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Abstract

In this paper we analyze the existence, non-existence and uniqueness of pos-
itive solutions of some nonlinear elliptic equations containing singular terms
and natural growth in the gradient. We use an adequate sub-supersolution
method to prove the existence of solutions, different arguments for the non-
existence and results from Arcoya-Segura de Ledn for the uniqueness.
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1. Introduction

We study existence, nonexistence and uniqueness of positive solutions to
the following nonlinear elliptic problem

—Au+ g(u)|Vul> = f(A\,u) in Q, (L1)
u=">0 on 0, ’

where € is a smooth bounded domain of RY (N > 3) and ) is a real param-
eter. The functions f € C(R x [0,+00)) and g € C(0,+00) are given, for
Some k:7/y7p7q > O’ by

g(s) = sﬁV’ Vs > 0, (1.2)
fAs)=As? or f(As)=As—sP, Vs> 0. (1.3)



We say that a solution of (1.1} is a function u € H}(Q) such that 0 < u
almost everywhere in Q, g(u)|Vu|* € LY(Q2), f(A\,u) € L' () and

/Q Vu. Vo + / 9(u)|[Vuls = / O w)o

for every ¢ € HJ(2) N L>(Q).

This kind of equations (with quadratic gradient terms) has attracted
much interest since the pioneering works [8, 9]. In the last years, attention
has been paid in singular terms in front of the gradient terms [2], 3] 14, (5] (6], [11].
In fact, in most of these papers the right hand side of the equation is not
identically zero, i.e. for different kind of nonnegative functions g and f, is
studied the equation

{ —Au+ g(u)[Vul? = FOu)+ fo in

u=>0 on 0, (1.4)

where 0 < f; € L"(2) (r > 1) and f; # 0. Thanks to this fact some
aspects in the study of existence of solution of can be simplified since
the singularity can be avoided in compactly embedding subsets of €.

When f(A,u) =0 and g is continuous at zero, problem was studied,
among others, in [8 ©]. This was the starting point in [4, @, [IT] for the
singular case, to consider f(A,u) =0 and ¢(s) singular at zero, as the model
k/s7. In [2] the authors showed the existence of positive solutions for v < 2
and non-existence for v > 2. Moreover, in [5] it is proved that the solution
is unique in the case v < 1.

When f(\ s) = As and g = 1, in [I] it was proved that there exists a
positive solution of for every A > 0 showing the regularizing effect of
the quadratic gradient terms. In [3] it was proved that this regularizing effect
remains true while

g(s) > k/s", v<1, slarge. (1.5)

In particular, for g given by the existence of positive solution of
is proved for every A > 0, see also [10].

For f(A,s) = As? and g(s) = k/s” with 0 < v < 1 and v+ ¢ < 2 the
existence of positive solution of for every A > 0 was proved in [10], see
also [3].

Very few is known for the problem if fo = 0, mostly in the case of
functions g that are continuous at zero. In this case, it is proved in [3] the
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existence of positive solution for every A > 0 if f(\, s) = As? with ¢ < 1.
If g =1 and g is a continuous function satisfying , in [3] is obtained
existence of solution for A > A\;, where \; denotes the first eigenvalue of —A
under homogeneous Dirichelt boundary conditions. In [I4], for f(A,s) = As?
with ¢ > 1 and given a continuous nonnegative function g satisfying , it
is proved existence of positive solution if and only if A > A\* for some A* > 0.
Moreover, multiplicity of solution is shown for A > A\*. Finally if g = 1, the
case f(A,s) = As — sP, for some p > 1, was analyzed in [15] showing the
existence and uniqueness of continuously differentiable positive solution for
A > /\1.

In this paper we study problem (1.4]) with fy = 0 in the case of functions
g that are singular at zero. More precisely, for the sake of clarity, we consider
problem (|1.1]) with functions g and f given respectively by and .

The main results are summarized here:

Theorem 1.1. Assume that f(\,u) = Au and g(s) = £

s

1. If v < 1, there exists a positive solution of if and only if A > A,
Moreover, for A\ > A\{ there exists a unique bounded positive solution.

2. If v = 1 and k < 1, then there exists positive solution of iof
and only if X = A\/(1 — k). In this case, there exist infinite positive
solutions.

3. Ify=1and k > 1, then has no positive solution for A > 0.

4. If v > 1 then has no positive solution for A > 0.

Theorem 1.2. Assume that f(\,u) = u?, 0 < q<1 and g(s) = .

s
1. If v < 1, there exists a unique bounded positive solution of for
every A > 0.

2. If v =1 and k < q, there exists at most one positive solution for every
A> 0.

3. If y+q > 2, then has no positive solution for A > 0.

Theorem 1.3. Assume that f(\,u) = Au?, 1 < q and g(s) = £.

s

1. If v <1 and v+ q < 2, there exists \* > 0 such that possesses
a positive solution for every A > \* and does not possess any
positive solution for every A < \*.

2. If v > 1 then has no positive solution for A > 0.



Theorem 1.4. Assume that f(\,u) = \u—uP, p > 1, and g(s) = £

s

1. Any positive solution u of is bounded and ||ull < A\V/®7D.

2. If v < 1, there exists a positive solution of if and only if A > A,
In this case, the solution is unique.

3. If y =1 and k < 1, if there exists positive solution of then it is
unique and X > A /(1 — k).

4. If y=1 and k > 1, then has no positive solution for X > 0.

5. If v > 1, then has no positive solution for A > 0.

To prove our existence results, we use the sub-supersolution method for
weak-solution. In [9] it was proved that the sub-supersolution method works
for sub and supersolution that belong to W1>(Q) and ¢ is regular. We
present an adequate method using the Schauder Fixed Point Theorem as-
suming some general conditions on the nonlinear function f. In our case, we
can only apply this method for the case g integrable, that is v < 1. In order
to use the sub-supersolution method we need a slightly improvement of the
comparison principle in [5]. This is only needed for the logistic nonlinearity
but we present the sub-supersolution method in the more general version.

It is well-know that the uniqueness is a very hard work, in fact very few
results are concerned to the uniqueness of positive solution of . We use
mainly [5], and a variant of this result, to show our uniqueness results.

Finally, we employ different arguments to show the non-existence results,
some of them are an adequate extension of those in [2, 3, [14]. For v > 1 and
v + g > 2 the main novelty is that we are able to prove that any positive
solution satisfies that |Vu|?/u? € L'(€), which is not possible as was shown
in [17].

We remark that there are some gaps in our existence results, since we
can not deal with the sub-supersolution method in the case v > 1, but we
guess that there exists solution for some \’s in the case f(\,s) = As? with
v > 1,74 q < 2. Conversely, in the case v < 1,7+ ¢ > 2, we can not use
our non existence results, but we guess that there is no solution for A > 0.
Moreover, in the case v 4+ ¢ = 2 we only have completely described the case
v =1 = ¢ in Theorem [1.1} The last gap relies in the uniqueness since for
v =1 and ¢ < 1 we only have proved the uniqueness for k < q.

The outline of the paper is the following, in Section 2 we prove some
qualitative properties of solutions of and in particular the nonexistence
results. In Section 3 we prove that the sub-supersolution method works for



in the case v < 1. The uniqueness of solution is studied in Section 4
and finally in Section 5 we include the proofs of Theorems 1.2 and
L4l

Notation. As usual for every s € R we consider the positive and negative
parts given by st = max{s,0} and s~ = min{s,0}. We denote by T} the
usual truncature function given by Ty(s) = min{k, s*} + max{—Fk, s} for
every s € R. We denote by || the Lebesgue measure of a measurable
set @ in RY. For 1 < p < +o0, ||lu||, is the usual norm of a function
u € LP(Q2). We equipped the standard Sobolev space H{(£2) with the norm

loll= ([ |w2)”2.

2. Qualitative properties of solutions

In this section we set the main properties of solutions of . More
precisely, given a solution u, we give sufficient conditions in order to have
that u € L>°(Q) or even that 9(“>u'—§"‘2 € LY(Q) for some B > 0. This fact will
be crucial to obtain our nonexistence result.

Taking into account that g is nonnegative we can recover for solutions of
any of the known properties of sub-solutions of the semilinear problem

—Au = f(A\u) in Q,
{ u=">0 on 0f2. (2.1)

In particular these properties hold for sub-solutions of ([1.1]) in the sense of
the following definition.

Definition 2.1. A sub-solution of ([1.1]) is a function u € H}(2) such that
1. 0 < u almost everywhere in 2,
2. g(w)|Vul* € LN(Q), f(A,u) € LY(Q),
3. for every ¢ € Hj(Q) N L>=(Q), ¢ > 0,

/Q Vi Vot / 9(w) [ Va2 < / O w)o. (2:2)

Similarly a super-solution of is a function u € H'(2) verifying items 1,
2 and 3 with the reverse inequality in . Observe that a super-solution is
allowed to be different from zero at the boundary while, since we are studying
positive solutions, this is not possible for sub-solutions.
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We recall some classical results about the regularity that we can find
in [16]. Concretely, the following two lemmas resume some known L>(€)-
estimates for sub-solutions of ([2.1)).

Lemma 2.2. Assume that there exists C' > 0 such that |f(\, s)| < C(1+4]s|?)
(g < (N +2)/(N —2)) for every s € R (f subcritical) and that u is a sub-
solution of , then u € L*>(Q). Moreover, there exist o, > 0 such
that

lulloe < arfful”.

Remark 2.3. Once we have proved that it is bounded, under conditions of
the previous lemma, we have that any solution u is continuous in 2 arguing
as in [I2] (see Remark 2.6 in [2] for a detailed proof).

Lemma 2.4. Assume that there exists so(\) such that f(A,s) <0 for every
s > so(N). Assume also that u is a sub-solution of (1.1)) then u € L®(2)
and ||u]|so < s0(A).

The following lemma will be the keystone in the proof of our nonexistence
result.

Lemma 2.5. Assume that uw € H} () N L>®(Q) is a sub-solution of (1.1]),
then |Vul*/u” € L*(Q) for every B < 1. Moreover, if we assume also that
there exists eg > 0 such that for some 0 < k < r and some cy > 0 we have

, 0<s<eo, (2.3)

w | T

g9(s) >

and
f(As) <ens”, 0<s<eo, (2.4)

then g(u)|Vul*/u”® € LY(Q) for every 8 <k <r.
Remark 2.6. Assume (2.4). Observe that g(s) = 5 satisfies (2.3) for any

.
k > 0 if v > 1. Thus, the conclusion of from the previous lemma for this

particular function g is:
2
1. for v > 1 we have [Vul € L'(Q) for every o < v+,
|Vul® 1
2. for v =1 and ¢ > r we have —— € L' (Q) for every 0 < 1+,
uO'
[Vul?

3. for y =1 and ¢ < r we have € L'(Q) for every 0 < 1 +c.

uO’



Proof. We consider 1. given by

1 0<s<e.

Taking . (u) as test function in (|1.1)) we obtain

1-p P U
/{M}rw? (—+g< ul- )+ /{} (g< w )rw
/f)\uzbE /f/\u1’3<0

Therefore using Fatou Lemma in the previous inequality we obtain that
|Vul?/uf € LY(Q) for every 3 < 1. Moreover, in order to prove the sec-
ond part of the lemma, we consider the function ¢, given by

. () seG(t)
=+ Be /E tb”rldt s> €,
T 0<s<z¢,

Pe(s) =

and G denotes any primitive of g. Observe that

9(s)

0L(s) + g(s)pe(s) = —5 foreverys>e.
s

Thus, taking . (u) as test function in (1.1)) we obtain

9W) G 4 1 )
/{m} 5|Vl /{u<g}ﬁ(g(U)u+l)|Vu\ g/ﬂf(A,u)%(u)_ (2.5)

We claim that [, f(\, u)¢.(u) is bounded as e tends to zero. Indeed, observe
that . 2.4]) implies that for € < ¢y we have

/ FOw w)pe (1) < exe™ P19
{u<e}

and
1 1 1
o= [ g+ [ o
/{u>5} uP {u>ep} u? {eo>u>e} u?

< max  f(N 8?19 + exllulZf19.

— eo<s<[lufloo



Thus, in order to prove the claim we only have to prove that

/ (f(>\ ) —G(u) /u eG(t) dt>
,u)e
{u>e} € ¢+t
is bounded for ¢ — 0. Observe that for € < g9 we have
u GG(t) v F( .,
fvuew [ dt) -/ ( e g<s>ds) it
/{u>a} ( € ¢+t {u>e} t5+1
_ = f()\7 U) —f g(s)ds f —f g(s)ds
_/{u>€0} ( proms dt+/ 6+1 ¢ dt
FW) o gspa
¢ S Sdt
/{€0>u>a} / t6+1
J70 Bds =[5 9(s)ds
/{u>80} / t5+1 — € 0 f(A u)dt

uk
+ max f(\s) +c,\/ / Rl L —y
g0<s<]Julloo ( 6+1 {ao>u>€} tﬂ—H

<
_’QLOSI%%@]C(A’S) (/0 WHJr 5“) k — 5/

_gwgyuv s

and we conclude the proof. O

Therefore using Fatou Lemma in ([2.5) we obtain that

The following result is contained in [I7] (see Theorem 1.1).

\V/ 2
Lemma 2.7. For everyu € H} () it holds tha,t/ | Zl = 400. In particu-
Q u
lar, with g(s) given by (1.2) for some vy > 2 has no positive solution. [

Using the previous two lemmas we obtain the following corollary concern-
ing with the nonexistence of solution for the problem (|I.1J).

Corollary 2.8. Assume that f and g are given by (1.2) and (L.3)).

L. If f(A\ u) = du—uP for some p>1 and vy > 1 then problem does
not admit solution.

2. If f(A\,u) = Au? for some ¢ > 0 withy > 1 andy+q>2 ory=1 and
min{k, q} > 1 then problem does not admit solution.



Proof. Observe that it is enough to choose f = 2 — v in Lemma and thus

|Vu—1§‘2 € L*(Q)) which is a contradiction with Lemma . O

Finally, we present a general result of non-existence of positive solution of
a general problem using the ideas in [2]. This result will be applied to show
the non-existence of positive solution of for A small when f(\, u) = Au?
and v <1 <gq.

We consider the function g given by for some v < 1 and we define
G(s) by

G(s) = /0 Cgt)dt s> 0. (2.6)

Lemma 2.9. The function ¢ given by

e_G(s)/ Dy, s >0,
p(s) = 0 (2.7)
0, s =0,

is a continuously differentiable function in [0,+00) and it satisfies the ordi-

nary differential equation ©'(s) + ﬁ s) =1, for s >0 and ¢(0) = 0.
Y ¢ ¥ ¢

Proof. The proof is straightforward except for assuring that ¢ is differentiable
at zero and ¢’ is continuous at zero. In order to do that we note firstly that ¢
is continuous at zero. Indeed, since e“*) is nondecreasing we have ¢(s) < s
for s < 1. Moreover, s%w(s) < ks'=7 for s < 1, which implies that

Oy — T P
p(0) = lim —= =limy'(s) =1.
Then ¢ is differentiable at zero and ¢’ is continuous at zero. O

Theorem 2.10. Assume that there exists a positive constant C' such that,

for ¢ given by ,
fO\ 8)p(s) < ACs®, Vs > 0. (2.8)

Then the problem (1.1) has no positive solution in Hg(2) N L>®(Q) for Ay >
AC.



Proof. Let u € H}(Q) N L>®(Q) be a positive solution for (1.1)) and let ¢ €
C1([0,+00)) given by (2.7). Since ¢(0) = 0, we can take v = p(u) as test
function in (1.1)) to obtain

2 (u L u) | = cu)o(u).
Q/w (¢ + Eotw) Q/f(A Jo(w)

Using now the equation satisfied by ¢ we get

[ vt = [ fovwew <ac [
Q Q

Q

From (2.8) and the variational characterization of A; we deduce that A\; <
AC. O

3. The sub-supersolution method

In order to show the existence of positive solutions of we are going to
use the sub-supersolution method for a slightly more general problem. More
precisely we consider, for some M > 0 and 0 < h(z) € L*M/(N+2(Q), the
following problem

{ —Au+ g(uw)|Vul* + M¥(u)e™ = h(z) in Q, (3.1)

u=0 on 0f),

where g € C'(0, +00) is a nonnegative function which is integrable at zero, G
is given by ([2.6)) and ¥ is defined by

U(s) ::/ e “Odt, 5> 0. (3.2)
0

The concept of sub and super-solution for (3.1, as in Definition [2.1] is
the following:

Definition 3.1. A sub-solution of (3.1]) is a function u € H}() such that
0 <wuae. in, g(u)|Vul?, MU (u)e™ € L(Q) and for every ¢ € H} () N
L>(Q), ¢ >0,
[ vu-vos [ g@ivaorar [ wwe o< [ hwo.
Q Q Q Q
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Similarly @ € H'(Q) such that 0 < @ a.e. in Q, ¢(@)|Va?, M (@)™ €
LY(2) and for every ¢ € H}(Q) N L>®(Q), ¢ > 0,

Avwv¢+4mmwm%ww{émmﬁw¢zAM@&

is called a super-solution of (3.1)). We say that v € H}(Q) is a solution of
(3.1)) if it is a sub and super-solution of ({3.1]).

The next lemma states a Comparison Principle for (3.1)) similar to that
contained in [5]. We include here the proof for convenience of the reader.

Lemma 3.2. Assume that g is integrable at zero and 0 < h(x) € L'(Q). Let
w,u be a sub and a super solution of (3.1). Then u < u.

Proof. Following the ideas contained in Theorem 2.7 in [5] we define ¢.(s) =
min{max{e, s}, 1/¢}, for every s > 0 and ¢ < 1. We take as test function
e~ G (U(u) — Y(m)*) € HL(Q) N L®(Q) in the inequality satisfied
by u and e~ C@T, (U(u) — U(u))*) € H(Q) N L>®(Q) in the inequality
satisfied by @. Subtracting and taking into account that W(s) is strictly
increasing and e~ is strictly decreasing we have

/ e Gy VT (W(w) — U(w)")
Q
+/ e~ g (u) | Vul*Ty (U(w) — U(@))*)
{e>upu{u>1/e}
+M/ e~ G SO ()T (W(w) — U(w))")
Q
_/eG(WE(U))Vﬂ.VTk (V(u) — ¥(m)")
_/ o e~ G g ()| Va* T, (U (u) — ¥(a))")
{e>utU{u>1/e}
Y / e~ G COY(@)T, (W(w) — U(@)*)
< / h(w)(e” @) — =GN (W(w) — W(w)T) <0.
Q

Observe that functions e=¢@=®) and e~G@=@) are bounded and thus we can
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pass to the limit as € goes to zero and we obtain that

0< / VT (9(w) — W(@)*H) 2
M / )T (U(w) - (@)*) < 0.

Thus (¥(u) — ¥(u))™ = 0 and consequently u < u (since 1) is strictly increas-
ing). O

In the next lemma we give sufficient conditions to prove the existence of

solution of (3.1)).

Lemma 3.3 (Existence result). Let 0 < h(z) € L*N/WN+2(Q), h # 0, and
assume that g is integrable at zero. Then there exists a solution u € H} ()
of (3.1). Moreover, if h(z) € LI(Y) for some ¢ > N/2 then u € L*>(9).

Proof. We consider the approximated problem
+
9n (Un) |Vun|2 M\I}n (u-i-)eGn(un) '
_Aun + n _ Tn . i Q’
U, =0 on 90,
(3.3)

where the functions g¢,, G,, and ¥,, are given by

(1) = g(tt +2) t+
In _1+lg(t++%)§+t+’

fo gn(s)ds and W, ( fo e~ ) ds, for every t € R.
By applylng [13] there ex1sts a solution u,, € H}(Q) of such that
u, € L>®(Q) (see [16]). Moreover we claim that w, > 0. Indeed, taking u,,
as test function in (3.3 we obtain

AV, 2 \Ijn + Gn(ui)
/’Vun‘2+/ gn<un)1un| u;| +M/Un 1(“n)€ .
9 o 14 5[Vu o 14 W ()l )

and thanks to the positivity of the lower order terms we have

/QIVW < /QTn(h(x))u; <0

12



which establishes that u,, > 0. Similarly, taking u,, as test function in ({3.3)
and using the positivity of the lower order terms we get

2% -

u@W%FSLM@%SW%Mmen

Thus, using the Sobolev embedding theorem, we deduce that wu, is bounded
in H}(Q). Even more, taking T.(u,)/e as test function and using Fatou
Lemma as ¢ — 0 yields that

Vu,|? U, (uf eGn ()
lx%w>‘ Y V. 1Y < [IH])

14 1| Vu,|? 1+ %\I/n(uj{)eGn(“m

Therefore u, weakly converges to u € H}(Q), Vu, — Vu ae. (see [T,
Theorem 2.1]) and using Fatou Lemma as n — oo,

9(W)|Vul*xqus0y € L'(Q) and  W(u)e®™y us0y € L)

In particular, since g is integrable at zero, we have that ¥(u)e“™ is bounded
at zero and thus, ¥(u)e®™ € L1(Q).

In order to pass to the limit and to prove that u is the solution of
it is essential to prove that u > 0.

In order to do that we follow the ideas in [6]. We take e~“»(un)¢ with
0 < ¢ e C§°(R), as test function in and we obtain that

/Q VU, (u,) - Vo + M /Q U, () > /Q T, (h(z))e Crln)g
> [ Tyl

Observe that, since e=¢»(un) is bounded and ¥, (s) < s we can pass to the
limit in the inequality above and we have

/Q VU(u) - Vé+ M /Q W(u)p > /Q Ty (h(z))e=CWg,

Thus, the strong maximum principle allows us to assure that 0 < ¥(u) < u.
Now, we can use the ideas in [6] to pass to the limit in the approximated
problem and we deduce that u € Hg(f2) is a solution of (3.1). The second
part follows directly from Lemma [2.2] O

13



As a consequence of Lemma [3.2] we state:
Corollary 3.4. The solution provided by Lemma 1S unique.

Now, we are ready to state the method of sub and super solutions in
order to get existence of solution of (|1.1)). We define the interval (closed and
convex in L%(Q))

I:=[u,a]={uec L*Q):u<u<u}.

Theorem 3.5. Assume that there exist 0 < u < u in €2, respectively a sub
and a super-solution of . Assume also that g is integrable at zero and
the following conditions on f:

(F1) There exists a constant M > 0 such that the map s — f(\,s) +
MU (s)eC® is increasing for s > 0.

(F2) f(\a)+ MU (u)ef® e L2NWN+2)(Q).

(F3) f(\u)+ MU(u)eC® > 0.

Then, there exists a solution u of such that u < u <.

Proof. We define the operator T': I — Hy (), w — u := T(w) the unique
solution of

{ —Au+ g(u)|Vul* + MU (u)ef™ = F(x) in Q,

u=20 on 0f), (3-4)

where

F(z) := f(O\w(x)) + MU (w(x))ed ™),

Thanks to (F1) and (F'3) we have that FF > 0. Moreover, (F1) and (F2)
imply that F' € L*N/(N+2(Q). Thus, by Lemma and Corollary it
follows that T is well-defined. We claim now that 7T is compact. Indeed,
consider any sequence w, € I, weakly convergent to w € I in L?*(f2). Taking
un, = T'(wy,), it is clear that there exists C' > 0 such that

/ Vo2 < C,
Q

i.e. u, is bounded in Hj (). Therefore there exists u € Hj(€2) such that, up
to a subsequence, u,, — u weakly in H}(Q), u, — u strongly in L"7(Q) with
n < 2N/(N —2) and u,(x) — u(z) a.e. in 2. We can pass to the limit using
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the previous property, that w,, € I is bounded in L?(Q2) and that u > 0 (we
can prove it using (¥'3) as in Lemma[3.3)). Hence, u = T'(w). Moreover, as in
[2], we can prove that u, strongly converges to u in H! (2). Thus, arguing
as in [3] we conclude that w,, strongly converges to u in H}(f2) and therefore
T is compact.

Now, we claim that 7'(I) C I. Indeed, take w € I and consider u the
unique solution of . We are going to show that u € I. Observe that

— AT+ g(@)|Va* + MY (@)™ > f(\ @) + MU (7)™
> f(\w) + MU (w)ef™
= —Au+ g(u)|Vul|® + M (u)e®™.

Then, since (F2) implies that 1 (u)e“™ € L'(Q), @ is a supersolution of
—Au+ g(u)|Vu? + MU (u)ef™ = F(x).

Hence, by Lemma|3.2] we conclude that w > u. Similarly, it can be shown that
u < u and the result concludes by using the Schauder Fixed Point Theorem.

[]

Remark 3.6. Some remarks are in order concerning to (F1)-(F3). Condition
(F'1) is similar to the used in the classical sub-supersolution method without
gradient term. (F2) is necessary to auxiliar problem is well-posed and
follows directly if the function f(\,-) +M¥(-)e"") has a subcritical growth.
Observe that, if f is a Cl-function and u € L*>(Q) then (F1) and (F2)
are verified. Finally, (F'3) is used to find positive solutions avoiding the
singularity, which it suffices that u > 0.

4. Uniqueness results

In this section we prove our uniqueness results for problem ({1.1)). The
first result is an immediate consequence of Theorem 3.1 in [5].

Lemma 4.1. Assume that g(s) = k/s” with v < 1 and f(\,u) = Au? with
0 < q<1. Then we can assure uniqueness of bounded solution of (1.1)).

Proof. Using Theorem 3.1 in [5], if

s+ h(s) = is decreasing, (4.1)



then, there exists at most a positive bounded solution of (1.1]). The functions

G and VU are defined in (2.6 and (3.2)).
In this case, the function h(s) defined in (4.1)) is decreasing if

j(s) = 5% L W(s)(ks?™ —qs? 1) >0, s>0.

Observe that if ks?™7 — ¢s?~! > 0, or equivalently s'= > ¢/k we have that
j(s) > 0. So, assume that s < so where

B <q>1/(17)
So = E .

Observe that, since lim,_,o ¥(s)/s = 1, we have that j(0) = 0. Moreover,

7'(s) = W(s)s? k(g —7)s' " +q(l —q)), s>0.

It is clear that if ¢ > ~ then j'(s) > 0 and so j(s) > 0 for every s > 0.
Assume then that ¢ < 7, which implies that limg ¢ j'(s) = +00. Even more
7'(s) =0 if and only if s'™7 = ¢(1 — q)/(k(y — ¢)). Finally, observe that

7'(s0) = U(s0)sg “q(1 =) >0,
and hence we conclude that j(s) > 0 for every s < so. O

A slightly improvement of Theorem 3.1 in [5] allows us to consider the
case of functions g that are not integrable at zero. In this case we take G
any primitive of g, for example G(s) = [ g(t)dt.

Theorem 4.2. Assume that f and g are continuous functions, e ) is

integrable at zero, the function f(\, s)e~%®) is bounded at zero and that

F(, 5)e=0
W (s)

1s a decreasing function.

Then there ezists at most a solution of (1.1) in the class
H={uec H(Q)NLZQ): e ¢W|Vu| € L*(Q)}.

Proof. We observe that, given ¢ € Cj(€2) and u € H a solution of (1.1)), we
can take e~“®¢ as test function, beacuse u is continuous (see Remark ,
and we obtain

/e_G(“)Vu-ng:/f()\,u)e_G(“)gb.
0

Q
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Using that f(A,u)e €™ € L®(Q), e%®|Vu| € L?(Q) and the density of
Ci () in HL(Q) we yield

/ V() - Vo = / F e g,
Q Q

for every ¢ € H(Q). The proof follows now exactly as in [5, Theorem
3.1]. O

Theorem 4.3. Assume that g(s) = k/s for 0 <k < 1.

1. In the case f(\,s) = As? with k < q < 1 there ezists at most one

positive solution of (|1.1)).

2. For f(\,s) = As — sP with p > 1 there exists at most one positive

solution of ((1.1)).
1

Proof. Observe that e~¢) = s7% and W(s) = si:,:j Thus, thanks to Le-

mma (with 8 = 2k — 1 < k) we have that if u is solution of (1.1)) then

u € H. Moreover, in the case of item (1), f(A, s)e”%®) = A\s?* is bounded
)efG(s)

at zero and % = A(1 — k)s7! is a decreasing function and the result

follows directly from Theorem 4.2

In the case of item (2), f(\,s)e"¢) = \s'=F — s»=F is hounded at zero
and %SG() = A1 —k) — (1 — k)sP~! is a decreasing function. Thus the
result follows again from Theorem [4.2] O

5. Proof of Theorem Theorem Theorem and Theo-
rem [1.4]

In this section we prove the main results concerning with the model prob-
lem.

Proof of Theorem[1.1. We are going to apply Theorem in order to deal
with the existence result of item (1). Observe that (F1) is verified clearly
because f is increasing.

We claim that u := e¢{ is the required sub-solution for some convenient
positive constants €,a > 0 to be chosen later. Indeed, observe that

9(w)|Vul? = ka? [V P10,

17



thus, using that %L;P € LY(Q) for every a < 1, we conclude that g(u)|Vul|* €
LY () if a > 1/(2 — 7). Secondly, after a calculation, we obtain:

—Au+ g(w)|Vul? = ea| Vi 264 2(1 — a + ake'7¢1" ) + eXadt.
Therefore u is a sub-solution if
ea Von*oi *(1 — a+ ake'791"7) +ehadf — f(A e07) < 0.
In the case v < 1 and f(\,u) = Au, the previous inequality is equivalent to
alVor[?¢r2(1 — a+ ake' 61" ") < X — Aa.

Thus, taking /\il >a>1> ﬁ and 0 < ¢ small, we have that u = €¢{ is a

sub-solution of ({1.1)).

We build now the supersolution. Consider a C?(Q) function e > ey > 0
in Q, such that |[Ve|? > ¢y > 0 in Q. Then, % := Le is a supersolution if

L=

e

k [Vel? > Ae + Ae.

Thus, taking L large enough we have that Le is a super solution and
u=ce¢p] < Le=mu.

Finally, it is clear that (F2) and (F3) are verified, and the existence of positive
solution for A > A; follows. Taking ¢; as test function we deduce that for

A < Ay does not exist any solution. The uniqueness follows directly from

Lemma [£.1]
With respect to item (2) we observe that for g(s) = k/s with k < 1, R¢
is solution of (1.1 for any R > 0 if

al V1?07 *(1 — a+ ka) = (A — Ma)gf.

Taking a = 1/(1 — k), then the above equality holds for A = A\ /(1 — k).
Moreover, given a solution u € H}(Q) of with g(s) = k/s, k < 1, and

f(\, ) = As then, using Lemmal[2.2/and Lemma[2.5] (observe that 2k < k+1),

the function w = [ e “Wdt = 7{:: belongs to Hj(2). Even more, for

b — 1 With ¢, € C(Q) we can take e ¢W¢, = ‘Z—Z as test function and it
follows that
/ Vw- -V, =\1-— k:)/ W,
Q Q
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Passing to the limit as n goes to infinity we get

Al/S)wqﬁl:)\(l—k)/quﬁl.

Then we obtain that A\ = A(1 — k).

Item (3) is deduced similarly. Indeed if, for some A > 0 and some k > 1,
there exists a solution u € H{ () of 1.’ with g(s) = k/s and f()\ s) = )\s
then, using Lemma and Lemma the function w =
Hl(Q) for every ¢ < 1. Even more, for <;§n — ¢ with qbn € C’l(Q) we can
take ﬁ—’g as test function and it follows that

[Vul?
/QVw-qun—l—(k:—c) ngbn:)\(l—c)/gwgbn.

Passing to the limit as n goes to infinity we get

A1/Qw¢1 <A1 —c)/ﬂqul,

for every ¢ < 1. This is a contradiction since implies, in particular, that
A1 <0.
Finally item (4) follows from Corollary [2.8] O

Proof of Theorem[1.9. First we deal with item (1). Again, we will apply
Theorem . As in the previous proof, condition (F1) is clearly verified, and
we can take u = ¢} as subsolution if

e 90|V P50 (1 — a + ake" 00T + Aae 998 < A (5.1)

Taking A > 0 and ¢ small, 1) is verified for some a > ﬁ
As supersolution, we take the unique positive solution w € H; () of

—Aw = \uf.

Moreover, we can choose £ > 0 small enough to have u < w. Again, (F2)
and (F3) are verified. The uniqueness follows from Lemma [4.1]

With respect to item (2) it is deduced from Theorem

Finally item (3) follows from Corollary [2.§ since v > 2 — ¢ > 1. O
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Proof of Theorem[I.3. Observe that item (2) follows by Corollary 2.8l We
have to prove item (1). In order to do that we define the set

A ={\>0:(l.1) admits positive solution}.

First we prove that A is nonempty since there exists solution for A large
enough. Once again u = £¢{ is subsolution if (5.1)) is satisfied. Fix ¢ > 0
such that (1 — a) + ake! ¢t < L-¢. Thus, it is enough to have

l1—a

2
Observe that there exits €2; a neighborhood of 0f2 such that

et~ \qul\%‘f(l*q)ﬂ + 517(1)\1@(;5‘11(17(1) <\

1—a
2

ellq |V¢1(x)|2¢1(x)“(1_q)_2 + el_q)\lagbl@)“(l_‘” <0, ze€Q.

Indeed, it is enough to take €2; such that

2M1 07 ()
(a = 1)[Vor(z)]?

Thus (5.1)) is true for every A such that

S]_, ZL‘EQl.

1— (e ol
A> sup {5 % Tn a0 4 et g q)}'
ze€Q\ 2

As supersolution, take again @ := Le where e is a C?(Q) function e >
eg > 0 in €, such that |Vel? > ¢y > 0 in Q. Then, u is a supersolution if

[2—a—

2 Vel > Ae? + L' Ae.

e
Thus, taking L large enough we have that Le is a super solution and u =
ep} < Le = u. Hence, using Theorem we conclude the existence of
solution of for A\ large. In particular, A # 0.
We prove now that A is an unbounded interval. Indeed, if 4 € A then for
A = p problem admits a positive solution u, € Hy(Q) N L®(Q). It is
clear that for every A > u there exists a L) large enough such that the pair
(w, W) = (uy, Lye) is a sub-supersolution of (1.I). Thus we conclude, using
Theorem that there exists a solution uy > u, and (p, +00) C A.
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Now, we prove that inf A = A\* > 0, that is, (1.1) does not admit positive
solution for A small. For that, we consider the function ¢ given by (2.7)) and
apply Theorem [2.10} First, we claim that

s9p(s)

>— < C for some C' >0 and for all s > 0.
s

Observe that 1 < ¢ <2 — v < 2 and thus

e
e~\Vdt
] | 1

lim SP0) 1 0
im = lim 2% —— = lim —0.
s—0t 82 s—0t eG)g2=a oot s1e(ks! =Y 4+ (2 — q))
Analogously,
. slp(s) . 1 B
sggloo s2 51—1>I(I)1+ ks? 17 + (2 — q)sl—7 0

Hence, there exists C' > 0 such that

FOs)ols) _ ) sels) _ o

52

and so applying Theorem , does not admit positive solution for
AC' < Ay, that is, for A small.

Now we prove that A\* € A. Indeed, we can take a strictly decreasing
sequence A\, — A* and u, the decreasing sequence of solutions of for
A = \,. Since u, is bounded in L>(Q) and thus is bounded in Hj () then,
up to a subsequence, u, weakly converges to u* € Hj(2) N L>(Q2). Once
we prove that u* # 0 we can argue as in Lemma to prove that u* is a
solution of for A = X*. In order to prove that u* # 0 we denote by z,
the sequence u,,/||u,| and observe that:

1 —I—k‘/ |V iz, ul™ = )\n/ 22ud~t
Q Q

In particular, if u* = 0, taking into account that z, is bounded in Hg (), u,
bounded in L>(£2) and using Lebesgue Theorem to take limits in the previous
identity, we reach a contradiction. Therefore (1.1]) admits a solution for A*.

O
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Proof of Theorem[I.]} Item (1) follows directly from Lemma [2.4 We prove
now the existence of item (2). Observe that for M > 0 large, (F1) is verified
taking u = #, the unique positive solution

—Au = u —u?,

which exists and it is positive for A > A\;. Again, in this case u = ¢{ is
subsolution arguing as in Theorem 1.1
We show now the uniqueness. In this case, the function h(s) defined in

is decreasing if
§(s) i= (As — s)e ) 4 [= A+ psP! 4+ kAT — ksPTU(s) > 0, s> 0.
It is clear again that j(0) = 0 and

J'(5) =U(s)s [plp — 1)s" 7+ Ak(L —7) —k(p—7)s"'], s >0.

Since p — 1 > p 4+ v — 2, it can be proved that j'(s) has only one positive
root. Since any solution u is such that [|u/|, < A/®~Y it is enough to show
that j(AY®=D) = \(p — 1) > 0, which is true.

Finally, taking ¢; as test function we deduce that for A < A; does not
exist any solution.

With respect to items (3) and (4), the uniqueness follows from Theo-
rem Moreover as in the proof of Theorem , using that \u — u? < Au
we obtain that Ay < (1 —k)A for £ < 1 and Ay < (1 — ¢)A for every ¢ < 1
if £ > 1. This implies that for £ > 1 problem does not admit positive
solution.

Finally item (5) follows from Corollary [2.8] O
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