(y)| <
ps(9) Ix*|ld;(y). Hence ¢ ® x* € (lin(I'(D)) ®,8 X)* with [lg®@x*|| =
pa(g) lIx*| . O

The next result shows that d? can be computed using a simpler formula in the cases
p = land p = oo. In fact, the 1-Chevet—Saphar Bloch norm is justly the projective
norm.

Proposition 2.7 For y € lin(I'(D)) ® X, we have
3 S
dﬂw=m42}—L7mq

io1 1l

and

n
dﬁxy>==inf{ sup ( IXH|gTZD|WnH)},
8€B3m) \i=1

where the infimum is taken over all such representations of y as Y r_ LiVz; ® Xj.

Proof Let y € lin(I'(D)) ® X and let Y "', A;¥;, ® x; be a representation of y. We
have

n )\i n )
n@sZJJWM=Zm«wpmmﬁw

o L=z i=1 8€B3m)

IA

n
max <|A,-| sup |g/(Zi)|) flx: |l

<i< 5
‘ 1<i<n gEBB(]D))

i=

n
. / . )
(1127, o)) e
n
m<@$WM@®2mn
i=

geB@D)

and therefore w (y) < dIB (y). Conversely, since d{B is a Bloch reasonable crossnorm,
we have

n

n n
~ ~ )\,
ﬁMSZWWM@M=ZWMMM=ZT%?MW
1

i=1 i=1 i=1

and thus d?()’) <m(y).
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On the other hand, we have

8€Bzp) g€ Bz,

and taking the infimum over all representations of y gives

inf{ sup (ZM ') ||x,||) Ly = Ay ®xi} <d2 ).

8€Bgy ) i=1

Conversely, we can assume without loss of generality thatx; # Oforalli € {1, ...

and since y = Y1 A7 xill vz, ® (xi/ 1% 1), we obtain

a2 < sup (Z 2l lxill |8’ (z,>|>

gEBB(JD))

and taking the infimum over all representations of y, we conclude that

d2 () sinf{ sup (Z Al [¢' i) ||xl-||> Ly =) My ®x,-}.

8€Bam) \i=1 i=1

2.4 Duality

sup <Z|x||g(z,>|||xl||) (ma;lnxin) sup (ng (zl>|>

n}

Given p € [1, 00], we will show that the dual of the space Q(ID))@ X can be

canonically identified as the space of p-summing Bloch mappings from ]D> to X*.

Theorem2.8 Let 1 < p < oo. Then l'[@(]D) X*) is isometrically isomorphic to

(Q(D)@dg X)*, via the mapping A I'IB(ID) X*) — (Q(ID))® X)* defined by

AHG) = 1@ xi)

for f € H%(]D), X*)andy = Y7 hiyy; ® xi € lin(T'(D)) @ X. Furthermore, its

inverse comes given by
(A @@.x)= (. 780

fory e (Q(D)®d§ X)*,zeDandx € X.
P*

W Birkhauser
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Moreover, on the unit ball of H%(D, X*) the weak* topology coincides with the
topology of pointwise o (X*, X)-convergence.

Proof We prove it for 1 < p < oo. The cases p = 1 and p = oo follow similarly.

Let f € Hf(D, X*) and let Ag(f): lin(I’'(D)) ® X — C be its associate linear
functional given by

Ao(H@) =D ki (/G xi)
i=1

fory =Y , Aiy; ®x; € lin(I'(D)) @ X. Note that Ag(f) € (lin(I'(D)) ®,3 X)*
p*
with [ Ao(f)Il < 7 (f) since

Ao (V) =

ZM (f'(zi), xi)

i=1

1
< (Z 217 | f’@-)””) (Z ||xi||"*>
i=1 ) i=1 L*
< (f) sup (Z|Ai|p|g/(zi)|”) <Z||x,||P> :

8€Bgm) \i=1

<Dl G Il
i=1

1
p*

and taking infimum over all the representations of y, we deduce that [Ao(f)(y)| <
nf(f)df?* (y). Since y was arbitrary, then Ag(f) is continuous on lin(I" (D)) ® 3 X
P

with [[Ao(H)I < 72 (f).

Since lin(I" (D)) is a norm-dense linear subspace of G(ID) and d?,k is a norm on
G(D) ® X, then G(D) ® X is a dense linear subspace of G(D) ® §; X and therefore
p*

also of its completion G(D)&® 43 X Hence there is a unique continuous mapping A (f)
o~ p*
from Q(D)@)d@ X to C that extends Ag(f). Further, A(f) is linear and |A(f)] =
P*

Ao (I
Let A: HB(]D) X* — (g(D)@ X)* be the map so defined. Since Ay is a linear

monomorphism from I'IB D, X*) to (G(D) ® X)* by Corollary 2.3, it follows easily
that A is so. To prove that A is a surjective isometry, let ¢ € (Q(]D)@ X )* and

define F,: D — X* by
(Fo(@),x)=p(y:®x) (zeD, x€X).

As in the proof of Proposition 2.4, it is similarly proved that F, € H(D, X*) and
there exists a mapping f, € B(D X*) with pg(f,) < ll¢|l such that f(p = F,.

) Birkhauser
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We now prove that f,, € H;,E(]D), X*.FixneN,A,..., A, €Candz,...,z, €
D. Let e > 0. Foreachi € {1, ..., n}, there exists x; € X with ||x;|| < 1 + & such
that (f (zi), xi) = | f;(zi)|| - Itis clear that the map 7': C* — C, defined by

’ V(tla-"vt}’l)e(cna

T@r, .. t) = Ytk | £
i=1

1
is linear and continuous on (C", || - || =) with | Tl = (37— A7 | f(;(zi)”p)” . For
any (t,...,t;,) € C" with ||(r1, ..., t) | p» < 1, we have
n . n
T, ..t = ¢ (me ®x,-> < llgll dy. (Zm,- ® tm)
i=1 i=1
1 1
n ) n r
<llgl [ sup ( 717 |g/<z,~)|”) (Z lti2xi 17 )
8€Bzm) \i=1 i=1
1
n ?
< +e& gl sup ( 217 |g’<zl-)|"> ,
8€B3p) \j=1
therefore

1 1
(Z|M|”Hf¢&»}|") <(+e) el sup (Zuill’!g’(m”) ,
i=1

8€Bgmy \i=1
and since ¢ was arbitrary, we have

(ZW’ Hf;,(zi)H”) < el sup ( Milplg’(zi)}”) ,
1

i=1 8€b3m) \i=

and we conclude that f, € H%(]D), X*) with Jrf(f(p) < el -
Finally, forany y = "', Ay, @ x; € lin(I'(D)) ® X, we get

AL =D 2i(f)G).xi) =Y hig(y,, ®x) = ¢ (kai ®xi> = o).
i=1

i=1 i=1

Hence A(f,) = @ onadense subspace of g(]D))@ /B X and, consequently, A(fy) = ¢,
p*

which shows the last statement of the theorem. Moreover, rr[? (fo) < llell = ||A( f(p)H .
For the final assertion of the statement, let (f;)ic; be a net in l'[f (D, X*) and
f € I‘[ff(D, X*). Assume (fi)ie; — f weak® in Hf(]D), X*), this means that

W Birkhauser
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(A(fi))ier — A(f) weak* in (Q(D)@@*X)*, that is, (A(f)(¥))ier = A(S)(Y)
forall y € GM)® 5 X. In particular,

(fi @, xDier = (A (Ve @ )ier = Ay @ x) = (f'(2), x)

forevery z € Dand x € X. Given z € D and x € X, we have

I(fi(2) = f(2), x)| = ‘/{0 ](f,»’(w) — f'(w), x) dw

< |zl max {|(f/(w) — f'(w), x)| : w € [0, z]}
= |z| |(f} (w2) = f'(wy), x)|

for alli € I and some w, € [0, z], and thus ({f;(2), x))ier — (f(2), x). This tells
us that (f;)ies converges to f in the topology of pointwise o (X*, X)-convergence.
Hence the identity on Hf (D, X*) is a continuous bijection from the weak* topology to
the topology of pointwise o (X*, X)-convergence. On the unit ball, the first topology
is compact and the second one is Hausdorff, and so they must coincide. O

In particular, in view of Theorem 2.8 and taking into account Propositions 1.1, 2.4
g\nd 2.7, we can identify the space B(ID, X*) with the dual space of GMRX C
B, X*)*.

Corollary 2.9 @(D, X*) is isometrically isomorphic to (G(D)®X)*, via the mapping
A: B, X*) — (GD)RX)* given by
n
AHG) =Y xi (@) xi)
i=1

for f € @(ID), X*)andy =37 | hiy; @ xi € G(D) ® X. Furthermore, its inverse
is given by

(A @@.x)= 0. v 8n)

forg € (GMRX)*, z € Dandx € X. O

We conclude this paper with some open questions we hope researchers will take
up. In Theorem 1.6, note that if f € H?(]D), X), then

’ Ino
ixof =T olsaroh: D Loo(t) % La(u) 5> Coo(Bxe).
Hence tx o f/ factors in this way through the Hilbert space L, (). It would be inter-
esting to introduce and study the class of Bloch mappings whose derivatives factor

through a Hilbert space.

) Birkhauser
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Motivated by the seminal paper of Farmer and Johnson [9] that raised a similar ques-
tion in the setting of Lipschitz p-summing mappings, what results about p-summing
linear operators have analogues for p-summing Bloch mappings?
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