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Abstract 16 

This work analyses the influence of water vapor on the atmospheric transmission loss of 17 

solar radiation between heliostats and the receiver of solar power tower plants. To this 18 

purpose, an atmospheric transmission code (MODTRAN) is used to generate values of 19 

direct normal irradiance (DNI) reaching the mirror and the receiver under different 20 

geometries (including sun position, tower height, and mirror-to-receiver slant range) and 21 

atmospheric conditions related to water vapor and aerosols.  These variables are then used 22 

as inputs to an artificial neural network (ANN), which is trained to calculate the 23 

corresponding DNI attenuation. Two different aerosol scenarios are simulated: an ideal 24 

aerosol-free atmosphere, and a widely different one corresponding to semi-hazy 25 

conditions. The developed ANN model is then able to provide the DNI attenuation over a 26 

wide range of the input variables considered here, with root mean square differences of 27 

only 0.8%. The transmission loss due to water vapor is found to decrease with sun 28 

elevation. This is explained by the saturation effect in the incident irradiance at the mirror. 29 

The simplicity and accuracy of the algorithm are its great strengths, allowing its 30 

anticipated inclusion into the actual energy simulation codes currently used for solar tower 31 

plant design.  32 

Keywords: solar power towers, transmission losses, water vapor, artificial neural 33 

networks 34 

1. Introduction 35 

Estimation of direct normal irradiance (DNI) is a research topic of increasing interest in 36 

solar energy, particularly for concentrating solar power (CSP) production. Power 37 

generation from Solar Power Towers (SPT), for which DNI is a critical input, is 38 

experiencing a rapid growth worldwide, linked to a rapid increase in the generated power 39 
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and quasi-baseload opportunities offered by high-temperature heat storage. It is anticipated 40 

that the SPT technology will be one of the main contributors to the future mix of 41 

renewable energies. The greater challenges posed by these large solar installations is their 42 

complexity and cost. Economies of scale are possible, but require large installations, where 43 

the outer heliostats can be a few kilometers away from the receiver. To guarantee a good 44 

design and estimate of the electricity production under any circumstances, it is crucial to 45 

have an accurate evaluation of the DNI received by the receiver from each heliostat at any 46 

instant, since this ultimately affects the operation and revenue, as well as the energy price 47 

market.  48 

Under cloudless conditions, aerosols and water vapor have relatively high concentrations 49 

near the ground and thus are the main variable atmospheric constituents attenuating the 50 

DNI after reflection by heliostats. As a matter of fact, experience has shown that the 51 

heliostat-to-tower attenuation can reach substantial levels in cases of high turbidity and/or 52 

humidity content near ground level. For instance, Saharan dust outbreaks in southern Spain 53 

are not rare, and produce significant attenuation levels. Figure 1 clearly illustrates the 54 

optical effect of such an event, which occurred in February 2016 at the Plataforma Solar de 55 

Almería (PSA) research center (Spain). That specific event and ensuing DNI attenuation 56 

are further analyzed by Alonso-Montesinos et al. (2017).  57 

 58 

 59 

Fig. 1: Low visibility and substantial light scattered by large particles in the atmosphere at 60 
PSA on 2016-02-22 at 14:30 local time. Solar radiation reflected by the heliostats is visibly 61 

attenuated by scattering. 62 
 63 

The above-mentioned dust outbreaks occur several times a year, affecting the production 64 

of all solar tower plants installed in Andalusia, in particular. Such episodes are even more 65 

frequent in northern Africa, the Middle East, or Asia, where a rapid growth in the number 66 

of installed SPT plants is expected. Consequently, the specialized computer codes 67 

commonly used by engineers for plant sizing or energy simulation of SPT systems should 68 

include the effects of these extreme atmospheric conditions, while being also flexible and 69 

general in order to be used under a variety of climates, etc. Unfortunately, the models that 70 

can estimate such losses were typically developed several decades ago (Vittitoe and Biggs, 71 

1978; Pitman and Vant-Hull, 1982), and are insufficient to meet the increased accuracy 72 

demanded by new SPT projects. Ballestrín and Marzo (2012) have compared the 73 

atmospheric mirror-to-receiver (MTR) attenuation results from the above-mentioned 74 
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simple algorithms to detailed simulations obtained with the rigorous MODTRAN 75 

atmospheric spectral code (Berk et al., 1989) for a rural-type atmosphere. Although the 76 

Pitman and Vant-Hull model showed good results, both for turbid and clean conditions, 77 

only two different turbidity conditions were simulated, which is far from representing all 78 

possible conditions at any one SPT site.  79 

In perspective, it is important to estimate the direct value of better evaluating atmospheric 80 

attenuation losses. The sizing of the heliostats field using different SPT design codes such 81 

as DELSOL or MIRVAL can present deviations up to 4% when considering variable 82 

conditions of aerosols and water vapor, leading to significant economic repercussions 83 

(Cardemil et al., 2014). Polo et al. (2017) have found differences of up to 20% in the 84 

energy output production of large SPT plants depending on the time-scale input 85 

information (e.g. daily, monthly or yearly values) used to model the atmospheric 86 

extinction. These findings support the need of analyzing and modeling the effects of 87 

different atmospheric components, such as aerosols or water vapor, on the MTR 88 

attenuation at fine temporal resolution. Theoretical simulations conducted by means of 89 

spectral radiative codes, such as MODTRAN, show that reductions up to 30% in solar 90 

irradiance incident on distant heliostats can occur under moderately turbid conditions 91 

(López et al., 2017).   92 

In recent years, methods for the direct or indirect experimental determination of the 93 

horizontal extinction coefficient or of the energy attenuation have been proposed. For 94 

instance, Sengupta and Wagner (2012) proposed to derive the MTR attenuation from the 95 

measurement of DNI with two pyrheliometers, one measuring the incident DNI on the 96 

mirror (or heliostat), and the other one measuring the DNI incident on the receiver. The 97 

authors noted the great difficulties inherent to this methodology (depending on the 98 

reflectance of mirrors, their cleanliness variations in local conditions, etc.), and the crucial 99 

importance of measurement errors. Tahboub et al. (2014) used measurements from four 100 

pyrheliometers installed on the side of a mountain and staggered at various elevations 101 

(from 340 to 1035 m) to study the correlation between the DNI measurements thus 102 

obtained at different heights. More generally, a thorough review of experimental methods 103 

and atmospheric attenuation models can be found in the recent literature (Hanrieder et al., 104 

2017). Even though the current knowledge points at aerosols as the main source of slant 105 

MTR attenuation, there is no exhaustive study analyzing the relative importance of other 106 

atmospheric variables, such as water vapor, and their effects on energy losses. 107 

In this work, the radiation losses specifically caused by air molecules and water vapor are 108 

analyzed, and a preliminary soft-computing algorithm is proposed to evaluate them with 109 

sufficient accuracy. To that end, the spectral propagation of DNI from the top of the 110 

atmosphere to the receiver is simulated with MODTRAN for several air masses, also 111 

taking the atmospheric composition into account. The dependence of the attenuated DNI 112 

on solar zenith angle, amount of water vapor, MTR distance, and others factors, is 113 

analyzed toward the development of a general prediction model. 114 

Using conventional methods, the complex non-linear relationships between the various 115 

atmospheric or geometric inputs and transmission loss lead to excessive difficulties in 116 

finding a suitable mathematical function. An artificial neural network (ANN) is thus rather 117 
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developed here to obtain transmission loss estimates from the inputs considered. In 118 

addition to the multiple applications of ANN methods in pattern recognition and 119 

classification, function approximation, prediction, etc., their usage in data analysis is 120 

growing fast, offering an effective alternative to more traditional techniques in many 121 

scientific fields. Particularly, in the meteorological and solar energy resource fields, ANN-122 

based methods have been successfully developed to evaluate various solar radiation 123 

variables, thus improving their accuracy with respect to more conventional statistical 124 

approaches (Bosch et al., 2008; Eissa et al., 2013; López and Gueymard, 2007; Srikrishnan 125 

et al., 2015). Moreover, ANNs are starting to be used to estimate solar irradiance with a 126 

similar degree of accuracy as what can be achieved by the more conventional methods 127 

based on broadband or spectral radiative models (Takenaka et al., 2011; Taylor et al., 128 

2016). Thus, this emerging application of ANN allows efficient (fast and accurate) 129 

calculations of the otherwise computationally expensive and complex mathematical 130 

formulations involved when using conventional spectral radiative transfer models. 131 

2. Methodology 132 

2.1. Generation of synthetic data 133 

The MODTRAN model is used here to obtain hundreds of initial predictions of the 134 

incident DNI, both at the mirror M (EM) and at the receiver on the tower T (ET), after EM is 135 

reflected by M (Fig. 2). These simulations pertain to a large range of solar zenith angles 136 

(z), mirror-to-receiver slant ranges (S), tower heights (H), precipitable water (w), and two 137 

widely different turbidity conditions. These initial, spectrally-based predictions are used as 138 

the foundation of the proposed ANN model.  139 

 140 

Fig. 2: Schematic description of the tower power plant and nomenclature. 141 

 142 

As modeled in MODTRAN, the spectral transmittance between M and T is an intricate 143 

function of line-of-sight geometry, aerosol characteristics (such as type of aerosol or type 144 

of aerosol extinction), water vapor content, amounts of absorbing gases (ozone, carbon 145 

dioxide, etc.), and various secondary atmospheric variables. The latter, as well as all gas 146 

amounts except water vapor and carbon dioxide, are fixed here to reference values 147 

according to the 1976 US Standard Atmosphere (USSA). A large range of water vapor 148 
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amounts is considered, between 0 (ideal dry atmosphere) to 4.5 cm (subtropical 149 

conditions), including the Mid-Latitude Summer (MLS) case (w = 2.87 cm). Additionally, 150 

the carbon dioxide concentration from the original USSA (330 ppmv) is revised upward to 151 

the more current value of 400 ppmv. All the other variables are varied to cover a wide 152 

range of possible conditions (Table 1) and to allow comparisons with earlier studies (e.g., 153 

Ballestrín and Marzo, 2012). For the latter reason, the aerosol model corresponding to the 154 

Rural extinction profile and relatively turbid conditions, represented by a surface visibility 155 

(VIS) of 23 km, is specifically selected for the present study. At the other extreme, an ideal 156 

aerosol-free atmosphere is also considered. This option is interesting since the effect of 157 

water vapor effect on the transmission loss can then be clearly identified. 158 

 159 

Table 1: Values of the MODTRAN inputs used to obtain the simulated database. 160 

Inputs to MODTRAN Values 

Z (degrees) 

H (m) 

S (km) 

w (cm) 

Aerosols 

0, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90 

100, 200, 250 

0.15, 0.5, 1, 2, 4 

0, 0.25, 1.42, 2.00, 2.87, 4.50 

No aerosols, Rural VIS = 23 km 

 161 

The solar radiation reflected by the mirror M, EM, may be obtained by MODTRAN as: 162 

   163 

              
 

    
 (1) 164 

 165 

where Eλ0 is the Kurucz extraterrestrial spectral irradiance at 1 AU, TλM is the atmospheric 166 

spectral transmittance for the sun-to-mirror path, which depends on the abundance of 167 

various atmospheric constituents, and thus varies over time, and ρλ is the mirror’s spectral 168 

reflectance. The latter needs to be considered in order to evaluate its effect on the 169 

transmission losses of the reflected sunlight. Since this effect is relatively small, the 170 

reflectance is set here to 1 at all wavelengths for the sake of simplicity in this preliminary 171 

work. The integration limits, 0.28 m and 4 m, correspond to the range of wavelengths 172 

(λ) typically sensed by a pyrheliometer. Since the attenuation due to water vapor is the 173 

only one specifically evaluated here, all other atmospheric inputs are fixed at reasonable 174 

values, as noted above. The solar zenith angle is varied incrementally from 0º to 90º as 175 

shown in Table 1. Although solar power towers do not operate under large solar zenith 176 

angles, values higher than 80º are considered here anyway in order to analyze the trend of 177 

transmission losses under these extreme limits. 178 

The irradiance reaching the tower receiver T (Fig. 2) is obtained using the slant-path 179 

option included in MODTRAN between two points at finite distance, i.e., the mirror and 180 

the receiver in the present case. MODTRAN calculations take into account the effects of 181 

the earth’s sphericity and atmospheric refraction. The irradiance ET is then obtained from: 182 
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 183 

                   
 

    
 (2) 184 

 185 

where, TλM-T is the spectral transmittance for the mirror-to-tower slant path, and ρλ, TλM 186 

and Eλ0 correspond to the values needed to resolve Eq. (1).  187 

Since the ratio ET/EM represents the broadband atmospheric transmittance between M and 188 

T, the broadband atmospheric transmission loss A may be readily derived using: 189 

 190 

         . (3) 191 

 192 

2.2. Artificial neural network 193 

Artificial neural networks are implemented here using a combination of custom-designed 194 

MATLAB functions (MatLab, 1999) in conjunction with several routines developed by 195 

Nørgaard (1997). A standard multilayer perceptron (MLP) architecture with three fully 196 

interconnected layers (input, hidden, and output) is employed, as shown in Fig. 3. The 197 

hyperbolic tangent transform is chosen as the nonlinear activation function in the hidden 198 

layer, and the identity function is selected as the activation function for the output layer. 199 

Such a network determines a non-linear mapping from an input vector (constituted of the 200 

MODTRAN inputs given in Table 1) to the output, i.e., the transmission loss A. The input 201 

and output vectors are parameterized by a set of network weights. These are referred to as 202 

hidden weights, wh (weights connecting inputs to hidden neurons), and output weights, wo 203 

(weights connecting hidden neurons to the output one). All weights are randomly 204 

initialized within the range (–0.5, 0.5). Among several existing training algorithms, a 205 

Gauss-Newton-based Levenberg-Marquartd method is selected due to its rapid 206 

convergence properties and robustness (Fletcher, 1987).  207 

 208 

Fig. 3: Description of the ANN architecture used here. 209 

3. Analysis and results 210 

The influence on transmission loss of zenith angle, water vapor, and of some other 211 

variables is analyzed first. The ANN model results are presented in a second step. Figures 212 
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4 and 5 show the transmission loss A versus solar zenith angle for different values of water 213 

vapor content and slant ranges, respectively for the two contrasting turbidity scenarios 214 

detailed above: an ideal aerosol-free atmosphere (Fig. 4) and semi-hazy conditions 215 

corresponding to a visibility of 23 km (Fig. 5). In both Figures the tower height is H = 100 216 

m. 217 

  

Fig. 4: Transmission loss for H = 100 m and an aerosol-free atmosphere, using: (a) a 

fixed w = 1.42 cm and several slant ranges, or (b) a fixed S = 4 km and several 

precipitable water values at ground level. 

 218 

  

Fig. 5: Transmission loss for H = 100 m and semi-hazy conditions (VIS = 23 km), 

using: (a) a fixed w = 1.42 cm and several slant ranges, or (b) a fixed S = 4 km and 

several precipitable water values at ground level. 

A is found to decrease sharply when zenith angle increases above ≈60°. More specifically, 219 

A decreases from 5.6% to 4% when Z increases from 30º to 70º for a medium slant range 220 

of 2 km, a constant precipitable water of 1.42 cm and an aerosol-free atmosphere. For a 221 

slant range of 4 km, this loss increases up to 9.6% for Z = 30º, or 7.3% for Z = 70º.  222 

This means that the pure effect of zenith angle is 2.3% when it varies between 30º and 70°. 223 

When haze is present (23-km visibility), this specific effect is significantly stronger, 224 

reaching 3.6% for S = 2 km and 5% for S = 4 km. On the other hand, this zenith angle 225 

effect is smaller (≈1%) for short (< 1 km) slant ranges. The general decrease of A with 226 
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increasing zenith angle is caused by the saturation effect of water vapor absorption: when 227 

Z increases, so does the total water vapor pathlength. This in turn depletes some 228 

wavelengths more or less completely in the water vapor absorption bands, such as around 229 

940 nm or 1400 nm. Thus, the bulk of water vapor absorption occurs in the free 230 

atmosphere before the direct beam reaches the mirror. After reflection on the mirror, the 231 

wavelengths that were already strongly depleted before reflection cannot be depleted much 232 

more, even though there is substantial water vapor between M and T. More specifically, 233 

this additional water cannot have any additional effect on the strongest spectral absorption 234 

lines that are already fully saturated, and can only have minimal effect on the moderately 235 

strong lines that are just partly saturated. Hence, A is less intense when Z is larger, since 236 

the total water vapor pathlength is also larger. Note that this saturation effect is slightly 237 

reduced if the tower height is increased, because the water vapor concentration decreases 238 

with height. 239 

For a better understanding of the relationship between A and sun position, Fig. 6 displays 240 

the water vapor spectral transmittance corresponding to two solar positions: Z = 0º and 241 

90º. Considering fixed values for the other parameters (w = 1.42 cm, H = 100 m, S = 4 km, 242 

and aerosol-free conditions), the transmission losses are 10% and 2%, respectively (Fig. 243 

4). Figure 6a shows the spectral transmittances for each of the two path sections into which 244 

the entire solar beam’s pathlength can be decomposed: from the top of atmosphere (TOA) 245 

to the mirror, TM, and from the mirror to the receiver at the top of the tower, TM-T. Fig. 6a 246 

shows how the spectral transmittance along the 4-km mirror-to-receiver slant path is 247 

slightly lower than that corresponding to the vertical TOA-to-mirror path (TM-T  TM(0º)). 248 

The total spectral transmittance for this case, i.e., the product TM(0º)·TM-T, is shown in 249 

Fig. 6b (orange area). The red area corresponds to the water vapor’s spectral transmittance. 250 

For this example, the broadband irradiances incident on the mirror and on the receiver are 251 

respectively EM(Z = 0º)  = 1045 W/m2 and ET = 940.8 W/m2. A significant energy loss of 252 

10% is thus obtained. In the second case, it is found that TM-T > TM(90º), as a 253 

consequence of the larger sun-to-mirror path compared to the mirror-to-receiver path. The 254 

total spectral transmittance for the sun-to-receiver path is TM(90º)·TM-T ≈ TM(90º). The 255 

irradiances are then EM(Z = 90º)  = 187 W/m2 and ET = 183.8 W/m2, leading to energy 256 

losses of about 2%. This effect is similar to that corresponding to an increase the water 257 

vapor amount, as explained below. The reason is that the saturation effect is driven by the 258 

total slant column of water vapor, which can be approximated by w/cos(Z) for Z less 259 

than ≈85°. 260 
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 261 

Fig. 6: Spectral transmittance T for water vapor and different paths: (a) three paths are 262 
considered, (i) from the top of atmosphere (TOA) to the mirror at a zenith angle of 263 

0º,TM(z= 0º); (ii) from TOA to the mirror at a zenith angle of 90º,TM(z= 90º); and (iii) 264 

from the mirror to the receiver at the tower, TM-T; (b) TM(z= 0º) and the TOA-to-mirror-265 

to-receiver path, TM(z= 0º)·TM-T.; (c) TM(z = 90º) and the TOA-to-mirror-to-receiver 266 
path. Aerosol-free conditions with w = 1.42 cm, H = 100 m, and S = 4 km are used in all 267 
cases. In the bottom panels, the colored areas under the curves describe the saturation 268 

effect of water vapor on the total transmittance. In panel (b), the red area depicts the sun-269 
to-mirror transmittance, whereas the orange color indicates the overall sun-to-mirror-to-270 
receiver transmittance. The mirror-to-receiver path still reduces the initial transmittance 271 

(red area). This effect is larger for wavelengths beyond 1 m. In panel (c), the orange 272 

area (similar to that for panel (b), but with z = 90º) is almost the same as the green area, 273 
which depicts the sun-to-mirror transmittance, thus indicating that the water vapor along 274 

the mirror-to-receiver path has virtually no effect on the total transmittance. 275 

 276 

For an ideal atmosphere without aerosols or water vapor (w = 0), Fig. 4 shows the non-277 

negligible effect of Rayleigh scattering (caused by air molecules) on the reflected solar 278 

energy for S = 4 km, leading to transmission losses of about 4%. The dependence of A on 279 

Rayleigh scattering is almost linear with slant range, generating transmission losses of 280 

≈0.15% for S = 0.15 km, or ≈1% for S = 1 km, for instance. 281 

Figure 4 also shows the significant attenuation effect of water vapor on transmitted solar 282 

radiation along the mirror-to-receiver path. In an aerosol-free atmosphere, the percent 283 

energy loss due to water vapor (combined with Rayleigh scattering) can be up to 3.5% 284 

over a short slant range (1 km) and 12% for a long slant range (4 km), assuming high 285 

humidity conditions (w = 4.5 cm). The results in Fig. 4 indicate that, under aerosol-free 286 

conditions (where Rayleigh scattering is the only cause of attenuation, apart from 287 
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absorption), A increases almost linearly with slant range. The latter result is also observed 288 

under turbid atmospheric conditions. Moreover, Fig. 4 reveals that the transmission loss 289 

due to water vapor alone reaches ≈6% for S = 4 km and low zenith angles, assuming w = 290 

1.42 cm. This result is similar under a semi-hazy atmosphere (Fig. 5). In contrast, when 291 

precipitable water increases from 1.42 to 4.5 cm, the transmission losses only increase by 292 

1–2%. This non-linear behavior is a consequence of the strong water vapor saturation 293 

effect, as explained above. This is also the reason why the transmission losses due to water 294 

vapor are relatively small, even under very humid conditions (w = 4.5 cm), in comparison 295 

with aerosol-induced losses, as the comparison of Figs. 4 and 5 reveals. 296 

It is important to note that all the results above correspond to fixed rates of vertical 297 

decrease (or “scale heights”) of the concentration of all atmospheric constituents, as 298 

specified by the USSA or MLS reference atmospheres. In the case of water vapor close to 299 

surface level, this assumed scale height is ≈2.2 km for USSA and ≈1.9 km for MLS. 300 

However, recent findings using high-resolution radiosonde soundings have shown that the 301 

water vapor scale height can vary rapidly (between typically 1 and 5 km) at any given site. 302 

The effect of this scale-height variability on the transmission loss is not negligible, as 303 

shown by Gueymard et al. (2016), and thus should be considered in future attenuation 304 

model developments. 305 

 306 

3.1 ANN performance 307 

To develop an ANN-based model, several free parameters must be fixed before the 308 

training stage. For the MLP-based model developed here, the only free parameter is the 309 

number of hidden units, Nh, since the number of inputs and outputs are fixed by design in a 310 

previous step. These ANN inputs (Fig. 3) correspond to the five variables used to obtain 311 

the simulated database by means of MODTRAN (Table 1): Z, H, S, w and VIS. The 312 

number of hidden neurons is chosen following a heuristic approach, where several 313 

networks with different values of Nh are trained and the best-performing network among 314 

them is selected. For this purpose, the synthetic database is randomly split into two sets, 315 

one for training the ANN and the other for testing the model. The latter amounts to ≈10% 316 

of the whole database. The ANN model’s performance is analyzed in terms of both the 317 

root mean square difference (RMSD) and mean bias difference (MBD) between the 318 

estimated transmission losses and the MODTRAN-derived values. They are expressed as a 319 

percentage of the mean value of the latter. 320 
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 321 

Fig. 7: Transmission loss A estimated by the ANN model compared to reference 322 
MODTRAN values. 323 

Calculations show that the tested ANN models with Nh > 30 can generate very low RMSD 324 

(< 1%) and no bias, whereas a low amount of hidden neurons result in a larger RMSD. Nh 325 

is thus fixed to the “optimal” value just mentioned. Figure 7 shows the transmission loss 326 

estimated by the final ANN model compared to the original MODTRAN values. An 327 

almost perfect fit is observed, with an RMSD of only 0.8%. This result demonstrates the 328 

suitability of adding an appropriate ANN-based model to SPT simulation codes, to avoid 329 

the difficulties and computer time of operating a spectral code like MODTRAN. 330 

4. Conclusions 331 

In this work, the energy loss of direct normal irradiance is evaluated along its path from 332 

distant mirrors to the tower receiver of a large solar tower plant, focusing on the specific 333 

impact of water vapor. It is found that the concentration of surface water vapor along the 334 

mirror-to-tower path can lead to significant reductions (up to 12%) of the solar irradiance 335 

incident on the heliostat field. It is also shown that the water vapor saturation effect limits 336 

the increase in transmission loss when water vapor reaches the high-humidity conditions 337 

typical of tropical or subtropical regions, or when zenith angle exceeds ≈60°. The 338 

MODTRAN simulations elaborated here further indicate that transmission losses are not 339 

constant during the day since they depend on sun position. Daily variations of ≈4% can 340 

occur in the common operation of solar tower plants just due to this effect, at least when 341 

considering the farthest mirrors.  342 

This contribution is apparently the first one in which the dependence of slant mirror-to-343 

receiver attenuation on solar geometry is specifically mentioned. The analysis of an ideally 344 

pure, dry and aerosol-free atmosphere has also evidenced the non-negligible impact of 345 

molecular (Rayleigh) scattering along the mirror-to-receiver path, translating into a 346 

specific transmission loss of ≈1–4% for far-away mirrors, which increases linearly with the 347 

slant range. All these values slightly decrease if tower height increases, as an expected 348 

consequence of the air density reduction with height. 349 

The modeling of transmission losses using two atmospheric variables (zenith angle and 350 
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precipitable water) and two variables for solar power plant design parameters (slant range 351 

and tower height) has been successfully solved using an artificial neural network (ANN) 352 

for two contrasting atmospheric turbidity conditions. The transmission losses estimated by 353 

the ANN model match those obtained by MODTRAN almost perfectly, and only require 354 

an easy and fast computation. The main advantages of this ANN approach are (i) the 355 

elimination of the complex and time-consuming use of MODTRAN; and (ii) the 356 

improvement in transmission loss parameterization compared to what was developed 357 

empirically decades ago. Thus, the present ANN model constitutes a valuable tool that 358 

could be added to existing solar tower plant design and operation simulation codes. Future 359 

work will examine the impact of varying vertical atmospheric profiles and different 360 

atmospheric turbidity conditions, to make this ANN model even more general. 361 
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