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Abstract

In this paper we give a sub-supersolution method for nonlinear elliptic sin-
gular systems with quadratic gradient whose model system is the following

−∆u+ vβ
|∇u|2

uα
= f1(x, u, v) in Ω,

−∆v + uµ
|∇v|2

vγ
= f2(x, u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a smooth bounded domain of IRN (N ≥ 3), β, µ ≥ 0, 0 < α, γ < 1
and regular f1, f2 functions. Moreover, we apply it to prove existence of
solution for some systems, including the classical Lotka-Volterra models with
gradient terms. Specifically, we study the competition and the symbiotic
Lokta-Volterra systems.
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1. Introduction

The aim of this paper is to provide a sub-supersolution method for the
following nonlinear elliptic singular system with natural growth

−∆u+ g1(v)
|∇u|2

uα
= f1(x, u, v) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= f2(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain of IRN (N ≥ 3), 0 < α, γ < 1, the
functions g1, g2 ∈ C([0,+∞)) and f1, f2 ∈ C(Ω×[0,+∞)×[0,+∞)) verifying
some general conditions detailed below.

Regarding the literature there are several papers about equations with
quadratic gradient terms. The existence of solutions of the equation{

−∆u+ g(u)|∇u|2 = a(x) in Ω,
u = 0 on ∂Ω,

(1.2)

for every function a(x) in a given Lebesgue space has been systematically
studied in [5, 8, 9] and references therein (in fact, for a more general nonlinear
term H(x, u,∇u) instead of g(u)|∇u|2). They consider in the lower order
term a continuous g in IR which does not satisfy any growth restriction and
the sign condition g(s)s ≥ 0 for every s ∈ IR is assumed. Thanks to the
presence of the lower order term the Dirichlet problem associated to the
equation is allowed to have finite energy weak solutions.

In [15] and [4] some of the above results were extended to the case of
systems. Specifically, in [4] the authors study systems of elliptic equations
with quadratic gradient. They consider a general system{

−∆ui +Hi(x, u,∇u) = ai(x) in Ω,
u = 0 on ∂Ω, i = 1, . . . , n

where u = (u1, . . . , un), ai ∈ H−1(Ω) and the quadratic terms Hi(x, u,∇u)
satisfy a more general one-side condition than the sign condition, but in
the case Hi(x, u,∇u) = gi(u)|∇u|2 this one-side hypothesis is equivalent to
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the sign condition. In their case gi is continuous in IRn and they prove the
existence of solution in the Sobolev space.

In the last years, equation (1.2) has attracted much attention by the
presence of singular terms in front of the gradient, see [1, 2, 6] and references
therein.

In [11] we proved that a sub-supersolution method works for equations of
the form  −∆u+

|∇u|2

uα
= f(λ, u) in Ω,

u = 0 on ∂Ω,

and we apply it to different models.
In this paper we focus our attention to systems with quadratic gradient

and singular terms as (1.1).
Let us mention that the sub-supersolution method is valid for semilinear

systems, see for instance [13] and [20]. In this case, when g1 ≡ g2 ≡ 0, the
natural extension of the scalar definition of sub-supersolution depends on the
monotonicity of the functions f1 and f2 with respect to v and u, respectively.
A general definition was given in [13] and [20] where a pair of functions (u, v),
(u, v), u, u, v, v ∈ H1(Ω) ∩ L∞(Ω) is called a sub-supersolution if

u ≤ u, v ≤ v in Ω,
u ≤ 0 ≤ u, v ≤ 0 ≤ v on ∂Ω,

and
−∆u ≤ f1(x, u, v), −∆u ≥ f1(x, u, v), ∀v ∈ [v, v],
−∆v ≤ f2(x, u, v), −∆v ≥ f2(x, u, v), ∀u ∈ [u, u],

where, given two ordered functions z ≤ w, we have denoted

[z, w] := {q ∈ L∞(Ω) : z(x) ≤ q(x) ≤ w(x)}

(see also [19] where it is proved the validity of the method for singular semi-
linear systems). Assuming the existence of a sub-supersolution, (u, v), (u, v),
there exists a solution (u, v) ∈ I ≡ [u, u]× [v, v] of the semilinear system (i.e.
(1.1) with g1 ≡ g2 ≡ 0).

When the reaction terms depend on the gradient, i.e.,

−∆u = f1(x, u, v,∇u,∇v), −∆v = f2(x, u, v,∇u,∇v)
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and the functions f1 and f2 are regular verifying some hypotheses, the defi-
nition is (see [21])

−∆u ≤ f1(x, u, v,∇u,∇v), −∆u ≥ f1(x, u, v,∇u,∇v), ∀v ∈ [v, v],
−∆v ≤ f2(x, u, v,∇u,∇v), −∆v ≥ f2(x, u, v,∇u,∇v), ∀u ∈ [u, u].

Assuming again the existence of a sub-supersolution, the existence of a solu-
tion (u, v) ∈ I follows.

In this paper, we use the above definition of sub-supersolution, and taking
advantage of the form of equation, we overcome the singularities difficulty
of the system (1.1) with respect to u and v. Hence, for our system (1.1) we
define a couple of sub-super solution as follows

−∆u+ g1(v)
|∇u|2

uα
≤ f1(x, u, v), −∆u+ g1(v)

|∇u|2

uα
≥ f1(x, u, v), ∀v ∈ [v, v],

−∆v + g2(u)
|∇v|2

vγ
≤ f2(x, u, v), −∆v + g2(u)

|∇v|2

vγ
≥ f2(x, u, v), ∀u ∈ [u, u].

Moreover, we apply this method to prove existence of positive solution for
some systems, including the classical Lotka-Volterra models confronted with
the Laplacian operator perturbed by a singular gradient term, that is, the
following systems

−∆u+ g1(v)
|∇u|2

uα
= u(λ− u− bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

(1.3)

where λ, µ ∈ IR and b · c > 0. Here, u(x) and v(x) denote the densities of two
species, λ and µ represent the growth rates of the species, b and c measure
the interaction rates between both species; if b, c > 0 they are competing
and if b, c < 0 cooperating. Moreover, in (1.3) a nonlinear convective term
is included with a singular term. This term is accompanied by a nonlinear
function depending on the other species. We give conditions on λ and µ that
assure the existence of a coexistence state of (1.3), that is, a solution with
both components positive.

The structure of the article is: in Section 2 we study an auxiliary scalar
equation that we use in Section 3 to prove the validity of the sub-supersolution
method for (1.1). Section 4 is devoted to applications of the method.
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2. An auxiliary scalar equation

Freezing one of the unknown in each equation of (1.1) we are led to
consider the scalar boundary value problem −∆w +m(x)

|∇w|2

wθ
= f(x,w) in Ω,

w = 0 on ∂Ω,
(2.4)

for convenient functions m and f and a parameter 0 < θ < 1. In order to use
monotone methods for (2.4), as was pointed out in [11] for m(x) constant,
it is useful to consider a positive function g ∈ C(0,+∞) such that, denoting
G(u) =

∫ u
1
g(s)ds, the function e−G(s) belongs to L1(0, 1) and we define also

Ψ by

Ψ(s) :=

∫ s

0

e−G(t)dt, s > 0.

Observe that if there exists M ≥ 0 such that f(x, s) + Ms is nondecreasing
for a.e. x ∈ Ω then f(x, s)+MΨ(s)eG(s) is also nondecreasing for a.e. x ∈ Ω.
Thus, adding the term MΨ(w)eG(w) in (2.4) it becomes−∆w +m(x)

|∇w|2

wθ
+MΨ(w)eG(w) = f(x,w) +MΨ(w)eG(w) in Ω,

w = 0 on ∂Ω.

Therefore, in order to study (2.4) using sub-supersolution, we need to estab-
lish a comparison principle for the problem −∆w +m(x)

|∇w|2

wθ
+MΨ(w)eG(w) = f0(x) in Ω,

w = 0 on ∂Ω,
(2.5)

where 0 < m(x) ∈ L∞(Ω), 0 < θ < 1 and 0 ≤ f0(x) ∈ L2N/(N+2)(Ω), f0 6≡ 0.
Observe that this problem is similar to that studied in [11] but here the
function g, from which are defined G and Ψ, is arbitrary and non necessarily
related with the gradient lower order term. When M = 0, that is, −∆w +m(x)

|∇w|2

wθ
= f0(x) in Ω,

u = 0 on ∂Ω,

this problem has solution (see [6]) and it is unique (see [3]).
The concept of sub and super-solution for the problem (2.5) is the follow-

ing:
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Definition 2.1. A sub-solution of (2.5) is a function u ∈ H1
0 (Ω) such that

0 < u a.e. in Ω,
|∇u|2

uθ
, Ψ(u)eG(u) ∈ L1(Ω) and for every φ ∈ H1

0 (Ω) ∩

L∞(Ω), φ ≥ 0,∫
Ω

∇u · ∇φ+

∫
Ω

m(x)
|∇u|2

uθ
φ+M

∫
Ω

Ψ(u)eG(u)φ ≤
∫

Ω

f0(x)φ.

Similarly u ∈ H1(Ω) such that 0 < u a.e. in Ω,
|∇u|2

uθ
,Ψ(u)eG(u) ∈ L1(Ω)

and for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ≥ 0,∫

Ω

∇u · ∇φ+

∫
Ω

m(x)
|∇u|2

uθ
φ+M

∫
Ω

Ψ(u)eG(u)φ ≥
∫

Ω

f0(x)φ,

is called a super-solution of (2.5). We say that u ∈ H1
0 (Ω) is a solution of

(2.5) if it is a sub and super-solution of (2.5).

We recall some classical results about the regularity of the equation (2.5)
with f0(x) = f(x,w(x)), that is the non-linear equation −∆w +m(x)

|∇w|2

wθ
+MΨ(w)eG(w) = f(x,w) in Ω,

w = 0 on ∂Ω.
(2.6)

Concretely, the following two lemmas can be deduced from [22], summariz-
ing some known L∞(Ω)-estimates for sub-solutions of (2.6). The first one
deals with a subcritical function f , here the L∞(Ω)-estimate follows from a
standard bootstrap argument.

Lemma 2.2. Assume that there exists C > 0 such that |f(x, s)| ≤ C(1+|s|q)
(q < (N+2)/(N−2)) for every s ≥ 0, a.e. x ∈ Ω, and that u is a sub-solution
of (2.6), then u ∈ L∞(Ω).

Remark 2.3. Once we have proved that it is bounded, under the conditions
of the previous lemma, we have that any solution u is continuous in Ω arguing
as in [14] (see Remark 2.6 in [1] for a detailed proof). Moreover, since ∂Ω
is smooth, u ∈ C0,α(Ω) for some α ∈ (0, 1).

Lemma 2.4. Assume that there exists s0 such that f(x, s) ≤ 0 a.e. x ∈ Ω
and for every s > s0. Assume also that u is a sub-solution of (2.6), then
u ∈ L∞(Ω) and ‖u‖∞ ≤ s0.
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We can prove that problem (2.5) has a solution arguing as in Lemma 3.3
of [11]. We include here a sketch of the proof in order to show how to deal
with the term m(x) ∈ L∞(Ω).

Lemma 2.5. Assume that g ∈ L1(0, 1). Then there exists a solution for
(2.5).

Proof. We use an approximative scheme, namely{
−∆un +Bn(x, un,∇un) = min{f0(x), n} in Ω,
un = 0 on ∂Ω,

(2.7)

where the function Bn(x, s, p) is given, for every (x, s, p) ∈ Ω× IR× IRN and
n ∈ IN, by

Bn(x, s, p) =
m(x)s+|p|2

(
1

n
+ s+)θ+1(1 +

1

n
|p|2)

+

Me
∫ s+
1 g(t+ 1

n
)dt

∫ s+

0

e−
∫ t
1 g(σ+ 1

n
)dσdt

1 + 1
n
e
∫ s+
1 g(t+ 1

n
)dt

∫ s+

0

e−
∫ t
1 g(σ+ 1

n
)dσdt

.

Since Bn(x, s, p)s ≥ 0 and Bn(x, s, p) ≤ ‖m‖L∞(Ω)n(nθ + M), the ex-
istence of solution un ∈ H1

0 (Ω) of (2.7) is deduced from [16]. Moreover,
since Bn(x, s, p) ≥ 0 then −∆un ≤ f0(x) and, using [22], the sequence un is
bounded in L∞(Ω), that is, there exists R > 0 such that

‖un‖L∞(Ω) ≤ R.

Moreover, taking u−n as test function we obtain that un ≥ 0. Similarly,
taking un as test function and using the positivity of the lower order term
we get that un is bounded in H1

0 (Ω). Even more, taking min{un, ε}/ε as test
function and using Fatou Lemma, see [6], as ε→ 0 yields that∫

Ω

Bn(x, un,∇un) ≤ ‖f0‖1.

Therefore un weakly converges to u ∈ H1
0 (Ω), ∇un → ∇u a.e. (see [7,

Theorem 2.1]) and using Fatou Lemma as n→∞,

m(x)
|∇u|2

uθ
χ{u>0} ∈ L1(Ω) and Ψ(u)eG(u)χ{u>0} ∈ L1(Ω).
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In particular, since g is integrable at zero, we have that Ψ(u)eG(u) is bounded
at zero and thus, Ψ(u)eG(u) ∈ L1(Ω).

In order to pass to the limit and to prove that u is the solution of (2.5)
it is essential to prove that u > 0. In order to do that we follow the ideas

in [6]. Given m̃ ≥ ‖m‖L∞(Ω) we take e−m̃
∫ un
1

1

tθ
dtφ, with 0 ≤ φ ∈ C∞0 (Ω), as

test function in (2.7) and we obtain∫
Ω

e−m̃
∫ un
1

1

tθ
dt∇un · ∇φ+

∫
Ω

(
Bn(x, un,∇un)− m̃

uθn

)
e−m̃

∫ un
1

1

tθ
dtφ =

=

∫
Ω

min{f0(x), n}e−m̃
∫ un
1

1

tθ
dtφ ≥

∫
Ω

min{f0(x), 1}e−m̃
∫ un
1

1

tθ
dtφ.

We can use now that for 0 < s < R(
Bn(x, s, p)− m̃

sθ

)
e−

∫ s
1

1

tθ
dt ≤ m(x)− m̃

sθ
|p|2e−

∫ s
1

1

tθ
dt+

+Me
∫ s
1 (g(t+ 1

n
)− m̃

tθ
)dt
∫ s

0

e−
∫ t
1 g(σ+ 1

n
)dσdt

≤ Me
∫ s
1 (g(t+ 1

n
)− m̃

tθ
)dt
∫ s

0

e−
∫ t
1 g(σ+ 1

n
)dσdt

≤ C

∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt.

(2.8)
The last inequality is due to the fact that

e
∫ s
1 (g(t+ 1

n
)− m̃

tθ
)dt = e

∫ s+ 1
n

1+ 1
n
g(σ)dσ−

∫ s
1
m̃

tθ
dt
≤ e

∫R+1
1 g(σ)dσ+

∫ 1
0
m̃

tθ
dt

and ∫ s

0

e−
∫ t
1 g(σ+ 1

n
)dσdt =

∫ s

0

e
∫ t
1( m̃

σθ
−g(σ+ 1

n
))dσe−m̃

∫ t
1

1

σθ
dσdt

≤ e
∫R+1
1

m̃

σθ
dσ+

∫ 1
0 g(σ+ 1

n
)dσ

∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt

≤ e
∫R+1
1

m̃

σθ
dσ+

∫ 2
0 g(σ)dσ

∫ s

0

e−m̃
∫ t
1

1

σθ
dσdt.

Thus, we can take C = Me
∫R+1
1 g(σ)dσ+

∫ 1
0
m̃

tθ
dte

∫R+1
1

m̃

σθ
dσ+

∫ 2
0 g(σ)dσ, using (2.8) in

(2.8) and denoting Ψ̃(s) =
∫ s

0
e−m̃

∫ t
1

1

σθ
dσdt we get∫

Ω

∇Ψ̃(un) · ∇φ+ C̃

∫
Ω

Ψ̃(un)φ ≥
∫

Ω

min{f0(x), 1}e−m̃
∫ un
1

1

tθ
dtφ.
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From now on the proof continues exactly as in [6]. Passing to the limit
in the previous inequality it follows that∫

Ω

∇Ψ̃(u) · ∇φ+ C̃

∫
Ω

Ψ̃(u)φ ≥
∫

Ω

min{f0(x), 1}e−m̃
∫ u
1

1

tθ
dtφ.

Thus, the strong maximum principle allows us to assure that 0 < Ψ̃(u) ≤
e
∫ 1
0
m̃

σθ
dσu, in particular u > 0, and we can to pass to the limit in the approx-

imated problem to deduce that u ∈ H1
0 (Ω) is a solution of (2.5) arguing as

in [6].

With respect to uniqueness we prove below a comparison principle for this
equation that assures that this solution is unique. This comparison principle
is one of the keystones of the proof of our method. In the case M = 0 it
correspond to the comparison principle in [3, Corollary 3.5]. We include here,
for the convenience of the reader, the proof of that result with the new term
MΨ(u)eG(u) at the left-hand side of the equation, that is to say, we prove a
comparison principle for the problem (2.5) although the proof follows with
no significant change that of Theorem 1.1 in [3].

Proposition 2.6. Assume that 0 < θ < 1 and 0 < m(x) ∈ L∞(Ω). Let
u, u ∈ C(Ω) be, respectively, a sub and a super-solution of (2.5). Suppose
also that g ∈ C1(0,+∞), e−G(t) ∈ L1(0, 1), g ≥ 0 and there exists τ ≥ 0 such
that for a.e. x ∈ Ω and for every 0 < s < max{‖u‖L∞(Ω), ‖u‖L∞(Ω)} we have

τ

[(
−g′(s)− m(x)θ

sθ+1

)
+

(
−g(s) +

m(x)

sθ

)
g(s)

]
≥
(
−g(s) +

m(x)

sθ

)2

.

(2.9)
Then u ≤ u.

Proof. We will use the usual function Gε(s) = (s− ε)+ for every s ∈ IR. We
also define w = Ψ(u) − Ψ(u) and observe that Gε(w) is bounded and has
compact support in Ω. In particular, e−G(u), e−G(u), g(u), g(u) are bounded
on the support of Gε(w). Thus, for n equal to the integer part of τ + 1, we
can take e−G(u)Gε(w)n as test function in the inequality satisfied by u and
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e−G(u)Gε(w)n in the inequality satisfied by u. Subtracting we have

0 ≥
∫

Ω

(
−g(u) +

m(x)

uθ

)
e−G(u)|∇u|2Gε(w)n−

−
∫

Ω

(
−g(u) +

m(x)

uθ

)
e−G(u)|∇u|2Gε(w)n+

+n

∫
Ω

Gε(w)n−1(e−G(u)∇u− e−G(u)∇u) · ∇w,

where we have used that∫
Ω

(Ψ(u)−Ψ(u))Gε(w)n ≥ 0.

We denote s = Ψ−1(tΨ(u) + (1 − t)Ψ(u)) and ξ = t∇Ψ(u) + (1 − t)∇Ψ(u),
this means that

0 ≥
∫
{w>ε}

Gε(w)n
∫ 1

0

d

dt

((
−g(s) +

m(x)

sθ

)
eG(s)|ξ|2

)
dt+

+n

∫
{w>ε}

Gε(w)n−1|∇w|2.

Now we perform the derivative and we get

0 ≥
∫
{w>ε}

wGε(w)n
∫ 1

0

((
−g′(s)− m(x)θ

sθ+1

)
e2G(s)|ξ|2

)
dt+

+

∫
{w>ε}

wGε(w)n
∫ 1

0

(
−g(s) +

m(x)

sθ

)
g(s)e2G(s)|ξ|2 dt+

+

∫
{w>ε}

Gε(w)n
∫ 1

0

(
−g(s) +

m(x)

sθ

)
eG(s)2ξ · ∇wdt+

+n

∫
{w>ε}

Gε(w)n−1|∇w|2.

Multiplying by τ
n

and taking into account that, by Young’s inequality,

τ

n

∣∣∣∣Gε(w)n
(
−g(s) +

m(x)

sθ

)
eG(s)2ξ · ∇w

∣∣∣∣ ≤
≤ τ 2

n
Gε(w)n−1|∇w|2 +

Gε(w)n+1

n

(
−g(s) +

m(x)

sθ

)2

e2G(s)|ξ|2,
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it follows that

0 ≥ τ
(

1− τ

n

)∫
{w>ε}

Gε(w)n−1|∇w|2+

+

∫
{w>ε}

∫ 1

0

wGε(w)nτe2G(s)

n

[(
−g′(s)− m(x)θ

sθ+1

)
|ξ|2+

+

(
−g(s) +

m(x)

sθ

)
g(s)|ξ|2 − Gε(w)

τw

(
−g(s) +

m(x)

sθ

)2

|ξ|2
]
dt ≥ 0.

The last inequality due to the fact that Gε(w)/w ≤ 1, M ≥ 0 and (2.9). We
deduce that the integrands are zero, which implies that Gε(w) = 0 for every
ε > 0, i.e., w+ ≡ 0, concluding the proof.

The following technical result plays an essential role in the further work,
and it was proved in [3, Corollary 3.5] (see condition (3.6) of that paper).

Lemma 2.7. Fix m ∈ L∞(Ω), m > 0 in Ω and ν > 0. Then, there exist g ∈
C1(0,∞)∩L1(0, 1), in particular e−G(t) ∈ L1(0, 1), and τ such that if u and u
are a sub and a supersolution of (2.5) such that max{‖u‖L∞(Ω), ‖u‖L∞(Ω)} ≤
ν, g satisfies condition (2.9), and as consequence

u ≤ u.

In fact, g depends on ‖m‖L∞(Ω) and θ, but neither ν nor τ . Specifically, fixed
d, C,m1 with 0 < θ < d < 1, C > 0 and

m1 ≤ min

{
dC,C

(
d− θ
1− θ

)1−θ
}
,

for any m ∈ L∞(Ω) with ‖m‖∞ ≤ m1 we can choose g(s) ≡ gθ,d,C(s) given
by

gθ,d,C(s) =


dC

sθ
, s <

(
θ
C

) 1
1−θ ,

dθ

θs+
(
θ
C

) 1
1−θ (1− θ)

, s ≥
(
θ
C

) 1
1−θ ,

for every s > 0. Moreover, τ is such that

τ > max

dC +m1

C(1− d)
,
2d
(
m2

1ν
2(1−θ) + θ2

)
(1− d)θ2

,
2m2

1

(
1−θ
d−θ

)2(1−θ)
+ 2d2C2

d(1− d)C2
(

1− m1

C

(
1−θ
d−θ

)1−θ
)
 .
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3. The sub-supersolution method

Now, we are ready to state the method of sub and super-solutions in order
to get existence of solutions of (1.1). In view of the results of the previous
section the concept of sub and super-solution for (1.1) is the following.

Definition 3.1. A pair (u, u), (v, v) is a sub-supersolution of (1.1) if u, u, v, v ∈
H1(Ω) ∩ C(Ω), u, v ∈ H1

0 (Ω) such that

1. 0 < u ≤ u, 0 < v ≤ v almost everywhere in Ω,

2.
|∇u|2

uα
,
|∇u|2

uα
,
|∇v|2

vγ
,
|∇v|2

vγ
∈ L1(Ω),

3. for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ > 0,∫

Ω

∇u · ∇φ+

∫
Ω

g1(v)
|∇u|2

uα
φ−

∫
Ω

f1(x, u, v)φ ≤ 0 ≤

≤
∫

Ω

∇u · ∇φ+

∫
Ω

g1(v)
|∇u|2

uα
φ−

∫
Ω

f1(x, u, v)φ ∀v ∈ [v, v],

(3.10)

4. for every φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ > 0,∫

Ω

∇v · ∇φ+

∫
Ω

g2(u)
|∇v|2

vγ
φ−

∫
Ω

f2(x, u, v)φ ≤ 0 ≤

≤
∫

Ω

∇v · ∇φ+

∫
Ω

g2(u)
|∇v|2

vγ
φ−

∫
Ω

f2(x, u, v)φ ∀u ∈ [u, u].

(3.11)

Remark 3.2. Observe that any of the four inequalities in (3.10) and (3.11) is
verified if it is satisfied in the classical sense, for instance, the first inequality
in (3.10) is satisfied if u is twice differentiable and

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v) ≤ 0 a.e. x ∈ Ω, ∀v ∈ [v, v].

Theorem 3.3. Assume that (u, u), (v, v) is pair of sub-supersolution of (1.1)
and denote I := [u, u] × [v, v] ⊂ C(Ω) × C(Ω). Assume also the following
conditions on f1, f2, g1 and g2:

(F) There exists a constant M ≥ 0 such that the maps s 7→ f1(x, s, v) +
Ms and r 7→ f2(x, u, r) + Mr are positive and increasing for (s, r) ∈
[0, supΩ u]× [0, supΩ v] and for all (u, v) ∈ I.
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(G) g1, g2 are non-negative functions and gi(s) = 0 if and only if s = 0 for
i = 1, 2.

Then, there exists a solution (u, v) of (1.1) such that (u, v) ∈ I.

Proof. Taking into account (G), there exits a positive number 0 < m1 such
that

0 < g1(z(x)), g2(w(x)) ≤ m1, ∀(w, z) ∈ I.

Then, taking ν = max{‖v‖L∞(Ω), ‖u‖L∞(Ω)}, by Lemma 2.7 there exist
h1, h2 ∈ C1(0,+∞) ∩ L1(0, 1) and τ1, τ2 ≥ 0 such that for a.e. x ∈ Ω, for
every 0 < s < ν and for every (w, z) ∈ I we have

τ1

[(
−h′1(s)− g1(z(x))α

sα+1

)
+

(
−h1(s) +

g1(z(x))

sα

)
h1(s)

]
≥

≥
(
−h1(s) +

g1(z(x))

sα

)2

and

τ2

[(
−h′2(s)− g2(w(x))γ

sγ+1

)
+

(
−h2(s) +

g2(w(x))

sγ

)
h2(s)

]
≥

≥
(
−h2(s) +

g2(w(x))

sγ

)2

.

We would like to remark again that neither hi nor τi depend on (w, z), see
Lemma 2.7.

Now we define

Gi(s) :=

∫ s

0

hi(t)dt, Ψi(s) :=

∫ s

0

e−Gi(t)dt, s > 0, i = 1, 2.

On the other hand, observe that, using (F), we get that the maps

s 7→ f1(x, s, v) +MΨ1(s)eG1(s), r 7→ f2(x, u, r) +MΨ2(r)eG2(r)

are increasing for (s, r) ∈ [0, supΩ u]× [0, supΩ v] for all (u, v) ∈ I.
We define the operator

T : I 7→ C(Ω)× C(Ω), (w, z) 7→ (u, v) := T (w, z)
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where (u, v) ∈ H1
0 (Ω)×H1

0 (Ω) are solutions of
−∆u+ g1(z(x))

|∇u|2

uα
+MΨ1(u)eG1(u) = F1(x),

−∆v + g2(w(x))
|∇v|2

vγ
+MΨ2(v)eG2(v) = F2(x),

(3.12)

with
F1(x) := f1(x,w, z) +MΨ1(w)eG1(w)

and
F2(x) := f2(x,w, z) +MΨ2(z)eG2(z).

Taking into account (F), we have that F1, F2 > 0. Moreover, F1, F2 ∈
L

2N
N+2 (Ω), in fact, F1, F2 ∈ L∞(Ω). Hence, the existence of u and v can

be obtained from Lemma 2.5 while the uniqueness from Proposition 2.6.
Therefore T is well defined.

Now, we prove that T (I) ⊂ I. Indeed, take (w, z) ∈ I and consider
(u, v) = T (w, z), i.e. the unique solution to the problem (3.12). We are
going to show that (u, v) ∈ I.

Indeed, using the definition of sub-super solution, it follows that

−∆u+ g1(z)
|∇u|2

uα
+MΨ1(u)eG1(u) = f1(x,w, z) +MΨ1(w)eG1(w) ≥

≥ f1(x, u, z) +MΨ1(u)eG1(u) ≥ −∆u+ g1(z)
|∇u|2

uα
+MΨ1(u)eG1(u).

Proposition 2.6 allows to assure that u ≥ u. Analogously u ≤ u and v ≤ v ≤
v.

Next we show that T maps bounded sets into relatively compact sets.
Indeed, given a bounded sequence (wn, zn) in I and denoting by (un, vn) =
T (wn, zn) we have that un and vn are bounded in H1

0 (Ω). Even more, reg-
ularity arguments (see [22] and [14]) show that sequences un, vn are also
bounded in C0,α(Ω) and the compact embedding of C0,α(Ω) in C(Ω) implies
that un → u and vn → v strongly in C(Ω).

Finally, in order to have that T is compact, we prove that T is continuous.
In order to do that, we claim that if (wn, zn) → (w, z) strongly in I then
(u, v) = T (w, z) (observe that this in particular implies that not only a
subsequence but the whole sequence (un, vn) strongly converges to T (w, z) in
C(Ω)× C(Ω)).
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In order to prove the claim we observe that∫
Ω

∇un · ∇φ+

∫
Ω

g1(zn)
|∇un|2

uαn
φ+M

∫
Ω

Ψ1(un)eG1(un)φ =

=

∫
Ω

f1(x,wn, zn)φ+M

∫
Ω

Ψ1(wn)eG1(wn)φ

for every φ ∈ H1
0 (Ω)∩L∞(Ω). We recall that, as in the proof of Lemma 2.5,

the lower order term is bounded in L1(Ω) and we may assume that un → u
weakly in H1

0 (Ω), strongly in Lp(Ω) (p < 2∗), un(x) → u(x) and ∇un(x) →
∇u(x) a.e. x ∈ Ω. Even more, since un ≥ u we have that u ≥ u > 0. In
order to pass to the limit, arguing as in [6], we first consider φ ≥ 0 and using
Lebesgue theorem as well as the weak convergence∫

Ω

g1(zn)
|∇un|2

uαn
φ→

∫
Ω

f1(x,w, z)φ+M

∫
Ω

Ψ1(w)eG1(w)φ−

−
∫

Ω

∇u · ∇φ−M
∫

Ω

Ψ1(u)eG1(u)φ.

Thus, using Fatou lemma∫
Ω

g1(z)
|∇u|2

uα
φ ≤

∫
Ω

f1(x,w, z)φ+M

∫
Ω

Ψ1(w)eG1(w)φ−

−
∫

Ω

∇u · ∇φ−M
∫

Ω

Ψ1(u)eG1(u)φ.

Now we prove the reverse inequality. We take m̃ > 0 such that m̃ ≥ g1(z)
for every z ∈ [v, v]. We consider φ with compact support, therefore we can

take e
∫ u
un

m̃
sα
dsφ as test function in the equation satisfied by un and we get∫

Ω

e
∫ u
un

m̃
sα
ds∇un · ∇φ+ m̃

∫
Ω

e
∫ u
un

m̃
sα
dsφ
∇u
uα
· ∇un+

+

∫
Ω

(MΨ1(un)eG1(un) − f1(x,wn, zn)−MΨ1(wn)eG1(wn))e
∫ u
un

m̃
sα
dsφ =

=

∫
Ω

m̃− g1(zn)

uαn
|∇un|2e

∫ u
un

m̃
sα
dsφ.

We can pass to the limit in the left hand side of the previous inequality (using
Lebesgue theorem and the weak convergence) and then Fatou Lemma in the
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right hand side assures that∫
Ω

∇u · ∇φ+ m̃

∫
Ω

φ
|∇u|2

uα
+

+

∫
Ω

(MΨ1(u)eG1(u) − f1(x,w, z)−MΨ1(w)eG1(w))φ ≥

≥
∫

Ω

m̃− g1(z)

uα
|∇u|2φ

or equivalently∫
Ω

∇u · ∇φ+

∫
Ω

g1(z)
|∇u|2

uα
φ+M

∫
Ψ1(u)eG1(u)φ ≥

≥
∫

Ω

(f1(x,w, z) +MΨ1(w)eG1(w))φ.

From both inequalities it yields that∫
Ω

∇u · ∇φ+

∫
Ω

g1(z)
|∇u|2

uα
φ+M

∫
Ψ1(u)eG1(u)φ =

=

∫
Ω

(f1(x,w, z) +MΨ1(w)eG1(w))φ,

for every φ ∈ H1
0 (Ω) ∩ Cc(Ω) and by density for every φ ∈ H1

0 (Ω) ∩ L∞(Ω).
Analogously vn → v with (u, v) = T (w, z).

Therefore, applying the Schauder Fixed Point Theorem we conclude the
proof.

4. Applications

In this section we apply the sub-supersolution method to different sys-
tems. For that, we need some previous results.

Given q ∈ L∞(Ω), we denote by λ1(q) the principal eigenvalue of{
−∆u+ q(x)u = λu in Ω,
u = 0 on ∂Ω.

Recall that the map q 7→ λ1(q) is increasing. For simplicity, we denote by
λ1 := λ1(0).
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First consider the classical logistic equation{
−∆u = u(λ+m(x)− u) in Ω,
u = 0 on ∂Ω.

(4.13)

It is well known that there exists a unique positive solution of (4.13) if and
only if λ > λ1(−m). If we denote the unique positive solution by θλ+m we
have that

θλ+m ≤ λ+mM , (4.14)

where we have denoted mM = supΩ m.
Now consider the logistic equation with a singular term and natural

growth  −∆u+ k
|∇u|2

uα
= u(λ+m(x)− u) in Ω,

u = 0 on ∂Ω,
(4.15)

where k > 0, 0 < α < 1, λ ∈ IR and m ∈ L∞(Ω).
Equation (4.15) was studied in [11] when m ≡ 0. We prove now the

following result.

Theorem 4.1. Any weak solution u of (4.15) is bounded, in fact, u ∈ C0,α(Ω)
and

u ≤ θλ+m in Ω.

Moreover, there exists a positive solution of (4.15) if and only if

λ > λ1(−m).

Furthermore, in this case there exists a maximal positive solution of (4.15),
denoted by Θ[λ+m,α,k].

Finally, λ+m 7→ Θ[λ+m,α,k] is increasing and k → Θ[λ+m,α,k] is decreasing.

Proof. It is clear that if u is a solution of (4.15), then u is bounded. So, it is
a bounded subsolution of (4.13) and hence

u ≤ θλ+m.

Assume that λ ≤ λ1(−m) and that there exists a positive solution of (4.15).
Then multiplying (4.15) by ϕ1, a positive eigenfunction associated to λ1(−m),
we get a contradiction.
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Suppose from now on that λ > λ1(−m). We apply the sub-supersolution
method from [11] to prove the existence of a positive solution. Let us remark
that although Theorem 3.5 (the sub-supersolution method) in [11] was proved
for functions f(λ, u), it is easily extended for functions f(x, u).

Take
(u, u) = (εϕa1, θλ+m)

where ε > 0, a > 0 and ϕ1 is a positive eigenfunction associated to λ1(−m),
that is, it satisfies{

−∆ϕ1 −m(x)ϕ1 = λ1(−m)ϕ1 in Ω,
ϕ1 = 0 on ∂Ω.

First, we recall that |∇u|2/uα ∈ L1(Ω), see for instance Lemma 2.5 in [11].
On the other hand, observe that

∇(ϕa1) = aϕa−1
1 ∇ϕ1,

∆(ϕa1) = a((a− 1)ϕa−2
1 |∇ϕ1|2 + ϕa1(−m(x)− λ1(−m))).

Hence, |∇u|2/uα ∈ L1(Ω) if a > 1/(2− α).
Since λ > λ1(−m), we can choose a > 1 and 0 < η < λ − λ1(−m) such

that
λ > λ1(−m)a+ (a− 1)m(x) + η.

Then, u is subsolution of (4.15) if

aϕ−2
1 |∇ϕ1|2

(
(1− a) + kaε1−αϕ

a(1−α)
1

)
+ εϕa1 ≤ λ− λ1(−m)a− (a− 1)m(x).

Observe that the above inequality is true if

kaε1−αϕ
a(1−α)
1 ≤ a− 1 and εϕa1 ≤ η,

i.e., taking ε small enough. Finally, by the strong maximum principle we
have that ∂θλ+m/∂n < 0 on ∂Ω, where n is the outer unit normal. Thus,
taking ε small εϕa1 ≤ θλ+m and so there exists a positive solution of (4.15)
for λ > λ1(−m).

We go a little further now. We want to prove the existence of maximal
solution of (4.15). Define the sequence u0 = u and for n ≥ 1 −∆un + k

|∇un|2

(un)α
+MΨ(un)eG(un) = f(x, un−1) +MΨ(un−1)eG(un−1) in Ω,

un = 0 on ∂Ω,
(4.16)
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where G(u) =
∫ u

1
g(s)ds, Ψ(s) :=

∫ s
0
e−G(t)dt, with g(u) = ku−α, and M ≥ 0

is such that f(x, s) +Ms is nondecreasing for a.e. x ∈ Ω, where

f(x, s) = s(λ+m(x)− s), s ∈ [0, sup
Ω

u].

Then, {un} is well-defined, and by Comparison Principle (see Lemma 3.2
in [11]) we have that

u ≤ . . . ≤ un+1 ≤ un ≤ . . . ≤ u1 ≤ u0 = u. (4.17)

Indeed, it is easy to show that u is supersolution of the equation of u1, and
then u1 ≤ u. Assume now that u ≤ un ≤ un−1. Then, un is supersolution of
the equation that verifies un+1, and u is subsolution, and so u ≤ un+1 ≤ un.

Moreover, we can show that

un → u∗ in H1
0 (Ω),

with u∗ a positive solution of (4.15). We claim that u∗ is the maximal
solution. Indeed, take any positive solution u of (4.15). We know that
u ≤ θλ+m = u, and then we can take as u = u in the above reasoning. Then,
by (4.17) we obtain that

u ≤ u∗.

This shows the claim.
Assume that µ1 +m1 ≤ µ2 +m2 and µ1 > λ1(−m1). Then, it is clear that

µ2 > λ1(−m2). Moreover, Θ[µ1+m1,α,k] is sub-solution of (4.15) for λ + m =
µ2 + m2 and u = K, K > 0 is a supersolution for large K. Hence, there
exists a solution u of (4.15) for λ+m = µ2 +m2 such that

Θ[µ1+m1,α,k] ≤ u ≤ K,

and so, since Θ[µ2+m2,α,k] is the maximal solution, it follows that

Θ[µ1+m1,α,k] ≤ Θ[µ2+m2,α,k].

Using the same ideas it is easy to prove that the map k → Θ[λ+m,α,k] is
decreasing.

Remark 4.2. 1. Observe that when k = 0, Θ[λ+m,α,0] = θλ+m.

2. Observe that the existence result of (4.15) does not depend on the value
of k > 0.
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4.1. Example 1

We consider the system
−∆u+ g1(v)

|∇u|2

uα
= λuqvp in Ω,

−∆v + g2(u)
|∇v|2

vγ
= µurvs in Ω,

u = v = 0 on ∂Ω,

(4.18)

where λ, µ ∈ IR, p, q, r, s ≥ 0, and g1 and g2 verify (G). The existence results
depend on the size of p + q and r + s and the increase and decrease of the
functions g1 and g2.

First, it is clear that if λ ≤ 0 or µ ≤ 0, by the maximum principle (4.18)
does not have positive solutions. So, we assume that λ, µ > 0. It is clear
that in this case f1(x, u, v) = λuqvp and f2(x, u, v) = µurvs verify (F ) for
any pair of sub-supersolution of (4.18).

Theorem 4.3. Assume that p + q < 1 and r + s < 1. Then, there exists a
positive solution if and only if λ, µ > 0.

Proof. Take
(u, v) = (Ke,Ke), (u, v) = (εϕa1, εϕ

a
1),

where e is the unique positive solution of{
−∆e = 1 in Ω,
e = 0 on ∂Ω,

ϕ1 is a positive principal eigenfunction associated to λ1, K and ε are positive
constants chosen large and small enough, respectively, and a > 1. Indeed,
item (1) of Definition 3.1 is trivially satisfied. Moreover, item (2) is a direct
consequence of Lemma 2.5 in [11] taking a > 1

2−α . With respect to items (3)
and (4) we observe that for every v ∈ [v, v]

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v) = K + g1(v)K2−α |∇e|2

eα
− λKqeqvp ≥

≥ K + g1(v)K2−α |∇e|2

eα
− λKp+qep+q ≥ 0.

The last inequality is due to g1 ≥ 0, p + q < 1 and to the fact that we can
choose

K1−p−q ≥ λ‖e‖p+q∞ .
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Similarly, in order to get

0 ≤ −∆v + g2(u)
|∇v|2

vγ
− f2(x, u, v)φ ∀u ∈ [u, u],

it is sufficient that
K1−r−s ≥ µ‖e‖r+s∞ .

On the other hand,

−∆u+ g1(v)
|∇u|2

uα
− f1(x, u, v)φ =

= −div(aεϕa−1
1 ∇ϕ1) + g1(v)a2ε2−αϕ

2(a−1)−aα
1 |∇ϕ1|2 − λεqϕaq1 v

p ≤
≤ λ1aεϕ

a
1 + a(1− a)εϕa−2

1 |∇ϕ1|2 + g1(v)a2ε2−αϕ
2(a−1)−aα
1 |∇ϕ1|2 − λεq+pϕaq+ap1 .

Extracting εq+pϕ
a(p+q)
1 we obtain that this quantity is negative if

λ1aε
1−(p+q)ϕ

a(1−(p+q))
1 +

+aε1−(p+q)ϕ
a(1−(p+q))−2
1 |∇ϕ1|2(1− a+ g1(v)aε1−αϕ

a(1−α)
1 )− λ ≤ 0

for all v ∈ [v, v]. But, since g1 in continuous in [0, supΩ v], it follows the
existence of a positive constant R(µ) such that g1(v) ≤ R(µ) for all v ∈ [v, v].
Thus, we can choose ε such that

1− a+ g1(v)aε1−αϕ
a(1−α)
1 < 0 and λ1aε

1−(p+q)ϕ
a(1−(p+q))
1 − λ < 0.

Moreover, we can take ε small and K large such that u ≤ u. Similarly, we
can argue with v, v.

Theorem 4.4. Assume that p+ q < 1 and 1 ≤ r + s < 2− γ.

1. Assume that g2 is increasing, g2(0) > 0. Then, for each λ > 0 there
exists K(λ) > 0 such that if λ > 0 and µ > K(λ), system (4.18)
possesses at least a positive solution.

2. Assume that g2 is decreasing. Then, there exists K > 0 such that if
λ > 0 and µ > K system (4.18) possesses at least a positive solution.

Proof. With the same notation of the previous proof we take on both cases

(u, v) = (K1e,K2E), (u, v) = (εϕa1, ϕ
a
1),
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where E(x) = σ · x + b for some σ ∈ IRN with |σ| > 0 and b > 0 such that
E(x) > η > 0 for every x ∈ Ω. Thus, items (1) and (2) of Definition 3.1 are
satisfied. In order to verify the second inequality in (3.10) and in (3.11) it is
enough to take K1−p−q

1 ≥ λ‖e‖p+q∞ and

K2(−∆E) + g2(u)K2−γ
2

|∇E|2

Eγ
≥ µKr+s

2 erEs, ∀u ∈ [u, u],

for which it suffices that

g2(u)K2−γ−r−s
2 |σ|2 ≥ µ‖e‖r∞‖E‖s+γ∞ , ∀u ∈ [u, u].

If g2 is increasing, then g2(u) ≥ g2(0) and so we need that 2− γ > r + s
and g2(0) > 0. Thus, in this case, K1 and K2 depend only on λ and µ,
respectively.

However, if g2 is decreasing then g2(u) ≥ g2(K1‖e‖∞) > 0 and, using that
2− γ > r+ s we can choose K2 depending on K1 (which depends on λ) and
µ.

On the other hand, the first inequality in (3.10) is satisfied if ε is small
enough and (3.11) is satisfied if

aϕ
a(1−(r+s))−2
1 |∇ϕ1|2

[
(1− a) + g2(u)aϕ

a(1−α)
1

]
+ ϕ

1−(r+s)
1 ≤ µ, ∀u ∈ [u, u].

If g2 is increasing, then g2(u) ≤ g2(K1(λ)e) ≤ K3(λ), and so the above
inequality is true for µ > K(λ) for some constant K(λ) > 0.

If g2 is decreasing, then g2(u) ≤ g2(0) and so the above inequality is true
for µ large and independent of λ. This completes the proof.

Remark 4.5. 1. Similar results hold for the case 2− α > p + q ≥ 1 and
r + s < 1.

2. We could obtain results for any positive function g2 imposing more
restrictive conditions on λ and µ.

Using similar arguments of the proofs of the above results, we can show
the following result.

Theorem 4.6. Assume that 1 ≤ p+ q < 2− α and 1 ≤ r + s < 2− γ.

1. Assume that g1 and g2 are increasing and g1(0), g2(0) > 0. Then, there
exist K1(µ) and K2(λ) such that if λ > K1(µ) and µ > K2(λ) system
(4.18) possesses at least a positive solution.
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2. Assume that g1 is increasing, g2 decreasing and g1(0) > 0. Then, there
exist K1(µ) and K2 such that if λ > K1(µ) and µ > K2, system (4.18)
possesses at least a positive solution.

3. Assume that g1 and g2 are decreasing. Then, there exist K1, K2 > 0
such that if λ > K1 and µ > K2, system (4.18) possesses at least a
positive solution.

4.2. Example 2: competition Lotka-Volterra system

We consider the system
−∆u+ g1(v)

|∇u|2

uα
= u(λ− u− bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v − cu) in Ω,

u = v = 0 on ∂Ω,

(4.19)

where λ, µ ∈ IR, b, c ≥ 0, and g1 and g2 verify (G). When g1 ≡ g2 ≡ 0 system
(4.19) is the classical competition Lotka-Volterra model, studied extensively
in the last years, see for instance [10].

First, it is clear that if λ ≤ λ1 or µ ≤ λ1 then (4.19) does not have positive
solution. So, assume that λ, µ > λ1. Again, it is clear that f1(x, u, v) =
u(λ − u − bv) and f2(x, u, v) = v(µ − v − cu) verify (F ) for any pair of
sub-supersolution of (4.19).

Theorem 4.7. Assume that one of the following conditions holds:

1. g1 and g2 are increasing and (λ, µ) satisfies

λ > λ1(bΘ[µ,γ,g2(0)]) and µ > λ1(cΘ[λ,α,g1(0)]); (4.20)

2. g1 and g2 are decreasing and (λ, µ) satisfies

λ > λ1(bΘ[µ,γ,g2(λ)]) and µ > λ1(cΘ[λ,α,g1(µ)]); (4.21)

3. g1 is increasing, g2 is decreasing and (λ, µ) satisfies

λ > λ1(bΘ[µ,γ,g2(0)]) and µ > λ1(cΘ[λ,α,g1(µ)]). (4.22)

Then (4.19) possesses a least a positive solution.

23



Remark 4.8. Observe that conditions (4.20), (4.21) and (4.22) define re-
gions in the plane (λ, µ) which could possibly be empty. For the semilinear
case, that is g1 ≡ g2 ≡ 0, it can be shown, see for example [18] and [17], that
these regions are not empty, imposing some conditions (b or c small). The
study of these regions are out of the scope of this paper, but let us remark
some aspects. Observe that the map

λ ∈ [λ1,∞) 7→ λ1(cΘ[λ,α,g1(0)])

is increasing. Hence, for example, the region defined by (4.20) in not empty
if b or c is small.

Proof. (1) Assume that g1 and g2 are increasing. Then, take

(u, v) = (Θ[λ,α,g1(0)],Θ[µ,γ,g2(0)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(0)]

,α,R],Θ[µ−cΘ[λ,α,g1(0)]
,γ,S]),

for some positive constants R and S to be chosen. Since u, v, u and v are
solutions of logistic equations as (4.15), then items (1) and (2) of Definition
3.1 are satisfied.

Using the equation of u, it can be shown that u satisfies the second
inequality in (3.10) if

u(λ− u)− g1(0)
|∇u|2

|u|α
≥ u(λ− u− bv)− g1(v)

|∇u|2

|u|α
,

or equivalently,

buv + (g1(v)− g1(0))
|∇u|2

|u|α
≥ 0,

which is true because g1 in increasing and v > 0.
For u, we need that

|∇u|2

|u|α
(g1(v)−R) ≤ 0, ∀v ∈ [v, v].

Take R ≥ g1(v).
Observe that by the increase of the map λ + m 7→ Θ[λ+m,α,k], it follows

that
u ≤ Θ[λ,α,R] ≤ Θ[λ,α,g1(0)] = u,

this last inequality because R ≥ g1(0).
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(2) Assume that g1 and g2 are decreasing. Then, take

(u, v) = (Θ[λ,α,g1(µ)],Θ[µ,γ,g2(λ)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(λ)]

,α,g1(0)],Θ[µ−cΘ[λ,α,g1(µ)]
,γ,g2(0)]).

Indeed, observe that, with a similar argument to the used in the first para-
graph, u satisfies the second inequality in (3.10) if

u(λ− u)− g1(µ)
|∇u|2

|u|α
≥ u(λ− u− bv)− g1(v)

|∇u|2

|u|α
,

for what it is sufficient that

g1(v) ≥ g1(µ).

But, from (4.14) we have that v ≤ θµ ≤ µ, and since g1 is decreasing, it
follows that

g1(v) ≥ g1(µ).

With respect to u, it can be proved that u satisfies the first inequality in
(3.10) because g1(v) ≤ g1(0).

Again, it can be shown that u ≤ u.
(3) Assume that g1 is increasing and g2 is decreasing. Then, take in this

case
(u, v) = (Θ[λ,α,g1(0)],Θ[µ,γ,g2(λ)]),
(u, v) = (Θ[λ−bΘ[µ,γ,g2(λ)]

,α,R],Θ[µ−cΘ[λ,α,g1(0)]
,γ,g2(0)]).

4.3. Example 3: symbiotic Lotka-Volterra system

We consider the system
−∆u+ g1(v)

|∇u|2

uα
= u(λ− u+ bv) in Ω,

−∆v + g2(u)
|∇v|2

vγ
= v(µ− v + cu) in Ω,

u = v = 0 on ∂Ω,

(4.23)

where λ, µ ∈ IR, b, c > 0, g1 and g2 verify (G).
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Theorem 4.9. Assume that bc < 1 and (λ, µ) satisfies

λ > λ1(−bΘ[µ,γ,g2]) and µ > λ1(−cΘ[λ,α,g1]), (4.24)

where gi = gi(0) when gi is decreasing and

g1 = g1

(
µ+ cλ

1− bc

)
when g1 is increasing,

and

g2 = g2

(
λ+ bµ

1− bc

)
when g2 is increasing.

Then (4.23) possesses a least a positive solution.

Proof. First, recall that Θ[µ,γ,g2] ≤ µ, and then if λ and µ verify (4.24), we
have that

λ > λ1(−bΘ[µ,γ,g2]) ≥ λ1(−bµ) = λ1 − bµ,
and so λ+ bµ > 0. Analogously, µ+ cλ > 0.

Now, take
(u, v) = (R, S)

where R and S are large positive constants and

(u, v) = (Θ[λ+bΘ[µ,γ,g2]
,α,g1],Θ[µ+cΘ[λ,α,g1]

,γ,g2]).

Indeed, R and S must verify

λ−R + bS ≤ 0 and µ− S + cR ≤ 0.

Since bc < 1, we can take

R =
λ+ bµ

1− bc
, S =

µ+ cλ

1− bc
.

On the other hand, u is subsolution provided of

g1(v) ≤ g1, ∀v ∈ [v, v].

Then, if g1 is decreasing (respectively increasing) we can take g1 = g1(0)
(respectively g1 = g1(v) = g1(µ+cλ

1−bc )).
Finally, observe that

u = Θ[λ+bΘ[µ,γ,g2]
,α,g1] ≤ λ+ b(Θ[µ,γ,g2])M ≤ λ+ bµ ≤ λ+ bµ

1− bc
= u.
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Remark 4.10. Observe again that condition (4.24) could define an empty
region in the plane (λ, µ). As in Remark 4.8 we point out that the maps

λ ∈ [λ1,∞) 7→ λ1(−cΘ[λ,α,g1(0)])

and
µ ∈ [λ1,∞) 7→ λ1(−bΘ[µ,γ,g2(0)])

are decreasing, and so the region defined by (4.24) is non empty when g1 and
g2 are decreasing, see also [12] for the semilinear case g1 ≡ g2 ≡ 0.

Acknowledgements. The authors thank to the referees for their care in
reading this manuscript and their valuable comments.Research supported by
MICINN Ministerio de Ciencia e Innovación, Spain under grants MTM2012-
31799 (JC and PJMA) and MTM2012-31304 (AS), Junta de Andalućıa FQM-
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France Seminar, Vol. IV (Paris, 1981/1982), 19–73. Res. Notes in Math.
84. Pitman, Boston, Mass.-London, 1983.

[10] R. S. Cantrell, and C. Cosner, Spatial Ecology Via Reaction-Diffusion
Equations, Wiley Series in Mathematical and Computational Biology.
John Wiley & Sons, Ltd., Chichester, 2003.

[11] J. Carmona, P. J. Mart́ınez-Aparicio, and A. Suárez, Existence and non-
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