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Resumen

Recientemente, en la rama de investigación del Álgebra Homológica Gorenstein, se
ha introducido una nueva perspectiva que le ha dado un nuevo e importante impulso.
Esta nueva perspectiva consiste en estudiar los módulos Gorenstein (inyectivos, proyec-
tivos o planos) en base a un módulo de referencia con determinadas propiedades (un
módulo semidualizante), en lugar de tomar como referencia el anillo sobre el que se
construyen los módulos. Sin embargo, las condiciones exigidas a un módulo para in-
cluirlo en la clase de los semidualizantes son bastante restrictivas, y no todas parecen
ser del todo necesarias para desarrollar una teorı́a de (co)homologı́a satisfactoria. Ası́,
en los últimos años se han publicado varios artı́culos con resultados muy relevantes
que dan respuesta al problema de hasta qué punto se puede alejar de ser semidualizante
el módulo sobre el que se relativizan las clases de módulos Gorenstein, sin que esta
pérdida de propiedades se traslade a los resultados esperables. De esta manera, apare-
cen los módulos w-tilting y w-cotilting.

Los objetivos fundamentales de esta tesis siguen tres direcciones.
Primero investigamos la teorı́a de los módulos GC-proyectivos y de la dimensión

asociada a la clase formada por estos módulos, en la categorı́a de módulos sobre un
anillo de matrices triangulares. En concreto, se estudiarán, sobre este tipo de anillos,
los conceptos fundamentales del álgebra homológica Gorenstein relativa: hablamos de
los módulos w-tilting, de los GC-proyectivos, de las dimensiones GC-proyectivas de los
módulos y de la dimensión GC-proyectiva global del anillo.

En la segunda parte de la tesis hacemos un estudio exhaustivo del ambiente Goren-
stein plano relativo, en términos tanto estructurales como de las propiedades de las
dimensiones asociadas. Todo esto, por supuesto, respecto a un módulo que no será
necesariamente semidualizante.

Finalmente, investigamos la clase de los módulos GC-planos desde una nueva y
prometedora perspectiva: desde el punto de vista homotópico. Más concretamente,
desde el punto de vista de las estructuras de modelos abelianas. Ası́, la última parte
de la tesis se dedica al estudio de la existencia de una estructura de modelos abeliana
a partir de la clase de los módulos GC-planos, y a la investigación de sus propiedades
desde este punto de vista.

Palabras claves. Anillo de matricies triangulares; dimensión Gorenstein proyectiva relativa; módulo
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Abstract

In recent years, a variant of Gorenstein homological algebra has been successfully
introduced. It consists of replacing, in certain situations, the base ring by a semid-
ualizing module C. Recently, and since (semidualizing defining properties are quite
restrictive, relevant works have been published with the aim to know to what extent the
conditions imposed on the module C can be reduced): the concepts of w-tilting and
w-cotilting modules appear and a satisfactory theory has been developed.

The goal of this thesis goes in three directions.
First, we investigate the theory of the GC-projective modules and dimensions in

the category of modules over triangular matrix rings. Namely, several fundamental
concepts of relative Gorenstein homological algebra (w-tilting, GC-projective modules,
GC-projective dimensions and the global GC-projective dimension) are characterized
over such rings.

In the second part, we extensively study the relative Gorenstein flat behavior, in
terms of both structural and dimension properties, with respect to a non-necessarily
semidualizing module.

Finally, we investigate the class of the GC-flat modules from a fresh and different
perspective: that of homotopical aspect. In particular, from the abelian model structures
perspective. Therefore, the rest of this thesis is devoted to investigating the existence
of an abelian model structure involving the class of GC-flat modules and then to further
study it from this perspective.

Key Words. Triangular matrix ring; relative Gorenstein projective dimension; w-tilting module;
relative Gorenstein flat dimension; w+-tilting module; abelian model structure
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Résumé

Ces dernières années, une variante de l’algèbre homologique de Gorenstein a été
introduite avec succès. Elle consiste à remplacer, dans certaines situations, l’anneau de
base par un module semidualisant C. Récemment, et puisque les conditions requises
pour qu’un module soit semidualisant sont assez restrictives, et toutes ne semblent pas
entièrement nécessaires pour développer une théorie de (co)homologie satisfaisante, des
travaux pertinents ont été publiés dans le but de savoir dans quelle mesure les conditions
imposées au module C peuvent être réduites: les concepts de modules w-tilting et w-
cotilting apparaissent et une théorie satisfaisante a été développée.

Les objectifs fondamentaux de cette thèse suivent trois directions.
Tout d’abord, nous étudions la théorie des dimensions GC-projectives dans la catégorie

des modules sur l’anneau matriciel triangulaire. Plus précisément, plusieurs concepts
fondamentaux de l’algèbre homologique de Gorenstein relative sont caractérisés sur ce
type d’anneaux: on parle des modules w-tilting, des modules GC-projectifs, des dimen-
sions GC-projectives et de la dimension GC-projective globale de l’anneau.

Dans la deuxième partie, nous étudions en détail le comportement de Gorenstein
plat relatif, à la fois en termes structurels et en termes de propriétés des dimensions
associées, par rapport à un module qui n’est pas nécessairement semidualisant.

Enfin, nous étudions la classe des modules GC-plats d’un point de vue (nouveau)
et prometteur: celui de l’aspect homotopique. Plus précisément, du point de vue des
structures de modèles abéliens. Par conséquent, le reste de cette thèse est consacré à
l’étude de l’existence d’une structure de modèle abélien impliquant la classe des mod-
ules GC-plats et ensuite à l’étudier plus en détail de ce point de vue.

Mots Clés. Anneau matriciel triangulaire; dimension projective de Gorenstein relative; module w-
tilting; dimension plat de Gorenstein relative; module w+-tilting; structure du modèle abélien
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Introduction
Throughout this thesis, R and S will be associative (non-necessarily commutative)

rings with identity, and all modules will be, unless otherwise specified, unital left R-
modules or right S-modules.

In modern homological algebra, one of the main reasons for introducing numerical
invariants is to measure ‘how far’ a module or a ring is from possessing some special
properties. To make this statement precise, let us introduce some terminology. Given
a class X of R-modules, we say that an R-module M is said to have an X -resolution
dimension less than or equal to an integer n ≥ 0 if M has an X -resolution of length n,
that is, there exists an exact sequence 0 → Xn → ··· → X1 → X0 → M → 0 with each
Xi ∈ X .

One of the main examples in classical homological algebra is the projective dimen-
sion of modules. This dimension can be obtained by taking X as the class of projective
R-modules and measures, for instance, how far a module is from being projective, while
the global dimension of a ring R, the supremum of the projective dimension of every
R-module, measures how far R is from being semisimple.

This trend of “showing that finiteness of homological dimensions of modules char-
acterizes modules and rings with certain properties” began with Auslander, Buchsbaum
and Serre in 1956 when they showed that a commutative noetherian local ring R is regu-
lar (the maximal ideal m can be generated by d elements where d is the Krull dimension)
if and only if every R-module M has finite projective dimension.

In line with this idea, the notion of G-dimension, a refinement of the projective di-
mension, was introduced by Auslander in [3] and developed by Auslander and Bridger
in [4]. This is a homological dimension of finitely generated modules over a commuta-
tive noetherian ring R and is defined as the X -resolution dimension with X the class
of the so-called totally reflexive modules. By definition, these are the finitely generated
R–modules M satisfying the following conditions:

• ExtiR(M,R) = 0 = ExtiR(HomR(M,R),R) for all i ≥ 1.
• The natural biduality morphism M → HomR(HomR(M,R),R).
Auslander and Bridger used this homological dimension to characterize local Goren-

stein rings (rings of finite self-injective dimension), parallel to the Auslander-Buchsbaum-
Serre characterization of regular rings. That is, they showed that a commutative noethe-
rian local ring R is Gorenstein if and only if every finitely generated R-module M has
finite G-dimension.
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This theory of G-dimension has been extended in several directions, for different
purposes and motivated by many reasons.

One of the most successful approaches is the one taken in the 1990s by Enochs et
al. in [36, 39]. Motivated by the classical homological algebra, Enochs and Jenda in
[36] and Enochs, Jenda and Torrecillas in [39] introduced Gorenstein projective and
Gorenstein flat modules, respectively, that generalized the notion of modules with G-
dimension 0 to the case of arbitrary modules, in the sense that a finitely generated
module over a noetherian ring is Gorenstein projective if and only if it is Gorenstein
flat if and only if it has G-dimension zero. Dually, and to make the theory complete,
Enochs and Jenda also defined in [36] the notion of Gorenstein injective modules. These
three types of modules, together with their related dimensions, form the basis of what is
known as “Gorenstein homological algebra”.

Golod, on the other hand, considered another interesting extension. Instead of work-
ing with respect to the regular module R in the definition of totally reflexive modules,
one can build a homological dimension with respect to certain modules with nice ho-
mological properties. These are the semidualizing modules.

Recall that a semidualizing module over a commutative noetherian R is a finitely
generated module C satisfying the following assertions:

• HomR(C,C) is (canonically) isomorphic to R.
• ExtiR(C,C) = 0 for i ≥ 1.
With respect to a semidualizing module C, Golod introduced the GC-dimension of

finitely generated modules over a commutative noetherian ring R, which is also a refine-
ment of the projective dimension. He showed that this relative homological dimension
shares many nice and fundamental homological properties of Auslander’s G–dimension.

Holm and Jørgensen, motivated in part by the generalizations of the G-dimension
made by Enochs, Jenda, and Torrecillas, extended Golod’s study of GC-dimension of
finitely generated modules to the case of arbitrary modules over commutative noetherian
rings with respect to a semidualizing module C. They introduced C-Gorenstein projec-
tive and C-Gorenstein flat R-modules as the analogues of modules of GC-dimension 0 in
one hand, and as relative versions of Gorenstein projective and Gorenstein flat modules
on the other hand. And they also introduced C-Gorenstein injective modules.

In particular, when C = R, these relative Gorenstein modules coincide with the ab-
solute ones. Therefore, all the previous approaches have been generalized and unified
with C-Gorenstein projective, flat and injective modules and their associated dimen-
sions. This gave rise to the theory of relative Gorenstein homological algebra, where
“relative” here refers to the module C.

Back to semidualizing modules, these modules play a central role in relative (Goren-
stein) homological algebra. They were introduced by Foxby in 1972 over commutative

18
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noetherian rings under the name PG-modules of rank one ([45]), while Golod ([54]) and
Vasconcelos ([81]) rediscovered them and continued their study under different names,
suitable modules and spherical modules, respectively. However, it was Christensen who
used the name “semidualizing” to refer to these modules ([27]).

The necessity of making the theory of relative homological algebra more flexible and
less restrictive has motivated many researchers to extend the definition of a semidual-
izing module to a more general setting. First, Araya-Takahashi-Yoshino ([1]) extended
the definition to a pair of non-commutative noetherian rings, while White in 2010 ([83])
extended it to the non-noetherian, but commutative rings. This allowed her to further
study C-Gorenstein projective modules and dimensions, where she used the name “GC-
projective” instead of “C-Gorenstein projective”. Holm and White ([62]), on the other
hand, made the most general extension to a semidualizing module C over two asso-
ciative rings R and S such that C becomes an (R,S)-bimodule with excellent duality
properties. This general setting allowed many researchers (see for instance [70, 86, 48])
to further study the theory of relative Gorenstein homological algebra.

But still, requiring C to be a semidualizing module is by no means quite restrictive.
As explained in [17], in order to study the theory of GC-projective and GC-injective
dimensions with C being a semidualizing (R,S)-bimodule, the condition EndS(C) ∼= R
seems to be too restrictive and in some cases it approaches C to be projective, and C
being projective would mean that this relative theory would turn out to be the absolute
classical one. Therefore, one may ask the following question:

Question. Is the condition on C to be semidualizing necessary so that the relative
(Gorenstein) homological algebra preserve its main properties?

Bennis, Garcia and Oyonarte answered this question in [17] in the case of GC-
projectivity, and GC-injectivity. They found the minimum conditions for C to still have
a nice theory to develop. Modules satisfying these conditions were called w-tilting,
and dually, w-cotilting. Consequently, this led to a series of papers ([17, 18, 19, 11])
in which the authors developed a satisfactory theory of many of the homological as-
pects of GC-projective and GC-injective dimensions of modules and rings with respect
to w-tilting and w-cotilting modules, respectively.

The goal of this thesis goes in three directions.
First, we further investigate the properties of the GC-projective modules and dimen-

sions. This will be achieved via the category of modules over triangular matrix rings.
Such rings appear naturally in many areas of algebra and play an important role in many
fields of mathematics. In particular, in representation theory of algebras (see for instance
[6]). But more importantly, they are a very useful tool for constructing examples and
counter-examples.
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The second aim is to answer the above question in the case of GC-flatness. That
is, we introduce and investigate modules C such that the theory of GC-flat modules
and dimensions behaves homologically best and show that is preserves many of the
homological properties, which are known to hold over noetherian or coherent rings with
respect to a semidualizing module. In addition, the theory developed throughout the
thesis will also include results that are new even in the case where C is semidualizing.

The third and final objective of this thesis is the study of the class of the GC-flat
modules from a fresh and different perspective: the homotopical aspect. In particular,
from the abelian model structures perspective. Recall that, roughly speaking, an abelian
model structure on an abelian category A is given by three classes of morphisms of
A , called cofibrations, fibrations and weak equivalences, that are compatible with the
abelian structure, and from which it is possible to introduce a homotopy theory in A .
(Abelian) model structures are interesting because they establish the theoretical frame-
work for formally inverting the weak equivalences. Therefore, the approach we will
take in this thesis is to investigate the existence of an abelian model structure involving
the class of GC-flat modules, and to study it further from this perspective.

This thesis is divided into five chapters. Let us discuss the contents of each chapter.

Chapter I.
This chapter is devoted to the preliminaries. Our focus will be on the basic ter-

minology and results we’ll be using throughout the thesis.

Chapter II.
Let A and B be rings and U be a (B,A)-bimodule. The ring T =

(
A 0
U B

)
is known

as the (formal) triangular matrix ring with usual matrix addition and multiplication.
Modules over such rings can be described in a very concrete and useful way. Recall that
a left module over T is a triple M =

(
M1
M2

)
ϕM

, where M1 ∈ A-Mod, M2 ∈ B-Mod and

ϕM : U ⊗A M1 → M2 is a B-morphism. With this approach, triangular matrix rings and
modules over them have proved to be, among other things, a rich source of examples
and counterexamples.

The main objective of this chapter is to study the fundamental concepts of rela-
tive Gorenstein homological algebra (w-tilting, GC-projective modules, GC-projective
dimensions and the global GC-projective dimension) over T .

This chapter is organized as follows:
In Section 2.1, we study how to construct w-tilting (tilting, semidualizing) modules

over T using w-tilting (tilting, semidualizing) modules over A and B under some as-
sumptions on the bimodule U . In Definition 2.1.2, we introduce (weakly) C-compatible
(B,A)-bimodules with respect to a T -module of the form C :=p(C1,C2)=

(
C1

(U⊗AC1)⊕C2

)
.

Then, given two w-tilting modules AC1 and BC2, we prove in Proposition 2.1.5 that
C := p(C1,C2) is a w-tilting T -module when U is weakly C-compatible.
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In Section 2.2, we first describe relative Gorenstein projective modules over T . Let
C = p(C1,C2) be a T -module. We prove in Theorem 2.2.3 that if U is C-compatible
then the following assertions are equivalent for any T -module M =

(
M1
M2

)
ϕM

:

(1) M is GC-projective.

(2) M1 is a GC1-projective A-module, CokerϕM is a GC2-projective B-module and
ϕM : U ⊗A M1 → M2 is a monomorphism.

As an application, we prove the converse of Proposition 2.1.5. Also, when C is
w-tilting, we characterize when a T -morphism is a special precover (see Proposition
2.2.7). Then, in Theorem 2.2.8, we prove that the class of GC-projective T -modules is
a special precovering if and only if so are the classes of GC1-projective A-modules and
GC2-projective B-modules, respectively.

Finally, in Section 2.3, we give an estimate of the GC-projective dimension of a left
T -module and the left global GC-projective dimension of T .

Recall that the global GC-projective dimension of a ring R, denoted as GC −PD(R),
is the supremum of the GC-projective dimensions of all R-modules.

First, it is proven that, given a T -module M =
(

M1
M2

)
ϕM

, if C = p(C1,C2) is w-tilting,

U is C-compatible and

SGC2 −PD(B) := sup{GC2−pd(U⊗A G) | G ∈ GC1P(A)}< ∞,

then
max{GC1−pdA(M1),(GC2−pdB(M2))− (SGC2 −PD(B))}

≤ GC−pdT (M)≤

max{(GC1−pdA(M1))+(SGC2 −PD(B))+1,GC2−pdB(M2)}.

As an application, we prove that, if C = p(C1,C2) is w-tilting and U is C-compatible
then

max{GC1 −PD(A),GC2 −PD(B)}

≤ GC −PD(T )≤

max{GC1 −PD(A)+SGC2 −PD(B)+1,GC2 −PD(B)}.

We conclude this section with some cases in which this estimation becomes an exact
formula (Corollaries 2.3.9 and 2.3.10).

Chapter III.
In this chapter we develop the theory of GC-flatness with respect to a non-necessarily

semidualizing module C. We are mainly interested in modules C such that the GC-flat
modules and dimensions have good homological properties.
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This chapter is organized as follows:
In section 3.1, we give a new concept of relative flat modules on which we will

construct relative Gorenstein flat modules. Namely, given an R-module C, we say that
an R-module M is FC-flat provided that M+ ∈ ProdR(C+), where Prod(C+) stands for
the class of all modules which are isomorphic to direct summands of direct products
of the right R-module C+ := HomR(C,Q/Z). We call the class of all FC-flat mod-
ules FC(R). We will find the link between this class FC(R) and the class of all flat
left S-modules, S := EndR(C) being the endomorphisms ring of C, and we prove that
FC(R) = AddR (FC(R)). As FC(R) is an Add-type class, this suggests the existence
of (pre)covers and (pre)envelope by modules FC(R), which we investigate in Propo-
sition 3.1.6(1) and Theorem 3.1.7. In Proposition 3.1.6, we also prove some nice and
fundamental homological properties of FC(R). Namely: FC(R) is always closed under
pure extensions, pure submodules and pure quotients, and when C satisfies some or-
thogonality conditions then FC(R) is also closed under arbitrary extensions and direct
limits.

In section 3.2, we use FC-flat modules to define the concept of GC-flat modules
with no restrictions on either the ring R or the module C. GC-flat modules will be con-
structed over FC(R) as GC-projective (resp., GC-injective) modules were constructed
over AddR(C) (resp., ProdR(C)) (see sections 2.2 and 3.2).

We will study what are the homological properties of GCF(R), the class of GC-flat
R-modules, and check how it is related to other important classes of modules as those of
(relative) flat, (relative) projective, (relative) Gorenstein projective, (relative) Gorenstein
flat, etc.

As mentioned above, the development of this study will be carried out with respect to
a module C satisfying significantly less restrictive conditions than semidualizing mod-
ules: we will call these new modules w+-tilting, and we shall see that they properly
generalize w-tilting (and so semidualizing) modules (Proposition 3.2.3 and Example
3.2.2).

In Section 3.3, we investigate a natural problem originally raised by Sather-Wagstaff,
Sharif and White in [79]. Namely, they wonder what is the result of the iteration of
constructing Gorenstein objects, that is, if we compute Gorenstein modules by taking
as the base class a given one, X , and call this new class G (X ), then we compute
Gorenstein modules taking as base class G (X ) and call this new class G 2(X ), and so
on, when is a class X such that G n(X ) = G (X ) for some n?

It is another of our purposes in this section to study what is the situation when
working with the class of GC-flat modules. We will prove in Theorem 3.3.1 that indeed
GCF2(R) = GCF(R).

As a consequence, we show that all exact complexes having as components modules
in any class in between F (R)∪FC(R) and GCF(R), regardless of the positions they
hold in the complex, will give GC-flat modules as syzygies (Corollary 3.3.2).
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Another interesting consequence of the stability is the answer to the following nat-
ural question: when is any Gorenstein flat module a GC-flat module? We will give a set
of equivalent conditions for this to hold (Corollary 3.3.3).

Section 3.4 is devoted to the treatment of the dimension relative to the class of GC-
flat modules: the GC-flat dimension. We will carry out the traditional homological study
of dimensions, which includes the link of the dimensions of the modules in a short ex-
act sequence (Proposition 3.4.9), the characterization of modules of finite dimension in
terms of the vanishing of the right homological functor, in our case the Tor functor (The-
orem 3.4.7 and Corollary 3.4.8), and of course the comparison of the GC-flat dimension
with the dimensions relative to the classes involved in the definition of GCF(R), that is,
FC(R) and the class of flat modules (Theorems 3.4.12 and 3.4.14).

Finally, in Section 3.5, we are mainly interested in the global GC-flat dimension of
R, i.e., the supremum of the GC-flat dimensions of all R-modules. Our first main result
is to provide a simple way to compute this global dimension. We prove that finiteness of
the global GC-flat dimension of R depends only on the finiteness of the flat dimension of
the IC+-injective right R-modules (modules in ProdR(C+)) and the FC-flat dimension
of the injective left R-modules (Theorem 3.5.5).

It is well known that the weak global dimension of any ring R can be computed by
means of the flat dimension of either the left or right R-modules. More precisely, we
have the following equality:

sup{fdR(M)|M is a left R-module}= sup{fdR(M)|M is a right R-module}.

The theory of Gorenstein flat dimension relative to a semidualizing module is usu-
ally studied over commutative rings. But, once we remove the commutativity of the ring,
taking into account that the definition of a semidualizing (R,S)-bimodule C is left-right
symmetric, a question similar to that of the weak global dimension arises:

Question: Does the following equality hold true?

sup{GC-fdR(M)|M ∈ R-Mod}= sup{GC-fdS(M)|M ∈ Mod-S}

As an application of Theorem 3.5.5, we give a positive answer to this question when
the class of GC-flat left R-modules and the class of GC-flat right S-modules are both
closed under extensions (see Theorem 3.5.9 and Corollary 3.5.10).

Consequently, we obtain a positive answer (Corollary 3.5.11) to Bennis’ conjecture
([10]) for any ring R. However, this conjecture was recently solved independently by S.
Bouchiba ([22]) and later by Christensen, Estrada, and Thompson ([29]). We note that
our approach is different from theirs. Theorem 3.5.9, in particular, provides a new and
simpler proof that sheds more light on such symmetries.

Chapter IV:
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The purpose of this chapter is to construct a new hereditary abelian model struc-
ture on the category of left R-modules that involves the class of GC-flat modules and the
well-known Bass class BC(R), and use the homotopy category of this model structure
in order to further study these classes.

Following Hovey [64, Theorem 2.2], there is a one-to-one correspondence between
the class of abelian model structures and the class of Hovey triples, i.e., three classes of
objects (Q,W ,R) satisfying that W is thick and both (Q,W ∩R) and (Q ∩W ,R)
are complete cotorsion pairs (see Sections 1.5 and 1.7). This establishes a relation
between model category theory and representation theory via cotorsion pairs. If the
abelian model structure is hereditary (i.e., both of the complete cotorsion pairs induced
by the Hovey triple are hereditary), then its homotopy category Ho(A ) is the stable
category of a Frobenius category, thus it is triangulated. This is an important situation
in which one obtains a triangulated category from the point of view of model category
theory. We refer the reader to Section 1.7 for more details.

This chapter is organized as follows.
In Section 4.1, we introduce and study new concepts of relative cotorsion modules:

strongly CC-cotorsion and n-CC-cotorsion modules for a given integer n ≥ 1. We are
mainly interested in their links with other known classes of modules such as cotorsion
modules (Proposition 4.1.5 and Corollary 4.1.6), as well as in their homological proper-
ties. It is investigated when these new classes are the right half of a (perfect, complete,
hereditary) cotorsion pair (Theorem 4.1.7).

In Section 4.2, we introduce and investigate a new concept of Gorenstein cotor-
sion modules: GC-cotorsion. We characterize when the pair (GC-flat,GC-cotorsion) is a
hereditary and perfect cotorsion pair (Theorem 4.2.6).

In Section 4.3, we use the results from the previous sections to construct, under
certain conditions (Theorem 4.3.6), a new hereditary abelian model structure on the
category of R-modules

M := (GCF(R),W ,HC(R)),

called the GC-flat model structure, and defined as follows:

(1) A morphism f is a cofibration (trivial cofibration) if and only if it is a monomor-
phism with GC-flat (VC-flat) cokernel.

(2) A morphism g is a fibration (trivial fibration) if and only if it is an epimorphism
with HC-cotorsion (GC-cotorsion) kernel.

Here, HC(R) := BC(R)∩CC(R) and VC(R) := ⊥(BC(R)∩CC(R)) is the left Ext-
orthogonal class of HC(R). Modules in VC(R) and HC(R) are called VC-flat and HC-
cotorsion modules, respectively. We call them this way as they satisfy most of the nice
properties of flat and cotorsion modules.

Two main consequences of this theorem are obtained (Corollary 4.3.8):

24



Introduction

(a) The full subcategory GCF(R)∩HC(R) is a Frobenius category whose projective-
injective objects are exactly the objects in FC(R)∩CC(R).

(b) The homotopy category Ho(M ) is triangulated equivalent to the stable category

GCF(R)∩HC(R).

In Section 4.4, we investigate a question naturally motivated by the previous section:

Question. What are the trivial objects in the GC-flat model structure?

We answer this question under the assumption that the global GC-flat dimension of
R is finite (see Theorem 4.4.7). In this case, trivial objects coincide with modules having
finite VC-flat dimensions. i.e, finite VC(R)-resolution dimension.

This problem of lack of information about trivial objects raises even in the general
setting of abelian categories. The main tool used to construct the GC-flat model structure
is a well-known result by Gillespie ([51, Theorem 1.1]). This result is a very useful tool
for building model structures and has been used by many researchers for this purpose.

Researchers interested in model structures would like to know more about trivial
objects than what this result provides. The importance of these objects comes mainly
from the fact that they determine the associated homotopy category, as explained in the
fundamental theorem of model categories ([63, Theorem 1.2.10]).

A new approach is therefore appreciated. For instance, Šaroch and Šťovı́ček ([78,
Sections 4 and 5]), and later Estrada, Iacob and Pérez ([42]) and the author of this thesis
([32]), have recently used new techniques to construct new model structures with an
explicit description of the trivial objects.

Our last main result, which is used to prove Theorem 4.4.7, gives one more step
towards a better understanding of this class of trivial objects: assume that (Q,R̃) and
(Q̃,R) are complete hereditary cotorsion pairs in an abelian category A such that

(a) Q̃ ⊆ Q (or equivalently, R ⊆ R̃).

(b) Q∩ R̃ = Q̃∩R.

Then, the following assertions hold:

(1) If sup{Q− resdimA (A)|A ∈ A }< ∞, then (Q,W ,R) is a Hovey triple where

W = {A ∈ A , Q̃− resdimA (A)< ∞}.

(2) If sup{R−coresdimA (A)|A ∈A }< ∞, then (Q,W ,R) is a Hovey triple where

W = {A ∈ A , R̃− coresdimA (A)< ∞}.
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The proof of this result is based on an interesting connection between Hovey triples
and (weak) AB-contexts. The later have been studied by Auslander and Buchweitz in
[5] and used by Hashimoto in his book [59] (see Section 1.7). (Weak) AB-contexts
are known to be useful for generating special (pre-)covers and (pre-)envelopes. It turns
out that they are also useful for constructing Hovey triples as we will show in Theorem
4.4.5.

Chapter V:
This is the last chapter in which we discuss some of the open questions raised in

this thesis or related to the subject of it.
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CHAPTER 1

PRELIMINARIES

In this chapter we introduce the basic terminology and notation that we will use, as
well as the fundamental definitions and results needed for this thesis.

1.1 Notation and terminology
Throughout this thesis, R and S will be associative (non-necessarily commutative)

rings with identity, and all modules will be, unless otherwise specified, unital left R-
modules or right S-modules. When right R-modules need to be used, they will be de-
noted as MR, while in these cases left R-modules will be denoted by RM. In some cases,
right R-modules (resp, left S-modules) will be identified with left (resp., right) modules
over the opposite ring Rop (resp, Sop).

We also use A to denote an abelian category. By a subcategory of A , we will always
mean a full subcategory which is closed under isomorphisms. Any class of objects of A
will be thought of as a (full) subcategory. Conversely, any subcategory can be identified
with its class of objects.

Given an integer n ≥ 1, to any given class of objects X , we associate its right and
left n-th Ext-orthogonal classes

X ⊥n = {M ∈ A | ExtiA (X ,M) = 0,∀X ∈ X ,∀i = 1, ..,n},
⊥nX = {M ∈ A | ExtiA (M,X) = 0,∀X ∈ X ,∀i = 1, ..,n}.

In particular, we set

X ⊥ = X ⊥1, X ⊥∞ = ∩n≥1X
⊥n, ⊥X = ⊥1X , ⊥∞X = ∩n≥1

⊥nX .

and if X = {X}, we simply write X ⊥n = X⊥n and ⊥nX = ⊥nX .

Here are some other standard notations that we will also be using throughout:
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R-Mod The category of all left R-modules.

Mod-R The category of all right R-modules.

P The class of projective modules.

I The class of injective modules.

F The class of flat modules.

M+ The character module HomZ(M,Q/Z).

Add(M) The class of all modules which are isomorphic to direct summands
of direct sums of copies of a module M.

add(M) The class of all modules which are isomorphic to direct summands
of finite direct sums of copies of a module M.

Prod(M) The class of all modules which are isomorphic to direct summands
of direct products of copies of a module M

1.2 Resolution and coresolution dimensions
Definition 1.2.1. Let X be a class of objects of A and consider a sequence in A

X : · · · → X1 → X0 → X−1 → ···

(1) X is called HomA (X ,−)-exact if the induced sequence of abelian groups

· · · → HomA (X ,X1)→ HomA (X ,X0)→ HomA (X ,X−1)→ ···

is exact for every X ∈ X .

(2) X is called HomA (−,X )-exact if the induced sequence of abelian groups

· · · → HomA (X−1,X)→ HomA (X0,X)→ HomA (X1,X)→ ···

is exact for every X ∈ X .

(3) In case A = R-Mod and Y is a class of right R-modules, X is called (Y ⊗R −)-
exact if the induced sequence of abelian groups

· · · → Y ⊗R X1 → Y ⊗R X0 → Y ⊗R X−1 → ·· ·

is exact for every Y ∈ Y .
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Definition 1.2.2. An X -resolution of an object A ∈ A is an exact complex

· · · → X1 → X0 → A → 0

where each Xi ∈ X . Dually, an X -coresolution of A is an exact complex

0 → A → X0 → X1 → X2 → ···

with X i ∈ X .
In particular, P-resolution, F -resolution and I -coresolution will mean the usual

projective, flat and injective resolutions, respectively.

Definition 1.2.3 ([5]). An object A ∈ A is said to have X -resolution dimension less
than or equal to an integer n ≥ 0, X − resdimA (A)≤ n, if A has a finite X -resolution:

0 → Xn → ·· · → X1 → X0 → M → 0.

If n is the least non negative integer for which such a sequence exists, then its X -
resolution dimension is precisely n, and if there is no such n, then we define its X -
resolution dimension as ∞. We denote by X̂ (or, resX̂ ) the (full) subcategory of objects
in A having a finite X -resolution.

One could also define X -resolution dimension of classes in a natural way. The
X -resolution dimension of a class Y ⊆ A , is defined as

X − resdimA (Y ) = sup{X − resdimA (Y )|Y ∈ Y }.

In particular, we define the global X - resolution dimension of A as

glresdimX (A ) := X − resdimA (A ) = sup{X − resdimA (A)| A ∈ A }.

Example 1.2.4. Let A = R-Mod and X = P(R). Then,

(a) X − resdimA (−) = pdR(−), that is, the X -resolution dimension coincides with
the projective dimension.

(b) glresdimX (A ) = gldim(R), that is, the global X - resolution dimension of R-
Mod coincides with the global dimension of R.

Example 1.2.5. Let A = R-Mod and X = F (R). Then,

(a) X − resdimA (−) = fdR(−), that is, the X -resolution dimension coincides with
the flat dimension.

(b) glresdimX (A ) =wdim(R), that is, the global X -resolution dimension of R-Mod
coincides with the weak global dimension of R.
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The question of the closure under certain properties of a given class of objects is a
typical problem for those classes having interest in homological and homotopical alge-
bra. Here we recall all such closure properties needed in this thesis.

A class X of objects of A is said to be:

1. Closed under direct summands if for every two objects X1 and X2,

X1 ⊕X2 ∈ X ⇒ X1,X2 ∈ X .

2. Closed under direct sums if whenever (Xi)i is a family of objects,

∀i,Xi ∈ X ⇒⊕iXi ∈ X .

3. Closed under kernels of epimorphisms if for any exact sequence 0→X1 →X2 →
X3 → 0,

X2,X3 ∈ X ⇒ X1 ∈ X .

4. Closed under extensions if for any short exact sequence 0 → X1 → X2 → X3 → 0,

X1,X3 ∈ X ⇒ X2 ∈ X .

5. Closed under cokernels of monomorphisms if for any exact sequence 0 → X1 →
X2 → X3 → 0,

X1,X2 ∈ X ⇒ X3 ∈ X .

6. Closed under pure submodules if for any pure exact sequence 0 → X1 → X2 →
X3 → 0,

X2 ∈ X ⇒ X1 ∈ X .

7. Closed under pure extensions if for any pure exact sequence 0 → X1 → X2 →
X3 → 0,

X1,X3 ∈ X ⇒ X3 ∈ X .

8. Closed under pure quotients if for any pure exact sequence 0 → X1 → X2 →
X3 → 0,

X2 ∈ X ⇒ X3 ∈ X .

9. Closed under direct limits if whenever {(Mi,ϕ ji), i, j ∈ I} is a direct system,
where I is a directed set,

∀i,Xi ∈ X ⇒ lim−→
i

Xi ∈ X .
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10. Projectively resolving if X contains all projective objects of A and X is closed
under extensions and kernels of epimorphisms.

11. Injectively coresolving if X contains all injective objects of A and X is closed
under extensions and cokernels of monomorphisms.

12. Left (resp., right) thick if it is closed under extensions, kernels of epimorphisms
(resp., cokernels of monomorphisms), and direct summands.

13. Thick if it is left and right thick.

1.3 Relative Gorenstein homological algebra
In this section we recall the basic notions from the theory of (Gorenstein) homolog-

ical algebra relative to a module C.
Given an R-module C, a complete PC-projective complex is a HomR(−,AddR(C))-

exact exact complex of R-modules

X : · · · → P1 → P0 →C−1 →C−2 → ··· ,

with all Pi ∈ P(R) and C j ∈ AddR(C).
Dually, a complete IC-injective complex is a HomR(ProdR(C),−)-exact exact com-

plex of R-modules

Y : · · · →C1 →C0 → E−1 → E−2 → ··· ,

where Ci ∈ ProdR(C), E j ∈ I (R), and such that M ∼= Im(C0 → E−1).

Definition 1.3.1 ([17]). An R-module M is said to be GC-projective if there exists a
complete PC-projective complex X as above such that M ∼= Im(P0 →C−1).

Dually, an R-module M is said to be GC-injective if there exists a complete IC-
injective complex Y as above such that M ∼= Im(C0 → E−1).

We use GCP(R) and GCI(R) to denote the class of all GC-projective and GC-injective
R-modules, respectively.

The notion of semidualizing modules is one of the principal notions in relative
(Gorenstein) homological algebra. The following general version of semidualizing is
due to Holm and White [62].

Definition 1.3.2 ([62], Definition 2.1). An (R,S)-bimodule C is semidualizing if:

1. RC and CS both admit a degreewise finite projective resolution.
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2. Ext≥1
R (C,C) = Ext≥1

S (C,C) = 0.

3. The natural homothety maps R→HomS(C,C) and S→HomR(C,C) are both ring
isomorphisms.

By a degreewise finite projective resolution we mean a projective resolution in
which every projective module is finitely generated.

Definition 1.3.3 ([82], Section 3.). An R-module C is called (Wakamatsu) tilting if it
has the following properties:

1. RC admits a degreewise finite projective resolution.

2. Ext≥1
R (C,C) = 0.

3. There exists a HomR(−,C)-exact addR(C)-coresolution

0 → R →C−1 →C−2 → ·· ·

Given an (R,S)-bimodule C, it was proven by Wakamatsu ([82, Corollary 3.2]) that
C is semidualizing if and only if RC is tilting with S = EndR(C) if and only if CS is tilting
with R = EndS(C). The following notion, due to Bennis, Garcı́a Rozas and Oyonarte
([17]), generalizes these two concepts and it will play a crucial role in this thesis.

Definition 1.3.4 ([17]). An R-module C is said to be weakly Wakamatsu tilting (w-
tilting for short) if it satisfies the following two properties:

(T1) C is Σ-self-orthogonal, that is, Exti≥1
R (C,C(I)) = 0 for every set I.

(T2) There exists a HomR(−,AddR(C))-exact AddR(C)-coresolution

0 → R →C−1 →C−2 → ·· ·

Dually, an R-module U is said to be w-cotilting if it satisfies the following two proper-
ties:

(C1) C is ∏-self-orthogonal, that is, Exti≥1
R (U I,U) = 0 for every set I.

(C2) There is an injective cogenerator D in R-Mod which admits a HomR(ProdR(U),−)-
exact ProdR(U)-resolution

· · · →U1 →U0 → D → 0

It is immediate from the definition that w-(co)tilting modules can be characterized
as follows.
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Lemma 1.3.5.
(1) An R-module C is w-tilting if and only if both C and R are GC-projective modules.

(2) An R-module U is w-cotilting if and only if U and D are GU-injective modules for
some injective cogenerator D for R-Mod.

Examples 1.3.6. (Gorenstein projective and injective modules). If C is a projective
generator, that is, AddR(C) = P(R), then C is a w-tilting R-module and GC-projective
R-modules are exactly Gorenstein projective modules.

Dually, Given an injective cogenerator U, that is, ProdR(U) = I (R), then C is
a w-cotilting R-module and GC-injective R-modules are exactly Gorenstein injective
modules.

We use G P(R) and G I (R) to denote the class of all Gorenstein projective and
Gorenstein injective R-modules, respectively.

The following example is a non trivial example of a w-tilting module.

Example 1.3.7 ([17], Section 2). Consider a left noetherian ring R and a Gorenstein
injective R-module M which is not injective. If

· · · → E1 → E0 → E−1 → E−2 · · ·

is the complete injective resolution associated to M, that is, M = Im(E0 → E−1), take
C = (⊕i≤1Ei)⊕ (⊕Ei≥1E i) where

0 → R → E1 → E2 → ·· ·

is an injective resolution of R. Then, C is a w-tilting and M is GC-projective.

We will now recall and discuss two types of classes of modules that are of interest
to us in this thesis. These classes are known as Foxby classes and can be traced back
to Foxby ([45]). As in [17], we recall their definitions without any assumptions on the
ring R or the module C.

Definition 1.3.8. Associated to an (R,S)-bimodule C, we have the Auslander and Bass
classes, AC(S) and BC(R), respectively, defined as follows:

(A) AC(S) is the class of all left S-modules M satisfying:

(A1) TorS
≥1(C,M) = 0.

(A2) Ext≥1
R (C,C⊗S M) = 0.

(A3) The canonical map µM : M → HomR(C,C⊗S M) is an isomorphism of left
S-modules.
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(B) BC(R) consists of all left R-modules N satisfying:

(B1) Ext≥1
R (C,N) = 0.

(B2) TorS
≥1(C,HomR(C,N)) = 0.

(B3) The canonical map νN : C ⊗S HomR(C,N) → N is an isomorphism of R-
modules.

On the other hand, one can define the classes AC(R) and BC(S) of right R-modules
and right S-modules, respectively.

We may refer to modules in Foxby classes AC and BC as AC-Auslander and BC-
Bass modules, respectively. It is an important property of Auslander and Bass classes
that they are equivalent under the pair of functors [47, Proposition 2.1]:

BC(R)

HomR(C,−)
**

AC(S)

C⊗S−
jj

and AC(R)

−⊗RC
**

BC(S)

HomS(C,−)

jj
.

Consequently, Bass classes can be defined via Auslander classes and vice-versa:

BC(R) =C⊗S AC(S) and AC(R) = HomS(C,BC(S)).

Remark 1.3.9. In the case RCS = RRR, the classes AC(S) and BC(R) coincide with the
class of left R-modules.

Throughout the rest of this section, S will be, unless otherwise stated, the endomor-
phism ring of C, S = EndR(C).

Recall that an R-module M is called self-small if the canonical morphism

HomR(M,M(I))→ HomR(M,M)(I)

is an isomorphism, for every set I. Examples of self-small modules are finitely generated
modules. Keeping in mind that S = EndR(C), the module RC is self-small if and only if,
for every set I, the canonical map µS(I) : S(I) → HomS(C,C⊗S S(I)) is an isomorphism.

Inspired by the duality between Foxby classes, we propose the dual notion to that of
self-small.

Definition 1.3.10. An R-module RM is said to be self-cosmall, if the canonical mor-
phisms

(M+)I ⊗R M → (M+⊗R M)I and M+⊗R M → HomR(M,M)+

are isomorphisms for every set I.

Remark 1.3.11.
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(1) The module RC is self-cosmall if and only if the canonical morphism

ν(S+)I : HomS(C,(S+)I)⊗R C → (S+)I

is an isomorphism for every set I.

(2) Following [37, Theorem 3.2.11 and 3.2.22], any finitely presented R-module is
self-cosmall.

It is straightforward to prove the following:

Lemma 1.3.12.

1. RC is self-small if and only if there is an equivalence of categories:

AddR(C)

HomR(C,−)
**

P(S)

C⊗S−
kk

2. C is self-cosmall if and only if there exists an equivalence of categories

ProdR(C+)

−⊗RC
**

I (S)

HomS(C,−)

kk

Corollary 1.3.13. The following assertions hold:

1. ([11, Proposition 3.1]) If C is self-small, then AddR(C) =C⊗S P(S).

2. If RC is self-cosmall, then ProdR(C+) = HomS(C,I (S)).

Lemma 1.3.14. The following assertions hold:

1. P(S)⊆ AC(S) if and only if RC is Σ-self-orthogonal and self-small.

In this case, AddR(C)⊆ BC(R).

2. I (S)⊆ BC(S) if and only if RC is ∏-Tor-orthogonal and self-cosmall.

In this case, ProdR(C+)⊆ AC(R).

Proof. 1. Follows by [17, Proposition 5.4(1)] and the equality AddR(C) = C⊗S P(S)
when C is self-small.

2. By the dual argument to that of [17, Proposition 5.4(1)] and (1).
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With respect to the terminology used in this thesis, modules in the class AddR(C)
(resp., ProdR(C)) will be called PC-projective (res., IC-injective).

Remark 1.3.15.

1. By Lemma 1.3.14, when C is self-small (resp., self-cosmall), the class of PC-
projective (resp., IC+-injective) modules coincides with the class of C-projective
(resp., C-injective) modules in the sense of Holm and White [62], that is, modules
in the class C⊗S P(S) (resp., HomS(C,I (S))).

2. By Lemma 1.3.14, the adjoint pair (C ⊗S −,HomR(C,−)) is left semidualizing
(in the sense of [47, Definition 2.1]) if and only if RC is Σ-self-orthogonal and
self-small.

3. When C is considered as a right module over an arbitrary ring S, there is a version
of each definition and result presented in this thesis. For example, If R= EndS(C),
then we have the following equalities

AddS(C) = P(R)⊗R C and ProdS(C+) = HomR(C,I (R))

when CS is self-small and self-cosmall, respectively.

1.4 The Category of modules over triangular matrix rings

In this section, we present some ways of working with the category of modules over
triangular matrix rings and recall some basic facts and results.

Let A and B be two rings and U be a (B,A)-bimodule. We use

T :=
(

A 0
U B

)
to denote the set of all matrices of the form

(
a 0
u b

)
, where a ∈ A,b ∈ B,u ∈ U. With

respect to matrix addition and multiplication:(
a 0
u b

)
+
(

a′ 0
u′ b′

)
=
(

a+a′ 0
u+u′ b+b′

)
and

(
a 0
u b

)(
a′ 0
u′ b′

)
=
(

aa′ 0
ua′+bu′ bb′

)
T is a ring called the (generalized) triangular matrix ring.

Remark 1.4.1. If U = 0, then the triangular matrix ring T =

(
A 0
0 B

)
can be identified

with the direct product of rings A×B.
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Throughout this thesis, T =

(
A 0
U B

)
will be a triangular matrix ring.

Let T Ω be (the category) defined as follows:

• Objects: are triples M =

(
M1
M2

)
ϕM

, where M1 ∈ A-Mod, M2 ∈ B-Mod and ϕM :

U ⊗A M1 → M2 is a morphism of B-modules.

• Morphisms: are pairs
(

f1
f2

)
such that f1 ∈ HomA(M1,N1), f2 ∈ HomB(M2,N2),

satisfying that the following diagram is commutative

U ⊗A M1
ϕM
//

1U⊗ f1
��

M2

f2
��

U ⊗A N1
ϕN
// N2

• Composition: is defined componentwise. That is, if f =

(
f1
f2

)
: M → N and

g =

(
g1
g2

)
: N → L are two morphisms in T Ω, then the composition g f is defined to be

the pair of morphisms g f :=
(

g1 f1
g2 f2

)
: M → L (which is a morphism in T Ω).

The relationship between T -Mod and T Ω is given via the functor F : T Ω → T -Mod
which is defined on objects and morphisms as follows:

• For an object M =

(
M1
M2

)
ϕM

in T Ω, F(M) is defined as the abelian group F(M) =

M1 ⊕M2 with T -module structure given by(
a 0
u b

)
(m1,m2) = (am1,ϕ

M(u⊗m1)⊕bm2).

• If f :
(

f1
f2

)
:
(

M1
M2

)
ϕM

→
(

N1
N2

)
ϕN

is a morphism in T Ω, we let

F( f ) := f1 ⊕ f2 : M1 ⊕M2 → N1 ⊕N2.

The following result allows us to identify the categories T -Mod and T Ω by means
of the functor F .

Theorem 1.4.2 ([56], Theorem 1.5, see also [44]). T -Mod is equivalent to T Ω.

37



CHAPTER 1. PRELIMINARIES

In order to give a description of injective T -modules, we use the natural isomorphism

HomB(U ⊗A M1,M2)∼= HomA(M1,HomB(U,M2)),

to obtain an alternative description T -modules and T -homomorphisms in terms of maps
ϕ̃M : M1 → HomB(U,M2) given by ϕ̃M(x)(u) = ϕM(u⊗ x) for each u ∈U and x ∈ M1.

Let T̃ Ω be the category whose:

• Objects: are triples M =

(
M1
M2

)
ϕ̃M

, where M1 ∈ A-Mod, M2 ∈ B-Mod and ϕ̃M :

M1 → HomB(U,M2) is an A-morphism.

• Morphisms: are pairs
(

f1
f2

)
such that f1 ∈ HomA(M1,N1), f2 ∈ HomB(M2,N2)

satisfying that the following diagram is commutative

M1
ϕ̃M
//

f1
��

HomB(U,M2)

HomB(U, f2)
��

N1
ϕ̃N
// HomB(U,N2).

Proposition 1.4.3. T̃ Ω is isomorphic to T Ω.

Analogously, the category Mod-T of right T -modules is equivalent to the category
ΩT whose objects are triples M =

(
M1,M2

)
ϕM

, where M1 ∈ Mod-A, M2 ∈ Mod-B and
ϕM : M2 ⊗B U → M1 is an A-morphism, and whose morphisms from

(
M1,M2

)
ϕM

to(
N1,N2

)
ϕN

are pairs
(

f1, f2
)

such that f1 ∈ HomA(M1,N1), f2 ∈ HomB(M2,N2) satisfy-
ing that the following diagram

M2 ⊗B U
ϕM
//

f2⊗1U
��

M1

f1
��

N2 ⊗B U
ϕN
// N1

is commutative.
Alternatively, the category Mod-T of right T -modules is also equivalent to the cate-

gory Ω̃T whose objects are triples M =
(
M1,M2

)
ϕ̃M

, where M1 ∈ Mod-A, M2 ∈ Mod-B
and ϕ̃M : M2 →HomA(U,M1) is an A-morphism, and whose morphisms from

(
M1,M2

)
ϕ̃M

to
(
N1,N2

)
ϕ̃N

are pairs
(

f1, f2
)

such that f1 ∈ HomA(M1,N1), f2 ∈ HomB(M2,N2) sat-
isfying that the following diagram
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M2
ϕ̃M
//

f2
��

HomA(U,M1)

HomA(U, f1)
��

N2
ϕ̃N
// HomA(U,N1)

is commutative.

From now on, we will identify both categories T Ω and T̃ Ω (resp., ΩT and Ω̃T ) with
T -Mod (resp., Mod-T ).

In this case, a sequence of left (resp., right) T -modules(
E1
E2

)
: 0 →

(
M1
M2

)
→
(

M′
1

M′
2

)
→
(

M′′
1

M′′
2

)
→ 0

(resp.,
(
E1,E2

)
: 0 →

(
M1,M2

)
→
(
M′

1,M
′
2
)
→
(
M′′

1 ,M
′′
2
)
→ 0)

is exact if and only if both sequences

E1 : 0 → M1 → M′
1 → M′′

1 → 0 and E2 : 0 → M2 → M′
2 → M′′

2 → 0

are exact in the corresponding categories.

Example 1.4.4. T T corresponds to
(

A
U ⊕B

)
ϕT

, where ϕT : U ⊗A →U ⊕B is given by

ϕT (u⊗a) = (ua,0) while TT corresponds to
(
A⊕U,B

)
ϕT

, where ϕT : B⊗B U → A⊕U
is given by ϕT (b⊗u) = (0,bu).

There are some pairs of adjoint functors between the category T -Mod and the prod-
uct category A-Mod ×B-Mod:

A-Mod×B-Mod

p

((

T -Mod

q

hh
,

A-Mod×B-Mod

h
((

T -Mod

q

hh
,

A-Mod×B-Mod

r
((

T -Mod

s

hh
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which are defined as follows:

1. p : A-Mod × B-Mod→ T -Mod: for each object (M1,M2) of A-Mod×B-Mod,

p(M1,M2) =

(
M1

(U ⊗A M1)⊕M2

)
with the obvious map and for any morphism

( f1, f2) in A-Mod×B-Mod, p( f1, f2) =

(
f1

(1U ⊗A f1)⊕ f2

)
.

2. q : T -Mod→ A-Mod ×B-Mod:

q(M) = (M1,M2) and q( f ) = ( f1, f2)

for each left T -module M =

(
M1
M2

)
and for each morphism f =

(
f1
f2

)
in T -Mod.

3. h : A-Mod × B-Mod→ T -Mod: for each object (M1,M2) of A-Mod×B-Mod,

h(M1,M2) =

(
M1 ⊕HomB(U,M2)

M2

)
with the obvious map and for any morphism

( f1, f2) in A-Mod×B-Mod, h( f1, f2) =

(
f1 ⊕HomB(U, f2)

f2

)
.

4. r : A-Mod × B-Mod→ T -Mod: for each object (M1,M2) of A-Mod×B-Mod,

r(M1,M2)=

(
M1
M2

)
with the zero map and for any morphism ( f1, f2) in A-Mod×B-

Mod, r( f1, f2) =

(
f1
f2

)
.

5. s : T -Mod→ A-Mod ×B-Mod:

s(M) = (M1,CokerϕM) and s( f ) = ( f1, f 2)

for each T -module M =

(
M1
M2

)
and for each morphism f =

(
f1
f2

)
in T -Mod,

where f 2 : CokerϕM → CokerϕM is the induced map.

The functors p,q and h were introduced by Enochs, Cortés-Izurdiaga and Torrecillas
in [34] and have played an important role in the characterization of Gorenstein projective
and injective modules over triangular matrix rings.

We also note that all the above functors can be induced from adjoint functors defined
on a more general construction called trivial extension [44].

Here are some facts about these functors, which are used frequently in this thesis.
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(1) The pairs (p,q), (q,h) and (s,r) are adjoint pairs. For a future reference, we list
these adjointness isomorphisms:

HomT (

(
M1

(U ⊗A M1)⊕M2

)
,N)∼= HomA(M1,N1)⊕HomB(M2,N2).

HomT (M,

(
N1
N2

)
0
)∼= HomA(M1,N1)⊕HomB(CokerϕM,N2).

HomT (M,

(
N1 ⊕HomB(U,N2)

N2

)
)∼= HomA(M1,N1)⊕HomB(M2,N2).

(2) The functor q is exact. Consequently, p preserves projective objects and h pre-
serves injective objects.

(3) The functor p preserves direct limits (in particular direct sums), while the functor
h preserves inverse limits (in particular direct products).

Lemma 1.4.5. Let X =

(
X1
X2

)
ϕX

be a T -module and (C1,C2) ∈ A-Mod × B-Mod.

(1) X ∈ AddT (p(C1,C2)) if and only if

(i) X ∼= p(X1,CokerϕX),

(ii) X1 ∈ AddA(C1) and CokerϕX ∈ AddB(C2).

In this case, ϕX is a monomorphism.

(2) X ∈ ProdT (h(C1,C2)) if and only if

(i) X ∼= h(Kerϕ̃X ,X2),

(ii) Kerϕ̃X ∈ ProdA(C1) and X2 ∈ ProdB(C2).

In this case, ϕ̃X is an epimorphism.

Proof. We only need to prove (1), since (2) is dual.
For the “if”part. If X1 ∈ AddA(C1) and CokerϕX ∈ AddB(C2), then X1 ⊕Y1 = C(I1)

1

and CokerϕX ⊕Y2 =C(I2)
2 for some (Y1,Y2) ∈ A-Mod×B-Mod and some sets I1 and I2.

Without loss of generality, we may assume that I = I1 = I2. Then:

X ⊕p(Y1,Y2) ∼= p(X1,CokerϕX)⊕p(Y1,Y2)
∼= p(X1 ⊕Y1,CokerϕX ⊕Y2)

∼= p(C(I)
1 ,C(I)

2 )

∼= p(C1,C2)
(I).
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Hence, X ∈ AddT (p(C1,C2)).

Conversely, let X ∈ AddT (p(C1,C2)) and Y =

(
Y1
Y2

)
ϕY

be a T -module such that

X ⊕Y = p(C1,C2)
(I) for some set I. Then, ϕX is a monomorphism, as X is a direct

summand of C := p(C1,C2)
(I) and ϕC is a monomorphism. Consider now the split

exact sequence

0 → Y

(
λ1
λ2

)
−→ C

(
p1
p2

)
−→ X → 0

which induces the following commutative diagram with exact rows and columns:

0 //U ⊗A Y1� _

ϕY

��

1U⊗λ1 //U ⊗A C(I)
1� _

ϕC

��

1U⊗p1 //U ⊗A X1� _

ϕX

��

// 0

0 // Y2

ϕY

��

λ2 //U ⊗A C(I)
1 ⊕C(I)

2

ϕC
��

p2 // X2

ϕX

��

// 0

0 // CokerϕY λ2 //

��

C(I)
2

��

p2 // CokerϕX //

��

0

0 0 0

where ϕX , ϕC and ϕX are the cokernel morphisms. Clearly, p1 : C(I)
1 → X1 and p2 :

C(I)
2 →CokerϕX are split epimorphisms. Then, X1 ∈AddA(C1) and CokerϕX ∈AddB(C2).

It remains to prove that X ∼= p(X1,CokerϕX). For this, it suffices to prove that the
short exact sequence

0 →U ⊗A X1
ϕX

→ X2
ϕX
→ CokerϕX → 0

splits.
Let r2 be the retraction of p2. If i : C(I)

2 → (U ⊗A C(I)
1 )⊕C(I)

2 denotes the canonical
injection, then ϕX p2ir2 = p2ϕCir2 = p2r2 = 1CokerϕX and the proof is finished.

The previous lemma can be used to characterize projective and injective modules
over T . Since the class of projective modules over T is nothing but the class AddT (T ),
when we take C1 = A and C2 = B in Lemma 1.4.5(1), we recover the characterization
of projective T -modules given in [58, Theorem 3.1]. On the other hand, the class of
injective T -modules coincides with the class ProdT (T+) where T+ = HomZ(T,Q/Z)
is the character right T -module of T T .
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Let us recall the structure of character modules over T .
Let N =

(
N1,N2

)
ϕN

be a right T -module and G an arbitrary abelian group. The
abelian group HomZ(N,G) is a left T -module with T -module structure given by:

T ×HomZ(N,G)−→ HomZ(N,G)

(t,α) 7−−−−−−−−→ t ·α : n 7→ t ·α(n) = α(nt).

Similarly, the groups HomA(N1,G) and HomB(N1,G) are a left A-module and B-

module, respectively. This defines a left T -module H :=
(

HomZ(N1,G)
HomZ(N2,G)

)
ϕH

where

ϕ
H : U ⊗A HomZ(N1,G)→ HomZ(N2,G)

is defined by ϕH(u⊗ f )(n2) = f ϕN(n2 ⊗u) for any f ∈ HomZ(N1,G), u ∈U and n2 ∈
N2.

There exists a canonical isomorphism of left T -modules

HomZ(N,G)−→
(

HomZ(N1,G)
HomZ(N2,G)

)
ϕH

f 7−→
( f|N1

f|N2

)
With this isomorphism, we identify the T -modules

HomZ(N,G) and
(

HomZ(N1,G)
HomZ(N2,G)

)
ϕ

HomZ(N,G)

In particular, we identify the character module N+ = HomZ(N,Q/Z) with the T -

module
(

N+
1

N+
2

)
ϕN+

where ϕN+
:U⊗A N+

1 →N+
2 is defined by ϕN+

(u⊗ f )(n2)= f ϕN(n2⊗

u) for any f ∈ N+
1 , u ∈U and n2 ∈ N2.

Theorem 1.4.6. Let M =

(
M1
M2

)
ϕM

be a T -module.

(1) ([58, Theorem 3.1]) M is projective if and only if M1 is projective in A-Mod,
CokerϕM is projective in B-Mod and ϕM is injective.

(2) ([57, Proposition 5.1]) M is injective if and only if Kerϕ̃M is injective in A-Mod,
M2 is injective in B-Mod and ϕ̃M is surjective.

Proof. (1) By taking C1 = A and C2 = B in Lemma 1.4.5(1).
(2) If we take TT =

(
A⊕U,B

)
, then the injective cogenerator T -module T+ =

HomZ(T,Q/Z) can be identified with
(

A+⊕U+

B+

)
∼= q(A+,B+). So by taking C1 = A+
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and C2 =B+ in Lemma 1.4.5(2), we recover the characterization of injective T -modules.

Lemma 1.4.7. Let M =

(
M1
M2

)
ϕM

and N =

(
N1
N2

)
ϕN

be two T -modules and n ≥ 1 be an

integer number. Then, we have the following natural isomorphisms:

(1) If TorA
1≤i≤n(U,M1) = 0, then ExtnT (

(
M1

U ⊗A M1

)
,N)∼= ExtnA(M1,N1).

(2) ExtnT (
(

0
M2

)
,N)∼= ExtnB(M2,N2).

(3) ExtnT (M,

(
N1
0

)
)∼= ExtnA(M1,N1).

(4) If Ext1≤i≤n
B (U,N2) = 0, then ExtnT (M,

(
HomB(U,N2)

N2

)
)∼= ExtnB(M2,N2).

Proof. . We prove only (1) since (2) is similar and (3) and (4) are dual.
Assume that TorA

1≤i≤n(U,M1) = 0 and consider an exact sequence of A-modules

0 → K1 → P1 → M1 → 0

where P1 is projective. Then, there exists an exact sequence of T -modules

0 → p(K1,0)→ p(P1,0)→ p(M1,0) =
(

M1
U ⊗A M1

)
→ 0

where p(P1,0) is projective as p preserves projective objects.
Let n = 1. By applying the functor HomT (−,N) to the above short exact sequence

and since p(P1,0) and P1 are projectives, we get a commutative diagram with exact
rows:

HomT (p(P1,0),N)

∼=
��

// HomT (p(K1,0),N)

∼=
��

// // Ext1T (p(M1,0),N)

��

// 0

HomA(P1,N1) // HomA(K1,N1) // // Ext1A(M1,N1) // 0

where the first two columns are just the natural isomorphisms given by adjointeness and
the last two horizontal morphisms are epimorphisms. Thus, the induced map

Ext1T (p(M1,0),N)→ Ext1A(M1,N1)

is an isomorphism such that the above diagram is commutative.
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Assume that n > 1. Using the long exact sequences, we get a commutative diagram
with exact rows:

0 // Extn−1
T (p(K1,0),N)

∼=σ

��

∼=
f
// ExtnT (p(M1,0),N)

��

// 0

0 // Extn−1
A (K1,N1)

g
∼=

// ExtnA(M1,N1) // 0

where σ is a natural isomorphism by induction, since TorA
k (U,K1) = 0 for every k ∈

{1, · · · ,n−1} because of the exactness of the sequence

0 = TorA
k+1(U,M1)→ TorA

k (U,K1)→ TorA
k (U,P1) = 0.

Thus, the composite map

gσ f−1 : ExtnT (p(M1,0),N)→ ExtnA(M1,N1)

is a natural isomorphism, as desired.

1.5 Covers, envelopes and cotorsion pairs
In this section we recall the basic definitions and results of approximation theory

(precovers, preenvelopes, cotorsion pairs, etc.).
The general references for the content of this section are Enochs & Jenda’s book

[37] and Göbel & Trlifaj’s book [53].

Definition 1.5.1 ([37], Chapter 8). An X -precover of an object A is a morphism f :
X → A with X ∈ X , such that f∗ : HomA (X ′,X) → HomA (X ′,M) is surjective for
every X ′ ∈ X . That is, for each morphism f ′ : X ′ → A there is a morphism g : X ′ → X
such that f ′ = g f :

X ′

g

~~

f ′

��

X
f

// A

If, moreover, any endomorphism g : X → X such that f g = f is an automorphism of X,
then f : X → A is called an X -cover of A.

The class X is called (pre)covering if every object of A has an X -(pre)cover.
X -(pre)envelope morphisms and (pre)enveloping classes are defined dually.
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Remark 1.5.2. We note that an X -precover f : X → A is not necessarily an epimor-
phism. However, if A has enough projective objects and all these objects belong to X ,
then f is necessarily an epimorphism. Dually, if A has enough injective objects and all
these objects belong to X , then any X -preenvelope is a monomorphism.

Definition 1.5.3 ([37], Definition 7.1.6). An X -precover f : X → A is called special if
it is an epimorphism and Ker f ∈ X ⊥. Dually, an X -preenvelope g : A → Y is called
special if it is a monomorphism and Cokerg ∈⊥ Y .

The following is known as Wakamatsu Lemma.

Proposition 1.5.4 ([84], Lemmas 2.1.1 and 2.1.2). Assume that X ⊆ R-Mod is closed
under extensions.

1. If ϕ : X → M is an X -cover of M, then Kerϕ ∈ X ⊥.

2. If ϕ : M → X is an X -envelope of M, then Cokerϕ ∈ ⊥X .

Consequently, any covering class X ⊆ R-Mod that is closed under extensions and
such that P(R) ⊆ X (resp., I (R) ⊆ X ) is a special precovering (resp., preenvelop-
ing).

Definition 1.5.5 ([37], definition 7.1.2). A pair of classes (X ,Y ) of objects in A is
said to be a cotorsion pair (or cotorsion theory) if X ⊥ = Y and X =⊥ Y .

In this case, the class X ∩Y is called the core of the cotorsion pair (X ,Y ).

Clearly, for any class X of objects of A , X ⊆ ⊥(X ⊥) and X ⊆ (⊥X )⊥. More-
over, it is easy to see that (⊥X ,(⊥X )⊥) and (⊥(X ⊥),X ⊥) are cotorsion pairs, called
the cotorsion pairs generated and cogenerated, respectively, by the class X .

Examples 1.5.6. In A =R-Mod, the pairs of classes (P(R),R-Mod) and (RMod,I (R))
are easily seen to be cotorsion pairs.

Another interesting and non-trivial example of cotorsion pairs is given in Theorem
1.5.14.

Definition 1.5.7. ([37, Definition 7.1.5] and [53]). A cotorsion pair (X ,Y ) is called
complete if it satisfies the following two assertions:

1. (X ,Y ) has enough injectives, that is, for any object A of A , there exists an
exact sequence 0 → Y → X → A → 0 with X ∈ X and Y ∈ Y .

2. (X ,Y ) has enough projectives, that is, for any object A of A , there exists an
exact sequence 0 → A → Y → X → 0 with X ∈ X and Y ∈ Y .

In other words, a cotorsion pair (X ,Y ) is complete if X is special precovering and
Y is special precovering.
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Lemma 1.5.8 ([53], Lemma 2.2.6). Let (X ,Y ) be a cotorsion pair in R-Mod. Then,
the following are equivalent:

1. (X ,Y ) is complete.

2. X is a special precovering.

3. Y is a special preenveloping.

Definition 1.5.9. A cotorsion pair (X ,Y ) is called perfect if X is covering and Y is
enveloping.

Clearly, perfect cotorsion pairs are complete. The converse is not true in general.
For instance, the cotorsion pair (P(R),R-Mod) is perfect if and only if R is left perfect
(i.e., every projective R-module has a projective cover).

The following theorem shows that when a class of modules X is closed under direct
limits, then a cotorsion pair (X ,Y ) is perfect whenever it is complete.

Theorem 1.5.10 ([37], Corollary 5.2.7 and Theorem 7.2.6). Let X be a class of R-
modules closed under direct limits. If an R-module has an X -precover, then it has an
X -cover.

Consequently, if (X ,Y ) is a complete cotorsion pair, then it is perfect.

A powerful method for constructing complete cotorsion pairs, and then approxima-
tions, is to cogenerate one from a set in the following sense.

Definition 1.5.11. A cotorsion pair (X ,Y ) is said to be cogenerated by a set if there
exists a set S such that S ⊥ = Y .

Example 1.5.12. In A = R-Mod, the cotorsion pair (R-Mod,I (R)) is cogenerated by
the set of modules R/I where I is a left ideal of R.

Dually, the cotorsion pair (P(R),R-Mod) is cogenerated by RR.

Theorem 1.5.13 ([53], Theorem 3.2.1). If (X ,Y ) is a cotorsion pair of modules co-
generated by a set, then it is complete.

This theorem was proved by Eklof and Trlifaj and received a lot of attention after
being used by Enochs [21, Theorem 3] to prove his flat cover conjecture:

Flat Cover Conjecture. Every module over any ring has a flat cover.

Recall that an R-module M is called cotorsion if Ext1R(F,M) = 0 for all flat R-
modules F . We let C (R) = F (R)⊥ denote the class of all cotorsion R-modules.

Theorem 1.5.14. (Enochs cotorsion pair.) The pair (F (R),C (R)) is a perfect cotor-
sion pair.

Consequently, every R-module has a flat cover and a cotorsion envelope.
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Proof. It is well-known that the class of flat modules is closed under direct limits and
by [37, Proposition] and Theorem 1.5.13, (F (R),C (R)) is a complete cotorsion pair.
So, this result follows by Theorem 1.5.10.

Definition 1.5.15 ([46], Definition 1.2.10). A cotorsion pair (X ,Y ) in A is called
hereditary if ExtiA (X ,Y ) = 0 for every i ≥ 1.

It is clear that (X ,Y ) being hereditary implies that X is closed under kernels of
epimorphisms and Y is closed under cokernels of monomorphisms.

Conversely, in R-Mod (or more generally, in any abelian category with enough pro-
jective and injective objects), we have the following lemma:

Lemma 1.5.16 ([46], Theorem 1.2.10). Let (X ,Y ) be a cotorsion pair in R-Mod.
Then, the following are equivalent:

1. (X ,Y ) is hereditary.

2. X is closed under kernels of epimorphisms.

3. Y is closed under cokernels of monomorphisms.

The following lemma will be needed later.

Lemma 1.5.17. Let X be a set of R-modules. the following assertions hold.

1. X ⊥∞ = M⊥ for some R-module M.

2. ⊥∞X = ⊥M for some R-module M.

Proof. The proof of (2) is dual to that of (1), so we only prove (1).
Let X be the direct sum of all the modules in X . Consider any projective resolution

of X
· · · → P1

f1→ P0
f0→ X → 0

and let Ki+1 =Ker( fi). Clearly, for any i≥ 1 and any R-module A, we have Ext1R(Ki,A)∼=
Exti+1

R (X ,A). If we let M = X ⊕ (⊕i≥1Ki), then

Ext1R(M,A)∼= Ext1R(X ,A)⊕ (∏
i≥1

Ext1R(Ki,A))∼= ∏
i≥1

ExtiR(X ,A).

We end this section with one last useful way of constructing approximations.

Definition 1.5.18 ([60], Definition 2.1). A left (right) duality pair of R-modules is a pair
of classes (X ,Y ), X being a class of left (right) R-modules and Y being a class of
right (left) R-modules, subject to the following conditions:

(1) M ∈ X if and only if M+ ∈ Y .
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(2) Y is closed under direct summands and finite direct sums.

A duality pair (X ,Y ) is called coproduct-closed (resp., product-closed) if the class
X is closed under direct sums (resp., direct products), and it is called perfect if it is
coproduct-closed, the class X is closed under extensions and R ∈ X .

Duality pairs were introduced by Holm and Jørgensen and have been proved to be
very useful in showing the existence of (pre)covers and (pre)envelopes in the category
of modules.

Theorem 1.5.19 ([60], Theorem 3.1). Let (X ,Y ) be a (left) duality pair. Then, X is
closed under pure submodules, pure quotients and pure extensions. Furthermore, the
following hold:

(a) If (X ,Y ) is product-closed, then X is preenveloping.

(b) If (X ,Y ) is coproduct-closed, then X is covering.

(c) If (X ,Y ) is perfect, then (X ,X ⊥) is a perfect cotorsion pair.

1.6 Abelian model structures
In this section we recall the definition of abelian model structures and their main

properties needed for this thesis.
Consider a class of morphisms W in a category A . One can formally, as in [63,

Definition 1.2.1], invert the morphisms in W to get a ‘category’ A [W −1] in which the
morphisms in W have been forced to become isomorphisms. But this rises a foun-
dational problem: this ‘category’ may not be a category in the sense that the class of
morphisms between two objects may not be a set.

Model categories were introduced in 1967 by Quillen [76]. One of the standard
results about model categories is that if W is the class of weak equivalences in a model
structure on A , then A [W −1] is a category in the usual sense and can be represented
via the model structure as we will explain later.

Recall from [63, Definition 1.1.3] that a model structure on a category A is a triple
(Cof,Weak,Fib) of subclasses of morphisms, called cofibrations, weak equivalences
and fibrations, satisfying some axioms. The purpose of these axioms is to provide a
general frame work for homotopy theory. A model category is a bicomplete category,
i.e., a category with (small) limits and colimits, equipped with a model structure on it.

Standard references for model structures are the books of Hovey ([63]) and Dwyer
and Spalinski ([31]). For an alternative approach, Beligiannis and I. Reiten [8] is also
useful.
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In this thesis, we are interested in model structures on abelian categories. Through-
out this section, A denotes an abelian category not necessarily bicomplete. As ex-
plained by Gillespie in [50, Section 4], this requirement is not needed when working
over abelian categories.

Recall ([63]) that in a model category A , a trivial cofibration (resp., fibration) is
a morphism which is both a weak equivalence and a cofibration (resp., fibration). An
object X ∈ A is said to be

• (trivially) cofibrant if 0 → X is a (trivial) cofibration.
• (trivially) fibrant if X → 0 is a (trivial) fibration.
• trivial if 0 → X is a weak equivalence. Or equivalently, if X → 0 is a weak

equivalence.

Abelian model structures with respect to some proper classes of short exact se-
quences were introduced by Hovey in [64]. These are model structures on abelian cate-
gories in the sense of Quillen ([76]) with some compatibility with the abelian structure.
With respect to the class of short exact sequences of an abelian category A , we have
the following definition.

Definition 1.6.1 ([64], Definition 2.1 and Proposition 4.2). Let A be an abelian cate-
gory. A model structure (Cof,Weak,Fib) on A is said to be an abelian model structure
if each of the following holds.

1. A morphism f is a (trivial) cofibration if and only if it is a monomorphism with a
(trivially) cofibrant cokernel.

2. A morphism g is a (trivial) fibration if and only if it is an admissible epimorphism
with a (trivially) fibrant kernel.

This definition suggests that we can study abelian model structures by focusing our
attention on objects (cofibrant, trivial, and fibrant) instead of morphisms (cofibrations,
weak equivalences, and fibrations). This brings us to Hovey’s correspondence: a corre-
spondence between abelian model structures and complete cotorsion pairs.

Theorem 1.6.2. (Hovey’s Correspondence [64, Theorem 2.2]) . Let A be an abelian
category. Assume that A has an abelian model structure and let Q, W and R denote
the classes of cofibrant, trivial objects and fibrant, respectively. Then, W is thick in A
and both (Q,W ∩R) and (Q∩W ,R) are complete cotorsion pairs in A .

Conversely, given three classes Q, R and W in A such that W is thick in A
and both (Q,W ∩R) and (Q∩W ,R) are complete cotorsion pairs in A , there is an
abelian model structure on A , where Q is the class of cofibrant objects, W is the class
of trivial objects and R is the class of fibrant objects.
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It follows from the Hovey’s correspondence that an abelian model structure can be
identified with a triple M = (Q,W ,R) as in Theorem 1.6.2. By an abuse of language,
we often refer to such a triple as an abelian model structure. Alternatively, we often call
M a Hovey triple.

A Hovey triple (Q,W ,R) is called hereditary if both of the associated cotorsion
pairs are hereditary. The class Q∩W ∩R is called the core of the Hovey triple.

In practice, it is usually quite challenging to prove that a category has an abelian
model structure (or equivalently, a Hovey triple). We now present a result due to Gille-
spie ([51, Theorem 1.1]) that provides a convenient way to construct Hovey triples.

Given a Hovey triple (Q,W ,R), Gillespie noticed that the cotorsion pairs

(Q,R̃) := (Q,W ∩R) and (Q̃,R) := (Q∩W ,R)

satisfy the following properties:

(a) R̃ ⊆ R and Q̃ ⊆ Q,

(b) Q̃∩R = Q∩ R̃,

Interestingly, under the hereditary property, there is a converse to this as the follow-
ing result shows.

Theorem 1.6.3 ([51], Theorem 1.1). Given two complete and hereditary cotorsion pairs

(Q̃,R) and (Q,R̃)

in A satisfying the two conditions:

(a) R̃ ⊆ R (or equivalently, Q̃ ⊆ Q).

(b) Q̃∩R = Q∩ R̃.

there is a unique thick class W such that (Q,W ,R) is a Hovey triple. Moreover, the
class W is characterized by:

W = {X ∈ A |∃ an exact sequence 0 → X → R′ → Q′ → 0 with R′ ∈ R̃,Q′ ∈ Q̃}
= {X ∈ A |∃ an exact sequence 0 → R′ → Q′ → X → 0 with R′ ∈ R̃,Q′ ∈ Q̃}.

This powerful result allows us to construct hereditary Hovey triples even before we
have any ideas about trivial objects.

We end this section by a construction called the homotopy category of an abelian
model category and some of its main properties.

Let X be an object in a model category A . Then, the unique morphism 0 → X can
be factorized as a cofibration iX : 0 → QX followed by a trivial fibration pX ;QX → X .
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Dually, the unique morphism X → 0 can be factorized as a trivial cofibration jX : X →
RX followed by a fibration qX : RX → 0.

0

iX ##

// X

QX
pX

:: and X //

jY $$

0

RX
qX

;;

The objects QX and RX are called cofibrant and fibrant replacements of X , re-
spectively, and by a bifibrant replacement of X we will mean the object RQX .

In the following result, we summarize the essentials about the homotopy category
of an abelian model category. It follows from [63, Theorem 1.2.10] and [31, Sections 5
and 6], except that the homotopy relation in this way is due to Gillespie [50, Proposition
4.4].

Theorem 1.6.4. (The fundamental theorem of abelian model categories) Let M =
(Q,W ,R) be an abelian model structure on A . Then, there is a category, denoted
as HoA (M ) and called the homotopy category of M , with the same objects as A and

HomHo(A )(X ,Y ) = HomA (RQX ,RQY )/∼

where f ∼ g if and only if g− f factors through an object of the core Q∩W ∩R.
Moreover, the following conditions hold:

(a) The inclusion Ac f := Q∩R ↪→ A induces an equivalence of categories

(Q∩R)/∼ ↪→ Ho(M )

where f ∼ g if and only if g− f factors through an object of the core Q∩W ∩R.

(b) There is a functor γA : A → Ho(M ) that is the identity on objects and that sends
a morphism f : A → B to the homotopy class [ f ′], where f ′ and f̃ any morphisms
making the diagrams commute:

RQA

f ′
��

QA
jQA

oo
pB //

f̃
��

A

f
��

RQB QB
jQB

oo
pB // B

(c) The functor γA is a localization of A with respect to W in the sense of [31,
Definition 6.1], and hence there is a canonical equivalence of categories

A [W −1]∼= Ho(M ).
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One more important feature of hereditary abelian model structures is that the asso-
ciated homotopy category is always triangulated, in the sense of Verdier.

Recall that a triangulated category is an additive category T with an invertible
additive endofunctor Σ : T → T and a class of “distinguished triangles” satisfying
some properties (see [75] for the precise definition and more details).

Recall also that an exact category is an additive category, which may not have all
kernels and cokernels, but with an exact structure, that is, a distinguished class E of
ker-coker sequences which are called conflations, subject to certain axioms (see Bühler
[24] for instance). For example, given an additive category B, the pair (B,E ) is an
exact category in the following cases:

• B is an abelian category and E is the class of all short exact sequences.
• B is a subcategory of an abelian category A that is closed under extensions and

E is the class short exact sequences with terms in B. We will call this exact structure
the induced exact structure.

Definition 1.6.5. A Frobenius category is an exact category with enough injectives and
projectives and such that the projective objects coincide with the injective objects.

Given a Frobenius category F , we can form the stable category F := F/ ∼,
which has the same objects as A and HomF/∼(X ,Y ) = HomF (X ,Y )/∼, where f ∼ g
if and only if f − g factors through a projective-injective object. The main fact about
a Frobenius category F is that the stable category is canonically triangulated and it
encodes the corresponding relative homological algebra on F .

The following result is the key reason why the homotopy category of a hereditary
abelian model structure M turns out to be triangulated.

Theorem 1.6.6. ([50, Sections 4 and 5] & [49, Proposition 4.2 and Theorem 4.3])
Let M = (Q,W ,R) be a hereditary abelian model structure. Then, the subcategory

Q∩R, along with the induced exact structure, is a Frobenius category. The projective-
injective objects are exactly the objects in Q ∩W ∩R. Moreover, the inclusion Q ∩
R ↪→ A induces a triangle equivalence

(Q∩R)/∼ ↪→ HoA (M ).

1.7 Auslander-Buchweitz theory
In this section we recall some notions and results from Auslander-Buchweitz theory

and their relations with the Frobenius pairs recently introduced by Becerril, Mendoza,
Pérez and Santiago in [7]

Let X and ω be two subcategories of A . The subcategory ω is a cogenerator in
X if ω ⊆X and for any X ∈X there exists an exact sequence 0 → X →W → X ′ → 0
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with X ∈ X ′ and W ∈ ω . If, in addition, Exti≥1
A (X ,ω) = 0, it is called injective

cogenerator for X .
The following definition is taken from Hashimoto ([59, Theorem 1.1.2.10]). As this

definition can be dualized, we add ”left” to distinguish it from its dual.

Definition 1.7.1 ([59]). A triple (X ,Y ,ω) of subcategories of A is called left weak
Auslander-Buchweitz context (or weak AB-context for short), if the following three
conditions are satisfied:

(AB1) X is left thick.

(AB2) Y is right thick and Y ⊆ resX̂ .

(AB3) ω = X ∩Y and ω is an injective cogenerator for X .

If moreover resX̂ = A , then it is called a left Auslander-Buchweitz context (or AB-
context for short).

We refer to the dual concept as right (weak) AB-context, for which we use the nota-
tion (ν ,X ,Y ).

It follows from [59, Theorem 1.1.2.10(1)] that the middle term Y in a left weak AB-
context (X ,Y ,ω) is determined by the term ω , as one has Y = resω̂ . Based on this
fact, Becerril, Mendoza, Pérez and Santiago ([7]) have recently introduced the notion
of (left) Frobenius pairs and shown that there is a one-to-one correspondence between
these two concepts.

Definition 1.7.2 ([7], Definition 2.5). A pair (X ,ω) of subcategories of A is said to
be a left Frobenius pair if the following three conditions are satisfied:

(F1) X is left thick.

(F2) ω is closed under direct summands.

(F3) ω is an injective cogenerator for X .

A right Frobenius pair is defined dually and we use (µ,Y ) to denote it.

Theorem 1.7.3 ([7], Theorem 5.4(1)). Consider the following classes of objects

F := {(X ,ω)⊆ A ×A | (X ,ω) is a left Frobenius pair}

C := {(X ,Y ,ω)⊆ A ×A ×A | (X ,Y ,ω) is a left weak AB-context }

There exists a one-to-one correspondence

Φ : F −−−−−−−−→ C

(X ,ω) 7−−−−→ (X , resω̂,X ∩ resω̂)
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with inverse
Ψ : C −−−−−−−−→ F

(X ,Y ,ω) 7−−−−→ (X ,ω)

We conclude this section with the following result, which links Frobenius pairs and
cotorsion pairs.

Proposition 1.7.4 ([69], Propositions 2.5 and 2.10). Let X and Y be two classes of
objects of A . If (X ,Y ) is a complete hereditary cotorsion pair in A , Then, (X ,X ∩
Y ) is a left Frobenius pair.

Conversely, assume that resX̂ =A and Y is closed under extensions and cokernels
of monomorphisms. If (X ,X ∩Y ) is a left Frobenius pair in A , then (X ,Y ) is a
complete hereditary cotorsion pair.
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CHAPTER 2

RELATIVE GORENSTEIN HOMOLOGICAL
DIMENSIONS OVER TRIANGULAR MATRIX

RINGS

In this chapter, several notions of relative Gorenstein homological algebra over a
triangular matrix ring are investigated. We first study how to construct w-tilting (tilting,
semidualizing) modules over T using the corresponding ones over A and B. We show
that when U is relative (weakly) compatible, we are able to describe the structure of GC-
projective modules over T . As an application, we study when a morphism in T -Mod
is a special GC-projective precover and when the class GCP(T ) is a special precovering
class. In addition, we study the relative global Gorenstein dimension of T . In some
cases, we show that it can be computed from the relative global Gorenstein dimensions
of A and B.

Throughout this chapter, T =

(
A 0
U B

)
will always be a triangular matrix ring.

2.1 Weakly Wakamatsu tilting modules
In this section, we study when the functor p preserves w-tilting modules.
It is well known that the functor p preserves projective modules. However, the

functor p does not preserve w-tilting modules in general, as the following example
shows.

Example 2.1.1. Let Q be the quiver

v1 −→ v2 −→ ·· · −→ vn

with n ≥ 1 vertices and let R = kQ be the path algebra over an algebraic closed field
k. For each i = 1, · · · ,n set Pi = Rvi and Ii = Homk(viR,k) = (viR)∗. It follows by [12,
Example 3.5] that
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C1 :=
n⊕

i=1

Pi = R and C2 :=
n⊕

i=1

Ii = R∗

are semidualizing (R,R)-bimodules and then w-tilting R-modules. Now, consider the
triangular matrix ring

T (R) =
(

R 0
R R

)
.

We claim that p(C1,C2) is not a w-tilting T (R)-module.
Since R is left hereditary by [6, Proposition 1.4], but not semisimple as Q is not

discrete, we get that Ii is not projective for some i. Therefore, pdR(Ii) = 1 and hence
Ext1R(I1,R) ̸= 0. Using now Lemma 1.4.7, we get that Ext1T (R)(p(C1,C2),p(C1,C2)) ∼=
Ext1R(C1,C1)⊕Ext1R(C2,C1)⊕Ext1R(C2,C2) ∼= Ext1R(I1,R) ̸= 0. Thus, p(C1,C2) is not a
w-tilting T (R)-module.

Motivated by the definition of compatible bimodules in [88, Definition 1.1], we in-
troduce the following definition, which will be crucial throughout the rest of this chapter.

Definition 2.1.2. Let (C1,C2)∈ A-Mod × B-Mod and C = p(C1,C2). The bimodule BUA
is said to be C-compatible if the following two conditions hold:

(P1) The complex U ⊗A X1 is exact for every exact sequence in A-Mod

X1 : · · · → P1
1 → P0

1 →C0
1 →C1

1 → ···

where the Pi
1’s are all projective and Ci

1 ∈ AddA(C1) ∀i.

(P2) Hom(X2,U ⊗A AddA(C1)) is exact for any complete PC2-projective sequence X2.

Moreover, U is called weakly C-compatible if it satisfies (P2) and the following condi-
tion

(WP1) U ⊗A X1 is exact for any complete PC1-projective sequence X1.

When C = T T = p(A,B), the bimodule U will be called simply (weakly) compatible.

Remark 2.1.3.
1. It is clear by the definition that every C-compatible bimodule is weakly C-compatible.

2. The (B,A)-bimodule U is weakly compatible if and only if the functor U ⊗A− : A-
Mod → B-Mod is weak compatible in the sense of [66].

3. If A and B are Artin algebras and since T T = p(A,B), it is easy to see that T T -
compatible bimodules are nothing but compatible (B,A)-bimodules as defined in
[88].
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Given a T -module C = p(C1,C2), we have simple characterizations of conditions
(WP1) and (P2) if C1 and C2 are w-tilting.

Proposition 2.1.4. Let C = p(C1,C2) be a T -module.

1. If C1 is w-tilting, then the following assertions are equivalent:

(i) U satisfies (WP1).

(ii) TorA
1 (U,G1) = 0, ∀G1 ∈ GC1P(A).

(iii) TorA
i≥1(U,G1) = 0, ∀G1 ∈ GC1P(A).

In this case, TorA
i≥1(U,C1) = 0.

2. If C2 is w-tilting, then the following assertions are equivalent:

(i) U satisfies (P2).

(ii) Ext1B(G2,U ⊗A X1) = 0, ∀G2 ∈ GC2P(B), ∀X1 ∈ AddA(C1).

(iii) Exti≥1
B (G2,U ⊗A X1) = 0, ∀G2 ∈ GC2P(B), ∀X1 ∈ AddA(C1).

In this case, Exti≥1
B (C2,U ⊗A X1) = 0, ∀X1 ∈ AddA(C1).

Proof. We only prove (1), since (2) is similar.
(i)⇒ (iii) Let G1 ∈ GC1P(R). Then, there exists a complete PC1-projective complex

of G1

X1 : · · · → P1
1 → P0

1 →C0
1 →C1

1 → ···

By hypothesis, U ⊗A X1 is exact, which means in particular that TorA
i≥1(U,G1) = 0.

(iii) ⇒ (ii) Clear.
(ii) ⇒ (i) Follows by [17, Corollary 2.13].
Finally, to prove that TorA

i≥1(U,C1) = 0, note that C1 ∈ GC1P(A) by [17, Theorem
2.12].

In the following proposition, we study when p preserves w-tilting (tilting) modules.

Proposition 2.1.5. Let C = p(C1,C2) be a T -module and assume that U is weakly C-
compatible. If C1 and C2 are w-tilting (tilting), then p(C1,C2) is w-tilting (tilting).

Proof. Since the functor p preserves finitely generated modules (see for instance [67,
Proposition 3.2.1]), we only need prove the statement for w-tilting.
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Assume that C1 and C2 are w-tilting and let I be a set. Then, Exti≥1
A (C1,C

(I)
1 ) = 0

and Exti≥1
B (C2,C

(I)
2 ) = 0. Thus, by Proposition 2.1.4, we have Exti≥1

B (C2,U ⊗AC(I)
1 ) = 0

and TorA
i≥1(U,C1) = 0, and using Lemma 1.4.7, for every n ≥ 1 we get that

ExtnT (C,C(I)) = ExtnT (p(C1,C2),p(C1,C2)
(I))

∼= ExtnA(C1,C
(I)
1 )⊕ExtnB(C2,U ⊗A C(I)

1 )⊕ExtnB(C2,C
(I)
2 )

= 0.

Moreover, there exist exact sequences

X1 : 0 → A →C0
1 →C1

1 → ··· and X2 : 0 → B →C0
2 →C1

2 → ···

which are HomA(−,AddA(C1))-exact and HomB(−,AddB(C2))-exact, respectively, and
such that Ci

1 ∈ AddA(C1) and Ci
2 ∈ AddB(C2) for every i ∈ N. Since U is weakly C-

compatible, the complex U⊗A X1 is exact. So we construct in T -Mod the exact sequence

p(X1,X2) : 0 → T → p(C0
1 ,C

0
2)→ p(C1

1 ,C
1
2)→ ···

where p(Ci
1,C

i
2) ∈ AddT (p(C1,C2)), ∀i ∈ N, by Lemma 1.4.5(1).

Let X ∈ AddT (p(C1,C2)). As a consequence of Lemma 1.4.5(1), X = p(X1,X2)
where X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Using the adjoitness (p,q), we get an iso-
morphism of complexes

HomT (p(X1,X2),X)∼= HomA(X1,X1)⊕HomB(X2,U ⊗X1)⊕HomB(X2,X2).

However, the complexes HomA(X1,X1) and HomB(X2,X2) are exact and the com-
plex HomB(X2,U ⊗X1) is also exact since U is weakly C-compatible. Then, the com-
plex HomT (p(X1,X2),X) is exact, as well, and the proof is finished.

Now, we illustrate Proposition 2.1.5 with two applications.

Corollary 2.1.6. Let C = p(C1,C2) be a T -module, A′ and B′ be two rings such that C1
and C2 are (A,A′)- and (B,B′)-bimodules and assume that U is weakly C-compatible. If
C1 and C2 are semidualizing (A,A′)- and (B,B′)-bimodules, then p(C1,C2) is a semidu-
alizing (T,EndT (C))-bimodule.

Proof. Follows by Proposition 2.1.5 and [82, Corollory 3.2].

Corollary 2.1.7. Let R and S be rings with SR flat, θ : R → S be a ring homomorphism,

and T (θ) =:
(

R 0
S S

)
. Let C1 be an R-module such that S⊗R C1 ∈ AddR(C1) (for in-

stance, if S = R or SR is projective with R commutative). If RC1 is w-tilting, then
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1. S⊗R C1 is a w-tilting S-module;

2. C =

(
C1

(S⊗R C1)⊕ (S⊗R C1)

)
is a w-tilting T (θ)-module.

Proof. Let C2 = S⊗RC1 and note that C =p(C1,C2) and that SSR is weakly C-compatible
as SR is flat and S⊗R C1 ∈ AddR(C2). So, by Proposition 2.1.5, we only need to prove
that C2 is a w-tilting S-module.

Since RC1 is w-tilting, there exist HomR(−,AddR(C1))-exact exact sequences

P : · · · → P1
1 → P0

1 →C1 → 0 and X : 0 → R →C0
1 →C1

1 → ·· ·

with each RPi
1 projective and RCi

1 ∈ AddR(C1). Since SR is flat, we get the exact se-
quences of S-modules

S⊗R P : · · · → S⊗R P1
1 → S⊗R P0

1 →C2 → 0

and
S⊗R X : 0 → S → S⊗R C0

1 → S⊗R C1
1 → ···

with each S⊗R Pi a projective S-module and S⊗R Ci ∈ AddR(C2).
We prove now that S⊗R P and S⊗R X are HomS(−,AddS(C2))-exact.
Let I be a set. Then, HomS(S⊗R P,S⊗R C(I)

1 ) ∼= HomR(P,HomS(S,S⊗R C(I)
1 )) ∼=

HomR(P,S⊗R C(I)
1 ) is exact since S⊗R C(I)

1 ∈ AddR(C1). Similarly, the complex S⊗R X
is HomS(−,AddS(C2))-exact.

We end this section with an example of a w-tilting module that is neither projective
nor injective.

Example 2.1.8. Take R and C2 as in example 2.1.1. By Corollary 2.1.7, C =

(
C2

C2 ⊕C2

)
=

p(C2,C2) is a w-tilting T (R)-module. By Lemma 1.4.6, C is not projective since C2 is
not and it is not injective since the map ϕ̃C : C2 →C2 ⊕C2 is not an epimorphism.

Moreover, by [6, Proposition 2.6], gl.dim(T (R)) = gl.dim(R)+1 ≤ 2. So, if

0 → T (R)→ E0 → E1 → E2 → 0

is an injective resolution of T (R), then C1 = E0 ⊕E1 ⊕E2 is a w-tilting T (R)-module.
Note that T (R) has at least three w-tilting modules:

C1, C2 = T (R) and C3 =C.
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2.2 Relative Gorenstein projective modules
In this section, we describe GC-projective modules over T . Then, we use this de-

scription to study when the class of GC-projective T -modules is a special precovering
class.

Clearly, the functor p preserves projective modules. Therefore, we start by studying
when the functor p also preserves relative Gorenstein projective modules.

Lemma 2.2.1. Let C = p(C1,C2) be a T -module and U be weakly C-compatible.

1. If M1 ∈ GC2P(A), then p(MA,0) =
(

M1
U ⊗A M1

)
∈ GCP(T ).

2. If M2 ∈ GC2P(B), then p(0,M2) =

(
0

M2

)
∈ GCP(T ).

Proof. 1. Suppose that M1 ∈GC1P(A). There exists a complete PC1-projective complex
of M1

X1 : · · · → P1
1 → P0

1 →C0
1 →C1

1 → ··· .
Using the fact that U is weakly C-compatible, we get that the complex U ⊗A X1 is exact
in B-Mod, which implies that the complex

p(X1,0) : · · · → p(P1
1 ,0)→ p(P0

1 ,0)→ p(C0
1 ,0)→ p(C1

1 ,0)→ ···

is exact with p(M1,0)∼= Im(p(P0
1 ,0)→ p(C0

1 ,0)).
Clearly, p(Pi

1,0) ∈ P(T ) and p(Ci
1,0) ∈ AddT (C) ∀i ∈ N by Lemmas 1.4.6(1) and

1.4.5(1). If X ∈ AddT (C), then X1 ∈ AddA(C1) by Lemma 1.4.5(1) and using the adjoint
pair (p,q), we obtain that the complex HomT (p(X1,0),X) ∼= HomA(X1,X1) is exact.
Hence, p(M1,0) is GC-projective.

2. Suppose that M2 is GC2-projective. There exists a complete PC2-projective com-
plex of M2

X2 : · · · → P1
2 → P0

2 →C0
2 →C1

2 → ··· .
Clearly, the complex

p(0,X2) : · · · → p(0,P1
2 )→ p(0,P0

2 )→ p(0,C0
2)→ p(0,C1

2)→ ···

is exact with p(0,M2) ∼= Im(p(0,P0
2 ) → p(0,C0

2)), p(0,Pi
2) ∈ P(T ) and p(0,Ci

2) ∈
AddT (C) ∀i, by Lemmas 1.4.6(1) and 1.4.5(1). Let X ∈ AddT (C). Then, by Lemma
1.4.5(1), X = p(X1,X2) where X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Using the adjoint
pair (p,q), we obtain the isomorphism of complexes:

HomT (p(0,X2),X)∼= HomB(X2,U ⊗A X1)⊕HomB(X2,X2).

The complex HomB(X2,X2) is exact and since U is weakly C-compatible, the complex
HomB(X2,U ⊗A X1) is also exact. This means that HomT (p(0,X2),X) is exact as well
and p(0,M2) is GC-projective.
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Proposition 2.2.2. Let C = p(C1,C2) be a T -module. If BUA is weakly C-compatible,
then the functor p sends G(C1,C2)-projectives to GC-projectives. The converse holds pro-
vided that C1 and C2 are w-tilting.

In particular, p preserves Gorenstein projective modules if and only if U is weakly
compatible.

Proof. Note that

p(M1,M2) =

(
M1

U ⊗A M1

)
⊕
(

0
M2

)
.

So this direction follows from Lemma 2.2.1 and [17, Proposition 2.5].
Conversely, assume that C1 and C2 are w-tilting. By Proposition 2.1.4, it suffices to

prove that TorA
1 (U,GC1P(A)) = 0 = Ext1B(GC2P(B),U ⊗A AddA(C1)).

Let G1 ∈ GC1P(A). By [17, Corollary 2.13], there exits an exact sequence 0 →
L1

ı→ P1 → G1 → 0, where AP1 is projective and L1 is GC1-projective. Note that A,C1 ∈
GC1P(A) and B,C2 ∈ GC2P(B) by Lemma 1.3.5. Then, T T = p(A,B) and C = p(C1,C2)
are GC-projective, which imply by Lemma 1.3.5, that C is w-tilting. Moreover, p(L1,0)
is also GC-projective and by [17, Corollary 2.13], there exists a short exact sequence

0 → p(L1,0)→ X → H → 0

where X =

(
X1
X2

)
ϕX

∈ AddT (C) and H =

(
H1
H2

)
ϕH

is GC-projective.

Since X1 ∈ AddA(C1), we have the following commutative diagram with exact rows:

0 // L1
ı // P1 //

��

G1

��

// 0

0 // L1 // X1 // H1 // 0

So if we apply the functor U ⊗A − to the above diagram, we get the following commu-
tative diagram with exact rows:

U ⊗A L1
1U⊗ı

//U ⊗A P1 //

��

U ⊗A G1

��

// 0

U ⊗A L1 //U ⊗A X1 //

��

U ⊗A H1 //

��

0

0 //U ⊗A L1 // X2 // H2 // 0

The commutativity of this diagram implies that the map 1U ⊗ ı injective, and since P1 is
projective, TorA

1 (U,G1) = 0.
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Now, let G2 ∈GC2P(B) and Y2 ∈AddA(C1). By hypothesis, p(0,G2) is GC-projective
and by Lemma 1.4.5, p(Y1,0) ∈ AddT (C). Hence,

Ext1B(G2,U ⊗A Y1) = Ext1T (p(0,G2),p(Y1,0)) = 0

by Lemma 1.4.7 and [17, Proposition 2.4].

Theorem 2.2.3. Let M =

(
M1
M2

)
ϕM

and C = p(C1,C2) be two T -modules. If U is C-

compatible, then the following assertions are equivalent:

(1) M is GC-projective.

(2) The following two assertions hold:

(i) ϕM is a monomorphism.

(ii) M1 is GC1-projective and Coker ϕM is GC2-projective.

In this case, if C2 is Σ-self-orthogonal, then U ⊗A M1 is GC2-projective if and only if M2
is GC2-projective.

Proof. 2.⇒ 1. Since ϕM is a monomorphism, there exists an exact sequence in T -Mod

0 →
(

M1
U ⊗A M1

)
→ M →

(
0

CokerϕM

)
→ 0

Note that
(

M1
U ⊗A M1

)
and

(
0

CokerϕM

)
are GC-projective T -modules by Lemma 2.2.1.

Therefore, M is GC-projective by [17, Proposition 2.5].
1.⇒ 2. There exists a HomT (−,AddT (C))-exact sequence in T -Mod

X = · · · → P1 → P0 →C0 →C1 → ···

where Ci =

(
Ci

1
Ci

2

)
ϕCi

∈ AddT (C), Pi =

(
Pi

1
Pi

2

)
ϕPi

∈ P(T ) ∀i ∈ N, and such that M ∼=

Im(P0 →C0). Then, we obtain the exact sequence

X1 = · · · → P1
1 → P0

1 →C0
1 →C1

1 → ·· ·

where Ci
1 ∈ AddA(C1), Pi

1 ∈ P(A) ∀i ∈ N by Lemmas 1.4.5(1) and 1.4.6(1), and such
that M1 ∼= Im(P0

1 → C0
1). Since U is C-compatible, the complex U ⊗A X1 is exact with

64
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U⊗A M1 ∼= Im(U⊗A P0
1 →U⊗AC0

1). If ι1 : M1 →C0
1 and ι2 : M2 →C0

2 are the inclusions,
then 1U ⊗ ι1 is a monomorphism and the following diagram commutes:

U ⊗A M1
1U⊗ι1 //

ϕM

��

U ⊗A C0
1

ϕC0

��

M2
ι2 //C0

2

By Lemma 1.4.5(1), ϕC0
is a monomorphism, then ϕM is also monomorphism. More-

over, for every i ∈ N, ϕPi
and ϕCi

are monomorphism by Lemmas 1.4.6 and 1.4.5(1).
Then, the following diagram with exact columns

0

��

0

��

0

��

0

��

· · · //U ⊗A P1
1

//

ϕP1

��

U ⊗A P0
1

ϕP0

��

//U ⊗A C0
1

ϕC0

��

//U ⊗A C1
1

ϕC1

��

// · · ·

· · · // P1
2

//

��

P0
2

��

//C0
2

��

//C1
2

��

// · · ·

· · · // CokerϕP1
//

��

CokerϕPO
//

��

CokerϕCO

��

// CokerϕC1
//

��

· · ·

0 0 0 0

is commutative. Since the first row and the second row are exact, we get the exact
sequence of B-modules

X2 : · · · → CokerϕP1
→ CokerϕPO

→ CokerϕCO
→ CokerϕC1

→ ·· ·

where CokerϕPi ∈ P(B), CokerϕCı ∈ AddB(C2) by Lemmas 1.4.6 and 1.4.5(1), and
such that CokerϕM = Im(CokerϕPO → CokerϕCO

).
It remains to see that the two sequences X1 and X2 are HomA(−,Add(C1))-exact

and HomB(−,AddB(C2))-exact, respectively.
Let X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Then p(X1,0) ∈ AddT (C) and p(0,X2) ∈

AddT (C) by Lemma 1.4.5(1). Therefore, by using the adjoint pair (s,r), we obtain that

HomB(X2,X2)∼= HomA×B(s(X),(0,X2))∼= HomT (X,r(0,X2))∼= HomT (X,

(
0

X2

)
)
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is exact. Using now the adjointness (s,r) and (q,h), we get that

HomT (X,

(
0

U ⊗A X1

)
)∼= HomB(X2,U ⊗A X1) and HomT (X,

(
X1
0

)
)∼= HomA(X1,X1).

Note that Ci ∼=p(Ci
1,CokerϕCi

)∼=p(Ci
1,0)⊕p(0,CokerϕCi

) by Lemma 1.4.5(1). Hence,

Ext1T (C
i,

(
0

U ⊗A X1

)
) ∼= Ext1B(CokerϕCi

,U ⊗A X1) = 0 by Lemma 1.4.7. Therefore, if

we apply the functor HomT (X,−) to the sequence

0 →
(

0
U ⊗A X1

)
→
(

X1
U ⊗A X1

)
→
(

X1
0

)
→ 0,

we get the following exact sequence of complexes

0 → HomB(X2,U ⊗A X1)→ HomT (X,

(
X1

U ⊗A X1

)
)→ HomA(X1,X1)→ 0.

Since U is C-compatible, it follows that HomB(X2,U ⊗A X1) is exact and by hypothesis,

HomT (X,

(
X1

U ⊗A X1

)
) is also exact. Thus, HomA(X1,X1) is exact and the proof is

finished.

The following consequence of the above theorem gives the converse of Proposition
2.1.5.

Corollary 2.2.4. Let C = p(C1,C2) and assume that U is C-compatible. Then C is
w-tilting if and only if C1 and C2 are w-tilting.

Proof. It follows by an easy application of Proposition 1.3.5 and Theorem 2.2.3 on the
T -modules C = p(C1,C2) and T T = p(A,B).

One would like to know if every w-tilting T -module has the form p(C1,C2) where
C1 and C2 are w-tilting. The following example gives a negative answer to this question.

Recall that a ring R is quasi-Frobenius if projective and injective R-modules coin-
cide.

Example 2.2.5. Let R be a quasi-Frobenius ring and T (R) =
(

R 0
R R

)
. Consider the

exact sequence of T -modules

0 → T T =

(
R

R⊕R

)
→
(

R⊕R
R⊕R

)
→
(

R
0

)
→ 0.
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By Lemma 1.4.6, I0 =

(
R⊕R
R⊕R

)
and I1 =

(
R
0

)
both are injective T (R)-modules.

Note that T (R) is noetherian ([55, Proposition 1.7]) and then we can see that C :=
I0⊕ I1 is a w-tilting T (R)-module but does not have the form p(C1,C2) where C1 and C2

are w-tilting by Lemma 1.4.5(1) since I1 ∈ AddT (R)(C) and ϕ I1
is not a monomorphism.

As an immediate consequence of Theorem 2.2.3, we have the following.

Corollary 2.2.6. Let R be a ring and T (R) =
(

R 0
R R

)
. If M =

(
M1
M2

)
ϕM

and C =

p(C1,C1) are two T (R)-modules with C1 Σ-self-orthogonal, then the following asser-
tions are equivalent:

1. M is GC-projective a T (R)-module.

2. M1 and CokerϕM are GC1-projective R-modules and ϕM is a monomorphism.

3. M2 and CokerϕM are GC1-projective R-modules and ϕM is a monomorphism.

Our aim now is to study special GCP(T )-precovers in T -Mod. We start with the
following result.

Proposition 2.2.7. Let C = p(C1,C2) be w-tilting, U be C-compatible, M =

(
M1
M2

)
ϕM

and G =

(
G1
G2

)
ϕG

two T -modules with G GC-projective. Then,

f =
(

f1
f2

)
: G −→ M

is a special GCP(T )-precover if and only if the two assertions hold:

(i) G1
f1→ M1 is a special GC1P(A)-precover.

(ii) G2
f2→ M2 is surjective with kernel in GC2P(B)⊥.

In this case, if G2 ∈ GC2P(B), then G2
f2→ M2 is a special GC2P(B)-precover.

Proof. First, let K =Ker f =
(

K1
K2

)
ϕK

and note that, since C1 is w-tilting, TorA
1 (U,H1) =

0 for every H1 ∈ GC1P(A) by Proposition 2.1.4(1).
(⇒) Since f is an epimorphism, so are f1 and f2.
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Let H1 ∈ GC1P(A) and H2 ∈ GC2P(B). Then,
(

H1
U ⊗A H1

)
,

(
0

H2

)
∈ GCP(T ) by

Theorem 2.2.3.
Now, using Lemma 1.4.7 and the fact that K lies in GCP(R)⊥ , we obtain that

Ext1A(H1,K1)∼= Ext1T (
(

H1
U ⊗A H1

)
,K) = 0 and Ext1B(H2,K2)∼= Ext1T (

(
0

H2

)
,K) = 0.

It remains to see that G1 ∈ GC1P(A), which is true by Theorem 2.2.3 since G is GC-
projective.

(⇐) The morphism f is an epimorphism since f1 and f2 are. Therefore, we only
need to prove that K lies in GCP(R)⊥.

Let H ∈GCP(R). By Theorem 2.2.3, we have the short exact sequence of T -modules

0 →
(

H1
U ⊗A H1

)
→ H →

(
0

CokerϕH

)
→ 0

where H1 is GC1-projective and CokerϕH is GC2-projective. Thus, by hypothesis and
Lemma 1.4.7 we obtain that

Ext1T (
(

H1
U ⊗A H1

)
,K)∼= Ext1A(H1,K1) = 0

and

Ext1T (
(

0
CokerϕH

)
,K)∼= Ext1B(CokerϕH ,K2) = 0.

Then, the exactness of the following sequence

Ext1T (
(

0
CokerϕH

)
,K)→ Ext1T (H,K)→ Ext1T (

(
H1

U ⊗A H1

)
,K)

implies that Ext1T (H,K) = 0.

Theorem 2.2.8. Let C = p(C1,C2) be w-tilting and U be C-compatible. Then, the class
GCP(T ) is special precovering in T -Mod if and only if the classes GC1P(A) and GC2P(B)
are special precovering in A-Mod and B-Mod, respectively.

Proof. (⇒) Let M1 be an A-module and
(

G1
G2

)
ϕG

→
(

M1
0

)
be a special GC-projective

precover in T -Mod. Then, by Proposition 2.2.7, G1 →M1 is a special GC1P(A)-precover
in A-Mod.

Let M2 be a B-module and
(

0
f2

)
:
(

G1
G2

)
ϕG

→
(

0
M2

)
be a special GCP(T )-precover

in T -Mod. Following Proposition 2.2.7, G1 → 0 is a special GC1P(A)-precover. Then,
Ext1A(GC1P(A),G1) = 0.
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On the other hand, by [17, Proposition 2.8], there exists an exact sequence of A-
modules

0 → G1 → X1 → H1 → 0

where X1 ∈ AddA(C1) and H1 is GC1-projective. However, this sequence splits since
Ext1A(H1,G1) = 0, which implies that G1 ∈ AddA(C1).

Let K =

(
K1
K2

)
ϕK

be the kernel of
(

0
f2

)
. Note that K1 = G1. Therefore, there exists

a commutative diagram

0 //U ⊗A G1

ϕK

��

U ⊗A G1

ϕG

��

// 0

��

// 0

0 // K2

��

// G2

��

// M2 // 0

CokerϕK //

��

CokerϕG

��

// M2 //

��

0

0 0 0

Using the Snake Lemma, there exists an exact sequence of B-modules

0 → CokerϕK → CokerϕG → M2 → 0

where CokerϕG is GC2-projective by Theorem 2.2.3. It remains to see that CokerϕK

lies in GC2P(B)⊥.
Let H2 ∈GC2P(B). Then, Ext1B(H2,K2)= 0 by Proposition 2.2.7 and Exti≥1

B (H2,U⊗A
G1) = 0 by Proposition 2.1.4(2). From the above diagram, ϕK is a monomorphism. So,
if we apply the functor HomB(H2,−) to the short exact sequence

0 →U ⊗A G1 → K2 → CokerϕK → 0,

we get an exact sequence

0 = Ext1B(H2,K2)→ Ext1B(H2,K2)→ Ext2B(H2,U ⊗A G1) = 0,

which implies that Ext1B(H2,CokerϕK) = 0.
(⇐) Note that the functor U ⊗A − : A-Mod→ B-Mod is GC1P(A)-exact in the sense

of [66] since TorA
1 (U,GC1P(A))= 0 by Proposition 2.1.4. Thus, this direction follows by

[66, Theorem 1.1] since GCP(T )= {M =

(
M1
M2

)
ϕM

∈T -Mod|M1 ∈GC1P(A), CokerϕM ∈

GC2P(B) and ϕM is a monomorphism} by Theorem 2.2.3.
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Corollary 2.2.9. Let R be a ring, T (R) =
(

R 0
R R

)
and C = p(C1,C1) be a w-tilting

T (R)-module. Then, GCP(T (R)) is a special precovering class if and only if GC1P(R)
is a special precovering class.

2.3 Relative global Gorenstein dimension
In this section we investigate the GC-projective dimension of T -modules and the left

GC-projective global dimension of T .
Recall [18] that the GC-projective dimension of an R-module M is defined as

GC−pdR(M) := GCP(R)− resdimR(M)

and the (left) global GC-projective of R is defined as

GC −PD(R) := GCP(R)−glresdim(R) = sup{GC−pdR(M)| M is an R-module }.

Lemma 2.3.1. Let C = p(C1,C2) be w-tilting and U be C-compatible.

1. GC2−pdB(M2) = GC−pdT(

(
0

M2

)
).

2. GC1−pdA(M1)≤ GC−pdT(

(
M1

U ⊗A M1

)
), and the equality holds if

TorA
i≥1(U,M1) = 0.

Proof. 1. Let n ∈ N and consider an exact sequence of B-modules

0 → Kn
2 → Gn−1

2 → ·· · → G0
2 → M2 → 0

where each Gi
2 is GC2-projective. Thus, there exists an exact sequence of T -modules

0 →
(

0
Kn

2

)
→
(

0
Gn−1

2

)
→ ·· · →

(
0

G0
2

)
→
(

0
M2

)
→ 0

where each
(

0
Gi

2

)
is GC-projective by Theorem 2.2.3. Again, by Theorem 2.2.3,

(
0

Kn
2

)
is GC-projective if and only if Kn

2 is GC2-projective which means that GC−pdT (

(
0

M2

)
)≤

n if and only if GC2−pdB(M2) ≤ n by [17, Theorem 3.8]. Hence, GC−pdT (

(
0

M2

)
) =

GC2−pdB(M2).
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2. We may assume that n = GC−pdT (

(
M1

U ⊗A M1

)
)< ∞. By Definition, there exists

an exact sequence of T -modules

0 → Gn → Gn−1 → ··· → G0 →
(

M1
U ⊗A M1

)
→ 0

where each Gi =

(
Gi

1
Gi

2

)
ϕGi

is GC-projective. Thus, there exists an exact sequence of

A-modules
0 → Gn

1 → Gn−1
1 → ··· → G0

1 → M1 → 0

where each Gi
1 is GC1-projective by Theorem 2.2.3. So, GC1−pdA(M1)≤ n.

Conversely, we prove that GC−pdT (

(
M1

U ⊗A M1

)
) ≤ GC1−pdA(M1). We may as-

sume that m := GC1−pdA(M1)< ∞.
The hypothesis means that if

X1 : 0 → Km
1 → Pm−1

1 → ··· → P0
1 → M1 → 0

is an exact sequence of A-modules where each Pi
1 is projective, then the complex U ⊗A

X1 is exact. Since C1 is w-tilting, each Pi is GC1-projective by [17, Proposition 2.11] and
then Km is GC1-projective by [17, Theorem 3.8]. Thus, there exists an exact sequence
of T -modules

0 →
(

Km
1

U ⊗A Km
1

)
→
(

Pm−1
1

U ⊗A Pm−1
1

)
→ ·· · →

(
P0

1
U ⊗A P0

1

)
→
(

M1
U ⊗A M1

)
→ 0

where
(

Km
1

U ⊗A Km
1

)
and all

(
Pi

1
U ⊗A Pi

1

)
are GC-projectives by Theorem 2.2.3. There-

fore, GC−pdT (

(
M1

U ⊗A M1

)
)≤ m = GC1−pdA(M1).

Given a T -module C = p(C1,C2), we introduce a strong notion of the global GC2-
projective dimension of B as

SGC2 −PD(B) = sup{GC2−pdB(U⊗A G) | G ∈ GC1P(A)}.

When C = R, we simply write GC2 −PD(B) = SGPD(B).
This homological invariant is crucial when we estimate the GC-projective of T -

modules and the global GC-projective dimension of T .

Remark 2.3.2.
1. Clearly, SGC2 −PD(B)≤ GC2 −PD(B).
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2. Note that pdB(U) = sup{pdB(U ⊗A P) | AP is projective }. Therefore, in the clas-
sical case, the strong left global dimension of B is nothing but the projective di-
mension of BU.

Theorem 2.3.3. Let C = p(C1,C2) be w-tilting, U be C-compatible, M =

(
M1
M2

)
ϕM

a

T -module and k := SGC2 −PD(B)< ∞ . Then,

max{GC1−pdA(M1),GC2−pdB(M2)−k)}

≤ GC−pdT (M)≤

max{GC1−pdA(M1)+k+1,GC2−pdB(M2)}

Proof. First of all, note that C1 and C2 are w-tilting by Proposition 2.2.4.
Let us first prove that max{GC1−pdA(M1),GC2−pdB(M2)− k} ≤ GC−pdT(M).

We may assume that n := GC−pdT (M) < ∞. Then, there exists an exact sequence of
T -modules

0 → Gn → Gn−1 → ··· → G0 → M → 0

where each Gi =

(
Gi

1
Gi

2

)
ϕGi

is GC-projective. Thus, there exists an exact sequence of

A-modules
0 → Gn

1 → Gn−1
1 → ··· → G0

1 → M1 → 0

where each Gi
1 is GC1-projective by Theorem 2.2.3. So, GC1−pdA(M1)≤ n. By Theo-

rem 2.2.3, for each i, there exists an exact sequence of B-modules

0 →U ⊗A Gi
1 → Gi

2 → CokerϕGi
→ 0

where CokerϕGi
is GC2-projective. Then, GC2−pdB(Gi

2) = GC2−pdB(U⊗A Gi
1)≤ k by

[17, Proposition 3.11(1)]. So, using the exact sequence of B-modules

0 → Gn
2 → Gn−1

2 → ··· → G0
2 → M2 → 0

and [17, Proposition 3.11(4)], we get that GC2−pd(M2)≤ n+k.
Next we prove that GC−pdT (M) ≤ max{GC1−pdA(M1)+ k+ 1,GC2−pdB(M2)}.

We may assume that

m := max{GC1−pdA(M1)+k+1,GC2−pdB(M2)}< ∞.

Then, n1 := GC1−pdA(M1)< ∞ and n2 := GC2−pdB(M2)< ∞. Since GC1−pdA(M1) =
n1 ≤ m−k−1, there exists an exact sequence of A-modules

0 → Gm−k−1
1 → ·· · → Gn2−k

1 → ···
f 1
1→ G0

1
f 0
1→ M1 → 0

72



2.3. RELATIVE GLOBAL GORENSTEIN DIMENSION

where each Gi
1 is GC1-projective. Since C2 is w-tilting, there exists an exact sequence

of B-modules G0
2

g0
2→ M2 → 0 where G0

2 is GC2-projective by [17, Corollary 2.14]. Let
Ki

1 = Ker f i−1
1 and define the map f 0

2 : U ⊗A G0
1 ⊕G0

2 → M2 to be (ϕM(1U ⊗ f 0
1 ))⊕g0

2.
Then, we get an exact sequence of T -modules

0 →
(

K1
1

K1
2

)
ϕK1

→
(

G0
1

(U ⊗A G0
1)⊕G0

2

) (
f 0
1

f 0
2

)
→ M → 0.

Similarly, there exists an exact sequence of B-modules G1
2

g1
2→ K1

2 → 0 where G1
2 is

GC2-projective and then we get an exact sequence of T -modules

0 →
(

K2
1

K2
2

)
ϕK2

→
(

G1
1

(U ⊗A G1
1)⊕G1

2

)
→
(

K1
1

K1
2

)
ϕK1

→ 0.

Repeating this process, we get the exact sequence of T -modules

0 →
(

0
Km−k

2

)
→
(

Gm−k−1
1

(U ⊗A Gm−k−1
1 )⊕Gm−k−1

2

)  f m−k−1
1

f m−k−1
2


−→

·· · →
(

G1
1

(U ⊗A G1
1)⊕G1

2

) (
f 1
1

f 1
2

)
−→

(
G0

1
(U ⊗A G0

1)⊕G0
2

) (
f 0
1

f 0
2

)
−→ M → 0

Note that GC2−pdB((U⊗A Gi
1)⊕Gi

2) = GC2−pdB(U⊗A Gi
1) ≤ k, for every i ∈

{0, · · · ,m− k−1}. So, by [17, Proposition 3.11(2)] and using the exact sequence

0 → Km−k
2 → (U ⊗A Gm−k−1

1 )⊕Gm−k−1
2

f m−k−1
2−→ ·· · → (U ⊗A G0

1)⊕G0
2

f 0
2→ M2 → 0,

we get that GC2−pdB(Km−k
2 ) ≤ k. This means that there exists an exact sequence of

B-modules
0 → Gm

2 → ··· → Gm−k+1
2 → Gm−k

2 → Km−k
2 → 0.

Thus, there exists an exact sequence of T -modules

0 →
(

0
Gm

2

)
→ ··· →

(
0

Gm−k+1
2

)
→
(

0
Gm−k

2

)
→
(

Gm−k−1
1

(U ⊗A Gm−k−1
1 )⊕Gm−k−1

2

)
f m−k−1

−→

·· · →
(

G1
1

(U ⊗A G1
1)⊕G1

2

)
f 1

→
(

G0
1

(U ⊗A G0
1)⊕G0

2

)
f 0

→ M → 0.

By Theorem 2.2.3, all
(

Gi
1

(U ⊗A Gi
1)⊕Gi

2

)
and all

(
0

G j
2

)
are GC-projective. Thus,

GC−pdT (M)≤ m.
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The following consequence of Theorem 2.3.3 extends [34, Proposition 2.8(1)] and
[92, Theorem 2.7(1)] to the relative setting.

Corollary 2.3.4. Let C = p(C1,C2) be w-tilting, U be C-compatible and M =

(
M1
M2

)
ϕM

be a T -module. If SGC2 −PD(B) < ∞, then GC−pdT (M) < ∞ if and only if GC1−
pdA(M1)< ∞ and GC2−pdB(M2)< ∞.

Theorem 2.3.5. Let C = p(C1,C2) be w-tilting and U be C-compatible. Then

max{GC1 −PD(A),GC2 −PD(B)}

≤ GC −PD(T )≤

max{GC1 −PD(A)+SGC2 −PD(B)+1,GC2 −PD(B)}.

Proof. We prove first that max{GC1 −PD(A),GC2 −PD(B)} ≤ GC −PD(T ). We may
assume that n := GC −PD(T )< ∞.

Let M1 be an A-module and M2 be a B-module. Since GC−pdT (

(
M1

U ⊗A M2

)
) ≤ n

and GC−pdT (

(
0

M2

)
) ≤ n, GC1−pdA(M1) ≤ n and GC2−pdBf(M2) ≤ n by Lemma

2.3.1. Thus, GC1 −PD(A)≤ n and GC2 −PD(B)≤ n.
Next, we prove that

GC −PD(T )≤ max{GC1 −PD(A)+1+SGC2 −PD(B),GC2 −PD(B)}.

We may assume that

m := max{GC1 −PD(A)+1+SGC2 −PD(B),GC2 −PD(B)}< ∞.

Then, n1 := GC1 −PD(A)< ∞ and k := SGC2 −PD(B)≤ n2 := GC2 −PD(B)< ∞.

Finally, if M =

(
M1
M2

)
ϕM

is a T -module, then GC−pdT (M)≤ max{n1+k+1,n2}≤

m by Theorem 2.3.3

Corollary 2.3.6. Let C = p(C1,C2) be w-tilting and U be C-compatible. Then,
GC −PD(T )< ∞ if and only if GC1 −PD(A)< ∞ and GC2 −PD(B)< ∞.

Recall that a ring R is called left Gorenstein regular if the category R-Mod is Goren-
stein ([34, Definition 2.1] and [35, Definition 2.18]).

On the other hand, we know by [20, Theorem 1.1], that the following equality holds:

sup{GpdR(M) | M ∈ R-Mod}= sup{GidR(M) | M ∈ R-Mod}.
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and this common value is call the (left) global Gorenstein dimension of R, denoted
by l.Ggldim(R). As a consequence of [35, Theorem 2.28], a ring R is left Gorenstein
regular if and only if the global Gorenstein dimension of R is finite.

Enochs, Izurdiaga and Torrecillas, characterized in [34, Theorem 3.1] when T is
left Gorenstein regular under the conditions that BU has finite projective dimension and
UA has finite flat dimension. As a direct consequence of Corollary 2.3.6, we refine this
result.

Corollary 2.3.7. Assume that U is compatible. Then, T is left Gorenstein regular if and
only if so are A and B.

There are some cases when the estimate in Theorem 2.3.5 becomes an exact formula,
which computes the GC-projective global dimension of T .

Corollary 2.3.8. Let C = p(C1,C2) be w-tilting. Assume that U = 0. Then,

GC −PD(T ) = max{GC1 −PD(A),GC2 −PD(B)}.

In particular,
GPD(T ) = max{GPD(A),GPD(B)}.

Proof. Using a similar argument as the one in the proof of Theorems 2.3.3 and 2.3.5,
we can prove this statement. We only need to notice that if U = 0, then a T -module

M =

(
M1
M2

)
ϕM

is GC-projective if and only if M1 is GC1-projective and M2 is GC2-

projective (since ϕM is always a monomorphism and M2 =CokerϕM) by Theorem 2.2.3.

Recall that an injective cogenerator E in R-Mod is said to be strong if any R-module
embeds in a direct sum of copies of E. When C is w-tilting and R is left noetherian,
it follows by [18, Corollary 2.3] that C is a strong injective cogenerator if and only if
GC −PD(R) = 0.

Corollary 2.3.9. Let C = p(C1,C2) be w-tilting and U ̸= 0 be C-compatible. If A is left
noetherian and AC1 is a strong injective cogenerator, then

GC −PD(T ) = max{SGC2 −PD(B)+1,GC2 −PD(B)}.

In particular, if A is quasi-Frobenius and U is compatible, then

GPD(T ) = max{SGPD(B)+1,GPD(B)}.

Proof. Note first that GC1 −PD(A) = 0 by [18, Corollary 2.3], and by Theorem 2.2.3(
A
0

)
is not GC-projective since U ̸= 0. Hence, GC2 −PD(B)≥ GC−pdT (

(
A
0

)
)≥ 1.
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Using now Theorem 2.3.5, we have the inequality

GC2 −PD(B)≤ GC −PD(T )≤ max{SGC2 −PD(B)+1,GC2 −PD(B)}.

Therefore, the case SGC2 −PD(B) + 1 ≤ GC2 −PD(B) is clear and we only need to
prove the result when SGC2 −PD(B)+1 > n := GC2 −PD(B).

Since GC2−pdB(U⊗A G)≤GC2 −PD(B)= n for any G∈GC1P(A), SGC2 −PD(B)=
n. Let G1 be a GC1-projective A-module with GC2−pd(U⊗A G1) = n and consider the
following short exact sequence

0 →
(

0
U ⊗A G1

)
→
(

G1
U ⊗A G1

)
→
(

G1
0

)
→ 0.

By Theorem 2.2.3
(

G1
U ⊗A G1

)
, is GC-projective and by Lemma 2.3.1

GC−pdT (

(
0

U ⊗A G1

)
) = GC2−pdB(U⊗A G) = n.

Thus, by [17, Proposition 3.11(4)]

GC−pdT (

(
G1
0

)
) = GC−pdT (

(
0

U ⊗A G1

)
)+1 = n+1.

This shows that GC −PD(T ) = SGC2 −PD(B)+1.
The last equality follows by the first equality and [20, Proposition 2.6].

We shall say that a ring R is left n-Gorenstein regular if n = Ggldim(R)< ∞.

Corollary 2.3.10. Let R be a ring, T (R) =
(

R 0
R R

)
and C = p(C1,C1) where C1 is

w-tilting. Then,
GC −PD(T (R)) = GC1 −PD(R)+1.

In particular,
GPD(T (R)) = GPD(R)+1.

Consequently, given an integer n ≥ 0, T (R) is left (n+1)-Gorenstein regular if and
only if R left n-Gorenstein regular.

Proof. Note first that C is a w-tilting T (R)-module, R is a C-compatible (R,R)-bimodule
and SGC1 −PD(R) = 0. Therefore, by Theorem 2.3.5,

GC1 −PD(R)≤ GC −PD(T (R))≤ GC1 −PD(R)+1.

The case GC1 −PD(R) = ∞ is clear.
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Assume that n := GC1 −PD(R)< ∞. Then, there exists an R-module M with GC1−
pdR(M) = n and ExtnR(M,X) ̸= 0 for some X ∈ AddR(C1) by [17, Theorem 3.8]. If we

apply the functor HomT (R)(−,

(
0
X

)
) to the exact sequence of T (R)-modules

0 →
(

0
M

)
→
(

M
M

)
1M

→
(

M
0

)
→ 0,

we get an exact sequence

ExtnT (R)((
M
M ),( 0

X ))→ ExtnT (R)((
0
M ),( 0

X ))→ Extn+1
T (R)((

M
0 ),(

0
X ))→ Extn+1

T (R)((
M
M ),( 0

X )).

By Lemma 1.4.7, Exti≥1
T (R)(

(
M
M

)
,

(
0
X

)
)∼= Exti≥1

R (M,0) = 0. Using Lemma 1.4.7 again

and the above long exact sequence,

Extn+1
T (R)(

(
M
0

)
,

(
0
X

)
)∼= ExtnT (R)(

(
0
M

)
,

(
0
X

)
)∼= ExtnR(M,X) ̸= 0.

Since
(

0
X

)
∈ AddT (R)(C) by Lemma 1.4.5(1), it follows that n < GC−pdT (R)(

(
M
0

)
)

by [17, Theorem 3.8]. But, GC−pdT (R)(

(
M
0

)
) ≤ GC −PD(T (R)) ≤ n+1. Therefore,

GC−pdT (R)(

(
M
0

)
) = n+1, which means that GC −PD(T (R)) = n+1.
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CHAPTER 3

RELATIVE GORENSTEIN FLAT MODULES AND
DIMENSIONS

In this chapter, a new concept of relative Gorenstein flat modules is introduced.
We give a survey of their behavior in terms of structural and dimension properties.
We also tackle the classical problem of the stability of the Gorenstein condition under
iterations of its construction. We conclude this chapter by introducing and studying
the weak Gorenstein global dimension of a ring R with respect to an R-module C. We
provide several characterizations of when this homological invariant is bounded. As
an application, we prove that the weak Gorenstein global dimension of R relative to a
semidualizing (R,S)-bimodule C can be computed either by the GC-flat dimension of
the left R-modules or right S-modules, just like the (absolute) weak global dimension.
As a consequence, a new argument for solving Bennis’ conjecture is obtained.

Throughout this chapter, S will be, unless otherwise stated, the endomorphism ring
of C, S = EndR(C).

3.1 Relative flat modules

In this section we introduce a class of relatively flat modules, FC-flat modules, and
check, besides its links with the class of flat modules, what homological properties it
satisfies.

Establishing the basic properties of FC(R) will be fundamental for the development
of this article since FC(R) will be the class on which GC-flat modules will be built in
later sections.

Definition 3.1.1. An R-module M is said to be FC-flat if M+ belongs to the class
ProdR(C+), and we will denote the class of all FC-flat modules as FC(R).
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It is clear that FC(R) = F (R) when C = R. So, flat modules are particular cases of
FC-flat modules.

Under the hypothesis that RC is finitely presented, the classes FC(R) and ProdR(C+)
can be nicely described from the classes of flat and injective modules, respectively.

Proposition 3.1.2. Suppose that RC is finitely presented. The following assertions hold:

1. ProdR(C+) = HomS(C,I (S)).

2. FC(R) =C⊗S F (S).

Proof. (1) This equality follows from Lemma 1.3.14(2), since any finitely presented
module is self-cosmall.

(2) Given any C⊗S F ∈C⊗S F (S), we have (C⊗S F)+∼=HomS(C,F+)∈ProdR(C+)
by (1) since F+ is an injective right S-module, so C⊗S F ∈ FC(R).

Conversely, for any R-module M we have a natural homomorphism

νM : C⊗S HomR(C,M) → M
c⊗ f 7→ f (c)

and the natural map τ : HomR(C,M)+→M+⊗RC is an isomorphism of right S-modules
by [37, Theorem 3.2.11] since RC is finitely presented.

If M ∈ FC(R), then M+ ∈ ProdR(C+), so by (1) there exists an injective right S-
module I such that M+ ∼= HomS(C, I). But then HomR(C,M)+ ∼= M+⊗R C ∼= IS is an
injective right S-module so HomR(C,M) is a flat left S-module. Therefore, if νM were
an isomorphism of R-modules for every M ∈ FC(R), we would have M ∈ C⊗S F (S)
for every M ∈ FC(R), as desired.

Let us then assume that M ∈ FC(R).
It follows by Lemma 1.3.12 that the natural homomorphism

µM+ : M+ −→ HomS(C,M+⊗R C)

f 7→ µM+( f ) : c 7→ µM+( f )(c) = f ⊗ c

is an isomorphism of right R-modules for every M ∈ FC(R). Then, if we call γ :
(C⊗S HomR(C,M))+ → HomS (C,HomR(C,M)+) the isomorphism of right R-modules
given by the adjunction, we have a commutative diagram

M+

(νM)+

��

∼=
µM+

// HomS(C,M+⊗R C)

HomR(C,τ)∼=
��

(C⊗S HomR(C,M))+
∼=
γ
// HomS (C,HomR(C,M)+)

which shows that (νM)+ is an isomorphism of right R-modules and so that νM is an
isomorphism of R-modules.
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Now we want to know the general behavior of FC(R). Let us start with the following
definition.

Definition 3.1.3. A left R-module M is said to be ∏-Tor-orthogonal provided that
TorR

i≥1
(
(M+)I,M

)
= 0 for every set I.

From the canonical isomorphism of abelian groups

Exti≥1
R ((M+)I,M+)∼= TorR

i≥1((M
+)I,M)+

(see [37, Theorem 3.2.1]), it immediately follows that the module M is ∏-Tor-orthogonal
if and only if M+ is ∏-self-orthogonal.

We state that as a proposition.

Proposition 3.1.4. A left R-module M is ∏-Tor-orthogonal if and only if the right R-
module M+ is ∏-self-orthogonal.

The following is a ∏-Tor-orthogonality test. It will be needed later.

Proposition 3.1.5. The module C is ∏-Tor-orthogonal if and only if TorR
i≥1(X ,Y ) = 0

for every X ∈ ProdR(C+) and every Y ∈ FC(R).

Proof. Of course, if C is ∏-Tor-orthogonal then TorR
≥1(X ,C)= 0 for any X ∈ProdR(C+),

and if Y ∈ FC(R), then there are some Z ∈ Mod-R and some set I such that Y+⊕Z =
(C+)I . Thus,

TorR
i (X ,Y )+⊕ExtiR(X ,Z)∼= ExtiR(X ,Y+)⊕ExtiR(X ,Z)∼= ExtiR

(
X ,(C+)I)

∼= ExtiR
(
X ,C+

)I ∼=
(
TorR

i (X ,C)+
)I

= 0.

The converse is clear.

The next result is inspired in the ideas of [21].

Proposition 3.1.6. The following assertions hold:

1. FC(R) = AddR(FC(R)). Consequently, (FC(R),IC+(R)) is a coproduct-closed
left duality pair. In particular FC(R) is covering.

2. FC(R) is closed under pure submodules, pure quotients, and pure extensions.

3. If C is ∏-Tor-orthogonal then FC(R) is closed under extensions.

4. FC(R) = lim
−→

FC(R), that is, FC(R) is closed under direct limits.
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Proof. That (FC(R),ProdR(C+)) is a coproduct-closed left duality pair is clear. The
fact that FC(R) is covering and assertion 2 follow from Theorem 1.5.19.

3. Let M, L ∈ FC(R). If 0 → M → N → L → 0 is exact then

0 → L+ → N+ → M+ → 0

is also exact, and it splits since Ext1R(M
+,L+)∼= TorR

1 (M
+,L)+ (see [37, Thorem 3.2.1])

and C is ∏-Tor-orthogonal. But, L+,M+ ∈ ProdR(C+), so finally N+ ∈ ProdR(C+) and
then N ∈ FC(R).

4. Let {Mi; i ∈ I} be a directed system of R-modules in FC(R). By 1, ⊕iMi ∈
FC(R), and the canonical map ⊕iMi → lim

−→i
Mi is a pure epimorphism, so by 2, it follows

that lim
−→

Mi ∈ FC(R).

We finish the section by finding conditions for FC(R) to be preenveloping.

Theorem 3.1.7. The following assertions are equivalent:

1. FC(R) is preenveloping.

2. FC(R) is closed under direct products.

3. ∀RN, N ∈ FC(R) if and only if N++ ∈ FC(R).

4. ∀MR, M ∈ ProdR(C+)⇒ M+ ∈ FC(R).

If RC is finitely presented, the above assertions are equivalent to

5. S is right coherent and CS is finitely presented.

Proof. 1.⇔2. It is well known that every preenveloping class of modules is closed under
arbitrary direct products, so we only need to check 2 ⇒ 1. But if FC(R) is closed under
direct products we can apply [77, Corollary 3.5(c)] since FC(R) is closed under pure
submodules by Proposition 3.1.6, so we are done.

2.⇒ 3.FC(R) is closed under direct limits and pure submodules, so 2 says that it is a
definable subcategory of R-Mod, (see [74, pg. 1390]), and so, if we call Prod(FC(R)+)
the closure of Prod(FC(R)+) under pure submodules, we get by [74, Corollary 4.6] that(
FC(R),Prod(FC(R)+)

)
is a left duality pair (given by the Pontryagin duality) and that(

Prod(FC(R)+),FC(R)
)

is a right duality pair. This gives the result.
3.⇒ 2. Let (Vi)i∈I be a family of FC-flat R-modules. Note that the class FC(R) is

closed under direct sums and pure submodules. Then, ⊕i∈IVi ∈ FC(R) and by hypoth-
esis, (∏i∈I V+

i )+ = (⊕i∈IVi)
++ is FC-flat. But ⊕i∈IV+

i is a pure submodule of ∏i∈I V+
i

by [25, Lemma 1(1)], and hence (∏i∈I V+
i )+ → (⊕i∈IV+

i )+ → 0 splits. This implies
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that ∏i∈I V++
i

∼= (⊕i∈IV+
i )+ is FC-flat. But ∏i∈I Vi is a pure submodule of ∏i∈I V++

i
by [25, Lemma 1(2)]. Hence, ∏i∈I Vi is FC-flat.

3.⇒ 4. Let M ∈ ProdR(C+) and M⊕L = (C+)I = (C(I))+ for some R-module L and
some set I. Then, M+⊕L+ = (C(I))++.

Since the class FC(R) is closed under direct sums and summands, and by hypothe-
sis, M+ ∈ FC(R).

4.⇒ 3. If N ∈ FC(R) then N+ ∈ ProdR(C+) by definition, and then N++ ∈ FC(R)
by the hypothesis.

Conversely, N is a pure submodule of N++ and FC(R) is closed under pure sub-
modules by Proposition 3.1.6(2), so N ∈ FC(R).

For the last equivalence, let us assume that RC is finitely presented.
2.⇒ 5. By [37, Theorem 3.2.24], to prove that S is right coherent, it suffices to prove

that SI is a flat left S-module for any set I. Since RC is finitely presented, it follows
by [37, Theorem 3.2.7] that the canonical morphism τX : C⊗S HomR(C,X)→ X is an
isomorphism for every FC-flat R-module X = C⊗S F . In particular, the map τCI is an
isomorphism, and so is the canonical morphism τ : C⊗S SI →CI . Hence, CS is finitely
presented by [37, Theorem 3.2.22]. Moreover, there are natural isomorphisms SI ∼=
HomR(C,C)I ∼= HomR(C,CI). But, by hypothesis CI = C⊗S G is FC-flat. Therefore,
SI ∼= SG is a flat S-module.

5.⇐ 2. Let Vi =C⊗S Fi, where each Fi is a flat S-module. Since S is right coherent
and CS is finitely presented, ∏i∈I Fi is a flat left S-module by [37, Theorem 3.2.24] and
∏i∈I Vi = ∏i∈I(C⊗S Fi)∼=C⊗S ∏i∈I Fi is FC-flat.

3.2 Relative Gorenstein flat modules
In this section we introduce and study relative Gorenstein flat modules. We are inter-

ested in discovering the main homological properties of this new class of modules, and
check its links with other known classes of relative Gorenstein modules (GC-projective
modules, GC+-injective modules, etc.).

As mentioned above, the development of this study will be based on modules C
with less restrictive conditions than semidualizing modules, which we will call w+-
tilting modules. We will see that indeed this class properly generalizes w-tilting (and so
semidualizing) modules (Proposition 3.2.3 and Example 3.2.2).

We start by introducing the type of modules over which the main properties of GC-
flat modules will be proved: w+-tilting modules.

Definition 3.2.1. The left R-module C is said to be w+-tilting if it satisfies the following
two properties:

1. C is ∏-Tor-orthogonal.
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2. There exists an exact and (ProdR(C+)⊗R −)-exact sequence of R-modules

0 → R →C0 →C1 → ···

with Ci ∈ FC(R) for every i ∈ N.

Now we provide a way to build w+-tilting modules which, as a consequence, will
lead to find an example of a w+-tilting module which is not w-tilting (and so not semid-
ualizing), showing this way, as promised before, that the concept of a w+-tilting module
properly generalizes those of a w-tilting and a semidualizing module.

Example 3.2.2. Let R be a left coherent and non-noetherian ring, and find an FP-
injective coresolution

X : 0 → R α0
→ F0 α1

→ F1 α2
→ ···

of RR. Then, the module C =⊕i≥0F i is FP-injective, so since R is left coherent we have
that C+ is flat (see for instance [25, Theorem 1]), and so that (C+)I is flat for every
index set I. This means that every module in ProdR(C+) is flat and so our complex
X is (ProdR(C+)⊗R −)-exact. Moreover, by construction, every F i belongs to FC(R).
But (C+)I being flat also implies TorR

i
(
(C+)I,C

)
= 0 for every i ≥ 1, that is, C is ∏-

Tor-orthogonal. Therefore, C is w+-tilting and we have just given a way to produce
w+-tilting modules.

Moreover, R being left coherent and non-noetherian guarantees the existence of an
FP-injective and non-injective R-module N, so there is a non-split exact sequence

0 → N → E(N)→ L → 0

(so Ext1R(L,N) ̸= 0) with L FP-injective. Therefore, the module N ⊕L is FP-injective
and satisfies Ext1R(N ⊕L,N ⊕L) ̸= 0, and the sequence

0 → R
β 0

−→ F0 ⊕N ⊕L
β 1

−→ F1 ⊕N ⊕L⊕N ⊕L
β 2

−→ F2 ⊕N ⊕L⊕N ⊕L
β 3

−→ ·· ·

given by β 0(r) = (α0(r),0,0), β 1(x,n, l) = (α1(x),n, l,0,0), and, for every i ≥ 2,

β
i(x,n, l,n′, l′) =

{
(α i(x),0,0,n′, l′) if i is even
(α i(x),n, l,0,0) if i is odd

is indeed an FP-injective coresolution of R.
Hence, by the comments above, the module

C = (F0 ⊕N ⊕L)⊕
(
⊕i≥1

(
F i ⊕N ⊕L⊕N ⊕L

))
is w+-tilting. However, C cannot be w-tilting, and so it cannot be semidualizing, since
Ext1R(C,C) ̸= 0.
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Let us now show the relation between w-tilting and w+-tilting modules.

Proposition 3.2.3. Assume that RC has a degreewise finite projective resolution. Then,
RC is ∏-Tor-orthogonal if and if it is Σ-self-orthogonal.

Moreover, if RC w-tilting, then it is w+-tilting.
In particular, every semidualizing (R,S)-bimodule is w+-tilting both as a left R-

module and as a right S-module.

Proof. Following [53, Lemma 1.2.11(d)], we have the natural isomorphism

(I) TorR
i ((C

(I))+,C)∼= ExtiR(C,C
(I))+

for any index set I. Thus, RC is ∏-Tor-orthogonal if and if it is Σ-self-orthogonal.
Assume now that RC is w-tilting. By definition, there exists a complete PC-projective

complex
X1 = 0 → R →C−1 →C−2 →C−3 → ··· .

Moreover, there exist modules C′
i ∈ AddR(C) such that

C−1 ⊕C′
−1

∼=C(I−1) and Ci ⊕C′
i−1 ⊕C′

i
∼=C(Ii)

for some sets Ii. So, by adding the exact sequence 0 →C′
i →C′

i → 0 to X1 in degrees i
and i+1, we get another complete PC-projective complex

X2 = 0 → R
f0→C(I−1)

f−1→ C(I−2)
f−2→ ··· .

Since RR is finitely generated, there exist an integer n−1 ≥ 1 and a set I′−1 such that
C(I−1) =Cn−1 ⊕C(I′−1) with Im f0 ⊆Cn−1 . Let K−2 =Cn−1/Im f0. and consider the exact
sequence E := 0 → R →Cn−1 → K−2 → 0. Since the class FP∞(R) of all R-modules
having a degreewise finite projective resolution is known to be thick (see for instance
[23, Theorem 1.8]), Cn−1 and K−2 have degreewise finite projective resolutions. This
implies (using a similar computation to that of (I)) that

TorR
i
(
(C+)I,K−2

)∼= TorR
i

(
(C(I))+,K−2

)
∼= ExtiR

(
K−2,C(I)

)+
= 0 ∀i ≥ 1.

Hence, the sequence E ⊗R E is exact for every E ∈ ProdR(C+).
So, if we show that K−2 has a HomR(−,AddR(C))-exact AddR(C)-coresolution, we

can inductively construct a (ProdR(C+)⊗R −)-exact exact resolution

0 // R //Cn−1 //

##

Cn−2 //

##

Cn−3 //

##

· · ·

K−2

;;

K−3

;;

K−4
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which implies that C is w+-tilting as desired.
However, we immediately get such a HomR(−,AddR(C))-exact AddR(C)-coresolution

once we show that K−2 ∈ GCP(R).
Let K = Im f0 and consider the following commutative diagram with exact rows and

columns:
0

��

0

��

0 // R //Cn−1 //

��

K−2

��

// 0

0 // R //C(I−1) //// K // 0.

Since R and Cn−1 are GC-projective, to see that K−2 is GC-projective it suffices to
show that Ext1R(K−2,AddR(C)) = 0 by [17, Lemma 3.13].

Let X ∈ AddR(C). By applying the functor HomR(−,X) to the above diagram, we
get the following commutative diagram with exact rows

0 // HomR(K,X) //

��

HomR(C(I−1),X) //

��

HomR(R,X) // 0

0 // HomR(K−2,X) // HomR(Cn−1,X) // HomR(R,X) // Ext1R(K−1,X) // 0.

The commutativity of the right square shows that HomR(Cn−1,X) → HomR(M,X)
is a surjective map. Hence, Ext1R(K−2,X) = 0.

We now give the concept of what we will understand by a GC-flat module. This type
of modules were already studied by Holm and Jørgensen in [61] in the more restrictive
setting of commutative noetherian rings, and when the module C is semidualizing. It is
clear from Proposition 3.1.2 that both coincide when RC is finitely presented.

Definition 3.2.4. An R-module M is said to be GC-flat if there exists an exact and
(ProdR(C+)⊗R −)-exact sequence

X : · · · → F1 → F0 →C0 →C1 → ···

with Ci ∈ FC(R) and Fi ∈ F (R) for every i ∈ N, such that M ∼= Im(F0 →C0).
We call the above (ProdR(C+)⊗R −)-exact exact sequence a complete FC-flat res-

olution of M and denote the class of all GC-flat R-modules by GCF(R).

Remarks 3.2.5.
1. If C = R, then GCF(R) is exactly the class of all Gorenstein flat modules, but in

general these two classes are different as can be seen in Example 3.2.6 below or
in Proposition 3.2.23.

86



3.2. RELATIVE GORENSTEIN FLAT MODULES

2. C is ∏-Tor-orthogonal if and only if it is GC-flat, since C being ∏-Tor-orthogonal
implies that any flat resolution of C is a sequence as that of Definition 3.2.4.

3. C is w+-tilting if and only if both R and C are GC-flat.

Next we show that the definition of GC-flat modules differs, in general, from the one
of Gorenstein flat modules. The next example follows the argument of Example 3.2.2.

Example 3.2.6. Let R be a coherent ring, choose an injective module E and call C =
E(I). Then, E+ is a flat module and, since R is coherent, C+ ∼= (E+)I is a flat module.
This means, as in Example 3.2.2, that the (ProdR(C+)⊗R −)-exactness of any exact
sequence of modules is guaranteed and so, if

· · · → F1 → F0 →C → 0

is a flat resolution of C, the sequence

· · · // F1 // F0

��

//C // 0 // · · ·

C

shows that C is GC-flat, and of course it is not Gorenstein flat in general, nor it is a
w+-tilting module (R needs not be GC-flat).

The same argument shows that if M is any module,

0 → M → E0 → ···

is an injective coresolution, and we let C =⊕i≥0E i, then M is GC-flat.

Proposition 3.2.7. The class GCF(R) is always closed under direct sums.

Proof. It follows from the fact that the classes FC(R) and F (R) are closed under direct
sums and the tensor product commutes with direct sums.

The following is a standard characterization of Gorenstein objects, which immedi-
ately follows from the definition.

Proposition 3.2.8. An R-module M is GC-flat if and only if the following statements
hold:

1. TorR
i≥1(ProdR(C+),M) = 0.

2. There exists an exact and (ProdR(C+)⊗R −)-exact sequence of R-modules

X : 0 → M →C0 →C1 → ···

with Ci ∈ FC(R) for every i ∈ N.
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Corollary 3.2.9. If C is ∏-Tor-orthogonal and

· · · → F1 → F0 →C0 →C1 → ···

is a complete FC-flat resolution, then Ki = Ker(Ci → Ci+1) is GC-flat for every i ≥ 0.
Consequently, the inclusion FC(R)⊆ GCF(R) holds when C is ∏-Tor-orthogonal.

Proof. K0 is GC-flat by definition, so TorR
i≥0 (ProdR(C+),K0)= 0, and then, using Propo-

sition 3.1.5 we get

TorR
i
(
ProdR(C+),K1

)∼= TorR
i−1
(
ProdR(C+),K0

)
= 0 ∀i ≥ 2.

Now, the sequence 0 → K0 → C0 → K1 → 0 is (ProdR(C+)⊗R −)-exact, so also
TorR

1 (ProdR(C+),K1) = 0 and then K1 is GC-flat.
By induction we get that all Ki are GC-flat.

Making use of this, we can prove the following nice characterization of GC-flat
modules.

Proposition 3.2.10. Suppose that C is ∏-Tor-orthogonal. An R-module M is GC-flat if
and only if there exists a short exact sequence

0 → M →V → G → 0

with V ∈ FC(R) and G ∈ GCF(R).

Proof. If M is GC-flat, then it is the kernel M = Ker(F0 → C0) of a complete FC-
resolution

· · · → F1 → F0 →C0 →C1 → ···

and so we have the short exact sequence 0 → M →C0 → K1 → 0 with C0 ∈ FC(R) and
K1 ∈ GCF(R) by Corollary 3.2.9.

Conversely, by Proposition 3.2.8 we have TorR
i≥1 (ProdR(C+),G) = 0, which implies

by dimension shifting and Proposition 3.1.5 that TorR
i≥1(ProdR(C+),M) = 0. Moreover,

there exists a (ProdR(C+)⊗R −)-exact FC(R)-coresolution

X : 0 → G →C0 →C1 → ··· ,

so combining this with the short exact sequence 0 → M → V → G → 0, we get that M
has a (ProdR(C+)⊗R −)-exact FC(R)-coresolution and then that M is GC-flat, again by
Proposition 3.2.8.

Now, it is very likely that w+-tilting and w-cotilting modules on one side, and GC-
flat and GC+-injective modules on the other, be connected somehow. It is our purpose
to check what are these connections. The proof of the next result is modeled on that of
[28, Theorem 6.4.2].
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Theorem 3.2.11. If an R-module M is GC-flat, then the right R-module M+ is GC+-
injective. If, in addition, RC is ∏-Tor-orthogonal and FC(R) is closed under direct
products, then the converse holds too.

Proof. The canonical isomorphism of abelian groups Tori
R(N,M)+∼=ExtiR(N,M+) ∀i≥

1 gives that

Tori
R
(
ProdR(C+),M

)
= 0 ∀i ≥ 1 ⇔ M+ ∈ ProdR(C+)⊥∞ ,

so we only have to check the equivalence between 2. in Proposition 3.2.8 and 2. in [17,
Proposition 4.5]. That is, M has a (ProdR(C+)⊗R −)-exact FC(R)-coresolution if and
only if M+ has a HomR(ProdR(C+),−)-exact ProdR(C+)-resolution

Thus, if M is GC-flat then there is a (ProdR(C+)⊗R −)-exact FC(R)-coresolution

X : 0 → M →C0 →C1 → ···

which gives rise to a ProdR(C+)-resolution

X+ : · · · →C+
1 →C+

0 → M+ → 0.

This resolution is HomR(ProdR(C+),−)-exact by the natural isomorphism of com-
plexes HomR(X ,X+)∼= (X ⊗R X)+, so M+ is GW+-injective.

Conversely, assume that FC(R) is closed under direct products. By Theorem 3.1.7,
M has an FC(R)-preenvelope M → C0, and by [17, Proposition 4.6], M+ is GC+-
injective, so there is an epimorphism L ↠ M+ for some L ∈ ProdR(C+). Therefore, we
have a monomorphism M ↪→ M++ ↪→ L+, which proves that our original preenvelope
M →C0 is indeed a monomorphism. We then get an exact and HomR (−,FC(R))-exact
sequence of R-modules

0 → M →C0 → L0 → 0,

and so an exact sequence of right R-modules

0 → L+
0 →C+

0 → M+ → 0

with C+
0 ∈ ProdR(C+)⊆ GC+I(R).

If we prove that L+
0 is GC+-injective, we can repeat the process and find another

exact and HomR (−,FC(R))-exact sequence

0 → L0 →C1 → L1 → 0.

Gluing the two sequences together we will have the exact and HomR (−,FC(R))-exact
sequence

0 → M →C0 →C1
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with Ci ∈ FC(R), and so, by induction, we will get a HomR (−,FC(R))-exact FC(R)-
coresolution of R-modules

X : 0 → M →C0 →C1 →C2 → ···

of M. But then, for any L ∈ ProdR(C+), we will have

(L⊗R X)+ ∼= HomR
(
X,L+

)
,

which is exact by construction since L+ ∈ FC(R) by Theorem 3.1.7.
Therefore, it only remains to prove that L+

0 is GC+-injective, and this will follow if
we prove that L+

0 ∈ ProdR(C+)⊥∞ by the dual of [17, Lemma 3.13].
Choose then any L ∈ ProdR(C+). The commutative diagram

HomR(C0,L+)

∼=
��

// HomR(M,L+)

∼=
��

// 0

HomR(L,C+
0 )

// HomR(L,M+) // Ext1R(L,L
+
0 )

// 0

shows that Ext1R(L,L
+
0 ) = 0, and if i ≥ 2, the long exact sequence associated to the

bottom row shows that ExtiR(L,L
+
0 )

∼= Exti(L,C+
0 ) since M+ is GC+-injective and L ∈

ProdR(C+). But C+ is ∏-self-orthogonal so ExtiR
(
(C+)I,(C+)J) = 0 for every i ≥

1 and every couple of sets I and J, and ExtiR(L,C
+
0 ) is a direct summand of some

ExtiR
(
(C+)I,(C+)J), so we get that ExtiR(L,L

+
0 ) = 0 for every i ≥ 2.

Corollary 3.2.12. If C is a w+-tilting R-module, then C+ is a w-cotilting right R-module.
If FC(R) is closed under direct products, then the converse holds too.

Proof. Follows by Theorem 3.2.11, Remark 3.2.5(3) and Lemma 1.3.5(2)

The question of the closure under extensions of a given class of modules is a typical
problem for those classes having interest in homological algebra. We can now give a
necessary condition in our context of GCF(R).

Corollary 3.2.13. Assume that RC is ∏-Tor-orthogonal. If FC(R) is closed under direct
products, then GCF(R) is closed under extensions.

In particular, this the case when S is right coherent and both RC and CS are finitely
presented.

Proof. The first part follows by the fact that the class of GC+-injective right R-modules
is closed under extensions ([17, Proposition 4.7]) together with Theorem 3.2.11.

The last claim follows by Theorem 3.1.7.
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As mentioned above, many of the nice homological properties of a given class rely
on the fact that it is closed under extensions (when it is so). Of course this applies to
our class GCF(R), so it is worth establishing the following terminology, adopted for the
first time in [9]. Many of the results to be given from now on will be proved under this
condition on the ring.

Definition 3.2.14. A ring R is said to be GCF-closed provided that the class GCF(R) is
closed under extensions.

It has recently been shown by Šaroch and Šťovic̆eck ([78]) that any ring R is GCF-
closed in case that C = R. In fact, this holds for any flat generator R-module C (see
Corollary 3.2.24). Therefore, the following question becomes natural at this point:

Question: For what modules C is any ring GCF-closed?

All the examples given in this thesis provide positive answers to this question. How-
ever, the authors do not have a general answer to it.

We now find conditions for the class GCF(R) to have the properties that a class
is expected to have to develop a nice theory of homology. As one could expect, by
similarity with the classical case of Gorenstein flat modules, the class GCF(R) is indeed
closed under kernels of monomorphisms (at least under certain hypotheses on the ring)
and direct summands. But also, as we will now see, it is closed under direct limits.

The following is then a version of what was proved in [17] for GC-projective and for
GC-injective modules.

Proposition 3.2.15. If R is GCF-closed and C is ∏-Tor-orthogonal, then the class
GCF(R) is:

1. Closed under kernels of epimorphisms.

2. Closed under direct summands

3. Closed under direct limits.

Proof. 1. Let 0 → M → N → L → 0 be a short exact sequence of R-modules with
N, L ∈ GCF(R). By Proposition 3.2.10, there exists a short exact sequence 0 → N →
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V → G → 0 with V ∈ FC(R) and G ∈ GCF(R). Consider the pushout diagram

0

��

0

��

0 // M // N

��

// L

��

// 0

0 // M // V //

��

K //

��

0

G

��

G

��

0 0

Since GCF(R) is closed under extensions, K is GC-flat and hence, again by Proposi-
tion 3.2.10 (using the middle row), M is GC-flat.

2. Now, we know that GCF(R) is closed under direct sums, so using Eilenberg’s
swindle we get that it is also closed under direct summands.

3. The closure of GCF(R) under direct limits can be reasoned following the argu-
ments of [87, Lemma 3.1] since FC(R) is closed under direct limits by Proposition
3.1.6.

Though we do not know when the class GC-flat R-modules is closed under cok-
ernels of monomorphisms, we can give conditions to ensure when the cokernel of a
monomorphism in GCF(R) belongs to the class. The following is a simple adaptation
of [9, Theorem 2.3(3)] for GC-flat modules, and both proofs follow the same argument,
using in this adaptation Proposition 3.2.10.

Proposition 3.2.16. Assume that R is GCF-closed and that C is ∏-Tor-orthogonal, and
let

0 → G1 → G0 → M → 0

be exact with G0,G1 ∈ GCF(R). If TorR
1 (ProdR(C+),M) = 0, then M ∈ GCF(R).

We now want to check the behavior of GCF(R) with respect to flat and projective
modules. As one could expect, over w+-tilting modules, GC-flat modules generalize
both projective and flat modules.

Proposition 3.2.17. Let R be GCF-closed and C be ∏-Tor-orthogonal. The following
assertions are equivalent:

1. C is w+-tilting.

2. R ∈ GCF(R).
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3. P(R)⊆ GCF(R).

4. F (R)⊆ GCF(R).

Proof. (1)⇔ (2) and (4)⇒ (3)⇒ (2) are clear.
(2)⇒ (3) holds since GCF(R) is closed under direct sums and summands.
(3)⇒ (4) follows since GCF(R) is closed under direct limits.

Corollary 3.2.18. If R is GCF-closed and C is w+-tilting, then for every R-module M
there exists an exact sequence

· · · → G1 → G0 → M → 0

with each Gi GC-flat.

In Corollary 3.2.9 we proved that in a complete FC-flat resolution

· · · → F1 → F0 →C0 →C1 → ·· · ,

every kernel Ker(Ci → Ci+1) is GC-flat. However, we still did not know what happens
in the left part of the sequence. Now we state the conditions we need to ensure the
GC-flatness of kernels in the left part of that sequence.

Corollary 3.2.19. Suppose R is GCF-closed. If C is w+-tilting and

· · · → F1 → F0 →C0 →C1 → ···

is a complete FC-flat resolution, then every image Ii = Im(Fi+1 → Fi) is GC-flat.

Proof. By Proposition 3.2.17, we know F0 ∈ GCF(R), and Im
(
F0 →C0) is also GC-flat

by definition. Then, applying Proposition 3.2.15 we get that I0 is GC-flat.
But then we get, using induction, that all Ii are GC-flat.

Remark 3.2.20. As a consequence of the last corollary, and having in mind Corollary
3.2.9, we see that when C is w+-tilting and GCF(R) is closed under extensions, all
kernels in the sequences providing the class of GC-flat modules are indeed GC-flat.

Now, by Corollary 3.2.13 and Propositions 3.2.15 and 3.2.17 we know when GCF(R)
is projectively resolving.

Theorem 3.2.21. Assuming that R is GCF-closed, the module C is w+-tilting if and only
if GCF(R) is projectively resolving and FC(R)⊆ GCF(R).

When a class is projectively resolving, the Comparison Lemma can be proved. The
following is a version of the Comparison Lemma adapted to our class GCF(R). It fol-
lows immediately from [4, Lemma 3.12].
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Corollary 3.2.22. Let R be GCF-closed and C be w+-tilting. Given two exact sequences

0 → Kn → Gn−1 · · · → G1 → G0 → M → 0

and
0 → Ln → Hn−1 · · · → H1 → H0 → M → 0

with all Gi and Hi GC-flat, the kernel Kn is GC-flat if and only if Ln is GC-flat.

We finish this section by proving that, with respect to w+-tilting modules, the classes
of classical flat, Gorenstein flat and Gorenstein injective modules, either all coincide
with those of relative flat, relative Gorenstein flat and relative Gorenstein injective mod-
ules respectively, or none of them coincide.

By a generator (of R-Mod) we mean a module G such that for any R-module M
there is an epimorphism G(I) → M for some set I. Dually, G is a cogenerator if for any
R-module M there is an a monomorphism M → GI for some set I.

It is easy to verify the following three assertions:
(a) C is a projective generator if and only if AddR(C) = P(R).
(b) C is a flat generator if and only if FC(R) = F (R).
(c) C is an injective cogenerator if and only if ProdR(C) = I (R).

Proposition 3.2.23. If C is w+-tilting, the following assertions are equivalent:

(1) GCF(R) = G F (R).

(2) C is a flat generator R-module.

(3) C+ is an injective cogenerator right R-module.

(4) GC+I(R) = G I (R).

Proof. (1)⇒ (2) If we prove that

GCF(R)+∩ ⊥(GCF(R)+
)
= FC(R)+ and G F (R)+∩ ⊥(G F (R)+

)
= F (R)+

we will have

FC(R)+ = GCF(R)+∩ ⊥(GCF(R)+
)
= G F (R)+∩⊥ (G F (R)+

)
= F (R)+

and we will be done.
On one side, it is clear that FC(R) ⊆ GCF(R) since C is ∏-Tor-orthogonal and

so that FC(R)+ ⊆ GCF(R)+, and on the other we know that Exti≥1
R (FC(R)+,X+) ∼=

TorR
i≥1(FC(R)+,X)+ = 0 for every X ∈ GCF(R), so FC(R)+ ⊆ ⊥(GCF(R)+).
Conversely, let X ∈ GCF(R) be such that X+ ∈ GCF(R)+∩ ⊥(GCF(R)+). By Propo-

sition 3.2.10, there is an exact sequence 0 → X → V → L → 0 with V ∈ FC(R) and
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L ∈ GCF(R), so being X+ ∈ ⊥(GCF(R)+) implies that the exact sequence 0 → L+ →
V+ → X+ → 0 splits and so that X+ ∈ FC(R)+.

The second equality follows similarly.
(2)⇒ (3) C ∈ FC(R) = F (R)⇒C+ ∈ I (R)⇒ ProdR(C+)⊆ I (R).
Conversely, R ∈ F (R) = FC(R)⇒ R+ ∈ ProdR(C+), but R+ is an injective cogen-

erator in Mod-R, so I (R)⊆ ProdR(C+).
(3)⇒ (2) A ∈ FC(R)⇔ A+ ∈ ProdR(C+) = I (R)⇔ A ∈ F (R).
(2)⇒ (1) Let

· · · → F1 → F0 →C0 →C1 → ···

be an exact sequence and call M ∼= Im(F0 →C0). By hypothesis and (2)⇔ (3) we have
FC(R) = F (R) and ProdR(C+) = I (R), so M is GC-flat if and only if it is Gorenstein
flat.

As a consequence of Proposition 3.2.23 and [78, Theorem 4.11], we get the follow-
ing case in which the class of GC-flat modules is closed under extensions.

Corollary 3.2.24. If C is a flat generator R-module, then R is GCF-closed.

3.3 Stability of relative Gorenstein flat modules
This section is a one-theorem and two consequences section devoted to give an an-

swer to the very interesting problem of the stability of a Gorenstein class of modules.
In our specific case, the class GCF(R). In other words, given a (ProdR(C+)⊗R −)-exact
exact sequence of GC-flat R-modules

· · · → G1 → G0 → G0 → G1 → ··· ,

is the module M ∼= Im(G0 → G1) GC-flat?
We call G2

CF(R) the class of all modules M defined as above, that is, modules with
(ProdR(C+)⊗R −)-exact GCF(R)-resolutions and coresolutions, and we will prove that
indeed, G2

CF(R) = GCF(R).
The first consequence deals with the question of the symmetry of GC-flat modules

with respect to classes in between F (R)∪FC(R) and GCF(R), that is: all exact and
(ProdR(C+)⊗R −)-exact sequences having as components modules in any class be-
tween F (R)∪FC(R) and GCF(R), regardless the positions they hold, will give GC-flat
modules as 0-syzygies.

And the second consequence is a very natural question: when is the class of Goren-
stein flat modules included in that of GC-flat modules?

Theorem 3.3.1. The equality G2
CF(R) = GCF(R) holds for any GCF-closed ring and

any w+-tilting module C.
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Proof. The proof will be done by showing that (ProdR(C+)⊗R -)-exact F (R)-resolutio-
ns (FC(R)-coresolutions) of a module exist if and only if (ProdR(C+)⊗R −)-exact
GCF(R)-resolutions (GCF(R)-coresolutions) exist.

We know by Corollary 3.2.9 that FC(R)⊆ GCF(R), so every FC(R)-coresolution is
indeed a GCF(R)-coresolution, and similarly, F (R) ⊆ GCF(R) by Proposition 3.2.17,
so every F (R)-resolution is a GCF(R)-resolution.

Conversely, suppose a module M has a (ProdR(C+)⊗R -)-exact GCF(R)-resolution

· · · → G1 → G0 → M → 0.

Choose an exact sequence
0 → L0 → F0 → G0 → 0

with F0 flat. As G0 and F0 are GC-flat (see Proposition 3.2.17), Proposition 3.2.15 gives
that L0 is also GC-flat. Call Ki = Im(Gi+1 → Gi) and construct the pullback

0

��

0

��

L0

��

L0

��

0 // D0

��

// F0

��

// M // 0

0 // K0 //

��

G0

��

// M // 0

0 0

Since G0 is GC-flat, the middle column is (ProdR(C+)⊗R −)-exact and then the
whole diagram is (ProdR(C+)⊗R −)-exact since the bottom row is so as well.

Now compute the pullback of D0 → K0 and G1 → K0:

0

��

0

��

K1

��

K1

��

0 // L0 // G′
1

��

// G1

��

// 0

0 // L0 // D0

��

// K0 //

��

0

0 0
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By the assumption on the ring, GCF(R) is closed under extensions so the middle row
shows that G′

1 ∈ GCF(R).
But the bottom row and the right column are (ProdR(C+)⊗R −)-exact, so the middle

row is (ProdR(C+)⊗R −)-exact too, and then we have a (ProdR(C+)⊗R −)-exact exact
sequence

· · · // G1

  

// G′
1

  

// F0 // M // 0

K1

>>

D0

??

with F0 ∈F (R), and Gi, G′
1 ∈GCF(R) for every i≥ 1. In particular, the module D0 has a

(ProdR(C+)⊗R −)-exact GCF(R)-resolution, so we can repeat the argument inductively
and get a (ProdR(C+)⊗R −)-exact F (R)-resolution of M.

It only remains to be shown that every module having a (ProdR(C+)⊗R −)-exact
GCF(R)-coresolution also has a (ProdR(C+)⊗R −)-exact FC(R)-coresolution, and this
will be done in a dual manner to that of F (R)-resolutions.

Suppose then that M has a (ProdR(C+)⊗R −)-exact GCF(R)-coresolution

0 → M → G0 → G1 → G2 → ·· ·

and call Ki = Ker(Gi → Gi+1). By Proposition 3.2.10, there is an exact sequence

0 → G0 → A0 → G′
0 → 0

for some A0 ∈ FC(R) and some GC-flat module G′
0. Compute the pushout of G0 → A0

and G0 → K1
0

��

0

��

0 // M // G0 //

��

K1 //

��

0

0 // M // A0

��

// P //

��

0

G′
0

��

G′
0

��

0 0

The top row is (ProdR(C+)⊗R −)-exact by assumption, and the middle and right
columns are (ProdR(C+)⊗R −)-exact since G′

0 is GC-flat. Therefore, the middle row is
also (ProdR(C+)⊗R −)-exact.
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Next, compute the pushout of K1 → G1 and K1 → P

0

��

0

��

0 // K1

��

// G1 //

��

K2 // 0

0 // P //

��

P′

��

// K2 // 0

G′
0

��

G′
0

��

0 0

Again, G1 and G′
0 are GC-flat so is P′, and the middle row must be (ProdR(C+)⊗R -)-

exact since the top row and the two columns are. Thus, we have a (ProdR(C+)⊗R −)-
exact sequence

0 // M // A0

��

// P′

��

// G2 // G3 // · · ·

P

@@

K2

>>

with A0 ∈ FC(R) and P′, Gi ∈ GCF(R). In particular, P has a (ProdR(C+)⊗R −)-
exact GCF(R)-coresolution, so we can repeat the argument and by induction construct a
(ProdR(C+)⊗R −)-exact FC(R)-coresolution of M.

We now prove the symmetry of GC-flat modules with respect to classes in between
F (R)∪FC(R) and GCF(R).

Corollary 3.3.2. Let R be GCF-closed. Then, the following assertions are equivalent.

(1) C is w+-tilting.

(2) M ∈ GCF(R) if and only if there exists a (ProdR(C+)⊗R −)-exact exact sequence
of R-modules

· · · →V1 →V0 →V 0 →V 1 → ·· ·
with M ∼= Im(V0 → V1) and Vi,V i belonging to some class V such that F (R)∪
FC(R)⊆ V ⊆ GCF(R).

(3) M ∈ GCF(R) if and only if there exists a (ProdR(C+)⊗R −)-exact exact sequence
of R-modules

· · · →V1 →V0 →V 0 →V 1 → ·· ·
with M ∼= Im(V0 →V1) and Vi,V i ∈ F (R)∪FC(R).
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Proof. (1)⇒ (2) is a direct consequence of Theorem 3.3.1.
(2)⇒ (3) Clear.
(3)⇒ (1) Clearly the sequences

· · · → 0 → R
1R→ R → 0 · · · and · · · → 0 →C

1C→C → 0 · · ·

are complete FC-flat resolutions, so R,C ∈ GCF(R) by hypothesis. Hence, C is w+-
tilting.

Corollary 3.3.3. Let R be GCF-closed and C be w+-tilting. The following conditions
are equivalent.

1. G F (R)⊆ GCF(R).

2. TorR
i≥1(ProdR(C+),G F (R)) = 0.

3. TorR
1 (ProdR(C+),G F (R)) = 0.

Thus, if idR(C+)< ∞ or fdR
(
(C+)I)< ∞ for every set I, then G F (R)⊆ GCF(R).

Proof. The case fdR
(
(C+)I) < ∞ for every set I is clear. If idR(C+) is finite, then the

injective dimension of every module in ProdR(C+) is also finite. But, TorR
≥1(E,G) = 0

for any E ∈ I (R) and any G ∈ G F (R) , so taking a finite injective coresolution of
any module X ∈ ProdR(C+), we see by dimension shifting that TorR

i≥1(X ,G F (R)) = 0.

3.4 Relative Gorenstein flat dimensions
In this section, we define and study FC-flat and GC-flat dimensions. In addition

to finding the connections between them, we study in depth the properties of the GC-
flat dimension, the relations between the dimensions of the modules in a short exact
sequence, the link with the vanishing of Tor, etc.

Definition 3.4.1. The FC(R)-resolution dimension of an R-module M is called FC-flat
dimension of M, and it is denoted as FC−fdR(M).

Remark 3.4.2. Over a commutative ring and when C is semidualizing, the classes
FC(R) and C ⊗R F (R) coincide (see Proposition 3.1.2 for a wider version of this),
so the FC-flat dimension of a module defined above generalizes the one given in [80].

The question that first comes to our mind is whether or not the FC-flat dimension
and the PC-projective or the IC-injective dimensions are related somehow. We start
by recalling these two concepts.
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Definition 3.4.3 ([19]). The PC-projective dimension of a module M, PC−pdR(M), is
defined as its AddR(C)-resolution dimension, and the IC-injective dimension of M is
defined as its ProdR(C)-coresolution dimension, and it is denoted by IC−idR(M).

Proposition 3.4.4. Let C and M be two arbitrary R-modules. The following statements
hold:

(1) FC−fdR(M)≤ PC−pdR(M).

(2) IC+−idR(M+)≤ FC−fdR(M).

(3) If M is GC-flat and FC−fdR(M)< ∞, then M ∈ FC(R).

Proof. (1) Clear since AddR(C)⊆ FC(R).
(2) Applying the functor HomR(−,Q/Z) to any FC(R)-resolution of M, we get a

ProdR(C+)-coresolution of M+, so the inequality holds.
(3) By (2), we have IC+−idR(M+) < ∞, and by Theorem 3.2.11 that M+ is GC+-

injective, so M+ ∈ ProdR(C+) by [19, Proposition 3.4(2)]. Hence, M ∈FC(R).

It is a fact already proven at this point how important would be to know when a
class with which one works in any homological aspect is closed under extensions. In
Corollary 3.2.13, we gave a necessary condition for the class GCF(R) to be closed under
extensions, and now, with the use of the dimensions just introduced, we can give another
and interesting condition.

Corollary 3.4.5. Let R be a ring such that every R-module has finite FC-flat dimension
(for instance, a ring of finite weak dimension when C = R). If C is ∏-Tor-orthogonal,
then GCF(R) is closed under extensions.

Proof. Proposition 3.4.4 gives the inclusion GCF(R)⊆ FC(R), Proposition 3.2.9 com-
pletes the equality GCF(R) = FC(R), and Proposition 3.1.6(3) guarantees that FC(R)
(and so GCF(R)) is closed under extensions.

We now give the concept of relative Gorenstein flat dimension.

Definition 3.4.6. The GC-flat dimension of an R-module M, GC-fdR(M), is defined as
the GCF(R)-resolution dimension of M.

As a first consequence of the definition we clearly see that, when C is ∏-Tor-
orthogonal, the GC-flat dimension of any module is always less than or equal to its
FC-flat dimension, since in this case FC(R)⊆ GCF(R).

It is a very natural problem to relate a given dimension (relative to a class A ) with
the vanishing properties of the functors which, one way or another, have influence in the
computation of A . This is our next goal for the class of GC-flat modules. And to do so,
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we first give a typical characterization of the size of all GC-flat resolutions of a module,
in terms of a given such resolution. Its proof is standard, but we think it is worth giving
it for completeness.

Theorem 3.4.7. Assume R is GCF-closed and C is w+-tilting. If M is an R-module and
n ≥ 0 is an integer, the following assertions are equivalent:

(1) GC-fdR(M)≤ n.

(2) GC-fdR(M)< ∞ and TorR
i>n(ProdR(C+),M) = 0.

(3) For every exact sequence of 0 → Kn → Gn−1 → ··· → G0 → M → 0, if each Gi is
GC-flat, then so is Kn.

Proof. (1)⇒(2) We have an exact sequence

0 → Gn → ··· → G0 → M → 0

with all Gi GC-flat. If we call Ki = Ker(Gi−1 → Gi−2) ∀i ≥ 1 (with G−1 = M), we have

TorR
n+i (X ,M)∼= TorR

i (X ,Gn) ∀i ≥ 1, ∀X ∈ ProdR(C+).

(2)⇒(3) There is an exact sequence

0 → Gm → ·· · → G0 → M → 0

with all Gi GC-flat. If m ≤ n then we are done, so suppose m > n and call Ki =
Ker(Gi−1 → Gi−2) ∀i ≥ 1 (again G−1 = M). We want to show that Kn is GC-flat.

For every i ≥ 1 and every j ≥ 0 we have TorR
i
(
ProdR(C+),G j

)
= 0 so there is an

isomorphism of abelian groups

TorR
i
(
X ,K j

)∼= TorR
i+ j (X ,M) ∀i ≥ 1, ∀ j ≥ 0,∀X ∈ ProdR(C+).

Then, using the hypotheses, we get TorR
i
(
ProdR(C+),K j

)
= 0 ∀i ≥ 1, ∀ j ≥ n, so

applying Proposition 3.2.16 to each sequence

0 → K j+1 → G j → K j → 0, j ≥ n

(Km = Gm) we see by induction that K j ∈ GCF(R) ∀ j ≥ n.
(3)⇒(1) We know by Corollary 3.2.18 that M has a GC-flat resolution, so the result

is clear.

As an immediate consequence of the above, we can see that the standard functorial
characterization of the dimension of a module, when it is finite, can also be proved in
the case of the GC-flat dimension. Moreover, the GC-flat dimension of a direct sum can
also be computed.
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Corollary 3.4.8. Assume R is GCF-closed and C is w+-tilting. The following assertions
hold:

1. If M is of finite GC-flat dimension, then

GC-fdR(M) = sup
{

i ∈ N; TorR
i (X ,M) ̸= 0 for some X ∈ ProdR(C+)

}
.

2. For any family of left R-modules {Mi; i ∈ I}, one has

GC-fdR(⊕i∈IMi) = sup{GC-fdR(Mi); i ∈ I}.

The next result provides a generalization of classical (in)equalities. It gives the
connections between the GC-flat dimension of the modules in a short exact sequence.

Proposition 3.4.9. Let R be GCF-closed and C be w+-tiling. Given a short exact se-
quence of R-modules 0 → K → M → N → 0, we have:

(1) If any two of K, M or N have finite GC-flat dimension, then so has the third.

(2) GC-fdR(K)≤ sup{GC-fdR(M),GC-fdR(N)−1}, and the equality holds whenever
GC-fdR(M) ̸= GC-fdR(N).

(3) GC-fdR(M)≤ sup{GC-fdR(K),GC-fdR(N)}, and the equality holds whenever
GC-fdR(N) ̸= GC-fdR(K)+1.

(4) GC-fdR(N)≤ sup{GC-fdR(M),GC-fdR(K)+1}, and the equality holds whenever
GC-fdR(K) ̸= GC-fdR(M).

Proof. (1) Let

· · · → P′
m → ··· → P′

0 → K → 0 and · · · → P′′
m → ··· → P′′

0 → N → 0

be two projective resolutions (and so GC-flat resolutions by Proposition 3.2.17) of K
and N, respectively, and apply the Horseshoe Lemma to get the commutative diagram
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with exact rows and columns

0

��

0

��

0

��

0 // Kn //

��

Mn //

��

Nn //

��

0

...

��

...

��

...

��

0 // P′
0

//

��

P′
0 ⊕P′′

0
//

��

P′′
0

//

��

0

0 // K //

��

M //

��

N //

��

0

0 0 0

If K and N have GC-flat dimension ≤ n, then both Kn and Nn are GC-flat modules by
Theorem 3.4.7 and then Mn ∈ GCF(R) since R is GCF-closed.

If GC-fdR(K),GC-fdR(M) ≤ n, then Kn,Mn ∈ GCF(R) and then Nn ∈ GCF(R) by
Proposition 3.2.16.

And if GC-fdR(M),GC-fdR(N) ≤ n, then Mn,Nn ∈ GCF(R) and then Kn ∈ GCF(R)
by Proposition 3.2.15.

We now prove (2) and avoid (3) and (4) since their proofs all follow the same argu-
ment.

And to prove (2), we can suppose n = sup{GC-fdR(M),GC-fdR(N)− 1} < ∞ since
the infinite case is clear.

In this case we have TorR
i>n(X ,M)= 0 and TorR

i>n+1(X ,N)= 0 for any X ∈ProdR(C+)
by Theorem 3.4.7, so from the long exact sequence

· · · → TorR
i+1(X ,N)→ TorR

i (X ,K)→ TorR
i (X ,M)→ TorR

i (X ,N)→ ··· ,

we immediately see that TorR
i (X ,K) = 0 for every i > n and every X ∈ ProdR(C+). But

of course GC-fdR(K)< ∞ by (1). So, GC-fdR(K)≤ n again by Theorem 3.4.7.
Assume now that GC-fdR(M) ̸= GC-fdR(N) and let us prove that TorR

n (X0,K) ̸= 0
for some X0 ∈ ProdR(C+).

If GC-fdR(M)> GC-fdR(N) then GC-fdR(M) = n > GC-fdR(N), which implies that
TorR

i≥n(X ,N) = 0 for every X ∈ ProdR(C+) and there exists some X0 ∈ ProdR(C+) for
which TorR

n (X0,M) ̸= 0. Then, from the exact sequence of Tor above, we get that
TorR

n (X0,K)∼= TorR
n (X0,M) ̸= 0.
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On the other hand, if GC-fdR(M) < GC-fdR(N), then GC-fdR(N) = n+ 1, which
implies that TorR

i≥n+1(X ,M) = 0 for every X ∈ ProdR(C+) and TorR
n+1(X0,N) ̸= 0 for

some X0 ∈ ProdR(C+). Again, from the exact sequence above we get that TorR
n (X0,K) ̸=

0.

Corollary 3.4.10. When R is GCF-closed and C is w+-tilting, the class of modules of
finite GC-flat dimension is closed under finite direct sums and direct summands. More-
over, it is also projectively resolving.

Proof. That the class is closed under finite direct sums and direct summands follows by
Corollary 3.4.8, and that it is projectively resolving by Propositions 3.4.9 and 3.2.17.

Proposition 3.4.11. Let R be GCF-closed, n ≥ 0 be an integer, M be an R-module, and
consider the following assertions:

(1) GC-fdR(M)≤ n.

(2) There exists an exact sequence of R-modules 0 → M → V → G → 0, where G is
GC-flat and FC−fdR(V )≤ n.

If C is ∏-Tor-orthogonal then (1)⇒(2) holds. If, in addition, C is w+-tilting then
(2)⇒(1) holds too.

Proof. (1)⇒(2) We use induction on the GC-flat dimension of M.
The case n = 0 follows directly from Proposition 3.2.10.
Assume then that n ≥ 1. There exists an exact sequence

0 → Gn → ··· → G0 → M → 0

where Gi ∈GCF(R) for every i∈{0, ...,n}. Let K =Ker(G0 →M). Clearly, GC-fdR(K)≤
n−1 so by induction there exists an exact sequence

0 → K →V ′ → G′ → 0,

where G′ is GC-flat and V ′ admits a FC-flat resolution of the type:

0 → Fn → ··· → F1 →V ′ → 0.
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Consider the pushout diagram

0

��

0

��

0 // K

��

// G0

��

// M // 0

0 // V ′ //

��

D

��

// M // 0

G′

��

G′

��

0 0

By the middle column D is GC-flat. Then, there exists a short exact sequence of
R-modules 0 → D → F0 → G → 0 where F0 ∈ FC(R) and G ∈ GCF(R). Consider then
another pushout diagram

0

��

0

��

0 // V ′ // D

��

// M

��

// 0

0 // V ′ // F0 //

��

V //

��

0

G

��

G

��

0 0

We now see that FC−fdR(V )≤ n since we have the FC-flat resolution of V

0 // Fn // · · · // F1 //

  

F0 // V // 0

V ′

>>
,

so the exact sequence 0 → M →V → G → 0 completes de proof.
(2)⇒(1) Follows from Proposition 3.4.9(2).

We mentioned above that over ∏-Tor-orthogonal modules C, the GC-flat dimension
of any module is less than or equal to its FC-flat dimension. But, indeed we can go a
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little further and see that, under the typical conditions on R, if the FC-flat dimension is
finite then it coincides with the GC-flat dimension.

Theorem 3.4.12. If C is ∏-Tor-orthogonal, then GC-fdR(M) ≤ FC−fd(M) for every
module M. If R is GCF-closed and C is w+-tilting, then

FC−fdR(M)< ∞ ⇒ GC-fdR(M) = FC−fdR(M).

Proof. Assume FC−fdR(M) < ∞ and call n = GC-fdR(M) < ∞. We use induction on
n, and the case n = 0 follows from Proposition 3.4.4(3), so let n ≥ 1.

Since FC−fdR(M)< ∞, there exists an exact sequence of R-modules

0 → K → F → M → 0

with F ∈FC(R) and FC−fd(K)<∞. But, F ∈FC(R)⊆GCF(R) so GC-fdR(K) = n−1
by Proposition 3.4.9 since R is GCF-closed, and then, by induction, FC−fdR(K) =
GC-fdR(K) = n− 1. Using again the above short exact sequence, we get that FC−
fdR(M)≤ n = GC-fdR(M). Therefore, FC−fdR(M) = GC-fdR(M).

In Theorem 3.4.12, we gave a sufficient condition to have the equality between the
given dimensions. Though we did not find a necessary condition, we can prove that the
equality does not always hold, by giving an example in which the inequality is strict.

Example 3.4.13. Let R be coherent and choose a non-FP-injective module M. Find an
injective coresolution and a flat resolution of M and glue them together:

· · · // F1 // F0

��

// E0 // E1 // · · ·

M

>>

Then, set C =⊕i≥0E i. Since (E i)+ is flat for every i and R is coherent, C+ is flat and
so the exact sequence above is (ProdR(C+)⊗R −)-exact. This means that GC-fdR(M) =
0. However, M cannot belong to FC(R) since ProdR(C+) ⊆ F (R) and M+ is not flat,
so FC−fdR(M) ̸= 0 (and therefore FC−fdR(M) = ∞ by Theorem 3.4.12).

When C is w+-tilting we have F (R) ⊆ GCF(R) and so the GC-flat dimension can
be seen as a refinement of, not only the FC-flat dimension, but also the flat dimension.
Therefore, a natural question comes up immediately: does Theorem 3.4.12 hold if we
replace the class FC(R) by F (R)? In other words, if the flat dimension of a module is
finite, does it coincide with the GC-flat dimension of the module?

Theorem 3.4.14. Let R be GCF-closed and C be w+-tilting. For any R-module M we
have

GC-fdR(M)≤ fdR(M),

and if R ∈ FC(R), then we have fdR(M)< ∞ ⇒ GC-fdR(M) = fdR(M).
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Proof. As mentioned above we have GC-fdR(M) ≤ fdR(M) so we only need to prove
the second assertion.

We then assume that n = fdR(M) is finite and use induction on n.
If n = 0, there is nothing to prove.
If n = 1, there exists an exact sequence 0 → F1 → F0 → M → 0 with F1 and F0

flat. We know that GC-fdR(M)≤ fdR(M) = 1 and if GC-fdR(M) = 0, then the sequence
0 → M+ → F+

0 → F+
1 → 0 would split since

Ext1R(F
+
1 ,M+)∼= TorR

1 (F
+
1 ,M)+ = 0

(F1 ∈ F (R) ⊆ FC(R)). But, this means that M is flat, contradicting the hypothesis
fdR(M) = 1. Hence, GC-fdR(M) = 1 = fdR(M).

Finally, if n > 1, consider an exact sequence 0 → K → F → M → 0 with F flat and
fdR(K)= n−1. By induction GC-fd(K)= n−1, so using 3.4.9(4) we get GC-fd(M)= n.

It is also natural to compare the GC-flat dimension of a module and the GC+-injective
dimension of its character module.

Corollary 3.4.15. For any R-module M the inequality

GC+-idR(M+)≤ GC-fdR(M)

holds. If moreover C is ∏-Tor-orthogonal and FC(R) is closed under direct products,
then this inequality is indeed an equality.

Proof. Apply Theorem 3.2.11.

And with the link given in the last result we can realize that the connection between
the two classes is indeed deep. We state such a connection to finish this section.

Corollary 3.4.16. Let R be GCF-closed, C be w+-tilting and FC(R) be closed under
direct products. For any integer number n ≥ 0 define the classes

GCF(R)
n
= {RM | GC-fdR(M)≤ n} and GC+I(R)

n
= {NR | GC+-idR(N)≤ n}.

The pair
(GCF(R)

n
,GC+I(R)

n
)

is a perfect duality pair.

Proof. The given pair is a duality pair by Corollary 3.4.15 and [17, Proposition 4.7].
Moreover, GCF(R)

n
is closed under direct sums by Proposition 3.4.8, it is closed un-

der extensions by Proposition 3.4.9(3), and of course R ∈ GCF(R)⊆ GCF(R)
n
.
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3.5 Relative weak Gorenstein global dimension
In this section we define and study the global GC-flat dimension of R.

Definition 3.5.1. The global GC-flat dimension of R is defined as the supremum, if it
exists, of the GC-flat dimension of every R-module:

GC −FD(R) := sup{GC-fdR(M)| M is an R-module }.

We set GC −FD(R) = ∞ if such a supremum does not exist.

Remark 3.5.2.

1. The global GC-flat dimension of rings was briefly studied in [90, 89] over com-
mutative rings with C being a semidualizing R-module.

2. When RC is a flat generator, we recover GFD(R) := GC −FD(R), the weak global
Gorenstein dimension of R.

The first main theorem of this section is Theorem 3.5.5. In order to prove it, we will
need the following two lemmas.

Lemma 3.5.3. Let R be GCF-closed and RC be ∏-Tor-orthogonal. For an R-module
M and an integer n ≥ 1, if GC-fdR(M) ≤ n, then there exists an exact sequence of R-
modules 0 → F → G → M → 0, where G is GC-flat and FC−fdR(F)≤ n−1.

Proof. By definition, there is a short exact sequence of R-modules 0→K →G0 →M →
0, where G0 is GC-flat and GC-fdR(K)≤ n−1. By Proposition 3.4.11, there is an exact
sequence of R-modules 0 → K → F → L → 0, where L is GC-flat and FC−fdR(F) ≤
n−1. Then, from the pushout diagram:

0

��

0

��

0 // K

��

// G0

��

// M // 0

0 // F //

��

G

��

// M // 0

L

��

L

��

0 0

.

wee see that G is GC-flat as G0 and L are GC-flat and R is GCF-closed.
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In the absolute case (see [10, Corollary 2.3]), the following key lemma is based on
the fact that the class of modules of finite flat dimension is closed under direct sum-
mands, which is not the case in our relative setting. Here, we adopt a different proof.

Lemma 3.5.4. Let R be GCF-closed and C be a w+-tilting R-module. If M is an injective
R-module, then FC−fdR(M) = GC-fdR(M).

Proof. The inequality GC-fdR(M) ≤ FC−fdR(M) holds by Theorem 3.4.12. For the
other inequality, we may assume that n = GC-fdR(M)< ∞.

If n= 0, then M is GC-flat and since M is injective, there exists by Proposition 3.2.10
a split exact sequence 0 → M → V → L → 0 with V ∈ FC(R). Thus, M ∈ FC(R) and
hence FC−fdR(M) = 0.

Let us now assume that n ≥ 1. By Proposition 3.4.11 and Lemma 3.5.3, there exist
two exact sequences of R-modules

0 → M → F1 → G1 → 0 and 0 → F2 → G2 → M → 0

where G1 and G2 are GC-flat and FC−fdR(F1) ≤ n and FC−fdR(F2) ≤ n− 1. Since
M is injective, the first sequence splits and so M ⊕G1 ∼= F1. Then, adding the second
sequence to 0 → 0 → G1 → G1 → 0 we get a short exact sequence of the form 0 →
F2 → G2 ⊕G1 → F1 → 0.

Since FC−fdR(F1)≤ n and FC−fdR(F2)≤ n−1, there exist exact sequences

0 → Xn−1 → ··· → X0 → F1 → 0 and 0 → Yn → Yn−1 → ··· → Y0 → F2 → 0

where Xi,Yj ∈ FC(R). It follows by Proposition 3.1.4 that C+ is ∏-self-orthogonal.
This implies that Extk≥1

R (Y+
j ,E) = 0 for all j = 0, · · · ,n and all E ∈ ProdR(C+)), so by

dimension shifting we get that Ext1R(F
+
2 ,E) = 0. Hence, the exact sequence

0 → F+
1 → G+

1 ⊕G+
2 → F+

2 → 0

is HomR(−,ProdR(C+))-exact and by Horseshoe Lemma we get the commutative dia-
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gram with exact rows and columns:

0

��

0

��

0

��

0 // F+
1

//

��

G+
1 ⊕G+

2
//

��

F+
2

//

��

0

0 // X+
0

//

��

X+
0 ⊕Y+

0
//

��

Y+
0

//

��

0

...

��

...

��

...

��

0 // X+
n−1

//

��

X+
n−1 ⊕Y+

n−1
//

��

Y+
n−1

//

��

0

0 // 0 //

��

K //

��

Y+
n

//

��

0

0 0 0

.

From the diagram, one can see that K ∼=Y+
n ∈ ProdR(C+). Then, we get IC+−idR(G+

1 ⊕
G+

2 )≤ n. By Proposition 3.2.7 and Theorem 3.2.11, (G1⊕G2)
+ is GC+-injective, since

G1 and G2 are GC-flat. This implies by [18, Proposition 3.4(2)] that (G1⊕G2)
+ ∼=G+

1 ⊕
G+

2 ∈ ProdR(C+), which gives that G2 ∈FC(R). Thus, FC−fdR(M)≤ n = GC-fdR(M).

Theorem 3.5.5. Assume that R is GCF-closed and RC is w+-tilting. Then, for a positive
integer n, the following assertions are equivalent:

1. GC −FD(R)≤ n.

2. The following two assertions hold:

(a) fdR(M)≤ n for every IC+-injective right R-module M.

(b) FC−fdR(M)≤ n for every injective left R-module M.

3. The following two assertions hold:

(a) fdR(M)≤ n for every IC+-injective right R-module M.

(b) GC-fdR(M)≤ n for every injective left R-module M.
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Consequently, the GC-flat global dimension of R can be computed via the following
formula:

GC −FD(R) = max{fdR(ProdR(C+)),FC−fdR(I (R))}.

Proof. 2.⇔ 3. Follows by Lemma 3.5.4.
1.⇒ 3. The assertion (b) holds by definition. Let us prove (a).
Note that fdR(M) ≤ n if and only if TorR

n+1(M,A) = 0 for every R-module A. But
GC −FD(R)≤ n means that for every such A there is an exact sequence

0 → Gn → ··· → G0 → A → 0

with Gi ∈ GCF(R) for all i ≥ 0. Now, M ∈ ProdR(C+) implies that TorR
i≥1(M,Gi) = 0

for all i so TorR
n+1(M,A)∼= TorR

1 (M,Gn) = 0.
3. ⇒ 1. Let M be an R-module. Consider a projective resolution and an injective

coresolution of M:

· · · → P1 → P0 → P−1 = M → 0 and 0 → M = I−1 → I0 → I1 → ··· ,

respectively. Decomposing these exact sequences into short exact ones, we get, for
every integer i ∈ N,

0 → Ni+1 → Pi → Ni → 0 and 0 → Ki → Ii → Ki+1 → 0

where Ni = Im(Pi → Pi−1) and Ki = Ker(Ii → Ii+1). Adding the direct sum of the first
sequences,

0 →⊕i∈NNi+1 →⊕i∈NPi → M⊕ (⊕i∈NNi+1)→ 0,

to the direct product of the second ones,

0 → M⊕ (∏
i∈N

Ki+1)→ ∏
i∈N

Ii → ∏
i∈N

Ki+1 → 0,

we get the exact sequence

0 → M⊕ (N ⊕K)→ P⊕ I → M⊕ (N ⊕K)→ 0

where N =⊕i∈NNi+1, K = ∏i∈NKi+1, P =⊕i∈NPi and I = ∏i∈N Ii.
Now, consider a projective resolution of M⊕ (N ⊕K) :

· · · → H1 → H0 → M⊕ (N ⊕K)→ 0.
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Thus, by Horseshoe Lemma, we get a commutative diagram with exact rows and columns

0

��

0

��

0

��

0 // Jn //

��

H //

��

Jn //

��

0

0 // Hn−1 //

��

Hn−1 ⊕Hn−1 //

��

Hn−1 //

��

0

:

��

:

��

:

��

0 // H0 //

��

H0 ⊕H0 //

��

H0 //

��

0

0 // M⊕ (N ⊕K) //

��

P⊕ I //

��

M⊕ (N ⊕K) //

��

0

0 0 0

Note that P is GC-flat by Proposition 3.2.17 and since I is injective, GC-fdR(P⊕ I) =
GC-fdR(I)≤ n by Corollary 3.4.8(2) and the hypotheses. But, since each Hi is GC-flat,
H is GC-flat as well by Theorem 3.4.7.

Now, let X be any IC+-injective right R-module. By hypothesis, fdR(X)≤ n. Then,
using the projective resolution of M⊕ (N ⊕K), we get

TorR
1 (X ,Jn)∼= TorR

n+1(X ,M⊕ (N ⊕K)) = 0.

So, the sequence 0 → Jn → H → Jn → 0 is (ProdR(C+)⊗R −)-exact. Then, assembling
these sequences, we get a (ProdR(C+)⊗R −)-exact exact sequence

· · · → H
f→ H

f→ H → ···

with Jn = Ker f . Therefore, Jn is GC-flat by Theorem 3.3.1 and then GC-fdR(M) ≤
GC-fdR(M⊕ (N ⊕K))≤ n by Corollary 3.4.8(2) as desired.

The following special case of Theorem 3.5.5 was proved by Emmanouil ([33, The-
orem 5.3]) when the Gorenstein weak dimension of R is finite. Here we drop this finite-
ness condition.

Corollary 3.5.6. The weak global Gorenstein dimension of R can be computed via the
following simple formulas:

GFD(R) = max{fdRop(I (Rop)),GfdR(I (R))}
= max{fdRop(I (Rop)), fdR(I (R))}.
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For completeness, we state the right version of Theorem 3.5.5.

Theorem 3.5.7. Assume that S is any GCF-closed ring and C is a w+-tilting S-module.
The global GC-flat dimension of S can be computed as follows:

GC −FD(S) = max{fdS(ProdS(C+)),FC−fdS(I (S))}
= max{fdS(ProdS(C+)),GC-fdS(I (S))}.

Lemma 3.5.8. Let C be a semidualizing (R,S)-bimodule. The following equalities hold:

1. fdS(HomR(C,E)) = FC−fdR(E) for every injective left R-module.

Consequently, fdS(ProdS(C+)) = FC−fdR(I (R)).

2. fdR(HomS(C,E)) = FC−fdS(E) for every injective right S-module.

Consequently, fdR(ProdR(C+)) = FC−fdS(I (S)).

Proof. Assertion (2) can be proved in a similar way to (1); so we only prove (1).
First, we prove that fdS(HomR(C,E))≤ FC−fdR(E).
We may assume that n = FC−fdR(E) < ∞ since the infinite case is clear. Recall

(Proposition 3.1.2(2)) that with our hypothesis we have FC(R) = C⊗S F (S), so there
exists an exact sequence of R-modules:

0 →C⊗S Fn → ··· →C⊗S F0 → E → 0

where each SFi is flat. By [37, Theorem 3.2.15 and Remark 3.2.27], for every k ≥ 1 we
get

ExtkR(C,C⊗S Fi)
+ ∼= (ExtkR(C,C)⊗S Fi)

+

∼= HomS(F,ExtkR(C,C)+) = 0.

Then, ExtkR(C,C⊗S Fi) = 0 for every i ≥ 1. Hence, the sequence of left S-modules

0 → HomR(C,C⊗S Fn)→ ··· → HomR(C,C⊗S F0)→ HomR(C,E)→ 0

is exact. But, for each i = 0, · · · ,n

HomR(C,C⊗S Fi)∼= HomR(C,C)⊗S Fi ∼= SFi

by [37, Theorem 3.2.14], which implies that fdS(HomR(C,E))≤ n.
Now we prove the other inequality. Suppose that n = fdS(HomR(C,E))< ∞. Then,

there exists a finite flat resolution of SHomR(C,E):

0 → Fn → ··· → F0 → HomR(C,E)→ 0.
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Using [53, Lemma 1.2.11], we get, for every k ≥ 0,

TorS
k(C,HomR(C,E))∼= HomR(ExtkS(C,C),E)∼=


E if k = 0

0 if k ≥ 1
.

Then, we get an exact sequence

0 →C⊗S Fn → ··· →C⊗S F0 → E → 0

where each C⊗S Fi is FC-flat. Hence, FC−fdR(E)≤ n = fdS(HomR(C,E)).
Finally, keeping in mind that ProdS(C+) =HomR(C,I (R)), we get the last equality.

The following result is the second main result of this section.

Theorem 3.5.9. Let C be a semidualizing (R,S)-bimodule such that R and S are GCF-
closed rings. Then

GC −FD(R) = GC −FD(S).

In this case, we define the common value of these two numbers to be the GC-flat
dimension of the pair of rings (R,S) and we denote it by GC −FD(R,S).

Proof. By Theorems 3.5.5 and 3.5.7, we have the following two formulas:

GC −FD(R) = max{fdR(ProdR(C+)),FC−fdR(I (R))},

GC −FD(S) = max{fdS(ProdS(C+)),FC−fdS(I (S))}.

On the other hand, by Lemma 3.5.8, we know that

fdR(ProdR(C+)) = FC−fdS(I (S)) and fdR(ProdS(C+)) = FC−fdR(I (R)).

Therefore, GC −FD(R) = GC −FD(S).

We end this section with some consequences of Theorem 3.5.9.

Substituting the GCF-closeness condition in Theorem 3.5.9 by the coherence condi-
tion, keeping in mind Corollary 3.2.13, we get the following special case.

Corollary 3.5.10. Let C be a semidualizing (R,S)-bimodule such that R is left coherent
and S is right coherent. Then

GC −FD(R) = GC −FD(S).
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Bennis conjectured in [10] that the weak global Gorenstein dimension of R is sym-
metric. That is, the equality GFD(R) = GFD(Rop) holds.

This conjecture has been investigated by many authors. Mahdou and Tamekkante
[71, Corollary 2.8] solved it in the case where R is (two-sided) coherent and Emmanouil
[33, Theorem 5.3] solved it in the case where both R and Rop have finite Gorenstein weak
global dimension. Bouchiba [22, Corollary 3.5], on the other hand, showed that this
conjecture is true when the classes of Gorenstein flat left and right R-modules are closed
under extensions. But, this is always true by Corollary 3.2.24. Thus, this conjecture is
solved. Recently, Christensen, Estrada, and Thompson have re-established this fact
using a different approach [29, Corollary 1.4].

As a direct consequence of Theorem 3.5.9, we obtain a third proof. Note that our
proof is simple and completely different from the ones given in [22] and [29].

Corollary 3.5.11. ([22, Corollary 3.5.] and [29, Corollary 1.4]). Over any ring R, the
weak global Gorenstein dimension of R is symmetric, that is, we have the equality:

GFD(R) = GFD(Rop).

Recall from [10] that a ring R is n-IF if every left and right injective R-module has
flat dimension at most n. A two-sided noetherian ring is n-IF if and only if it is n-
Gorenstein by [37, Theorem 9.1.11]. Bennis characterized in [10, Theorem 2.8] n-IF
rings provided that they are (two-sided) coherent. As another consequence of Theorem
3.5.5, we drop the coherence assumption.

Corollary 3.5.12. A ring R is n-IF if and only if GFD(R)≤ n.

Assume that R is left coherent and S is right coherent. Zhu and Ding ([91, Theorem
2.6]) proved that if RC and CS have finite FP-injective dimension, then FP-idR(C) =
FP-idS(C). We show next that this happens exactly when R (or S) has finite global GC-
flat dimension. But first, we need the following lemma.

Lemma 3.5.13.
1. If R is left coherent, then fdR(ProdR(C+)) = FP-idR(C).

2. If S is right coherent, then fdS(ProdS(C+)) = FP-idS(C).

Proof. We only prove (1) since (2) has a similar proof.
Following [43, Theorem 2.2], we get that FP-idR(C) = fdR(C+)≤ fdR(ProdR(C+)).

Conversely, if FP-idR(C) = ∞, then the equality holds true. So, we may assume that
n = FP-idR(C)< ∞.

Let X ∈ ProdR(C+). Then, X is a direct summand of some (C+)I . Using again
[43, Theorem 2.2], we get that fdR(C+) = FP-idR(C) = n. But, the direct product of
any family flat resolutions is a flat resolution by [37, Theorem 3.2.24]. This means that
fdR((C+)I)≤ n. Hence, fdR(X)≤ fdR((C+)I)≤ n. Consequently, fdR(ProdR(C+))≤ n.
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Assume that R and S are left and right noetherian rings, respectively. Recall ([38,
Definition 3.1]) that a semidualizing (R,S)-bimodule is called dualizing if CS and RC
both have finite injective dimension. Replacing noetherian by coherent and injective by
FP-injective, we get the following weaker notion.

Definition 3.5.14. Let R and S be left and right coherent rings, respectively. A semid-
ualizing (R,S)-bimodule C is said to be weak dualizing if RC and CS both have fi-
nite FP-injective dimension. In this case, C is said to be weak n-dualizing where
n = FP-idR(C) = FP-idS(C).

Corollary 3.5.15. Assume that C is a semidualizing (R,S)-bimodule such that R is left
coherent and S is right coherent. Then, GC −FD(R,S) ≤ n if and only if C is weak
n-dualizing.

Consequently, GC −FD(R,S) = max{FP-idR(C),FP-idS(C)}.

Proof. Follows from Corollary 3.5.10, Theorem 3.5.5, Lemmas 3.5.8 and 3.5.13 and
the comment just before Lemma 3.5.13.

Corollary 3.5.16. Assume that C is a semidualizing (R,S)-bimodule such that R is left
coherent and S is right coherent. Then, GC −FD(R,S) = 0 if and only if both RC and
CS are FP-injective modules.
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CHAPTER 4

RELATIVE GORENSTEIN FLAT MODULES AND
THEIR MODEL STRUCTURES

Given a ring R and an R-module C, we introduce and study new concepts of relative
Gorenstein cotorsion and cotorsion modules: GC-cotorsion and (strongly) CC-cotorsion
modules. As an application, we prove that there is a unique hereditary abelian model
structure on the category of R-modules, in which the cofibrations are the monomor-
phisms with GC-flat cokernel and the fibrations are the epimorphisms with CC-cotorsion
kernel belonging to the Bass class BC(R). Moreover, we also give a concrete description
of the weak equivalences under the assumption that R has finite global GC-flat dimen-
sion. To prove this point, an interesting connection between abelian model structures
and AB-weak contexts is proved. This connection leads to a result that can be applied
to obtain abelian model structures with a simpler description of trivial objects.

Throughout this chapter, unless otherwise stated, S will be the endomorphism ring
of C, S = EndR(C), and A an abelian category.

4.1 Relative cotorsion modules
In this section we introduce some classes of relatively cotorsion modules. Besides

their links with other known classes of modules (cotorsion, flat, FC-flat, etc.), we are
interested in discovering the main homological properties of these new classes.

Recall that a module M is cotorsion if Ext1(F,M) = 0 for every flat module F ,
equivalently, if Exti(F,M) = 0 for every flat module F and i≥ 1 ([37, Definiton 5.3.22]).
In the following definition, we extend the concept of cotorsion modules to our relative
setting.

Definition 4.1.1. Given an integer n ≥ 1, an R-module M is said to be n-CC-cotorsion
if ExtiR(N,M) = 0 for all FC-flat modules N and 1 ≤ i ≤ n.
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• M is called CC-cotorsion if it is 1-CC-cotorsion.
• M is called strongly CC-cotorsion if it is n-CC-cotorsion for every n ≥ 1.

We use CC(R) (resp., C n
C(R), S C C(R)) to denote the class of all CC-cotorsion

(resp., n-CC-cotorsion, strongly CC-cotorsion) R-modules.

Remarks 4.1.2.

1. When R is a commutative noetherian ring and RC is a semidualizing R-module,
strongly CC-cotorsion modules coincide with the C-cotorsion modules defined in
[79] and the strongly C-cotorsion modules defined in [26].

2. Given an integer n ≥ 1, every (n+1)-CC-cotorsion R-module is n-CC-cotorsion.
Moreover, we have the following ascending sequence:

S C C(R)⊆ ·· · ⊆ C n+1
C (R)⊆ C n

C(R)⊆ ·· · ⊆ CC(R),

where S C C(R) can be written as S C C(R) = ∩n≥1C
n
C(R).

Examples 4.1.3.

1. When RC is a flat generator, C (R) = CC(R) = S C C(R).

2. Every injective module is (strongly) CC-cotorsion.

3. Assume that RC is ∏-Tor-orthogonal. Given any FC-cover ϕ : F → M (which
exists by Proposition 3.1.6(1)), Kerϕ is a CC-cotorsion module (Lemma 1.5.4(1)).

4. Recall that a module M is called Gorenstein cotorsion if Ext1R(G,M) = 0 for
every Gorenstein flat module G. If RC is flat, then FC(R) ⊆ F (R) ⊆ G F (R).
Hence, both cotorsion and Gorenstein cotorsion modules are CC-cotorsion.

5. Assume that every FC-flat R-module has finite injective dimension. Then,
I (R)⊥∞ ⊆ S C C(R). In particular, every Gorenstein injective R-module is
(strongly) CC-cotorsion.

It is unknown whether or not the class of CC-cotorsion R-modules is closed under
cokernels of monomorphisms. However, when this happens, all the introduced relative
cotorsion R-modules coincide.

Proposition 4.1.4. Let n ≥ 1 be an integer.

(1) The class S C C(R) is closed under cokernels of monomorphisms.

(2) The following assertions are equivalent:
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(a) The class of n-CC-cotorsion modules is closed under cokernels of monomor-
phisms.

(b) Every n-CC-cotorsion module is (n+1)-CC-cotorsion.

(c) Every n-CC-cotorsion module is strongly CC-cotorsion.

In this case, S C C(R) = · · ·= C n+1
C (R) = C n

C(R).

Proof. (1) Straightforward.
(2) We only prove (a)⇒ (b), since the other implications are clear. Let X be n-CC-

cotorsion and consider a short exact sequence of R-modules

0 → X → I → L → 0

with I injective. By hypothesis, L is n-CC-cotorsion. So, the exact sequence

0 = ExtnR(F,L)→ Extn+1
R (F,X)→ Extn+1

R (F, I) = 0

shows that Extn+1
R (F,X) = 0 for every F ∈ FC(R).

In light of Proposition 3.1.2, it is natural to wonder whether there is a relation be-
tween CC-cotorsion R-modules and cotorsion S-modules. The following result gives
such a useful relation.

Proposition 4.1.5. Assume that RC is finitely presented and let n ≥ 1, be an integer. An
R-module M is n-CC-cotorsion if and only if M ∈ C⊥n and HomR(C,M) is a cotorsion
left S-module.

Consequently, BC(R)∩C n
C(R) =C⊗S (AC(S)∩C (S)) .

Proof. (⇒) Assume that M is n-CC-cotorsion. Clearly M ∈ C⊥n , since RC is FC-flat.
We prove now that HomR(C,M) is a cotorsion S-module.

Let F be a flat S-module and consider an exact sequence of left S-modules

0 → K → P → F → 0

with P projective. Note that this sequence is pure, which implies that SK is flat and the
induced sequence 0 →C⊗S K →C⊗S P →C⊗S F → 0 is exact. Since C⊗S F is FC-
flat, Ext1R(C⊗S F,M) = 0. Then, we can construct the following commutative diagram
with exact rows:

HomR(C⊗S P,M) //

∼=
��

HomR(C⊗S K,M) //

∼=
��

0

HomS(P,HomR(C,M)) // HomS(K,HomR(C,M)) // Ext1S(F,HomR(C,M)) // 0
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where the first two vertical morphisms are the adjoint isomorphisms. We then see that
Ext1S(F,HomR(C,M)) = 0 and hence that HomR(C,M) is cotorsion.

(⇐) Conversely, we proceed by induction on n.
Consider an exact sequence of R-modules 0 → M → I → L → 0, where I is injective.

Since Ext1R(C,M) = 0, the induced sequence

0 → HomR(C,M)→ HomR(C, I)→ HomR(C,L)→ 0

is exact. Let C⊗S F be an FC-flat R-module and n = 1.
By the the implication (⇒), HomR(C, I) is cotorsion since I is CC-cotorsion. Then,

Ext1R(F,HomR(C, I)) = 0. Also, we have by hypothesis that Ext1R(F,HomR(C,M)) = 0.
Consider now the commutative diagram with exact rows

HomR(C⊗S F, I) //

∼=
��

HomR(C⊗S F,L) //

∼=
��

Ext1R(C⊗S F,M) // 0

HomS(F,HomR(C, I)) // HomS(F,HomR(C,L)) // 0

where the first two vertical maps are the adjoint isomorphisms. Hence, Ext1R(C ⊗S
F,M) = 0 and then M is CC-cotorsion.

Assume now that n ≥ 2. By induction, M is n-CC-cotorsion, so we only need to
prove that Extn+1

R (C⊗S F,M) = 0.
Since RI is injective (and then (n+ 1)-CC-cotorsion), HomR(C, I) is a cotorsion S-

module and then the exact sequences

0 = ExtkR(C, I)→ ExtkR(C,L)→ Extk+1
R (C,M) = 0

and

0 = ExtkS(F,HomR(C, I))→ ExtkS(F,HomR(C,L))→ ExtkS(F,HomR(C,M)) = 0

show that ExtkS(F,HomR(C,L)) = 0 = ExtkR(C,L) for every k = 1, ...,n. Using induction
again, we get that L is n-CC-cotorsion. Now using the exact sequence

0 = ExtnR(C⊗S F,L)→ Extn+1
R (C⊗S F,M)→ Extn+1

R (C⊗S F, I) = 0,

we get that Extn+1
R (C⊗S F,M) = 0 as desired, and the proof of the equivalence is fin-

ished.
We prove now the equality BC(R)∩C n

C(R) =C⊗S (AC(S)∩C (S)).
Let M be an R-module. If M ∈ BC(R)∩C n

C(R), then M = C⊗S F for some SF ∈
AC(S). Moreover, since M ∈ C n

C(R), F ∼= HomS(C,C⊗S F) = HomS(C,M) is a cotor-
sion S-module by the above equivalence. Hence, M =C⊗S F ∈C⊗S (AC(S)∩C (S)).

For the other inclusion, assume that M =C⊗S F with SF ∈ AC(S)∩C (S). Clearly,
M is in BC(R). On the other hand, we have that HomR(C,M) ∼= F is a cotorsion S-
module and ExtiR(C,M) = 0 for every i ≥ 1, since M ∈ BC(R). Using again the equiva-
lence proved above, we get that M ∈ C n

C(R). Thus, the equality holds.

120
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Corollary 4.1.6. Assume that RC is finitely presented. An R-module M is strongly CC-
cotorsion if and only if M ∈C⊥∞ and HomR(C,M) is a cotorsion left S-module.

Consequently, BC(R)∩S C C(R) =C⊗S (AC(S)∩C (S)) = BC(R)∩CC(R).

Given a regular cardinal number κ , following [40, Definition 2.1] and [68, Definition
3.6], a class X of R-modules or complexes of R-modules is a κ-Kaplansky class if for
every object M ∈ X and every x ∈ M there exists a subobject N of M that contains x,
with the property that |N| ≤ κ and both N and M/N are in X . We say that X is a
Kaplansky class if it is a κ-Kaplansky class for some regular cardinal κ .

Two proofs were given by Bican, El Bashir and Enochs in [21], showing that the
class of flat modules forms the left side of a complete cotorsion pair (F (R),C (R)). In
that paper, the authors solved the Flat cover Conjecture. In the following result, whose
proof is inspired by that given by Enochs, we prove a relative version of this conjecture.

Theorem 4.1.7. Let C be ∏-Tor-orthogonal. The following assertions hold:

1.
(⊥CC(R),CC(R)

)
is a complete cotorsion pair cogenerated by a set. Moreover,

every R-module has a CC-cotorsion envelope.

2.
(⊥S C C(R),S C C(R)

)
is a complete hereditary cotorsion pair cogenerated by a

set.

3. The following assertions are equivalent:

(a)
(
FC(R),FC(R)⊥

)
is a perfect cotorsion pair cogenerated by a set.

(b) Every R-module has a special FC-flat precover.

(c) Every flat R-module is FC-flat.

(d) R is a FC-flat R-module.

Proof. 1. Assume that κ ≥ |R|+ℵ0 is a regular cardinal number and let F ∈ FC(R).
Proceeding by transfinite induction we construct a continuous chain

0 ̸= F0 ⊆ F1 ⊆ ·· · ⊆ Fα ⊆ Fα+1 ⊆ ·· · ⊆ F

of pure submodules of F with each F0,Fα+1/Fα ∈ FC(R) and |F0|, |Fα+1/Fα | ≤ κ .
• Let x ∈ F . By [53, Lemma 1.2.17(a)], there is a pure submodule F0 ⊆ F with

x ∈ F0 and such that |F0| ≤ κ . Since the class FC(R) is closed under pure submodules
and pure quotients by Proposition 3.1.6(2), F0,F/F0 ∈FC(R). This means, in particular,
that FC(R) is a κ-Kaplansky class.

• For any ordinal number α , consider F/Fα and choose any element xα+1 +Fα ∈
F/Fα . Using again [53, Lemma 1.2.17(a)], there exists a pure submodule Fα+1/Fα ⊆
F/Fα with xα+1 + Fα ∈ Fα+1/Fα and such that |Fα+1/Fα | ≤ κ . Since Fα ⊆ F and
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Fα+1/Fα ⊆ F/Fα are pure submodules, Fα+1 ⊆ F is a pure submodule by [53, Lemma
1.2.17(b)]. Moreover, Fα+1/Fα , F/Fα+1 ∼= (F/Fα)/(Fα+1/Fα) ∈ FC(R).

• For a limit ordinal β , we define Fβ = ∪α<β Fα . As each Fα is a pure submodule
of F , then so is Fβ by [53, Lemma 1.2.17(d)].

Therefore, we see we can find an ordinal number λ such that F = ∪α<λ Fα with
(Fα)α<λ being a continuous chain of submodules of F with desired properties.

Choose a representative of each isomorphism class of FC(R) with cardinality at
most κ and let X be their direct sum. Clearly, CC(R) ⊆ X⊥ and Eklof’s Lemma [37,
Theorem 7.3.4] gives that X⊥ ⊆ FC(R)⊥ = CC(R). Thus, CC(R) = X⊥ and hence(⊥CC(R),CC(R)

)
is a complete cotorsion pair by [37, Theorem 7.4.1].

The last statement follows by [40, Theorem 2.8].
2. If we prove that S C C(R) = M⊥ for some R-module M, this assertion will follow

by Proposition 4.1.4 and Theorem 1.5.13.
By the proof of item 1, we have CC(R) = X⊥. We claim that S C C(R) = X⊥∞ .

Clearly, S C C(R) ⊆ X⊥∞ . Conversely, take N ∈ X⊥∞ and let 0 → N → I → L → 0 be
a short exact sequence of R-modules where I is injective. Note that L ∈ X⊥∞ ⊆ X⊥ =
CC(R), so by the long exact sequence, we get that

0 = Ext1R(F,L)→ Ext2R(F,N)→ Ext2R(F, I) = 0

for every F ∈ FC(R). Hence, Ext2R(F,N) = 0.
Repeating this process, we get that ExtiR(F,N) = 0 for every i≥ 1. Therefore, X⊥∞ ⊆

S C C(R) and then S C C(R) = X⊥∞ . This means by Lemma 1.5.17 that S C C(R) =
X⊥∞ = M⊥ for some R-module M.

3. The implications (a)⇒ (b) and (c)⇒ (d) are obvious.
(b) ⇒ (c) Let F be a flat R-module and consider a special FC-flat precover of F :

0 → K → X → F → 0. Since F is flat, this sequence is pure. But, FC(R) is closed under
pure quotient, so F is FC-flat.

(d)⇒ (a) By Proposition 3.1.6(4), FC(R) is closed under direct limits. So, by (1)
and Theorem 1.5.10, we only need to show that FC(R) =⊥ CC(R).

Clearly, FC(R)⊆ ⊥CC(R). Conversely, take X ∈ ⊥CC(R) and consider an FC-flat
cover f : F → X , which exists by Proposition 3.1.6(1). Since the class FC(R) is closed
under direct sums and summands and RR is FC-flat, we get that P(R)⊆FC(R). Hence,
the morphism f is surjective and K = Ker f is CC-cotorsion by Lemma 1.5.4. But since
X ∈⊥ CC(R), X will be a direct summand of F ∈ FC(R). Hence, X ∈ FC(R) and thus
FC(R) =⊥ CC(R).

4.2 Relative Gorenstein cotorsion modules
In this section, we prove that the class of GC-flat modules is the left hand class of a

perfect hereditary cotorsion pair. Consequently, every module has a GC-flat cover.
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Definition 4.2.1. An R-module M is said to be GC-cotorsion if Ext1R(N,M) = 0 for all
GC-flat modules N.

We use GCC(R) to denote the class of all GC-cotorsion R-modules.

Remark 4.2.2. When C = R, GCC(R) coincides with G C (R) = G F (R)⊥, the class of
Gorenstein cotorsion modules.

GC-cotorsion modules are at the same time cotorsion and (strongly) CC-cotorsion,
as the following result shows.

Proposition 4.2.3. Let C be ∏-Tor-orthogonal. Then, every GC-cotorsion module is
CC-cotorsion. Moreover, if R is GCF-closed and C is w+-tilting then

GCC(R) = C (R)∩S C C(R)∩LC(R),

where LC(R) is the class of R-modules M such that the complex HomR(X,M) is exact
for any complete FC-flat complex X.

Proof. The first statement follows from the inclusion FC(R) ⊆ GCF(R) by Corollary
3.2.9 . Now we prove the equality.

(⊆) Assume that M is GC-cotorsion. Then, M is cotorsion since F (R) ⊆ GCF(R)
by Proposition 3.2.17.

Since FC(R)⊆ GCF(R), GCF(R)⊥∞ ⊆ S C C(R). So, to show that M ∈ S C C(R) it
suffices to show that ExtiR(G,M) = 0 for every i ≥ 2 and every G ∈ GCF(R).

Take a projective resolution of G

· · · → P1 → P0 → G → 0

and let Ki = Ker(Pi−1 → Pi−2). Since Pi,G ∈ GCF(R), each Ki ∈ GCF(R) by Proposition
3.2.15(1). Hence, ExtiR(G,M)∼= Exti−1

R (K1,M)∼= · · · ∼= Ext1R(Ki−1,M) = 0.
Consider now a complete FC-flat complex

X : · · · → F1 → F0 →C−1 →C−2 → ·· · .

By Corollaries 3.2.9 and 3.2.19, every image Ii = Im(Fi+1 → Fi) and kernel K j =
Ker(C j → C j−1) is GC-flat. Then, Ext1R(Ii,M) = 0 = Ext1R(K j,M) for all i ≥ 0 and
j ≤−1, which implies that X is HomR(−,M)-exact.

(⊇) Let M ∈ C (R)∩S C C(R)∩LC(R) and N be GC-flat. Then, there exists a
complete FC-flat resolution X as above such that N = Ker(C−1 → C−2). Consider the
short exact sequence 0 → I0 → F0 → N → 0. Since this sequence is HomR(−,M)-exact
and M is cotorsion, the exactness of sequence

0 → HomR(N,M)→ HomR(F0,M)→ HomR(I0,M)→ Ext1R(N,M)→ 0

shows that Ext1R(N,M) = 0. Thus, M is GC-cotorsion.
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Lemma 4.2.4. Assume that R is GCF-closed and C is w+-tilting. Then, the class of
GC-flat R-modules is a Kaplansky class.

Proof. Let Ã be the class of all (ProdR(C+)⊗R −)-exact exact complexes of R-modules
with components in A := F (R)∪FC(R). Since FC(R) and F (R) are closed under
direct summands, pure submodules and pure quotients, so is the class A . On the other
hand, similarly to the proof of [41, Theorem 3.7], we get that the class ˜A is closed
under pure subcomplexes and pure quotients (see [41, Definition 3.1]). Using now [41,
Proposition 3.4], we get that the class ˜A is a Kaplansky class. But since GCF(R) is the
class of 0-syzygies of exact sequences in Ã by [14, Corollary 5.2], we get that it is also
a Kaplansky class, as desired.

Corollary 4.2.5. Assume that R is GCF-closed and C is w+-tilting. Then, GCF(R) is
preenveloping if and only if it is closed under direct products.

Proof. Follows from [40, Theorem 2.5] since the class GCF is closed under direct limits
by Proposition 3.2.15(3).

Theorem 4.2.6. Let C be ∏-Tor-orthogonal. The following assertions are equivalent:

1. (GCF(R),GCC(R)) is a perfect hereditary cotorsion pair cogenerated by a set.

2. R is GCF-closed and C is w+-tilting.

In this case, GCF(R) is covering and GCC(R) is enveloping.

Proof. 2. ⇒ 1. Following Lemma 4.2.4, GCF(R) is a Kaplansky class and by Propo-
sitions 3.2.15 and Theorem 3.2.21 it is closed under direct limits and projectively re-
solving. Therefore, (GCF(R),GCC(R)) is a hereditary perfect cotorsion pair by [40,
Theorem 2.9].

Finally, as in the proof of Theorem 4.1.7(1), our pair is cogenerated by a set.
1. ⇒ 2. By hypothesis, ⊥GCC(R) = GCF(R) so, the class GCF(R) is closed under

extensions, and since R ∈ GCF(R) we get that C is w+-tilting by Proposition 3.2.17.

Corollary 4.2.7. Let C be a semidualizing (R,S)-bimodule such that S is right coherent.
The following assertions hold:

1. (GCF(R),GCC(R)) is a perfect and hereditary cotorsion pair.

2. GCF(R) is special precovering.

3. GCC(R) is special preenveloping.

Proof. Follows from Theorem 4.2.6, Lemma 1.5.4 and Lemma 3.2.13.
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4.3 Relative Gorenstein flat model structure

In this section we construct a hereditary Hovey triple on the category of R-modules,
in which the cofibrant objects coincide with GC-flat modules and the fibrant objects
coincide with CC-cotorsion modules belonging to the Bass class BC(R).

We start with the following proposition. Its proof is inspired by an argument due to
Estrada, Iacob and Pérez in [42, Proposition 4.1].

Proposition 4.3.1. Assume that R is GCF-closed and C is w+-tilting. Then,

GCF(R)∩GCC(R) = FC(R)∩CC(R).

Proof. (⊆) Assume that M ∈ GCF(R)∩GCC(R). Then, M ∈ CC(R) by Proposition
4.2.3. Moreover, since M is GC-flat, there exists by Proposition 3.2.10 an exact sequence
of R-modules 0 → M → V → G → 0 where V is FC-flat and G is GC-flat. This short
exact sequence splits since G is GC-flat and M is GC-cotorsion. Hence, M ∈ FC(R).

(⊇) Assume that M ∈ FC(R)∩CC(R). Clearly M ∈ GCF(R). Now we prove that
M ∈ GCC(R).

By Theorem 4.2.6, M has a special GCC(R)-preenvelope

0 → M → X → G → 0.

Since M and G are GC-flat modules and R is GCF-closed, X is GC-flat as well and then
X ∈ GCF(R)∩GCC(R) ⊆ FC(R)∩CC(R) by the first inclusion. Now, since M and X
are FC-flat and G is GC-flat, G ∈ FC(R) by Theorem 3.4.12. Then, the short exact
sequence splits. Hence, M is GC-cotorsion.

The pair (FC(R),CC(R)) satisfies all the conditions necessary to construct our de-
sired Hovey triple, except that it is not a cotorsion pair in general (see Theorem 4.1.7).

This motivates us to introduce new concepts that will serve our purpose perfectly:

Definition 4.3.2. An R-module H is said to be HC-cotorsion if it belongs to HC(R) :=
BC(R)∩CC(R). An R-module V is said to be VC-flat if Ext1R(V,H) = 0 for all HC-
cotorsion R-modules.

Set VC(R) := ⊥HC(R) the class of all VC-flat R-modules.

If C = R, then FC(R) = VC(R) = F (R) and CC(R) = HC(R) = C (R).
However, this not true in general as one can see from the following proposition.

Proposition 4.3.3. Assume that RC is w-tilting and has a degreewise finite projective
resolution. Then, (VC(R),HC(R)) is a hereditary complete cotorsion pair cogenerated
by a set.
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Proof. First of all, note that C is Tor-∏-orthogonal by Proposition 3.2.3 and BC(R)∩
CC(R) = BC(R)∩S C C(R) by Corollary 4.1.6. Now, using [11, Theorem 3.10], we
see that BC(R) =X ⊥∞

1 for some set X1. Similarly, S C C(R) =X ⊥∞

2 for some set X2

by Theorem 4.1.7(2). Then, BC(R)∩CC(R) = X ⊥∞

1 ∩X ⊥∞

2 = (X1 ∪X2)
⊥∞ . Thus,

HC(R) = BC(R)∩CC(R) = M⊥ for some R-module M by Lemma 1.5.17. Hence,
our pair is hereditary and cogenerated by a set and then complete by Theorem 1.5.13.

Under strong conditions, we get a different description of the core of the cotorsion
pair (GCF(R),GCC(R)) which is the last ingredient to get our desired model structure.

But first we need the following two lemma.

Lemma 4.3.4. Assume that RC has a degreewise projective resolution

1. F (S)⊆ AC(S) if and only if RC is ∏-Tor-orthogonal.

In this case, FC(R)⊆ BC(R).

2. If RC is ∏-Tor-orthogonal, then any R-module in BC(R) has an epic FC-flat
cover with kernel in BC(R).

Proof. 1. Using Proposition 3.2.3, the ”if” part follows by [11, Proposition 5.2] and the
”only if” part follows by Lemma 1.3.14(1) since P(S)⊆ F (S).

2. Let M ∈ BC(R). Then, there exists by Proposition 3.1.6(1) an FC-flat cover
γ : L → M which is epic by [11, Proposition 3.8]. It remains to show that Kerγ is in
BC(R).

Since F ∈ FC(R)⊆ BC(R) and M ∈ BC(R), we deduce that Extk≥1
R (C,F) = 0 and

Extk≥1
R (C,M) = 0, so applying HomR(C,−) to the exact sequence

0 → Kerγ → F
γ→ M → 0

we immediately get that Extk≥1
R (C,Kerγ). Similarly, the fact that F,M ∈ BC(R)

implies TorS
k≥1(C,HomR(C,M)) = 0 and TorS

k≥1(C,HomR(C,F)) = 0, so applying the
functor C⊗S − to the exact sequence

0 → HomR(C,Kerγ)→ HomR(C,F)→ HomR(C,M)→ 0

we get that TorS
k≥1(C,HomR(C,Kerγ))∼= TorS

k≥1(C,HomR(C,F)) = 0.
Finally, from the commutative diagram with exact rows

0 //C⊗S HomR(C,Kerγ) //C⊗S HomR(C,F) //

∼=
��

C⊗S HomR(C,M) //

∼=
��

0

0 // Kerγ // F // M // 0

we get that Kerγ is naturally isomorphic to C⊗S HomR(C,Kerγ).
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Proposition 4.3.5. Assume that R is GCF-closed and C is w+-tilting admitting a degree-
wise finite projective resolution. Then,

GCF(R)∩GCC(R) = VC(R)∩HC(R).

Proof. (⊆) By Proposition 4.3.1, GCF(R)∩GCC(R) = FC(R)∩CC(R) ⊆ CC(R). But
FC(R) ⊆ BC(R) by Lemma 4.3.4(1). Then, GCF(R)∩GCC(R) ⊆ BC(R)∩CC(R) =
HC(R).

On the other hand, we have BC(R)∩CC(R)⊆CC(R), which implies that ⊥CC(R)⊆
⊥HC(R) = VC(R). But, FC(R) ⊆ ⊥CC(R). Hence, using again Proposition 4.3.1,
GCF(R)∩GCC(R) = FC(R)∩CC(R)⊆ FC(R)⊆ VC(R).

(⊇) Conversely, let M ∈ VC(R)∩HC(R). By Proposition 4.3.1, we only need show
that M ∈ FC(R)∩CC(R).

Clearly, M ∈ CC(R). Since M ∈ BC(R), Lemma 4.3.4(2) says that there exists an
epic FC-flat cover γ : F ↠ M with K := Kerγ ∈ BC(R). Wakamatsu Lemma (see
Lemma 1.5.4) implies that K ∈ CC(R), that is, K ∈ B(R)∩CC(R) = HC(R). Since
M ∈VC(R), the short exact sequence 0→K →F →M → 0 splits and hence M ∈FC(R),
as desired.

Theorem 4.3.6. Assume that R is GCF-closed and C is w-tilting admitting a degree-
wise finite projective resolution. Then, there exists a unique hereditary abelian model
structure on R-Mod, called the GC-flat model structure,

(GCF(R),W ,HC(R)),

as follows:
• The cofibrant objects coincide with GC-flat modules.
• The fibrant objects coincide with HC-cotorsion modules.
• The class of trivially cofibrant objects coincide with VC-flat modules.
• The trivially fibrant objects coincide with GC-cotorsion modules.

Proof. It follows from Theorem 4.1.7 and Theorem 4.2.6 that the pairs

(GCF(R),GCC(R)) and (VC(R),HC(R))

are complete and hereditary cotorsion pairs. By Proposition 4.3.3, these cotorsion pairs
have the same core. Let us now show that GCC(R)⊆ HC(R) = BC(R)∩CC(R).

The inclusion GCC(R) ⊆ CC(R) holds by Proposition 4.2.3. On the other hand, by
the proof of Proposition 3.2.3, we have a complete PC-projective complex

0 → R
t0→C0

t1→C1
t2→ ·· ·

which is also (ProdR(C+)⊗R −)-exact. Then, BC(R) = (C⊕ (⊕i≥0Cokerti))⊥ by [11,
Theorem 3.10], and each Cokerti is GC-flat by Corollary 3.2.9. It follows that C ⊕
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(⊕i≥0Cokerti)∈GCF(R), which implies that GCC(R)⊆ (C⊕(⊕i≥0Cokerti))⊥=BC(R)
and hence GCC(R) ⊆ HC(R). Thus, Theorem 1.6.3 gives the desired Hovey triple.

Remark 4.3.7. Under Hovey’s correspondence between abelian model structures and
Hovey triples, the GC-flat model structure is described as follows:
• A morphism f is a cofibration (trivial cofibration) if and only if it is a monomorphism
with GC-flat (VC-flat) cokernel.
• A morphism g is a fibration (trivial fibration) if and only if it is an epimorphism with
HC-cotorsion (GCC-cotorsion) kernel.

The first part of the following result was proved by Hu, Geng, Wu and Li in [65,
Theorem 4.3] when R is a commutative noetherian ring and C is a semidualizing R-
module. Here we obtain it with a different approach and with less assumptions.

Corollary 4.3.8. Assume that R is GCF-closed and C is w-tilting admitting a degreewise
finite projective resolution. Then, the category GCF(R)∩HC(R), along with the induced
exact structure, is a Frobenius category. The projective-injective objects are exactly
the objects in FC(R)∩CC(R). Moreover, the homotopy category of the GC-flat model
structure is triangle equivalent to the stable category

GCF(R)∩HC(R) := (GCF(R)∩HC(R))/∼

where f ∼ g if and only if f −g factors through an object in FC(R)∩CC(R).

Proof. Follows using Theorem 4.3.6 and Proposition 4.3.1 together with Theorem 1.6.6.

The Gorenstein flat model structure goes back to Gillespie and Hovey [52, Theorem
3.12] when the ring is Iwanaga-Gorenstein. Recently, Šaroch and Šťovı́c̆ek proved in
[78] the existence of this model structure over any ring.

Corollary 4.3.9. (The Gorenstein flat model structure) For any finitely generated pro-
jective generator RC, there exists a unique hereditary abelian model structure on R-Mod
where G F (R) = GCF(R) is the class of cofibrant objects and C (R) = HC(R) is the
class of fibrant objects.

In this case, the category G F (R)∩C (R) is a Frobenius category where the projective-
injective objects are exactly the flat-cotorsion R-modules. Moreover, the homotopy cat-
egory of the Gorenstein flat model structure is triangle equivalent to the stable category
G F (R)∩C (R).

Proof. Since RC is a projective generator, FC(R) = F (R) and GCF(R) = G F (R) by
Proposition 3.2.23, and hence HC(R) =C (R). Moreover, R is GCF-closed by Corollary
3.2.24. Thus, by Theorem 4.3.6 we have the desired model structure.
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4.4 Relative Gorenstein flat model structure under some
finiteness conditions

In this section we describe the class of weak equivalences in the GC-flat model struc-
ture found in Theorem 4.3.6, under the finiteness of the global GC-flat dimension of R.
This result is a consequence of a more general result (Theorem 4.4.6 ) that we will also
prove in this section. First, we need to develop some preliminary results that we will
use throughout this section.

By a special proper X -resolution of an object A, we will mean an X -resolution
of A

· · · → X1 → X0 → A → 0

in which each Ker(Xi → Xi−1) ∈ X ⊥ with X−1 := A. Note that any object A of A has
a special proper X -resolution if and only if X is a special precovering class.

Proposition 4.4.1. Assume that (X ,Y ) is a complete hereditary cotorsion pair in A .
The following assertions are equivalent for any object A in A and any integer n ≥ 1.

(a) X − resdimA (A)≤ n

(b) For any special proper X -resolution of A

· · · → Xn → Xn−1 → ·· · → X1 → X0 → A → 0

we have Kn−1 := Ker(Xn−1 → Xn−2) ∈ X with X−1 = A.

(c) There exists a special proper X -resolution of A

0 → Xn → ··· → X0 → A → 0.

(d) ExtkA (A,Y ) = 0 for all objects Y ∈ Y and all k ≥ n+1.

(e) Extn+1
A (A,Y ) = 0 for all objects Y ∈ Y .

Consequently,

X − resdimA (A) = sup{i ∈ N : ExtiA (A,Y ) ̸= 0 for some Y ∈ Y }.

Proof. (a)⇒ (b) We proceed by induction.
If n = 1, that is, X − resdimA (A)≤ 1, there exists an exact sequence

0 → Z1 → Z0 → A → 0,
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with Z1,Z0 ∈ X . Let us show that K0 := Ker(X0 → A) ∈ X . We have the following
commutative diagram

0 // Z1 //

��

Z0 //

��

A // 0

0 // K0 // X0 // A // 0

which induces the mapping cone that leads to the short exact sequence

0 → Z1 → Z0 ⊕K0 → X0 → 0.

Therefore, K0 ∈ X as Z1,X0 ∈ X and X is closed under extensions and direct sum-
mands.

For the case n ≥ 2, there exists an exact sequence 0 → Z → Z0 → A → 0, with
Z0 ∈X and X − resdimA (Z)≤ n−1. Since K0 ∈X ⊥, we can construct the following
commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // K1 //

��

L //

��

Z //

��

0

0 // X1 //

��

X1 ⊕Z0 //

��

Z0 //

��

0

0 // K0 //

��

X0 //

��

A //

��

0

0 0 0

Note that L ∈X as (X ,Y ) is a hereditary cotorsion pair and X0,X1,Z0 ∈X . Now,
X − resdimA (Z)≤ n−1 and Z has the following special proper X -resolution:

· · · → X ′
n−2 = Xn−1 → X ′

n−3 = Xn−2 → ··· → X ′
1 = X2 → X ′

0 = L → Z → 0

By induction, Kn−1 = Ker(Xn−1 → Xn−2) = Ker(X ′
n−2 → X ′

n−3) ∈ X as desired.
(b)⇒ (c) Follows by the by the hypotheses and the fact that X is a special precov-

ering class.
(c) ⇒ (d) Since (X ,Y ) is a hereditary cotorsion pair, for any object Y ∈ Y and

any integer k ≥ n+1, we get the following isomorphisms:

ExtkA (A,Y )∼= Extk−1
A (K0,Y )∼= · · · ∼= Extk−n

A (Kn−1,Y ) = Extk−n
A (Xn,Y ) = 0.
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(d)⇒ (e) Clear.
(e)⇒ (a) Consider a special proper X -resolution of A

· · · → Xn → ··· → X0 → A → 0.

Since Kn ∈ Y and each Xi ∈ X , Ext1A (Kn−1,Kn) ∼= · · · ∼= Extn+1
A (A,Kn) = 0. Hence,

the short exact sequence 0 → Kn → Xn → Kn−1 → 0 splits. Therefore, Kn−1 ∈ X and
X − resdimA (A)≤ n.

Using the description of the X -resolution dimension given in Proposition 4.4.1, the
following result is standard and its proof is straightforward.

Proposition 4.4.2. Let (X ,Y ) be a complete hereditary cotorsion pair in A . The
following assertions hold.

1. Given a short exact sequence E : 0 → M → N → L → 0 in A , we have:

(a) X − resdimA (M)≤ max{X − resdimA (N),X − resdimA (L)−1}.
The equality holds when X − resdimA (N) ̸= X − resdimA (L).

(b) X − resdimA (N)≤ max{X − resdimA (M),X − resdimA (L)}.
The equality holds when X − resdimA (L) ̸= X − resdimA (M)+1

(c) X − resdimA (L)≤ max{X − resdimA (N),X − resdimA (M)+1}.
The equality holds when X − resdimA (M) ̸= X − resdimA (N).

2. For any family (Mi)i=1,··· ,n of objects in A , we have

X − resdimA (⊕n
i=1Mi) = sup{X − resdimA (Mi)|i = 1, · · · ,n}.

Consequently, X̂ is thick.

Lemma 4.4.3. Let X ,G ⊆ A be two classes such that X is closed under direct sum-
mands. Set H = G⊥ and Y = X ⊥. If X is a cogenerator for G , then

G ∩H ⊆ X ∩Y .

If, in addition, (G ,H ) is a complete cotorsion pair and G ∩X̂ = X , then

G ∩H = X ∩Y .

Proof. Let A be an object in A . For the first inclusion, assume that A ∈ G ∩H . Since
X is a cogenerator for G , X ⊆ G and then A ∈ H ⊆ Y . Moreover, there exists an
exact sequence 0 → A → X → G → 0 with X ∈ X and G ∈ G . This sequence splits as
A ∈ H and G ∈ G . Hence, A ∈ X .
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Conversely, assume that that A ∈ X ∩Y . Then, A ∈ X ⊆ G . Since the cotorsion
pair (G ,H ) is complete, there exists an exact sequence

0 → A →W → G → 0

with W ∈ H and G ∈ G . Note that W ∈ G ∩H and G ∩H ⊆ X ∩Y by the previous
inclusion. Now, we have G ∈ G with X − resdimA (G) ≤ 1 < ∞, that is, G ∈ G ∩ X̂ .
Hence, G ∈ X and this sequence splits. Therefore, A ∈ H .

The following two results relate cotorsion pairs and Hovey triples with (weak) Ab-
contexts in a convenient way. The first one is inspired by two results due to Liang and
Yang ([69, Proposition 2.5 and Proposition 2.10]).

Proposition 4.4.4. Let X and G be two classes of objects of A such that X is closed
under direct summands. Set Y = X ⊥ and H = G⊥.

1. Assume that X is a cogenerator for G and G ∩X̂ = X . If (G ,H ) is a heredi-
tary complete cotorsion pair, then (G ,X̂ ∩Y ,X ∩Y ) is a left weak AB-context.

2. Assume that (X ,Y ) is a complete hereditary cotorsion pair. If (G ,X̂ ∩Y ,X ∩
Y ) is a left AB-context, then (G ,H ) is a hereditary complete cotorsion pair with
H = X̂ ∩Y = X̂ ∩Y .

Proof. 1. By Proposition 1.7.4, the pair (G ,G ∩H ) is a left Frobenius pair. Moreover,
using the one-to-one correspondence between left AB-contexts and left Frobenius pairs
from Theorem 1.7.3, we get that the triple

(G , ̂(G ∩H ),G ∩ ̂(G ∩H )) = (G , ̂(G ∩H ),G ∩H )

is a left weak AB-context. Finally, applying Lemma 4.4.3, we get our desired left weak
AB-context (G ,X̂ ∩Y ,X ∩Y ).

2. By [59, Theorem 1.12.10], we get that (G ,H ) is a complete hereditary cotorsion
pair with H = X̂ ∩Y . Now let us show that H = X̂ ∩Y .

If A ∈ H , there exists a finite (X ∩Y )-resolution of A

0 → Xn → ·· · → X0 → A → 0.

Since each Xi ∈ X ∩Y ⊆ X , A ∈ X̂ . We also know that (X ,Y ) is hereditary so
A ∈ Y . Hence, A ∈ X̂ ∩Y .

Conversely, if A ∈ X̂ ∩Y then A ∈ X̂ . Moreover, by Proposition 4.4.1 there exists
a finite special proper X -resolution of A

0 → Xn → ·· · → X0 → A → 0

Since Y is closed under extensions, each Xi ∈ Y and then Xi ∈ X ∩Y . Hence, A ∈
X̂ ∩Y = H .
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Assume that (Q,W ,R) is a hereditary Hovey triple and let

(Q̃,R) := (Q∩W ,R) and (Q,R̃) := (Q,W ∩R)

be the associated cotorsion pairs. Then, the following two assertions always hold:
• (Q̃,R) is a complete hereditary cotorsion pair.

•
(

Q,
̂

(Q∩ R̃),Q̃∩R

)
is a left weak AB-context: indeed, since (Q,R̃) is a com-

plete hereditary cotorsion pair and Q∩ R̃ = Q̃∩R, we get this left weak AB-context
by letting G = X = Q in Proposition 4.4.4(1).

Under the finiteness assumption A = Ĝ , the following result shows that there is
a converse to this, giving a new characterization of hereditary Hovey triples in terms
of AB-contexts. We note that such a relation between Hovey triples and (weak) AB-
contexts was also noted by A. Xu in [85, Theorem 4.2] in a particular setting.

Theorem 4.4.5. Let X ⊆ G ⊆ A be two classes such that:

1. (X ,Y ) is a complete hereditary cotorsion pair.

2. (G ,H ,X ∩Y ) is a left AB-context.

Then, (G ,X̂ ,Y ) is a hereditary Hovey triple.

Proof. We divide the proof into three parts:
(a) The class X̂ is thick by Proposition 4.4.2.

(b) By assumption and [59, Theorem 1.12.10(1)], H = X̂ ∩Y . Then, H = X̂ ∩
Y and the pair (G ,X̂ ∩Y ) is a hereditary complete cotorsion pair by Proposition
4.4.4(2).

(c) It remains to show that (G ∩ X̂ ,Y ) is a hereditary complete cotorsion pair. By
the assumptions, we only need to show X = G ∩X̂ .

The inclusion X ⊆ G ∩X̂ is clear.
Conversely, assume A ∈ G ∩ X̂ . Then, n = X − resdim(A) < ∞. If n = 0, that is,

X ∈ X , then we are done. Assume now that n ≥ 1. Let us proceed by induction on n.
There exists an exact sequence 0→K → X → A→ 0 with X −resdimA (K) = n−1

and X ∈ X . Since (X ,Y ) is complete, there exists an exact sequence 0 → K → Y →
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L → 0 with Y ∈ Y and L ∈ X . Consider now the following pushout:

0

��

0

��

0 // K

��

// X

��

// A // 0

0 // Y //

��

H

��

// A // 0

L

��

L

��

0 0

.

Since A ∈ G , X ∈ X ⊆ G and G is closed under kernels of epimorphisms, we deduce
that K ∈ G . So, by induction, K ∈ X . Hence, Y ∈ X ∩Y .

On the other hand, X ∩Y = G ∩H by hypothesis. Then, the middle short exact
sequence splits as A ∈ G and Y ∈ H = G⊥. But H ∈ X by the middle column, so
A ∈ X as desired.

We are now ready to prove our first main result of this section.

Theorem 4.4.6. Assume that (Q,R̃) and (Q̃,R) are two complete hereditary cotorsion
pairs such that:

(a) Q̃ ⊆ Q (or equivalently, R̃ ⊆ R).

(b) Q∩ R̃ = Q̃∩R.

If Q− resdimA (A )< ∞, then (Q, (̂Q̃),R) is a hereditary Hovey triple.

Proof. Taking advantage of our previous notations, let us set

(G ,H ) = (Q,R̃) and (X ,Y ) = (Q̃,R).

By Theorem 4.4.5 and the hypotheses, it suffices to show that

(G ,H ,X ∩Y ) = (Q,R̃,Q̃∩R)

is a left weak AB-context.
Notice that G is a cogenerator for G with G ∩ Ĝ = G , then (G , Ĝ ∩H ,G ∩H ) is

a left AB-context by Proposition 4.4.4(1) and so a left AB-context as A = Q̂. Then,
since G ∩H = X ∩Y , we can apply Proposition 4.4.4(2) to get that H = X̂ ∩Y
and so that (G ,H ,X ∩Y ) is a left AB-context as desired.

134



4.4. RELATIVE GORENSTEIN FLAT MODEL STRUCTURE UNDER SOME
FINITENESS CONDITIONS

In the following result is (the second main result of this section), we describe the
trivial objects of the GC-flat model structure constructed in Theorem 4.3.6.

Theorem 4.4.7. Assume that R is GCF-closed and C is w-tilting admitting a degreewise
finite projective resolution. If R has finite global GC-flat dimension, then there exists an
abelian model structure on R-Mod,(

GCF(R), V̂C(R),HC(R)
)
,

as follows:
• The cofibrant objects coincide with GC-flat R-modules.
• The trivial objects coincide with modules having finite VC-flat dimension.
• The fibrant objects coincide with HC-cotorsion R-modules.

Proof. We know by Theorem 4.3.6 that (GCF(R),GC(R)) and (VC(R),HC(R)) are two
complete hereditary cotorsion pairs with the same core, that is,

GCF(R)∩GCC(R) = VC(R)∩HC(R),

and such that GCC(R)⊆ HC(R). Thus, this result follows by Theorem 4.4.6.

The following consequence has been proven by A. Xu ([85, Corollary 4.6(3)]) over
right coherent rings.

Corollary 4.4.8. For any ring R with finite weak global Gorenstein dimension we have
a hereditary abelian model structure on R-Mod

(G F (R),F̂ (R),C (R)).
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CHAPTER 5

PERSPECTIVES: OPEN ROBLEMS

In this brief chapter, we discuss some of the open questions raised in this thesis or
related to the subject of it.

Question A: When is the class of GC-flat modules closed under extensions?

This question is of great importance since almost all the homological properties of
GC-flat modules are based on this property, i.e., closure under extensions.

When C is Tor-∏-orthogonal, we have seen three cases in which this happens:

(a) C is a flat generator.

(b) FC(R) is closed under products. In particular, this the case when S := EndR(C)
is right coherent and both RC and CS are finitely presented.

(c) R has finite global FC-flat dimension, i.e.,

sup{FC−fdR(M)|M is an R-module}< ∞.

Question B. When is the pair (GCP(R),GCP(R)⊥) a complete cotorsion pair?

This question is still open even in the absolute case. In this setting, some partial af-
firmative answers have been given recently in [32, Corollary 4.13(2)] and [30, Corollary
5.10(3)]

Another positive answer can be obtained under the assumption that R has finite
global GC-projective dimension with respect to a w-tilting module C. To see this, it
suffices by [17, Corollary 3.6] to show that GCP(R) = ⊥(GCP(R)⊥).
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Given an R-module M ∈ ⊥(GCP(R)⊥), take a special GC-projective (which exists
by [17, Corollary 3.6])

0 → K → G → M → 0.

This short exact sequence splits as K ∈ GCP(R)⊥. Hence, M ∈ GCP(R).

Question B brings us to the next question:

Question C. When is the class GCP(R) the first part of a (non-trivial) Hovey triple?

(GCP(R),W ,R)

By non-trivial here we mean that W is not the class of all modules.
Assume that C is self-small and w-tilting. A natural candidate class for the class of

fibrant objects R in this model structure (when it exists) is the Bass class BC(R). This
can be seen by the following assertions (required in Theorem 1.6.3):

(a) (⊥BC(R),BC(R)) is a complete hereditary cotorsion pair.

(b) GCP(R)∩GCP(R)⊥ = ⊥BC(R)∩BC(R).

(c) GCP(R)⊥ ⊆ BC(R).

Property (a) follows by [11, Corollary 3.12] while (b) follows by [15, Proposition
5.2] and the proof of [17, Proposition 2.18]. In order to show (c), let us consider a
HomR(−,AddR(C))-exact AddR(C)-coresolution of R:

0 → R →C0 →C1 → ·· ·

Then C⊕ (⊕iCoker fi) ∈ GCP(R) by [17, Propositions 2.5 and 2.6 and Remark 2.7]
and hence GCP(R)⊥ ⊆ (C⊕ (⊕iCoker fi))

⊥ = BC(R) by [11, Theorem 3.10].
From this discussion, keeping in mind Theorem 4.4.6, we obtain under the assump-

tion that R has finite global GC-projective dimension, a hereditary Hovey triple

(GCP(R), ̂⊥BC(R),BC(R))

In this case, (GCP(R),GCP(R)) is a hereditary complete cotorsion pair

Of course one could ask dual the questions to Questions B and C.

Question Bop. When is the pair (GUI(R),GUI(R)⊥) a complete cotorsion pair?

Question Cop. When is the class GUI(R) the third part of a (non-trivial) Hovey triple?
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(Q,W ,GUI(R))

Question D. When does the inequality GCP(R)⊆ GCF(R) hold true?

Note that an affirmative answer to this question shows that if C is a w-tilting module
so is also w+-tilting.

Question E. When do we have the following equivalence

∀RM, M ∈ GCF(R)⇔ M+ ∈ GC+I(R)

Again, these last two questions are still open even in the absolute case.
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[47] J. R. Garcı́a Rozas, J. A. López Ramos and B. Torrecillas, Semidualizing and
tilting adjoint pairs, Applications to comodules, Bull. Malasian Math. Soc. 38
(2015), 197-218.

[48] Y. Geng and N. Ding, W -Gorenstein modules, J. Algebra. 325 (2011), 132-146.

[49] J. Gillespie, Hereditary abelian model categories, Bull. Lond. Math. Soc. 48
(2016), 895-922.

[50] J. Gillespie, Model structures on exact categories, J. Pure. Appl. Algebra. 215
(2011), 2892-2902.

[51] J. Gillespie, How to construct a Hovey triple from two cotorsion pairs, Fund.
Math. 230 (2015), 281-289.

[52] J. Gillespie and M. Hovey, Gorenstein model structures and generalized derived
categories, Proc. Edinburgh Math. Soc. 53 (2010), 675-696.

144



BIBLIOGRAPHY
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Resumen 

En los últimos años se ha introducido con éxito una variante del álgebra homológica 
Gorenstein, consistente, a grandes rasgos, en sustituir, en ciertas situaciones, el anillo 
base por un módulo semidualizante C. Recientemente, y dado que las propiedades 
que deben satisfacer los módulos semidualizantes son bastante restrictivas, se han 
publicado trabajos relevantes en los que se estudia hasta qué punto se pueden rebajar 
las condiciones impuestas al módulo C: aparece el concepto de módulo w-tilting (ver 
por ejemplo [D. Bennis, J.R. García Rozas and L. Oyonarte, Relative Gorenstein 
dimensions, Mediterr. J. Math. 13 (2016) 65-91]). En esta tesis doctoral pretendemos 
descubrir las propiedades de los módulos C-Gorenstein proyectivos (inyectivos y 
planos) en categorías de módulos sobre determinados tipos de anillos que han 
despertado el interés de la comunidad matemática desde hace algunos años, y que 
incluyen construcciones como las álgebras de matrices de matrices triangulares y 
extensiones triviales de álgebras. 

Abstract 

In recent years, a variant of Gorenstein homological algebra has been successfully 
introduced. It consists of replacing, in certain situations, the base ring by a 
semidualizing module C. Recently, and since semidualizing defining properties are 
quite restrictive, relevant works have been published with the aim to know to what 
extent the conditions imposed on the module C can be reduced: the concept of w-tilting 
module appears (see for example [D. Bennis, JR García Rozas and L Oyonarte, 
Relative Gorenstein dimensions, Mediterr. J. Math. 13 (2016) 65-91]). In this PhD we 
intend to discover the properties of the C-Gorenstein projective modules (injective and 
flat respectively) in categories of modules on certain types of rings that have attracted 
the interest of the mathematical community for some years, and which include 
constructions such as triangular matrix algebras and trivial extensions of algebras. 

Résumé 

Ces dernières années, une variante de l'algèbre homologique de Gorenstein a été 
introduite avec succès. Elle consiste à remplacer, dans certaines situations, l'anneau 
de base par un module semidualisant C. Récemment, et puisque les conditions 
requises pour qu'un module soit semidualisant sont assez restrictives, des travaux 
pertinents ont été publiés dans le but de savoir dans quelle mesure les conditions 
imposées au module C peuvent être réduites : le concept de module w-tilting apparaît 
(voir par exemple [D. Bennis, JR García Rozas et L Oyonarte, Relative Gorenstein 
dimensions, Mediterr. J. Math. 13 (2016) 65-91]). Dans cette thèse, nous avons 
l'intention de découvrir les propriétés des modules projectifs de C-Gorenstein (injectifs 
et plats respectivement) dans les catégories de modules sur certains types d'anneaux 
qui ont attiré l'intérêt de la communauté mathématique depuis quelques années, et qui 
incluent des constructions telles que les anneaux matriciels triangulaires.  

 


