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Abstract

In this paper we study the existence of positive solution u ∈ H1
0 (Ω) for some

quasilinear elliptic equations, having lower order terms with quadratic growth
in the gradient and singularities, whose model is

−∆u+ µ(x)
|∇u|2

uγ + uβ
= λup + f0(x), x ∈ Ω, 0 < γ ≤ β, 0 < p.

Using topological methods we obtain the existence of an unbounded continuum
of solutions. In the case µ(x) constant we derive the existence of solution for
every λ > 0 if 1 < γ < 2 for any β and p < 1. Even more for µ ∈ L∞(Ω) we
prove this result if β ≤ 1 and p < 2− β.

Keywords: Continua of solutions, Nonlinear elliptic equations, Singular lower
order term with quadratic growth
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1. Introduction

We consider the following boundary value problem{
−∆u+ µ(x)g(u) |∇u|2 = λup + f0(x) in Ω,
u = 0 on ∂Ω,

(Pλ)

where Ω is a smooth bounded and open subset of RN , N ≥ 3, p ≥ 0. The
functions µ ∈ L∞(Ω) and g ∈ C1((0,+∞)) are nonnegative; notice that g can
become singular at zero. We are assume 0 � f0 ∈ Lq(Ω) for some q > N/2.
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Email addresses: jcarmona@ual.es (José Carmona Tapia), amolino@ugr.es (Alexis

Molino Salas), lumore@ugr.es (Lourdes Moreno Mérida)

Preprint submitted to Journal of Mathematical Analysis and Applications December 5, 2015



By a subsolution (respectively, supersolution) of problem (Pλ) we mean a
function u ∈ H1

0 (Ω) ∩ C(Ω) with u > 0 a.e. x ∈ Ω , g(u) |∇u|2 ∈ L1(Ω) and
which satisfies the following inequality:∫

Ω

∇u∇ϕ+

∫
Ω

µ(x)g(u) |∇u|2ϕ
(≥)

≤
∫

Ω

(λup + f0)ϕ ,

for every 0 ≤ ϕ ∈ H1
0 (Ω) ∩ L∞(Ω). A solution is a function which is both a

subsolution and a supersolution.
Problem (Pλ) involves a quasilinear elliptic differential operator with qua-

dratic gradient terms. This kind of differential operators with natural growth
were considered in [1, 2] and since then different associated boundary value
problems have been studied. A well known case is the existence of the solution
of (P0) when g is continuous at u = 0 (see for instance [3], [4] and [2]).

Alternatively, problem (P0) for functions g with a singularity at zero, has
also been extensively studied in [5, 6, 7, 8]. Existence of solutions was discussed
in [9] in the case

√
g ∈ L1(0, 1) by imposing the following condition

ess inf{f0(x) : x ∈ ω} > 0 , ∀ω ⊂⊂ Ω . (1)

Results concerning (Pλ) for λ 6= 0 were obtained in [10, 11] in the case
g(s) = 1/sγ where the model problem is −∆u+ µ(x)

|∇u|2

uγ
= λup + f0(x) in Ω,

u = 0 on ∂Ω,
(Rλ)

with µ(x) as a constant function. More precisely, with γ < 1 and γ + p < 2
(region I in Figure 1 below), the existence of a solution for each λ ≥ 0 was proved
in [10] by means of topological methods and in [11] by using an approximative
scheme.
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Figure 1:

Notice that if γ ≥ 2 it makes no sense to search solutions of (Rλ). Indeed,

as it is proved in [12], |∇u|
2

uγ /∈ L1(Ω).
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However, the techniques employed in [10, 11] can not be applied in the case
µ(x) not constant or where p < 1 ≤ γ < 2 (region II in Figure 1 above). In this
paper, we complete the previous results and we extend them for a more general
function g in order to show the following: “the values of λ for which there exists
a solution of (Pλ) depends on the behavior of g at infinity”. In fact, in contrast
with the results when g ≡ 0, in some cases we obtain solutions for every positive
λ, that is, the gradient term produces a regularizing effect. We deal with (Pλ) for
a function g exhibiting a different behavior at zero and at infinity. In particular,
we are mainly interested in the case of functions g(s) = 1/(sγ + sβ) with γ ≤ β.
In this way, we consider the model problem −∆u+ µ(x)

|∇u|2

uγ + uβ
= λup + f0(x) in Ω,

u = 0 on ∂Ω,
(Qλ)

as a natural extension of the problem (Rλ). Observe that for λ = 0, as was
mentioned above, problem (Q0) has been extensively studied. Our main goal is
to exploit this known case to obtain an unbounded continuum Σ of solutions of
(Qλ), namely, a connected and closed subset of

{(λ, u) ∈ [0,+∞)× C(Ω) : u is a solution of (Qλ)} ,

for suitable values of p, γ and β, which extend the previous existence results.
In particular, beginning with the case µ(x) constant and γ < 2, we prove in
Theorem 1.1 the existence of an unbounded continuum Σ. In Theorem 1.2 we
deal with non-constant µ(x) in the case β ≤ 1.

Theorem 1.1. Assume µ(x) = µ is constant and that f0 ∈ Lq(Ω) with q > N
2

satisfies (1). Then:

i) If 1 ≤ γ < 2 and 0 < p < 1 then problem (Qλ) admits at least one solution
for every λ ≥ 0.

ii) If γ < 1 < β and 1 ≤ p, then there exists λ∗, λ
∗ > 0 such that (Qλ) admits

no solution for λ > λ∗ and at least one solution for 0 ≤ λ < λ∗.

Moreover, there exists an unbounded continuum Σ of solutions of (Qλ), such
that there exists uλ solution of (Qλ) with (λ, uλ) ∈ Σ for every λ ≥ 0 (item i))
or every 0 ≤ λ < λ∗ (item ii)).

We would like to stress that in the case of item i), it is not required assump-

tions on the parameter β. This is because in order to |∇u|2
uγ+uβ

be an integrable
function we only need the natural hypothesis γ < 2 which is a condition at zero.
In other words, the behavior of g at infinity has not a role in the solutions set.
Conversely, item ii) shows that no regularizing effect take place since there is
no solution for all positive λ.

Moreover, observe that this theorem improve the results of [10, 11] since
item i) with γ = β gives us existence results of the problem (Rλ) in the case
that (γ, p) belongs to Region II of Figure 1 above.
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Furthermore, our techniques also allow us to work with non-constant func-
tion µ(x) when the parameter (γ, p) belongs to the corresponding Region I of
the Figure 1 above. In fact, if we suppose that there exist positive constants
m,M such that

m ≤ µ(x) ≤M, a.e. x ∈ Ω, (2)

we prove the following theorem.

Theorem 1.2. Assume that 0 < γ ≤ β ≤ 1, 0 < p < 2 − β, f0 ∈ Lq(Ω) with
q > N

2 and (2) where M < 2 in the case γ = β = 1 and M > 0 otherwise. Then
there exists an unbounded continuum Σ of solutions of (Qλ), such that there
exists uλ solution of (Qλ) with (λ, uλ) ∈ Σ for every λ ≥ 0.

Note that this theorem with γ = β < 1 improves again the results of [10]
since we can consider non-constant function µ(x). Furthermore, it improves also
[11] except regularity of f0; in this work the authors consider data f0 belonging

to L
2N

2N−γ(N−2) (Ω).
In addition, since we deal with γ < β and the function g(s) = 1/(sγ + sβ)

behaves at infinity as 1/sβ do, we also show that the hypothesis p < 2− β is a
restriction in the behavior of g at infinity, rather than in the singularity at zero.

We obtain the existence of the continuum in the above two theorems by
using a double approach. Initially, for a convenient sequence of approximated
problems, we can derive the existence of Σn by means of Leray-Schauder degree
techniques and Rabinowitz continuation theorem as in [10]. This requires the
uniqueness of the solution for the problem (P0), in order to set the problem as a
fixed point problem for a compact operator. This uniqueness result can not be
deduced from [6] if µ is not a constant. Conditions to have uniqueness results
for (P0) were obtained in [13]. Secondly, we use a topological lemma to obtain
a continuum of solutions as the limit of this approximative scheme Σn. It is
also important to note that condition (1) becomes crucial when applying this
approach in Theorem 1.1.

The rest of the paper is structured as follows, Section 2 presents the main
a priori estimates (this is essentially contained in [14] and [11]). Section 3 pro-
vides, for sequences of solutions of (Pλ), compactness properties and continua
of solutions. Section 4 provides proofs of the main theorems. Finally the Ap-
pendix contains the proof of some a priori estimates and results related to the
uniqueness of solution of the problem (P0).

2. Preliminaries

In this section, according the values for p, we obtain L∞ estimates for solu-
tions of problem (Pλ).

As usual, for every s ∈ R, we denote by s+ = max{s, 0}, s− = s − s+,
Tε(s) = smin{1, ε/|s|} and Gε(s) = s− Tε(s).

Next lemma is consequence of the classical Stampacchia method [14]. We
include the proof in the Appendix, by convenience of the reader, using the
Hartman-Stampacchia variant [15] (see also [16]).
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Lemma 2.1. Let Λ be a positive number. Assume that 0 < p < 1 and f0 ∈
Lq(Ω) with q > N

2 , then there exists a positive constant C > 0 such that, for
every g ≥ 0 and every solution u of (Pλ) with 0 < λ < Λ, one has ‖u‖L∞(Ω) ≤
C.

The next lemma shows that, for a convenient decay of g at infinity, the
previous result is true even for some cases where p ≥ 1.

Lemma 2.2. Let Λ be a positive number. Assume (2) and that f0 ∈ Lq(Ω) with
q > N

2 . Let g0 also be a nonnegative function in C((0,+∞)) sastifying

lim inf
t→∞

tβg0(t) > 0, (3)

where 1 ≤ p < 2 − β. Then there exists a positive constant C > 0 such that,
for every g ≥ g0 and every solution u of (Pλ) with 0 < λ < Λ, one has
‖u‖L∞(Ω) ≤ C.

Proof. We follow the arguments of [11, Theorem 2.1] and we prove that the
right hand side of (Pλ) is (uniformly) bounded in Lr(Ω), for some r > N

2 . Thus
the conclusion follows by the classical Stampacchia boundedness theorem and
by the positive sign on the quadratic gradient lower order term.

We claim that there exists a positive constant C > 0 and σ ≥ pN/2 such
that, for every g ≥ g0 and every solution u of (Pλ) with 0 < λ < Λ, one has
‖u‖Lσ(Ω) ≤ C. Thus we can take r = min{q, σ/p} to complete the proof.

In order to prove the claim we take σ = (2− β)s∗∗ for some s with

max

{
Np

2(2− β + p)
,

2N

2N − β(N − 2)

}
< s <

N

2
. (4)

We observe that since Np
2(2−β+p) < s we have that (2− β)s∗∗ > pN/2. In

addition, (4) assures that θ = (2−β)s∗∗

2∗ > 1 and, for 0 < δ < 1, we use (u +
δ)2θ+β−2 − δ2θ+β−2 as test function taking into account [10, Lemma 2.1].

We obtain, dropping negative terms,∫
Ω

|∇u|2(u+ δ)2θ+β−3

[
(2θ + β − 2) +m(u+ δ)g(u)

]
≤Mδ2θ+β−2

∫
Ω

g(u)|∇u|2 +

∫
Ω

[Λup + f0](u+ δ)2θ+β−2 .
(5)

Using (3) we deduce the existence of a positive constant C > 0 such that

1 + tg0(t)

(t+ 1)1−β ≥ C, ∀t ≥ 0.

Hence, since g ≥ g0 and δ < 1, we have the inequality

1 + tg(t) ≥ C(t+ δ)1−β ,∀t ≥ 0.
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Therefore, from (5) we obtain, using also Sobolev inequality,

CS
(∫

Ω

[
(u+ δ)θ − δθ

]2∗ ) 2
2∗

≤ C
∫

Ω

|∇u|2(u+ δ)2θ−2

≤Mδ2θ+β−2

∫
Ω

g(u)|∇u|2 +

∫
Ω

[Λup + f0](u+ δ)2θ+β−2 ,

(6)

where S is the Sobolev embedding constant. Letting δ tend to zero, we get

CS
(∫

Ω

u2∗θ

) 2
2∗

≤ C
∫

Ω

|∇u|2u2θ−2 ≤ Λ

∫
Ω

u2θ+β+p−2 +

∫
Ω

f0u
2θ+β−2 . (7)

Thanks to the choice of θ, we have 2∗θ = (2θ + β − 2)s′ = (2 − β)s∗∗. Thus,
using Hölder inequality, and recalling that s∗∗(2− β) ≥ 2∗ > 2 > 2− β > p, we
deduce (∫

Ω

u(2−β)s∗∗
) 2

2∗

≤ C
(∫

Ω

u(2−β)s∗∗
) 2θ+β+p−2

(2−β)s∗∗

+C ‖f0‖Ls(Ω)

(∫
Ω

u(2−θ)s∗∗
) 1
s′

.

(8)

Now we point out that 2
2∗ >

1
s′ , since s < N

2 , and that 2
2∗ >

2θ+β+p−2
(2−β)s∗∗ , since

2 − β > p. Therefore, from (8) it follows the claim which allows to finish the
proof.

3. Global continua of solutions

Let M be the solution set for (Pλ), namely

M = {(λ, u) ∈ [0,+∞)× C(Ω) : u is a solution of (Pλ)}.

Continua of solutions in M are obtained in this section by using degree com-
putations and Rabinowitz continuation theorem. In this way, we set (Pλ) as a
fixed point problem for a compact operator.

Next result gives sufficient conditions to assure that solutions of (Pλ) are
uniformly bounded from below by a positive constant in compact subsets. In
fact, we can consider lower order terms of the form h(u)|∇u|2 with

h ∈ C((0,+∞)) is a nonnegative function, nonincreasing (9)

in a neighborhood of zero with
√
h ∈ L1(0, 1),

and data f0 satisfying

(F) If e−
∫ s
1
h(t)dt ∈ L1(0, 1) then f0 is nonnegative and nontrivial. In other

case f0 satisfies (1).
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Lemma 3.1. Assume that h verifies (9) and f0 ∈ L1(Ω) satisfies (F). Then for
each ω ⊂⊂ Ω there exists a positive constant cω such that z(x) ≥ cω > 0 a.e.
x ∈ ω, for every 0 < z ∈ H1

0 (Ω) ∩ C(Ω) supersolution of

−∆z + h(z)|∇z|2 = f0 in Ω.

Proof. On the one hand, if f0 satisfies (1) the proof can be found in [9, Propo-
sition 2.3]. On the other hand, if e−

∫ s
1
h(t)dt ∈ L1(0, 1), then f0 is a general

nonnegative and nontrivial function and we split the proof into two cases: when
h ∈ L1(0, 1) we conclude by [10, Proposition 2.4], while if h /∈ L1(0, 1) we follow
the arguments of [8, Theorem 3.1].

Remark 3.2. We notice that if we assume h(s) = C
sγ then e−

∫ s
1
h(t)dt ∈ L1(0, 1)

if and only if γ < 1 or if γ = 1 and C < 1.

The following lemma ensures the compactness properties required later to
deal with our topological approach.

Lemma 3.3. Assume that 0 � f0 ∈ Lq(Ω) with q > N
2 and µ ∈ L∞(Ω). Let

assume that 0 < un ∈ H1
0 (Ω) ∩ C(Ω) satisfies{

−∆un + µ(x)gn(un)|∇un|2 = λnw
p
n + f0 in Ω,

un = 0 on ∂Ω,
(10)

with 0 ≤ λn bounded in R, 0 ≤ wn bounded in C(Ω) and 0 ≤ gn a sequence of
functions in C((0,+∞)). Then, up to a subsequence, un is strongly convergent
in C(Ω) to u ∈ H1

0 (Ω) ∩ C(Ω). If, in addition, λn → λ, wn → w in C(Ω),
gn(s) → g(s) uniformly in C([a, b]) for every 0 < a < b < ∞, gn(s) ≤ h(s) for
some h verifying (9) and f0 satisfies (F), then u is a solution of problem{

−∆u+ µ(x)g(u)|∇u|2 = λwp + f0(x) in Ω,
u = 0 on ∂Ω .

(11)

Moreover, if the problem (11) admits a unique solution then the whole sequence
un converges strongly to u in C(Ω).

Proof. Since the sequence fn := λnw
p
n + f0 is bounded in Lq(Ω) for some q >

N/2, we can deduce, as in the proof of Lemma 2.1, or by using the Stampacchia
technique in [14] that ‖un‖L∞(Ω) ≤ c∞ for some positive constant c∞. In
addition, applying [16, Theorem 6.1] we deduce that the sequence un is bounded
in C0,α(Ω). Consequently, Ascoĺı-Arzelá Theorem assures that un possesses a
subsequence converging in C(Ω). This conclude the first part of the lemma.

In order to prove the second part we observe that, since the sequence un
is bounded in H1

0 (Ω) (arguing again as in the proof of Lemma 2.1, Step I) we
can assume that un converges weakly to u in H1

0 (Ω). Now we prove that u is
solution of problem (11), i.e. u > 0, g(u)|∇u|2 ∈ L1(Ω) and satisfies,∫

Ω

∇u∇ϕ+

∫
Ω

µ(x)g(u) |∇u|2ϕ =

∫
Ω

(λwp + f0)ϕ, (12)
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for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω).

By Lemma 3.1 given ω ⊂⊂ Ω there exists cω > 0 such that un(x) ≥ cω a.e.
x ∈ ω for every n ∈ N. In particular, using that un converges strongly to u in
C(Ω), we deduce u > 0 in Ω. Even more, the strong convergence of gn to g in
C([cω, c∞]) assures that gn(un)→ g(u) a.e. in Ω.

Next, by the first part of the proof of Theorem 3.1 in [7] we have that
µ(x)g(u)|∇u|2 ∈ L1(Ω). We include the proof by convenience of the reader.

Indeed, taking ϕ = Tε(un)
ε as test function in (10) and dropping the positive

term coming from the principal part we get∫
Ω

µ(x)gn(un)|∇un|2
Tε(un)

ε
≤
∫

Ω

(λnw
p
n + f0)

Tε(un)

ε
.

Since

∫
Ω

(λnw
p
n + f0) ≤ C, we obtain

∫
Ω

µ(x)gn(un)|∇un|2
Tε(un)

ε
≤ C.

The limit as ε→ 0 implies, using that lim
ε→0

Tε(un)
ε = 1,∫

Ω

µ(x)gn(un)|∇un|2 ≤ C .

Furthermore, the results of [17, Theorem 2.1] imply that (up to a subsequence)
∇un → ∇u strongly in (Lq(Ω))N (1 < q < 2), particularly, it converges almost
everywhere in Ω. Then, the last inequality gives us after applying the Fatou
lemma that ∫

Ω

µ(x)g(u)|∇u|2 ≤ C ,

which proves our claim.
To finish, following closely [7], we prove that u satisfies the equation (12).

Since ϕ = ϕ+ + ϕ−, it is enough to prove (12) for every nonegative function
ϕ ∈ H1

0 (Ω) ∩ L∞(Ω). Furthermore, by density, it is sufficient to prove it when
0 ≤ ϕ ∈ H1

0 (Ω) ∩ Cc(Ω).
We divide the proof into two steps.

Step I. The function u satisfies∫
Ω

∇u∇φ+

∫
Ω

µ(x)g(u)|∇u|2φ ≤
∫

Ω

λwp φ+

∫
Ω

f0φ,

for all 0 ≤ φ ∈ H1
0 (Ω)∩Cc(Ω). Indeed, since µ(x)gn(un)|∇un|2 ≥ 0, gn(un)→

g(u) a.e. x ∈ Ω, ∇un converges weakly in (L2(Ω))N and a.e. x ∈ Ω to ∇u
and wpn converges to wp strongly in L2(Ω), then we obtain the result taking a
function 0 ≤ φ ∈ H1

0 (Ω) ∩ Cc(Ω) as a test function in (10) and applying Fatou
lemma.
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Step II. The function u satisfies∫
Ω

∇u∇φ+

∫
Ω

µ(x)g(u)|∇u|2φ ≥
∫

Ω

λwpφ+

∫
Ω

f0φ,

for all 0 ≤ φ ∈ H1
0 (Ω) ∩ Cc(Ω). We fix 0 ≤ φ ∈ H1

0 (Ω) ∩ Cc(Ω) and we define
the function

H(t) =

∫ t

1

Mh (s) ds,

where M = ‖µ‖L∞(Ω). Let call ω = supp φ and observe, thanks to Lemma 3.1
there exists a positive constants cω such that cω ≤ un in ω for every n ∈ N.
Moreover, the boundedness in L∞(Ω) of the sequence {un} implies un ≤ c∞.
Therefore, for n big enough

|H(u)−H(un)| ≤M
∫ c∞

cw

h(s)ds ≤M(c∞ − cω) max
s∈[cω,c∞]

h(s) <∞,

a.e. x ∈ ω. In addition, one can similarly deduce, that

|H(u)−H(un)| ≤M |u− un| max
s∈[cω,c∞]

h(s), a.e. x ∈ ω.

In particular, there exists a positive constant Cφ (depending only on φ) such
that

eH(u)−H(un)φ ≤ Cφ.
Even more,

∇
(
eH(u)−H(un)φ

)
=

eH(u)−H(un) (Mφh(u)∇u−Mφh(un)∇un +∇φ) ∈ L2(Ω).

Thus, taking ϕ = eH(u)−H(un)φ as a test function in (10), we get∫
Ω

∇un∇φ eH(u)−H(un) +M

∫
Ω

h(u)∇u∇uneH(u)−H(un)φ

−
∫

Ω

(λnw
p
n + f0) eH(u)−H(un)φ

=

∫
Ω

(Mh(un)− µ(x)gn(un)) |∇un|2eH(u)−H(un) φ . (13)

Next, we want to pass to the limit in the above expression. Observe that, since
∇un converges weakly in (L2(Ω))N , we have∫

Ω

∇un∇φ eH(u)−H(un) −→
∫

Ω

∇u∇φ.

In addition, since the function φh(u) and the sequence λnw
p
n are bounded, we

obtain using the Lebesgue Theorem∫
Ω

h(u)∇u∇uneH(u)−H(un) φ −→
∫

Ω

h(u)|∇u|2φ,
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and ∫
Ω

(λnw
p
n + f0) eH(u)−H(un) φ −→

∫
Ω

(λwp + f0) φ .

To finish, since Mh(un) − µ(x)gn(un) ≥ 0, we deduce the inequality desired
applying the Fatou Lemma in the right hand side of (13).

Summarizing Step I and Step II we conclude the proof.

As can be observed, uniqueness of solution for (P0) plays a fundamental role.
In order to use the uniqueness result in [13, Theorem 1.1] we have to assume
that the function g satisfies in addition that for every ν > 0 there exists θν ≥ 0
and a nonnegative function g̃ ∈ C1((0,+∞)) with e−

∫ s
1
g̃(t)dt ∈ L1(0, 1) such

that for every 0 < s < ν and for a.e. x ∈ Ω

θν [(µ(x)g′(s)− g̃′(s)) + g̃(s)(µ(x)g(s)− g̃(s))]
≥ (µ(x)g(s)− g̃(s))2 .

(14)

Remark 3.4. In the case µ(x) = µ for some positive constant µ, we can use
the uniqueness result for problem (P0) in [6] for functions g ∈ L1(0, 1). Observe
that, in that case, condition (14) is also trivially satisfied with g̃(s) = µg(s).
On the other hand, for a non-constant function µ(x), it is proved in [13] that
condition (14) is also satisfied in the case g(s) = 1/sγ with γ < 1. Moreover, in
the case g(s) = 1/s, assuming in addition that M < 1, we can choose g̃(s) = c/s
for some M < c < 1 and we have that (14) is satisfied with θν ≥ c

1−c . Others
particular cases that it will be used in the proof of Theorem 1.2 can be found
in the Appendix.

Finally, next result ensures existence of an unbounded, connected and closed
subset of M.

Theorem 3.5. Assume (2), g satisfies (14), g(s) ≤ h(s) for some function h
verifying (9) and f0 ∈ Lq(Ω) with q > N/2 satisfies (F). Then there exists an
unbounded continuum Σ ⊂ M such that (0, u0) ∈ Σ, where u0 is the unique
solution of (P0).

Proof. Firstly, we observe the problem (P0) admits a unique solution 0 < u ∈
H1

0 (Ω)∩C(Ω). Indeed, the existence is due to [7] and [8] if 0 � f0 and due to [9,
Theorem 1.1] if f0 satisfies (1). Alternatively, the uniqueness is deduced using
[13, Theorem 1.1].

Hence, we can define K : [0, 1]× R× C(Ω)→ C(Ω) by setting K(t, λ, w) as
the unique solution 0 < u ∈ C(Ω) of the problem{

−∆u+ tµ(x)g(u) |∇u|2 = λ+(w+)p + f0 in Ω,
u = 0 on ∂Ω,

(15)

for every λ ∈ R, t ∈ [0, 1] and w ∈ C(Ω). With this notation problem (Pλ) can
be rewritten as a fixed point problem, namely,

u = K1
λ(u),
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with Kt
λ(u) = K(t, λ, u). Moreover, since g satisfies (14) Lemma 3.3 assures

that K is compact and we can use Leray-Schauder degree to study (Pλ).
The result follows, as in [10], from the Rabinowitz’s Theorem [18, Theorem

3.2]. We only have to compute the index of the solution u0 and show that it
is different from zero. Let us denote ut = K(1 − t, 0, 0) i.e., ut is the unique
positive solution in H1

0 (Ω) ∩ C(Ω) of the problem{
−∆u+ (1− t)µ(x)g(u) |∇u|2 = f0 in Ω,
u = 0 on ∂Ω .

Define the homotopy J : [0, 1] × C(Ω) → C(Ω) by J(t, w) = ut for every
t ∈ [0, 1] and w ∈ C(Ω). Observe that J(t, w) = K(1 − t, 0, 0) and thus,
using Lemma 3.3, we have that J is compact. Moreover, J(0, w) = u0 and
J(1, w) = (−∆)−1(f0(x)). Therefore

i(K1
0 , u0) = i(J(0, ·), u0) = i(J(1, ·), u1) = i((−∆)−1(f0(x)), u1) = 1.

Consequently, since i(K1
0 , u0) = 1, we conclude the proof by using Rabinowitz’s

theorem.

4. Proof of the main results

In order to prove Theorem 1.1 and Theorem 1.2 we recall, for the convenience
of the reader, the following definition and topological result (see [19]):

Definition 4.1. Let {Sn} ⊂ X be any infinite collection of point sets, not
necessarily different. The set of all points x of our space X such that every
neighborhood of x contains points of infinitely many sets of {Sn} is called the
superior limit. The set of all points y such that every neighborhood of y contains
points of all but a finite number of the sets of {Sn} is called the inferior limit.

From the definiton, we have at once for any system {Sn}

lim inf Sn ⊂ lim supSn

Lemma 4.2 ([19] Whyburn). Let X be a metric space. If {Sn} is a sequence
of connected subsets of X such that

⋃
Sn is relatively compact and lim inf Sn is

not empty, then the lim supSn is connected.

The trick, in the proof of Theorem 1.1 and Theorem 1.2 is to use Lemma 4.2
where Sn is a continuum of solutions of the following approximated problems

 −∆u+ µ(x)
|∇u|2

(u+ 1
n )γ + (u+ 1

n )β
= λup + f0(x) , in Ω,

u = 0 , on ∂Ω,

(Qn,λ)

for n ∈ N and γ ≤ β.

11



Proof of Theorem 1.1. First we deal with item i). We consider, for n ∈ N, the
approximated problems (Qn,λ) and the idea is to use Theorem 3.5 with h(s) =

1
sγ+sβ

and f0 satisfying (1). We observe that, under the assumption µ constant,

the function gn(s) = 1
(s+1/n)γ+(s+1/n)β

satisfies (14) without restrictions in γ

and β (recall Remark 3.4). Now by Theorem 3.5, there exists a continuum Σn
in [0,+∞)×C(Ω) of positive solutions of (Qn,λ) such that (0, un) ∈ Σn with un
solution of (Qn,0). One can observe that by Lemma 2.1, one has Proj[0,∞)Σn =
[0,∞).

For obtaining the existence of an unbounded continuum Σ of solutions of
(Qλ) we apply the result of Lemma 4.2. Indeed, for every Λ > 0 we take Sn,Λ
the connected component of Σn∩

(
[0,Λ]× C(Ω)

)
such that (0, un) ∈ Sn,Λ. Since

Σn is unbounded and Proj[0,∞)Σn = [0,∞), we deduce that Proj[0,Λ]Sn,Λ =
[0,Λ]. Moreover, Lemma 3.3 with λn = 0 assures that, up to (not relabeled)
subsequences, un converges strongly to u solution of (Q0), which implies (0, u) ∈
lim inf Sn,Λ. Even more, given a sequence (λm, um) ∈

⋃
k∈N Sk,Λ we have that,

for some km ∈ N{
−∆um + µ(x)gkm(um)|∇um|2 = λmu

p
m + f0(x) in Ω,

um = 0 on ∂Ω,

with 0 ≤ λm < Λ and ‖um‖L∞(Ω) ≤ cΛ. As we can suppose that km → ∞,
then the first part of Lemma 3.3, with wn = um, assures that (λm, um) admits
a strongly convergent subsequence. In particular we deduce that

⋃
k∈N Sk,Λ

is relatively compact. We notice that if the sequence km is bounded then,
up to a sequence, (λm, um) converges in

⋃
k∈N Sk,Λ. Now we can use Lemma

4.2 to deduce that ΓΛ = lim supSn,Λ is a continuum which, using the second
part of Lemma 3.3, is contained in M. In fact, since for every n ∈ N there
exists (Λ, un) ∈ Sn,Λ, then we have that Proj[0,Λ]ΓΛ = [0,Λ]. Furthermore, by
construction, ΓΛ is increasing in Λ and we can take Σ =

⋃
n∈N Γn. Observe

that since (0, u) ∈ Γn for every n ∈ N then Σ ⊂ M is a connected set in
[0,+∞)× C(Ω). Moreover, Proj[0,∞)Σ =

⋃
n∈N[0, n] = [0,∞).

Now we deal with the proof in the case of item ii). In this case, since µ(x) is
constant and γ < 1, we have that g(s) = 1

sγ+sβ
verifies (14) and (9). Thus, the

unbounded continuum Σ of solutions of (Qλ) is obtained from Theorem 3.5. In
addition, the projection of Σ to the λ-axis has to be bounded, since we can use
[10, Theorem 5.1] to deduce the existence of λ∗. Observe that g ∈ L1(0,+∞)
and

lim
s→∞

sp∫ s
0
e
∫ s
r
g(t)dtdr

= lim
s→∞

e
∫ s
1 ( pt−g(t))dt∫ s

0
e−

∫ r
1
g(t)dtdr

= lim
s→∞

(p
s
− g(s)

)
sp

= lim
s→∞

sp−1

(
p− s1−β

sγ−β + 1

)
=

{
1, p = 1,
∞, p > 1.

Therefore g verifies condition (1.6) in [10].

Proof of Theorem 1.2. We observe that, for every n ∈ N fixed, the function
gn(s) = 1

(s+1/n)γ+(s+1/n)β
satisfies (14) for β ≤ 1 and general µ(x) (see Cases 1-

12



3 of Appendix). Thus by Theorem 3.5 there exists a continuum Σn in [0,+∞)×
C(Ω) of positive solutions of (Qn,λ) such that (0, un) ∈ Σn with un solution of
(Qn,0). We claim that Proj[0,∞)Σn = [0,∞). Indeed, this is a consequence of
the bound on the norm, for λ in bounded sets, of the solutions of (Qn,λ). More
precisely, this bound is obtained by means of Lemma 2.1, for p < 1 and Lemma
2.2 with g0(s) = 1

(s+1)γ+(s+1)β
for p ≥ 1.

The existence of the unbounded continuum Σ with Proj[0,∞)Σ = [0,∞) is
deduced now arguing as in the proof of Theorem 1.1, observe that Lemma 3.3
with λn = 0 assures that, passing to subsequence, un converges strongly to u
solution of (Q0). To conclude, we note by Remark 3.4 the need to consider
M < 2 in the case γ = β = 1.

Remark 4.3. Thanks to Case 4 of Appendix it is worth stressing that the
previous theorem could be extended to γ = 1 < β if M ≤ 1.

Remark 4.4. A simplest proof of Theorem 1.2 can be obtained in the particular
case γ = β ≤ 1. Indeed, the function g(s) = 1/sγ with γ < 1 satisfies condition
(14) and this condition is also satisfied in the case γ = 1 if, in addition, we
assume that M < 1 (see Remark 3.4). Consequently applying directly Theorem
3.5 for γ < 1 and Remark 3.2 for γ = 1 we can deduce the existence of an
unbounded continuum Σ of solutions of (Rλ). Moreover, using Lemma 2.1 in
the case p < 1 or Lemma 2.2, with β = γ and g0(s) = 1/sγ , in the case p > 1,
we can assure that Proj[0,∞)Σ = [0,∞), concluding the claim.

Appendix

We devote this appendix to include the proof of Lemma 2.1 as well as the
proof of (14) in some particular cases.

Proof of Lemma 2.1. We choose suitable test functions taking into account [10,
Lemma 2.1]. We divide the proof into two steps:
STEP I. There exists a positive constant C such that, for every g ≥ 0 and every
solution u of (Pλ) with 0 < λ < Λ, one has ‖u‖H1

0 (Ω) ≤ C.
Indeed, take ϕ = u as a test function to obtain, dropping the positive term

given by the lower order term, that∫
Ω

|∇u|2 ≤
∫

Ω

λup+1 +

∫
Ω

f0 u .

Since p + 1 < 2, we can use Hölder and Sobolev inequalities in the right hand
side to conclude∫

Ω

|∇u|2 ≤ c

((∫
Ω

|∇u|2
) p+1

2

+

(∫
Ω

|∇u|2
) 1

2

)
,

for some positive constant c depending only on Λ,Ω, f0 and p. This inequality
give us Step I with C the unique positive solution of the equation s2 = c(sp+1 +
s).
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STEP II. There exists C > 0 such that, for every g ≥ 0 and every solution u of
(Pλ) with 0 < λ < Λ, one has ‖u‖L∞(Ω) ≤ C‖u‖L1(Ω).

Given k > 1, we take ϕ = Gk(u) as a test function in (Pλ). Hence, dropping
the positive lower order term and using Hölder’s inequality in the right hand
side, we have∫

Ω

|∇Gk(u)|2 ≤
∫
Ak

(λ+ f0)u2 ≤ ‖λ+ f0‖Lq(Ω)

(∫
Ak

u2q′
) 1
q′

, (16)

where Ak = {x ∈ Ω : u(x) > k}. Throughout the proof, C denotes different
positive constants depending only on Λ, f0, p and Ω.

Firstly, we estimate the right hand side of (16) using Hölder and Sobolev
inequalities and the fact that u = Tk(u) +Gk(u). Thus,(∫

Ak

u2q′
) 1
q′

≤ C
(
k2q′ |Ak|+

∫
Ak

Gk(u)2q′
) 1
q′

≤ C
(∫

Ak

Gk(u)2q′
) 1
q′

+ C k2|Ak|
1
q′

≤ C
(∫

Ω

Gk(u)2∗
) 2

2∗

|Ak|
1
q′−

2
2∗ + C k2|Ak|

1
q′

≤ C |Ak|
1
q′−

2
2∗

∫
Ω

|∇Gk(u)|2 + C k2|Ak|
1
q′ .

Consequently, from (16) we have,∫
Ω

|∇Gk(u)|2 ≤ C ‖λ+ f0‖Lq(Ω)

(
|Ak|

1
q′−

2
2∗

∫
Ω

|∇Gk(u)|2 + k2|Ak|
1
q′

)
.

Using Step I we have that k|Ak| ≤ ‖u‖L1(Ω) ≤ C and, since 1
q′ −

2
2∗ > 0, we can

choose k big enough such that∫
Ω

|∇Gk(u)|2 ≤ C ‖λ+ f0‖Lq(Ω) k
2|Ak|

1
q′ .

Using Hölder and Sobolev inequalities and the above inequality we conclude∫
Ak

Gk(u) ≤ C k |Ak|1+ 1
2q′−

1
2∗ ,

which gives us the result applying [15, Lemma 7.2] (see also [16, Lemma 5.1,
pag 71]).

Summarizing Step I and Step II, we conclude the proof.

Now we prove (14) for g(s) = 1

(s+ 1
n )

γ
+(s+ 1

n )
β and 0 < γ ≤ β ≤ 1 or

M < 1 = γ < β.

14



Proof of (14). For every ν > 0, we take g̃(s) = h(s)g(s) for a convenient func-
tion h ∈ C1([0,+∞)), such that, for some θν ≥ 0

θν

((
µ(x)

g′(s)

g2(s)
− h(s)

g′(s)

g2(s)
− h′(s)

g(s)

)
+ h(s)(µ(x)− h(s))

)
≥ (µ(x)− h(s))2, ∀s < ν.

Observe that this inequality is trivially satisfied if h(s) = µ(x) and h′(s) ≤ 0
while, in other case, it is equivalent to prove that the function

σ(x, s) ≡
(µ(x)− h(s))

(
h(s) + g′(s)

g2(s)

)
− h′(s)

g(s)

(µ(x)− h(s))
2

is bounded from below by a positive constant. We point out that

g′(s)

g2(s)
= −γ

(
s+

1

n

)γ−1

− β
(
s+

1

n

)β−1

.

Now we choose the function h(s) based on the different values of γ and β.
Case 1. γ ≤ β < 1.

In this case we take h(s) = −g′(s)/g2(s) = γ(s+ 1
n )γ−1 +β(s+ 1

n )β−1. Thus

h′(s) = γ(γ − 1)

(
s+

1

n

)γ−2

+ β(β − 1)

(
s+

1

n

)β−2

< 0.

In particular, we have that σ(x, s) is given by(
γ(1− γ)

(
s+ 1

n

)γ−2
+ β(1− β)

(
s+ 1

n

)β−2
)((

s+ 1
n

)γ
+
(
s+ 1

n

)β)(
µ(x)− γ

(
s+ 1

n

)γ−1 − β
(
s+ 1

n

)β−1
)2

=

(
γ(1− γ)

(
s+ 1

n

)γ−β
+ β(1− β)

)((
s+ 1

n

)γ−β
+ 1
)

(
µ(x)

(
s+ 1

n

)1−β − γ (s+ 1
n

)γ−β − β)2

We conclude by taking into account that this function (which may take infinite
values) only vanishes for s→ +∞.
Case 2. γ < β = 1.

In this case we take again h(s) = −g′(s)/g2(s) = γ(s+ 1
n )γ−1 + 1. Thus

h′(s) = γ(γ − 1)

(
s+

1

n

)γ−2

< 0.

In particular, we have

σ(x, s) =

(
γ(1− γ)

(
s+ 1

n

)γ−2
) ((

s+ 1
n

)γ
+
(
s+ 1

n

))
(
µ(x)− γ

(
s+ 1

n

)γ−1 − 1
)2 .
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We conclude, as before, by taking into account that this function only vanishes
for s→ +∞.
Case 3. γ = β = 1.

In this case we can choose h(s) = 2 + 1
1+3ns and we have

σ(x, s) =
(µ(x)− 2− 1

1+3ns ) 1
1+3ns + 6n(s+1/n)

(1+3ns)2(
µ(x)− 2− 1

1+3ns

)2

>

−3−6ns
(1+3ns)2 + 6n(s+1/n)

(1+3ns)2(
µ(x)− 2− 1

1+3ns

)2 =
3

((µ(x)− 2)(1 + 3ns)− 1)
2

We conclude again using that this function only vanishes for s→ +∞.
Case 4. M ≤ 1 = γ < β.

In this case we can choose h(s) = 1 and, since g′(s)
g2(s) = −1−β(s+ 1

n )β−1, we

have

σ(x, s) =
1− 1− β(s+ 1

n )β−1

µ(x)− 1
=
β(s+ 1

n )β−1

1− µ(x)
≥ β

nβ−1(1− µ(x))
.
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