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Abstract. We characterize the principal eigenvalue associated to the singular quasilinear elliptic operator
−∆u − µ(x)

|∇u|q
uq−1 in a bounded smooth domain Ω ⊂ RN with zero Dirichlet boundary conditions. Here,

1 < q ≤ 2 and 0 ≤ µ ∈ L∞(Ω). As applications we derive some existence of solutions results (as well as
uniqueness, nonexistence and homogenization results) to a problem whose model is−∆u = λu+ µ(x)

|∇u|q

|u|q−1
+ f(x) in Ω,

u = 0 on ∂Ω,

where λ ∈ R and f ∈ Lp(Ω) for some p > N
2
.

1. Introduction

We consider a bounded domain Ω ⊂ RN (N ≥ 3) with C1,1 boundary and study the quasilinear elliptic
problem:

(Pλ)

−div(m(x)∇u) = λu+ µ(x)
|∇u|q

|u|q−1
+ f(x) in Ω,

u = 0 on ∂Ω,

where λ ∈ R, 0 ≤ µ ∈ L∞(Ω), f ∈ Lp(Ω) with p > N
2 , 1 < q ≤ 2 and 0 < η ≤ m ∈ L∞(Ω) ∩W 1,∞

loc (Ω). We
say that a solution to problem (Pλ) is a function u ∈ H1

0 (Ω) ∩ L∞(Ω) such that µ(x) |∇u|
q

|u|q−1 ∈ L1({|u| > 0})
and ∫

Ω

m(x)∇u∇φ = λ

∫
Ω

uφ+

∫
{|u|>0}

µ(x)
|∇u|q

|u|q−1
φ+

∫
Ω

f(x)φ,

for every φ ∈ H1
0 (Ω) ∩ L∞(Ω).

The aim of this note is to summarize the known results, obtained in [6] and [7], concerning the existence,
uniqueness, homogenization and nonexistence of solution to problem (Pλ) (which improve, in some sense,
those contained in [2] for q = 2). In these mentioned papers, it is shown that the validity of such results
depends on the existence of a principal eigenvalue for the eigenvalue problem

(Eλ)

−div(m(x)∇u) = λu+ µ(x)
|∇u|q

|u|q−1
in Ω,

u = 0 on ∂Ω.
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Inspired by [3], the principal eigenvalue can be characterized by

(1.1) λ∗ = sup

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v ≥ c in Ω for some c > 0

}
,

where the precise meaning of supersolution used in (1.1) is specified in the next section.

2. Principal eigenvalue

We say that v ∈ H1(Ω) ∩ L∞(Ω) is a supersolution to (Eλ) if v > 0 a.e. in Ω, |∇v|
q

vq−1 ∈ L1
loc(Ω) and the

following inequality holds

(2.1)
∫

Ω

m(x)∇v∇φ ≥ λ
∫

Ω

vφ+

∫
Ω

µ(x)
|∇v|q

vq−1
φ ∀φ ∈ H1

0 (Ω) ∩ L∞(Ω), φ ≥ 0 .

Analogously it is defined de concept of supersolution for (Pλ) and, with the reverse inequality, the concept of
subsolution. Moreover, we say that

• v satisfies condition (v1) if v ≥ c in Ω for some c > 0.
• v satisfies condition (v2) if v − c ∈ H1

0 (Ω) for some c > 0.
• v satisfies condition (v3) if, for some γ0 < 1, vγ ∈ H1(Ω) for every γ > γ0.

Thus, in order to summarize the main properties and characterizations of λ∗, we define for i = 1, 2, 3,

Ii =

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v satisfies (vi)

}
.

Proposition 2.1. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω) and 0 < η ≤ m ∈ L∞(Ω). Then the sets I1,
I2 and I3 are nonempty intervals which are unbounded from below, so λ∗ = sup I1 is well defined. Moreover,

I1 = I2 and λ∗ = sup I3. In addition, 0 < λ∗ ≤ λ1(m) ≡ inf
w∈H1

0 (Ω)\{0}

∫
Ω
m(x)|∇w|2∫

Ω
w2

.

Proof. We include here the main steps in the proof, further detail may be found in [6] in the case m(x) = 1.
First we observe that, from the concept of supersolution it is easily deduced that (−∞, λ] ⊂ Ii whenever

λ ∈ Ii. Moreover, taking v = 1 as a supersolution to (E0) we derive that (−∞, 0] ⊂ Ii. In particular, Ii is an
interval unbounded from below.
Step 1. I1 = I2. Observe that, since (−∞, 0] ⊂ I1 ∩ I2 then it is enough to prove that I1 ∩ (0,+∞) =
I2 ∩ (0,+∞). Assume that 0 < λ ∈ I2 ∩ (0,+∞). Hence, there exist v ∈ H1(Ω) ∩ L∞(Ω) and c > 0 with
v > 0 in Ω, v − c ∈ H1

0 (Ω), and

−div(m(x)∇(v − c)) = −div(m(x)∇v) ≥ λv + µ(x)
|∇v|q

vq−1
≥ 0 in Ω.

Therefore, the maximum principle yields to v ≥ c in Ω, and so λ ∈ I1 ∩ (0,+∞).
Conversely if 0 < λ ∈ I1 and −div(m(x)∇v) ≥ λv + µ(x) |∇v|

q

vq−1 in Ω for some v ∈ H1(Ω) ∩ L∞(Ω) with
v ≥ c > 0 then v − c is a non-negative supersolution to the problem (without singularity)

(2.2)

−div(m(x)∇u) = λu+ µ(x)
|∇u|q

(|u|+ c)q−1
+ λc in Ω,

u = 0 on ∂Ω.

Since the trivial function it is a subsolution there exists a solution u ∈ H1
0 (Ω) ∩ L∞(Ω) to (2.2) (see [5,

Théorème 3.1]) with 0 ≤ u ≤ v−c in Ω. Thus, u+c is a supersolution to (Eλ) that satisfies (v2) and therefore
λ ∈ I2.
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Step 2. λ∗ = sup I3. First we observe the trivial inclusion I1 ⊂ I3. Thus in order to prove Step 2 we are
going to show that I3 − ε ⊂ I1 for every ε > 0 small enough. Indeed, assume that λ ∈ I3, i.e. there exist
u ∈ H1(Ω) ∩ L∞(Ω) and γ̃ ∈ (0, 1) satisfying

u > 0 in Ω, −div(m(x)∇u) ≥ λu+ µ(x)
|∇u|q

uq−1
in Ω, uγ ∈ H1(Ω) ∀γ > γ̃.

Then we show that λ− ε ∈ I1. In fact we prove that a supersolution to (Eλ−ε) is v = ε(ϕγ1 + 1) +uγ where
ε is a small enough positive constant, γ ∈

(
max

{
1
2 , γ̃,

λ−ε
λ

}
, 1
)
and ϕ1 > 0 is the the principal positive and

normalized eigenfunction associated to λ1(m), that is,{
−div(m(x)∇ϕ1) = λ1(m)ϕ1 in Ω,

ϕ1 = 0 on ∂Ω.

Observe that, since γ > 1
2 it is easy to deduce that ϕγ1 ∈ H1

0 (Ω). Indeed, take (ϕ1 + δ)2γ−1 − δ2γ−1 as test
function in the equation satisfied by ϕ1 and use Fatou lemma as δ → 0.

Thus, since γ > γ̃, we have v ∈ H1(Ω) ∩ L∞(Ω) and, clearly, v ≥ ε in Ω and only remains to prove that v
is a supersolution to (Eλ−ε).

Let φ ∈ H1
0 (Ω) ∩ L∞(Ω) be such that φ ≥ 0 in Ω and has compact support. Direct computations yield to

(2.3)

∫
Ω

(
−m(x)∇v∇φ+ (λ− ε)vφ+ µ(x)

|∇v|q

vq−1
φ

)
≤ −(γλ− (λ− ε))

∫
Ω

uγφ+

ε

∫
Ω

(
−γ(1− γ)m(x)

|∇ϕ1|2

ϕ2−γ
1

+ ((λ− ε)− γλ1(m))ϕγ1 + (λ− ε) + ‖µ‖L∞(Ω)C1
|∇ϕ1|q

ϕ
q(1−γ)
1

)
φ.

Using Hopf lemma we can assure that |∇ϕ1| is bounded away from zero in a small neighborhood Ωδ of the
boundary. Using also that γ > λ−ε

λ and q(1 − γ) < 2 − γ, we choose δ sufficiently small and independent of
ε, such that, in Ωδ

(2.4) Ψ(x) ≡ −γ(1− γ)m(x)
|∇ϕ1|2

ϕ2−γ
1

+ ((λ− ε)− γλ1(m))ϕγ1 + (λ− ε) + ‖µ‖L∞(Ω)C1
|∇ϕ1|q

ϕ
q(1−γ)
1

≤ 0.

Consequently, we take ε small enough in order to have in Ω \ Ωδ

εΨ(x) ≤ εC3 ≤ (γλ− (λ− ε)) inf
Ω\Ωδ

(uγ) ≤ (γλ− (λ− ε))uγ .(2.5)

Gathering (2.3), (2.4) and (2.5) together we conclude that∫
Ω

m(x)∇v∇φ ≥ (λ− ε)
∫

Ω

vφ+

∫
Ω

µ(x)
|∇v|q

.
vq−1φ.

Step 3. λ∗ > 0. First we choose c > 0 large enough and δ > 0 small enough in order to assure (using [9,
Theorem 3.4]) the existence of solution 0 ≤ u ∈ H1

0 (Ω) ∩ L∞(Ω) to

(2.6)

−div(m(x)∇u) =
µ(x)

cq−1
|∇u|q + δ in Ω,

u = 0 on ∂Ω.

Then, for some λ > 0 small, v = u + c ∈ H1(Ω) ∩ L∞(Ω) is a supersolution to (Eλ) which satisfies (v1).
Indeed,

−div(m(x)∇v) = −div(m(x)∇u) ≥ µ(x)
|∇v|q

vq−1
+ λv + (δ − λ‖v‖L∞(Ω)).
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Step 4 λ∗ ≤ λ1(m). Assume that 0 < λ ∈ I2. From Step 1, there exists ψ ≥ 0 solution to (2.2) for some
c > 0. Taking ϕ1 as test function in (2.2) we have

λ1(m)

∫
Ω

ϕ1ψ =

∫
Ω

m(x)∇ϕ1∇ψ = λ

∫
Ω

ψϕ1 +

∫
Ω

µ(x)
|∇ψ|q

(ψ + c)q−1
ϕ1 + λc

∫
Ω

ϕ1.

In particular, (λ1(m)− λ)
∫

Ω
ψϕ1 > 0 and λ < λ1(m). �

Now we characterize λ∗ as the unique possible value of the parameter λ for which (Eλ) may admit a positive
solution.

Proposition 2.2. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 < η ≤ m ∈
L∞(Ω) ∩W 1,∞

loc (Ω). If there exists a positive solution to (Eλ), then λ = λ∗.

Proof. Arguing by contradiction, if there exists a positive solution u to (Eλ) for some λ > λ∗ then, in
particular, it is a supersolution and taking (u+ ε)2γ−1 − ε2γ−1 as test function and using Fatou lemma it is
possible to prove that uγ ∈ H1(Ω) for every γ > 1

2 if q < 2 or γ > 1+‖µ‖L∞(Ω)

2 if q = 2. This implies that
λ ∈ I3 and using Proposition 2.1 we have that

λ ≤ sup I3 = λ∗ < λ.

On the other hand, if there exists a positive solution u to (Eλ) for some λ < λ∗, then tu is also a solution
for every t > 0 and, using the characterization of λ∗ given in Proposition 2.1, we have that (Eλ) admits a
positive supersolution v. In the case µ ≡ 0 this is a contradiction, since the comparison principle assures then
that tu ≤ v for every t > 0, which is not possible.

When µ 6≡ 0 we conclude the proof in a similar way once we generalize the comparison principle which in
addition requires to prove stronger regularity of solutions (see Theorem 2.4 and Lemma 2.3 below, proved in
[6]). �

In the next lemma, proved with the regularity theory developed by Ladyzenskaya and Ural’tseva in [10],
we resume the main regularity properties of solutions to (Pλ) and, in particular, to (Eλ). Here we replace the
C1,1 regularity of ∂Ω by a less restrictive hypothesis.

Lemma 2.3. Let 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, 0 < η ≤ m ∈ L∞(Ω) ∩W 1,∞
loc (Ω),

0 � f ∈ Lp(Ω) with p > N
2 , and let u ∈ H1

0 (Ω) ∩ L∞(Ω) be a solution to (Pλ) for some λ ∈ R. Assume also
that there exist r0, θ0 > 0 such that, if x ∈ ∂Ω and 0 < r < r0, then

|Ωr| ≤ (1− θ0)|Br(x)|

for every connected component Ωr of Ω ∩ Br(x), where Br(x) denotes the ball centered at x with radius r.
Then u ∈ C0,α(Ω) ∩W 1,2p

loc (Ω) for some α ∈ (0, 1).

Now we state the main comparison principle that we have obtained in this context

Theorem 2.4. Let 1 < q ≤ 2, λ ∈ R, 0 < η ≤ µ ∈ L∞(Ω), 0 ≤ h ∈ L1
loc(Ω), 0 < η ≤ m ∈ L∞loc(Ω), and

assume that u, v ∈ C(Ω) ∩W 1,N
loc (Ω) are such that u, v > 0 in Ω and satisfy

(2.7) lim sup
x→x0

u(x)

v(x)
≤ 1 ∀x0 ∈ ∂Ω,

(2.8)
∫

Ω

m(x)∇u · ∇φ ≤ λ
∫

Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

h(x)φ,
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and

(2.9)
∫

Ω

m(x)∇v · ∇φ ≥ λ
∫

Ω

vφ+

∫
Ω

µ(x)
|∇v|q

vq−1
φ+

∫
Ω

h(x)φ,

for all 0 ≤ φ ∈ H1
0 (Ω) ∩ L∞(Ω) with compact support. Then u ≤ v in Ω.

Proof. The result is obtained arguing as in [1, Lemma 2.2] (see also the references therein) in the equations
satisfied by u1 = log(u) and v1 = log(v) and taking into account, using (2.7), that, for every k > 0, the
function (u1 − v1 − k)+ has compact support in Ω. �

3. Applications

3.1. Existence of solution. In order to avoid the singularity we consider a sequence of approximating
nonsingular problems.

(Qn)

{
−div(m(x)∇un) = λun + µ(x)gn(un)|∇un|q + fn(x) in Ω,

un = 0 on ∂Ω,

where fn(x) = max{−n,min{f(x), n}} and gn(s) =
1

|s+ 1
n |q−1

when 0 � f , otherwise

gn(s)
def
=


1

|s|q−1
|s| ≥ 1

n
,

|s|nq |s| ≤ 1

n
.

The role of λ∗, the principal eigenvalue of (Eλ), is that it allows to prove an a priori estimate, for λ < λ∗,
in the L∞(Ω) norm of this sequence of approximating solutions. Thanks to this estimate one can pass to the
limit and prove the existence of solution to (Pλ).

The main result in [7] for the existence of solution, which includes the case where f may change sign, is
the following (see also [6] for positive data).

Theorem 3.1. Assume that 1 < q ≤ 2, f ∈ Lp(Ω) for some p > N
2 , 0 ≤ µ ∈ L∞(Ω) and 0 < η ≤ m ∈

L∞(Ω) ∩W 1,∞
loc (Ω). If q = 2, assume additionally that f 
 0 and ‖µ‖L∞(Ω) < 1. Then there exists at least a

solution to problem (Pλ) for every λ < λ∗.

Idea of the proof. Step 1. First we deduce, by means of the subsolution and supersolution method in [5],
the existence of un ∈ H1

0 (Ω) ∩ L∞(Ω) solution to (Qn). Here, the supersolution for (Qn) for any λ < λ∗ is
given by a positive multiple of the supersolution for (Eλ) for any λ̄ ∈ (λ, λ∗) ⊂ I1. The subsolution is either
a negative multiple of the same function or the zero function when 0 � f .

Step 2. Arguing as in [10, Theorem 1.1] at Section 4 (p. 249-251) we deduce that un ∈ C0,α(Ω) for some
α ∈ (0, 1) (see also [6, Appendix]).

Step 3. {un} is uniformly bounded from below. This is deduced from the maximum principle. Indeed,
un ≥ z with z ∈ H1

0 (Ω) ∩ L∞(Ω) and −div(m(x)∇z) = λz − |f(x)| in Ω. Moreover, if 0 � f we have that
un ≥ w with −div(m(x)∇w) = λz + f1(x) and the strong maximum principle assures that {un} is uniformly
bounded away from zero in compactly embedded subsets of Ω.

Step 4 {un} is bounded in L∞(Ω) and the proof finishes when 0 � f . Indeed, we argue by contradiction
and take ‖un‖L∞(Ω) → ∞ (up to a subsequence). Then, we have that the function zn ≡ un

‖un‖L∞(Ω)
∈
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H1
0 (Ω) ∩ L∞(Ω) satisfies, for every n, that

(3.1)


−div(m(x)zn) = λzn + µ(x)

|∇zn|q(
zn + 1

n‖un‖L∞(Ω)

)q−1 +
Tn(f(x))

‖un‖L∞(Ω)
in Ω,

zn = 0 on ∂Ω.

Taking zn as test function and using that ‖zn‖L∞(Ω) = 1 we obtain that {zn} is bounded in H1
0 (Ω) and we

deduce that there exists 0 ≤ z ∈ H1
0 (Ω) ∩ L∞(Ω) such that, passing to a subsequence, zn ⇀ z weakly in

H1
0 (Ω) and zn → z uniformly in Ω (due to the compact embedding of C0,α(Ω) in C0(Ω) and the uniform

bound in C0,α(Ω) that regularity yields from the L∞(Ω) bound of zn). In particular, ‖z‖L∞(Ω) = 1 and as a

consequence z 
 0 in Ω. Moreover, using weak limits
∫

Ω

m(x)∇z∇φ−λ
∫

Ω

zφ ≥ 0 , and the strong maximum

principle (λ < λ∗ ≤ λ1(m)) leads to the facts that z > 0 in Ω and |∇z|
q

zq−1 ∈ L1
loc(Ω). Furthermore, the uniform

convergence implies that zn satisfies zn ≥ cω > 0, ∀ω ⊂⊂ Ω, ∀n ∈ N. This implies that {−∆zn}n∈N is
bounded in L1

loc(Ω), that combined with the H1 bound implies (see [4]) that

∇zn → ∇z strongly in Lr(Ω)N for any r < 2.

The local lower bound and the convergence of the gradients will allow us to pass to the limit in (3.1). In
this respect, the case q = 2 is special since in principle we do not have strong convergence of the gradients in
L2(Ω)N . Nevertheless, Fatou lemma can be applied to prove that z is both a subsolution and a supersolution
to (Eλ), and here the assumptions ‖µ‖L∞(Ω) < 1 and f 
 0 are essential. In either case, we deduce that z is
a solution to problem (Eλ), which is a contradiction with Proposition 2.2 since λ < λ∗.

The contradiction confirms that {un}n∈N is bounded in L∞(Ω) and arguing as for the sequence {zn} we
conclude the proof of the result by passing to the limit in (Qn).

Step 5 {un} is bounded in L∞(Ω) for changing sign f .
Although we can not argue as in Step 4, we can use Step 4 in order to prove that un is uniformly bounded

from above, which in addition to Step 3 implies that {un} is bounded in L∞(Ω). Observe that, this uniform
bound from above is trivial if the open set

ωn = {x ∈ Ω : un(x) > 0}

is empty. Otherwise, since un ∈ C0,α(ωn), then we deduce that un ∈ W 1,N
loc (ωn) and un is a subsolution to

the problem

(3.2)


−div(m(x)∇ζ) = λζ + µ(x)

|∇ζ|q

ζq−1
+ |f(x)|+ 1 in ωn,

ζ > 0 in ωn,
ζ = 0 on ∂ωn.

On the other hand, from Step 4, there exists a solution v to
−div(m(x)∇v) = λv + µ(x)

|∇v|q

vq−1
+ |f(x)|+ 1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Moreover, v ∈ C(Ω)∩W 1,N
loc (Ω) reasoning as before. Then, v is a supersolution to (3.2) and applying Theorem

2.4 we deduce that un ≤ v ≤ ‖v‖L∞(Ω) in ωn and as a consequence un ≤ ‖v‖L∞(Ω) in Ω.
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Step 6. Passing to the limit for general data f and 1 < q < 2. Arguing as in Step 4, we can deduce
that there exists u ∈ H1

0 (Ω) ∩ L∞(Ω) such that un → u strongly in H1
0 (Ω) and in Lr(Ω) for every r ∈ [1,∞).

Moreover, given φ ∈ H1
0 (Ω) ∩ L∞(Ω),

lim
n→∞

∫
Ω

µ(x)gn(un)|∇un|qφ = lim
n→∞

(∫
Ω

m(x)∇un · ∇φ− λ
∫

Ω

unφ

−
∫

Ω

fn(x)φ

)
=

∫
Ω

m(x)∇u · ∇φ− λ
∫

Ω

uφ−
∫

Ω

f(x)φ.

The main difficulty is to prove that lim
n→∞

∫
Ω

µ(x)gn(un)|∇un|qφ =

∫
{|u|>0}

µ(x)
|∇u|q

|u|q−1
φ.

In order to do that we choose a convenient decreasing sequence of positive real numbers δm → 0 and prove,
using that |un|

1−ε
q is bounded in H1

0 (Ω), that

lim
m→∞

(
lim
n→∞

∫
{|un|≤δm}

µ(x)gn(un)|∇un|qφ

)
= 0.

On the other hand, using that |un|
1
q is bounded in H1

0 (Ω) and Lebesgue Theorem

lim
m→∞

(
lim
n→∞

∫
{|un|>δm}

µ(x)gn(un)|∇un|qφ

)
= lim
m→∞

(∫
{|u|>δm}

µ(x)
|∇u|q

|u|q−1
φ

)

=

∫
{|u|>0}

µ(x)
|∇u|q

|u|q−1
φ.

This concludes the proof that u is a solution to (Pλ). �

3.2. Nonexistence of solution to (Pλ). As in the proof of Proposition 2.2, when 0 � f , the main role of the
principal eigenvalue λ∗ for the nonexistence of positive solution is due to the characterization as λ∗ = sup I3,
since existence of positive solution for some λ implies λ ∈ I3. As a consequence, no solution exists for λ > λ∗.

Proposition 3.2. Assume that 1 < q ≤ 2, 0 � f ∈ Lp(Ω) for some p > N
2 , 0 ≤ µ ∈ L∞(Ω) and 0 < η ≤

m ∈ L∞(Ω)∩W 1,∞
loc (Ω). If q = 2, assume additionally that ‖µ‖L∞(Ω) < 1. Then, there is no solution to (Pλ)

for any λ > λ∗.

Proof of Proposition 3.2. As commented above, the main difficulty lies on the proof of the existence of 1
2 ≤

γ(q) < 1 such that uγ ∈ H1(Ω) for every γ > γ(q) and for every u solution to (Pλ), which implies that λ ∈ I3
and thus λ ≤ λ∗. �

3.3. Uniqueness. The comparison principle given in Theorem 2.4 guarantees uniqueness of C(Ω)∩W 1,N
loc (Ω)

positive solution to (Pλ) when any pair of possible solutions satisfy (2.7). In [6] we derive another comparison
result to improve the uniqueness result for (Pλ).

Theorem 3.3. Let 1 < q ≤ 2, λ ∈ R, 0 ≤ µ ∈ L∞(Ω), 0 ≤ h ∈ L1
loc(Ω), 0 < η ≤ m ∈ L∞loc(Ω). Assume that

u, v ∈ C(Ω)∩W 1,N
loc (Ω), with u, v > 0 in Ω, and satisfy (2.8) and (2.9) respectively. Assume also that, for all

ε > 0,

(3.3) lim sup
x→x0

(
u(x)

v(x) + ε

)
≤ 1 ∀x0 ∈ ∂Ω.

Furthermore, if λ > 0, assume also that h is locally bounded away from zero and λ < λ∗. Then, u ≤ v in Ω.
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Theorem 3.4. Assume that 1 < q ≤ 2, 0 � f ∈ Lp(Ω) with p > N
2 , 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if

q = 2, and 0 < η ≤ m ∈ L∞(Ω) ∩W 1,∞
loc (Ω). Then (Pλ) has a unique solution if either λ ≤ 0, or f is locally

bounded away from zero and λ < λ∗.

Proof. We observe that if u, v are two solutions to (Pλ), then Lemma 2.3 implies that u, v ∈ C(Ω)∩W 1,N
loc (Ω).

In particular, using the continuity up to the boundary of u, v and the fact that u(x0) = 0 for any x0 ∈ ∂Ω,
we have that u, v satisfy (3.3) for any ε > 0. Moreover, they obviously satisfy (2.8) and (2.9) respectively.
Therefore, Theorem 3.3 implies that u ≤ v in Ω. The reverse inequality follows by interchanging the roles of
u and v. �

3.4. Bifurcation. As in the semilinear case (µ ≡ 0) we prove that the principal eigenvalue λ∗ is in fact a
bifurcation point from infinity for (Pλ) when f 
 0. This, in addition, is useful to get that (Eλ∗) admits
solution.

Theorem 3.5. Assume that 1 < q ≤ 2, 0 � f ∈ Lp(Ω) with p > N
2 , 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if

q = 2, and 0 < η ≤ m ∈ L∞(Ω)∩W 1,∞
loc (Ω). Then, λ∗ is the unique possible bifurcation point from infinity of

(Pλ). Moreover, if f is locally bounded away from zero, then the set

Σ := {(λ, uλ) ∈ R× C(Ω) : uλ is a solution to (Pλ)}

is a continuum. In this case, the continuum is unbounded and bifurcates from infinity at λ∗ to the left whenever
(Pλ) has no solution for λ = λ∗.

Remark 3.6. Observe that there are conditions on f such that there are no solutions to (Pλ∗). For instance,
f ≥ c for some c > 0. See [6] for more details.

Proof. For the first part we observe that, as before, if λ̄ ∈ R is a bifurcation point from infinity then the
normalized sequence converges to a solution to (Eλ̄) which implies that λ = λ∗.

For the existence of the continuum we observe that, when f is locally bounded away from zero, one has
uniqueness of solution for all λ < λ∗. Then, we can define a map λ 7→ uλ, where uλ is the unique solution to
problem (Pλ) for all λ < λ∗. The proof that this map is continuous is deduced by deriving an L∞ estimate
and passing to the limit, as in Theorem 3.1.

Finally, for the global behavior of Σ we observe that, if for λn → λ∗ the sequence {uλn}n∈N is bounded in
L∞(Ω), then we can pass to the limit in (Pλn) to find a solution to (Pλ∗), which contradicts the assumption. �

Corollary 3.7. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 < η ≤ m ∈
L∞(Ω) ∩W 1,∞

loc (Ω). Then (Eλ∗) admits solution.

Proof. We may choose λn → λ∗ such that ‖uλn‖L∞(Ω) → ∞, where uλn denotes, for any n, the unique
solution to the problem 

−∆u = λnu+ µ(x)
|∇u|q

uq−1
+ 1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Then we prove that the normalized sequence converges to is a solution to (Eλ∗). �

3.5. Homogenization. Here we state the homogenization result obtained in [7]. Following [8], we consider
for every ε > 0 a finite number, n(ε) ∈ N, of closed subsets T εi ⊂ RN , 1 ≤ i ≤ n(ε), which are the holes. Let
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us denote Dε = RN \
⋃n(ε)
i=1 T

ε
i . The domain Ωε is defined by removing the holes T εi from Ω, that is

Ωε = Ω−
n(ε)⋃
i=1

T εi = Ω ∩Dε.

We assume that the sequence of domains Ωε is such that there exist a sequence of functions {wε} and
σ ∈ H−1(Ω) such that

(3.4) wε ∈ H1(Ω) ∩ L∞(Ω),

(3.5) 0 ≤ wε ≤ 1 a.e. x ∈ Ω,

(3.6) wεφ ∈ H1
0 (Ωε) ∩ L∞(Ωε) ∀φ ∈ H1

0 (Ω) ∩ L∞(Ω),

(3.7) wε ⇀ 1 weakly in H1(Ω),

and given zε, φ, z ∈ H1(Ω) ∩ L∞(Ω) such that zεφ ∈ H1
0 (Ωε) ∩ L∞(Ωε) and zε weakly converges in H1(Ω) to

z, the following holds ∫
Ω

m(x)∇wε · ∇(zεφ)→ 〈σ, zφ〉H−1(Ω),H1
0 (Ω).(3.8)

For a function uε ∈ H1
0 (Ωε), we denote by uε̃ ∈ H1

0 (Ω) the extension of u by zero in Ω \ Ωε.

Theorem 3.8. Assume that the sequence of perforated domains Ωε satisfies (3.4), (3.5), (3.6), (3.7) and (3.8).
Suppose also that 1 < q < 2, f ∈ Lp(Ω) for some p > N

2 , 0 ≤ µ ∈ L∞(Ω), 0 < η ≤ m ∈ L∞(Ω) ∩W 1,∞
loc (Ω),

λ < λ∗ and that both Ω and Dε satisfy the regularity condition of the domain in Lemma 2.3, where Dε =

RN \
⋃n(ε)
i=1 T

ε
i . Then, there exists a sequence {uε} of solutions to problem−div(m(x)∇uε) = λuε + µ(x))

|∇uε|q

|uε|q−1
+ f(x) in Ωε,

uε = 0 on ∂Ωε,

such that {uε̃} is bounded in L∞(Ω) and uε̃ weakly converges in H1
0 (Ω) to a solution u to−div(m(x)∇u) + σu = λu+ µ(x)

|∇u|q

|u|q−1
+ f(x) in Ω,

u = 0 on ∂Ω,

in the sense that u ∈ H1
0 (Ω) ∩ L∞(Ω), |∇u|

q

|u|q−1 ∈ L1({|u| > 0}) and∫
Ω

m(x)∇u · ∇φ+ 〈σ, uφ〉H−1(Ω),H1
0 (Ω) = λ

∫
Ω

uφ+

∫
{|u|>0}

µ(x)
|∇u|q

|u|q−1
φ+

∫
Ω

f(x)φ

for all φ ∈ H1
0 (Ω) ∩ L∞(Ω).
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